CHAPTER 26

Inner Product on U

26.1. FIRST DEFINITION OF THE INNER PRODUCT

26.1.1. In the following theorem, p: U —» Uisasin19.1.1,and 5: U - U
is defined by p(u) = p(a).

Theorem 26.1.2. There ezists a unique Q(v)-bilinear pairing (,) : U x
U — Q(v) such that (a), (b), (c) below hold.

(a) (1x,z1a,, 1z 2 1y;) is zero for all z,2' € U, unless \; = X, and
Ag =

(b) (uz,y) = (z, p(u)y) for all z,y € U and u € U;

(c) (z71x,2'7 1)) = (z,2') for all z,2’' € f and all X (here (z,2’) is the
~ inner product as in 1.2.5).

(d) We have (z,y) = (y,z) for all z,y € U.

Let ¢ € X. If B is a basis of f consisting of homogeneous elements,
the elements p(b~ )b~ 1¢, with b,b’ € B, form a basis of Ul,. (We use the
triangular decomposition of U.) Hence there is a unique Q(v)-linear map
p: Ul; — Q(v) such that p(p(z~)z'~1¢) = (z,2’) for all z,2’ € f; here,
(z,7’) is as in 1.2.5. The properties of (z,z’) imply that for homogeneous
z,x’, we have p(p(z~)z’"1¢) = 0 unless x,z’ have the same homogeneity,
in which case p(z~ )z’ "1 = 1¢p(z~)z’~. Thus, for (' € X different from
¢, we have p(lCrUlc) = 0. It follows that, for any 1 € Y, we have p((Ky —
v{0)U1;) = 0. We now define a pamng fe : Ule x Ul — Q(v) by
fe(ule,u'le) = p(p(u)u'le) where u,u’ € U. To show independence of
u,u’, we must check that p(p(u)u’l;) = 0 if either u or «’ is in the left ideal
of U generated by (K, —v{*¢)) for some p € Y; in the case of u, this follows
from the previous sentence, while in the case of v/, this is obvious. Thus, f¢
is well-defined. We define the bilinear pairing (,) on U by (z,y) = fe(z,y)
if z,y € Ul¢ and by (z, y) =0if z € Ul and y € Ul with ¢ # ¢’ Tt is
clear that this pairing satisfies (a),(b),(c); the uniqueness is also clear from
the proof above.

The pairing z,y — (y, =) satisfies the defining properties of (z,y) (since
p? = 1), and hence coincides with it. This proves (d).
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Proposition 26.1.3. We have (zu,y) = (z,yp(u)) for all z,y € U and
ueU.

We may assume that u is one of the standard generators of U. Thus, we
must verify that

(xE,-,y) = (l‘, 'U'in‘ii'{—i), (xFi, y) = (m’viyEiki)y (xK—u’ y) = («’U,?/K—u)

forallz,yc Uandi€I,ueY.

We may assume that £ = u’1; where v’ € U and ¢ € X. Using 26.1.2(b),
and setting p(u’)y = y’, we see that the previous equalities are consequences
of

(1cEi,y) = (¢, vy FK_3), (1cFi o) = (1¢, vy E:K)
and
(AcK-_ ) = (¢, Y K-y)

forally e UandiecI,peY.
We can assume that y' = p(y; )yz 1¢» where y,,y2 € f are homogeneous.
Then the equalities to be proved can be rewritten as follows:

(8) (7 Bile—ir,y3 1¢r) = v " (47 1, yy Filgr)

(b) (U7 Filgyir, vz 1er) = v P ™ (i 1, vz Eilerir)

(C) (yl_lCK—lhyZ_]'C') = (y1—1C’y2— IC’K—[J)-

. Now (c) is obvious and (b) follows from (a), using 26.1.2(d). It remains
to prove (a). We may assume that ¢’ = ( — /. We substitute

ri(y1) " K_i — Ki(ir(y1)7)
v; —vi_1

yi_Ei]'C' = Ezyl_ 1(! + ]'C'

and note that
(Bayi 1¢, 93 1¢r) = (ui 1¢r, viKi Foyy 1¢0)
— (yl_ 1(" vi—1+(i,fl—|y2|>Fiy2— 1(')
—14(i,¢' —
= v‘i +( ¢ Iy2|)(y1)9iy2)>

ri(y1)"K_i — Ki(ir(1)7)
v; — v{l

(

1("y2—1C') =

)(7‘1'(’!/1),!/2) -
v; — vi—l

vi—(i»C Ul(iv(' —ly1|+1 )(

ir(Y1),¥2)

v«il_<i’c i )(yl_l("y?,—FilC’+i’) = vi—l—(i,C )(ylyy20‘i)’



210 26. Inner Product on U

(see 26.1.2(b), (c)). We see that (a) is equivalent to:

) —(Z)C‘) 3 _
T

Ui(i’c e )(iT(yl),yz)

1
= ;75 (4, 18)).
But this follows from the known equalities

(ir(y1),y2)
1—- v{z

(T‘i(yl),yz)
1—-v72"

1

(y1,920:) = (11,0iy2) =

(see 1.2.13(a)). The proposition is proved.
Proposition 26.1.4. We have (o(z),0(y)) = (z,y) for all z,y € U.

We must show that the pairing z,y — (o(x),0(y)) on U satisfies the
defining properties of (,). Property 26.1.2(a) is obvious and property
26.1.2(c) follows from 1.2.8(b). Since op = po : U — U, we see that
26.1.2(b) for the pairing z,y — (o(z),0(y)) is equivalent to the identity in

the previous proposition. The proposition follows.

Lemma 26.1.5. (z*1),2'%1)) = (x,2’) for all x,2’ € f and all \; here
(z,2’) is as in 1.2.5.

We may assume that z,z’ are homogeneous; moreover, using 26.1.2(a),
we may assume that they both belong to f,. Using 26.1.2(b), we have

(z1a, 2" 1) = (1, p(z)z' T 1y).
Using the previous proposition, we see that the last expression equals
(0(1x),0(p(z*)z'* 1)) = (1-x, 1-ra(z' M) p(a(zt)))
= (1ox,0(z™*)p(o(z1))1-5).

Using 26.1.2(b) and the fact that p? = 1, we see that the last expression
equals

(p(o(z*))1-, Blo(zF))1-5).

Using the definitions, we see that there exists an integer N depending
only on v and X such that for any 2 € f, we have p(o(z1))1y = vVN2z"1,
and p(o(z%))1y = v™N2z71,. Hence the last inner product is equal to

(W' 1_5,vNz71o,) = ("1, 2710)) = (7, 2) = (z,2).

The lemma is proved.
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Proposition 26.1.6. We have (w(z),w(y)) = (z,y) for all z,y € U.

We must show that the pairing z,y — (w(z),w(y)) on U satisfies the
defining properties of (,). Property 26.1.2(a) is obvious and property
26.1.2(c) follows from the previous lemma. Since wp = pw : U — U,
we see that 26.1.2(b) for the pairing z,y — (w(z),w(y)) is equivalent to
the corresponding identity for (z,y). The proposition follows.

26.2. DEFINITION OF THE INNER PRODUCT AS A LIMIT

26.2.1 In this section we assume that the root datum is Y-regular. Let
¢ € X and let A\, ' € X* be such that X' =\ = (. We consider the bilinear
pairing (,)a,x on “Ax ® Ay, defined by (z Q@ 2',y ® y') = (z,y)a(z’, ¥ )x-
Here (, ) is the pairing on Ay defined in 19.1.2, and (, ) is the analogous
pairing on A, which has the same ambient space as “Ajy.

Lemma 26.2.2. Ifz1,z2 € “A) ® Ay and u € U, we have

(U931,$2)A,A' = (931,/’(“)372))\,«\’-

It is enough to check this in the case where u is one of the algebra
generators E;, F;, K, of U. The case where u = K|, is trivial. We now fix
i and regard the U-module “A) ® Ay as an object of C; (by restriction).
It is enough to show that the form (,) on this object is admissible in the

“sense 0f’16.2.2. Using 17.1.3(b), we see that this would follow if we knew
that the forms (,)x and (,)x on “Ay and Ay (regarded as objects of C;)
are admissible. For (, ) this follows from the definition. The same holds
for (,)x on Ay. One checks easily that applying w to an object of C; with
an admissible form gives a new object of C; for which the same form is
admissible. In particular, (, )’ is admissible for “A. The lemma is proved.

Proposition 26.2.3. Let z,y € Ulc. When the pair A\, ) tends to oo (in
the sense that (i,)) tends to oo for all i, or equivalently, (i, \') tends to oo
for all i, the difference N’ — A being fized and equal to (), the inner product

(@(6-x ® nx), Y(E-x ® Ma))ax € Q(v) converges in Q((v1)) to (z,y).
Assume first that z = z7 1¢,y = y; 1¢ where z1,7; € f. In this case we
have
T(f-A ®Mn) =E-r @ Ty NN

and
YE-a®na) = €A Yy Mn;
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hence
(Z(€=x ® N2 ), Y(E-x @ Mx))an = (T, Y7 Mar )

and, by 19.3.7, this converges to (z;,y1) when A — oco. Since (z1,11) =
(z11¢, 91 1¢), the proposition holds in this case.

Next, we prove the proposition in the case where z = 1¢ and y is arbi-
trary. We may assume that y = p(x7)y; 1¢ where z1,y, € f. Using the
previous lemma, we have

(1c(€=x ® M), y(E-r @ ma))an = (27 1c(E-x @ mar), w7 1 (E—x @ mar))an

and by the earlier part of the proof, this converges to (z7 1¢,y; 1¢) when
A — oo. Since (z} 1¢,y; 1¢) = (1¢,y), the proposition holds in this case.

We now consider the general case. We can write x = ul; where u € U.
Using the previous lemma, we have

(ule(€=x ® M), Y(€-r @ Ma)an = (L¢(§-x @ Mar), p(w)y(§—x ® Mar))axe

and by the case previously considered, this converges to (1¢, p(u)y) when
A — oo. Since (1¢, p(u)y) = (ul¢,y), the proposition is proved.

26.3. A CHARACTERIZATION OF B LI (—B)

In the following result there is no assumption on the root datum.

The,orem 26.3.1. (a’) Let b': bl, bla bl] € B and let C, C] c X. We have
(b0, 10, bY) = 66,6, 64 4, 6¢,c; mod vTA.

In particular, the canonical basis B of U is almost orthonormal for (,).

(b) Let B3 € U. We have 8 € B U (—B) if and only if B satisfies the
following three conditions: B € AU, B =3 and (5,8) € 1 + v 'A.

Note that (a) is trivial when ( # ¢;. Hence we may assume that ¢ =
¢1. In this case, using the definitions we are immediately reduced to the

case where the root datum is simply connected. Then 26.2.3 is applicable.
Hence, using the definition, we see that it is enough to prove that

() (OO )ans (brOV AN )A N = 865,84 p, mod v™1A
for any A, ' € Xt such that A — X\ = { and such that b € B(\),b’ € B(X).
Since

(bFEx ® b 7ma, by E-x @ By M) = (7, by ma)a (b T, By T )
€ (Bb,60 + 0 A)(6br,py + v TTA) = 6,60 4 + VA,
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we see that (c) follows from Theorem 24.3.3(b).

We prove (b). If 8 € +B then, by (a) and 25.2.1, it satisfies the three
conditions listed. Conversely, if 3 € U satisfies the three conditions in (b)
then, using (a) and Lemma 14.2.2(b), we see that there exists 8’ € B such
that 3 — (£43') is a linear combination of elements in B with coefficients in
v~ 1Z[v™1]. These coefficients are necessarily 0, since 3 — (') is fixed by
= : U — U. The theorem is proved.

Corollary 26.3.2. If 8 € B, then o(B) € +B and w(f8) € +B.

o and w commute with ~ : U — U, preserve the lattice Af) and preserve
the inner product (,) (see 26.1.4, 26.1.6). Hence the corollary follows from
Theorem 26.3.1(b).



