CHAPTER 25

The Canonical Basis B of U

25.1. STABILITY PROPERTIES

25.1.1. In this section, the root datum is assumed to be Y-regular.

Proposition 25.1.2. Let A\, X be dominant elements of X. We write n =
M =1 = Mg

(a) There is a unique homomorphism of U-modules x : Axyar — Ax®Ay
such that x(n") =n®7 .

(b) Let b € B(A+X'). We have x(b™n") = 3=, 4, f(bibr,b2)by n®@ by 7/,
~ sum over by € B(\), b2 € B()), with f(b;b1,b2) € Z[v~1).

(c) Ifb=n' #0, then f(b;1,b) =1 and f(b;1,b3) = 0 for any by # b. If
b—n' =0, then f(b;1,b2) =0 for any b,.

The vector n @ 7' € Ay ® Ay satisfies Ei(n®7') = 0, K,(n®17') =
v@M+mA) | This implies (a) (by 3.5.8). By the definition of comultiplica-
tion in U, we can write x(b™1") = 3_,, 4, f(b;b1,b2)by 7 ® by 7', sum over
by € B(A\),by € B(X), with f(b;b1,b2) € Q(v) satisfying f(b;1,b2) = 1 if
b= by and f(b;1,b2) = 0 if b # by. This proves (c).

By 23.2.3, we have f(b;b1,b2) € A for all by, bs. Hence to prove (b), it
suffices to show that f(b;b1,b2) € A for all by, b;. We have a commutative
diagram

f L) f®AAI

l l

Anyy —%— Ay ® Ay

where = is as in 18.1.4, the left vertical map is given by x — z~n” and the
right vertical map is given by x ® y — (z77') ® y. The commutativity of
the diagram follows from the definitions. Now our assertion on f(b; by, bs)
follows from 22.1.2.
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Proposition 25.1.3. Let A\, ' be dominant elements of X. We write £ =
E-x & =&, 8" =& a-n.

(a) There is a unique homomorphism of U-modules x' : “Axyn —
“Ax ®“Ay such that X' (") =€ ®¢&.

(b) Let b€ B(A+X). We have X' (b*£") =3, 4, f(b;01,b2)b5 €' @b ¢,
sum over by € B()\),bz € B(X), with f(b;b1,b2) € Z[v™!]. IfbtT¢ # 0,
then f(b;1,b) = 1 and f(b;1,b2) = 0 for any by # b. If b1¢’ = 0, then
f(b;1,b2) =0 for any b,.

We have a commutative diagram

U-—2.ugU

wl w@wl
‘A
U—— U®U
(*A as in 3.3.4.) Indeed, both compositions in the diagram are algebra
homomorphisms; to check that they are equal, it suffices to check that
they agree on the generators E;, F;, K, and that is immediate. Using this

commutative diagram, we see lmmedlately that the proposition follows from
the previous proposition.

Proposition 25.1.4. Let n € Ay, € YAy be as above.

~ (a) There is a unique homomorphism of U-modules 6y : YAr® A\ —
‘Q(v), where Q(v) is a U-module via the co-unit U — Q(v), such that
r(§®n) =1.

(b) Let b,b' € B()\). Then §x(b*E @b 1) is equal to 1 if b=10b' =1 and
is in v 1Z[v™!] otherwise.

The following statement is equivalent to (a). There is a unique bilinear
pairing [,] : Ax X Ay — Q(v) such that

m,n] =1
and
[Efl?, y] = _[f{—ixy Eiy], [Il', F’Ly] = _[Eixak—iy]v [K—M:L"K#y] = ['Ta y]

for all z,y € A, all i € I and all u € Y. We then have §,(z ® y) = [z, y]
This is also equivalent to the following statement. There is a unique
bilinear pairing [,] : Ax x Ay — Q(v) such that

[n,m] =1
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and
[uz, y] = [z, 5(u)y]

for all z,y € A, and all u € U, where g : U — U°? is the algebra
isomorphism given by the composition Sw (S is the antipode).

This is proved exactly as in 19.1.2. It follows from the definition that
[z,y] =0if z € (A),,y € (A),r and v # /. Let (,) be as in 19.1.2. We
show by induction on tr v > 0, where v € N[}, that

() [z,9] = (=1) " Yoy (z,9)

for all z,y € (A),. This is obvious for v = 0. We assume that tr v > 1. We
can assume that z = F;z’ for some i such that v; > 0 and some z’ € (A), ;.
Then

[z,y] = [Fiz',y) = —[K_iz', Eiy) = —[z', K_iEy)
and

(z,y) = (Fiz,y) = vi(x,>k—iEiy)'

By the induction hypothesis, we have
—[&/, K_iEy) = (=1) " “v_j,_;(z', K_; Ezy);
hence [z,y] = (—1) * “v_,|(2,y), which completes the induction.
Now let b,b’ be as in (b). We must show that [b=7,b 7] is in v~ 1Z[v™1]

unless b = b’ = 1. We may assume that there exists v such that b=7,b' "¢

both belong to (A),. The result then follows from (c) since, by 19.3.3, we
have (b~7n,b'~n) € Z[v~1).

25.1.5. Let A\, ), )" be dominant elements of X. We define a homomor-
phism of U-modules

t:“Axtn @ Aypar — YAy @ Ayn
as the composition of
X ®x:“Axsn @ Axgar = “Ar® YAy @ Ay ® Ay,
where X/, x are as in 25.1.3, 25.1.2, with

1®@60 @1:“AyNQ@“Ay AN @ Ayr = YAy Ayr.
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Lemma 25.1.6.
(a) Let b€ B(A), b € B(\"'). We have

b E s ® U T magar) = bTELL @V Tar  mod vTIL a

(notation of 24.3.1).

(b) Let b € B(A+ X), b € B(XN + X'). Assume that either b ¢ B()),
or b" ¢ B(/\”). We have t(b+€_)‘_,\' ® b"—n)‘q.y/) =0 mod v_lﬁ)‘,)‘u.

(c) t is surjective.

In this proof we shall use the symbol = to denote congruences modulo
v~! times a Z[v~!]-submodule spanned by the natural basis.
Using 25.1.2, 25.1.3, 25.1.4, we see that if b,b” are as in (a), we have

t(bTEa-x @V Trgar) = (1@ 6 @ 1)(BTE_A @ E-x @ @ b ")
— b+§_)‘ ® b//-n)‘".
Using again 25.1.2, 25.1.3, 25.1.4, we see that if b,b” are as in (b), we
have
o t(b+§—,\—,\’ ® b”_n,\'_,.)‘n) =0.

Now (c) follows from the fact that £_y ® ny is in the image of ¢ and it
generates the U-module “A, ® Ay (see 23.3.6).

Using the definition 24.3.3 of the elements (b{b’) x/, we can reformulate
the previous lemma as follows.

Lemma 25.1.7. (a) Let b € B(\), b” € B(\"). We have
t(b()b”),\_;.)\f')‘r_'_)‘u = (bOb,,))‘V\H mod U_I[,,\,,\H.

(b) Let b € B(A+ X), b” € B(XN + X"). Assume that either b ¢ B()),
or b ¢ B(\N'). We have

t(bob”),\+)",)‘f+,\f/ =0 mod ’v_lﬁ)\,)w.
25.1.8. In the following result we show that the maps
v “)AA_’_AI ®AAI+AH — wAA_'_)‘/ ®AAI+AH

and
YA\ ®@Axr = “Ay® Ay,

defined as in 24.3.2, are compatible with ¢.
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Lemma 25.1.9. We have t¥ = Vt.

We write &, 7 instead of £_x_xs, Par4a7-
Since any element of “Ax;x @ Ax4a~ is of the form u(§ ® ) for some
u € U (see 23.3.6), it is enough to check that

t8(u(§ ®n)) = Bt(u({ ® 1))

for all u € U. Using the definition of © and its property 24.1.3(a), we have
tO(u(f ®n)) =tu(6({ ®n)) =ta(f ®n) = at(§ ®n) = U(-x ®Nav)

and

Bt(u(§ ®n)) = But( ®@n)) = TO({-x @ Nav) = U(E-x @ Mrv).

The lemma is proved.

Proposition 25.1.10. (a) Let b € B(\), b” € B(\”’). We have
t(bOV" ) agar arar = (OB )a a0

(b) Let b € B(A+ X), b” € B(X + X’). Assume that either b ¢ B(\),
or b’ ¢ B(\'). We have

t(bObII)A+A/,Al+)‘Il =0.

The difference of the two sides of the equality in (a) is in v=1Ly »~ (by
25.1.7) and is fixed by ¥ : “A) ® Ax» — YAy ® Ay, using the definitions
and Lemma 25.1.9; hence that difference is zero, by 24.3.3(d). Thus the
equality in (a) holds. Exactly the same proof shows (b).

25.2. DEFINITION OF THE Basis B oF U

Theorem 25.2.1. Assume that the root datum is Y -reqular. Let ( € X
and let b,b" € B.

a) There is a unique element u = bOcb” € 24Ul such that
¢ ¢

u(€oxr ®mar) = (OB )a

for any A, X" € Xt such that b € B()\),b” € B(\') and \" — X =(.
(b) If A, \" € Xt are such that \” — X\ = ( and either b ¢ B()\) or
b ¢ B(XN'), then u(é—x ®nav) =0 (u as in (a)).
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(c) The element u in (a) satisfies @ = u.

(d) The elements b¢b”, for various (,b,b” as above, form a Q(v)-basis
of U and an A-basis of 4U.

Since the root datum is Y-regular, we can find A\,\” € X+ such that
be B(\),b" € B(\')and M — A= (.

For any integers Nj, Ny, let P(N;, N2) be the .A-submodule of AU
spanned by the elements by b; 1, where by, b, run through the set of pairs of
elements of B such that tr |b;] < Ny, tr |ba| < Nz and |by|—|b2| = |b]—|b"|.

By arguments such as in 23.3.1 or 23.3.2, we see that any element of
YMy ® My, or “Ay ® Ay, of the form B+€_, ® B ~naw, with 8,3 € B, is
equal to u; (£-x®na~) for some u; € P( tr |B|, tr |'|); moreover, u; can be
taken to be equal to 8+ 3~ 1¢ plus an element in P( tr |8| —1, tr |8'| —1).
From this we deduce that

(€) (BOY")axr € “Ax ® Ay is of the form u(§_x ® na~) for some u €
P( tr |, tr |b”}); moreover, u can be taken to be equal to b*b”~ 1, plus an
element in P( tr |b] — 1, tr |b”| —1).

Assume that u is such an element and that u’ is another element with
thé same properties as u. Then (u — u’)(€—x ® na~) = 0; hence, by 23.3.8,
we have

u—u € Z _AUFi(")lc + Z AUE§n)l<.

i,n>(i,\") ,n>(i,\)

Since u — u’ € P(tr |b], tr |b”|) we deduce that, if (i, \) and (i, ") are
large enough (for all 7), then we must have u = u’. Thus, for such A, \” the
element u above is uniquely determined. We denote it by u .

Assume now that A\, \” € X satisfy b € B(\),b” € B(A\”) and A" — )\ =
¢. Let M € X* be such that (i, \') is large enough for all i, so that
u’ = uryx a4 is defined.

We show that u/(§-x ® nar) = (bOY”)aav. Indeed, if ¢ is as in 25.1.5,
we have

w'(E-a ®@man) = W (E(E-rx @ Mrrgar)) = (U (E—ax @ Margar))
= t((bOV" ) atar,ar4a7) = (O ) A n

where the last equality follows from 25.1.10. It follows that uj x~ is inde-
pendent of A, \”, provided that (i, A) and (i, \”) are large enough (for all
i); hence we can denote it as u, without specifying A, \”. It also follows
that u satisfies the requirements of (a). This proves the existence part of
(a). The previous proof shows also uniqueness. Thus (a) is proved.
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Now let A\, A" be as in (b). Let A € X* be such that (i, \) is large
enough for all ¢, so that uy4 s x4~ is defined (hence it is u). We have

u(lx @ mar) = u(t(€-r—x @ Mar4ar))
= t(u(€-r-x ® Nrr4ar))
= t((bOY" ) agarar4ar) =0,

where the last equality follows from 25.1.10. This proves (b).
We prove (c). Let u, A\, \” be as in (a). We have

U(€-x ® ) = UO(£-x @ Mav)
= Ou(£-x ® nav)
= O(bOV" ) A
= (5O )aan.

Thus u satisfies the defining property of u. By uniqueness, we have @ = u.
This proves (c).
We prove (d). From (e) we see that, for fixed ¢, we have

b = b0 1 mod P(tr [b] — 1, tr [b”] — 1).

Since the elements b*b" "1, form an A-basis of AU, we see that (d) follows.
The theorem is proved.

25.2.2. We now drop the assumption that the root datum (Y, X,...) is
Y-regular. Assume that we are given ( € X+. Let (Y',X’,...) be the
simply connected root datum of type (I,-) andlet f:Y' > Y,g: X — X'
be the unique morphism of root data. Let U’ be the algebra, defined like

U, in terms of (Y/,X’,...). Let ¢’ = g(¢). By 23.2.5, we have a natural
isomorphism

(a) U’IC' =~ Ul(,
defined by u*tu'~1¢ — utu'"1¢ for all u,u’ € f. For each b,b” € B, we

denote by bd¢b” the element of (Ilg corresponding under (a) to b b €
U’1¢s (which is defined by the previous theorem.)

Corollary 25.2.3. The elements b{¢b” for various b,b” € B and various
¢ € X form an A-basis of AU and a Q(v)-basis of U. They are all fized
by the involution ~ : U — U.
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25.2.4. Remark. The basis of U just defined is called the canonical basis
of U. We denote it by B. In the case where the root datum (Y, X,...)
is Y-regular, this canonical basis coincides with the one defined in 25.2.1.
This follows immediately from definitions, using 23.2.5 and 23.3.4.

From the proof we see that any element of B is contained in one of the
summands in the direct sum decomposition 23.1.2 of U.

Theorem 25.2.5. Let ( € X and let a,a’ be as in 23.3.8. Let P({,a,a’),
AP(¢,a,a’) be asin 23.8.8. Then BNP((,a,d’) is an A-basis of 4P(¢,a,a’)
and a Q(v)-basis of P((,a,a’).

Using the definitions and 23.3.4, we are reduced to the case where the

root datum is simply connected. In that case, the result follows immediately
from Theorem 25.2.1.

We now show that B is a generalization of B.
Proposition 25.2.6. Let b € B and let ( € X. Then b7 1; € B and
b+1( € B

.We can assume that the root datum is simply connected. Choose A\, X' €
X* such that ’—X = ¢ and such that b € B(X"). Wehave b~ 1.(§-A®nx) =
£_» ® b 7. Using the definitions, we see that £_ ® b~ ny satisfies the
defining properties of (1{b)x a/; hence it is equal to (1b)a . It follows
that b~ 1¢ = 1{¢b. A similar argument shows that b1, = bO¢1. The
_.proposition is proved.

25.3. EXAMPLE: RANK 1

25.3.1. In this section we assume that I = {i} and X =Y = Z with
i=1€Y,7 =2¢ X. Consider the following elements of U:

(a) E1_,F® (a,b,n € N,n>a+b)

(b) FP1,E (a,b,n € N,n>a+b).

Note that

(¢) E1_,F® = FP1,E® for n = a +b.
Proposition 25.3.2. The canonical basis of U consists of the elements
25.8.1(a) and (b), with the identification 25.3.1(c). More precisely, if n >

a + b, we have
EO1LLF® = 096,00

and
F;(b) lnE,‘(a) = 050) <>n—2a0,(b) .
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We compute the image of the elements 25.3.1(a),(b) under the map U —
“Ap®A,, with p, g > 0, given by u +— u(£_,®1n,). The image of the element
25.3.1(a) is zero unless —n + 2b = ¢ — p, in which case it is

Ei(a)Fi(b) ((-p®ng) = Ega) (€-»® Fi(b)nq)
_ Z vglan_aupEgal)g_p ® Egau)Fi(b)nq
al+all=a

‘e —a’ ’ a" —b + q b— Q' —
= 3 T, [T )T OB,
a’+a’’=a t20 i

0 1 a” —b + q ’ b—a”
= Z R P[ o’ Ei(a )€—p®Fi( * )77q
a’+a’’=a i

= Z ’U;-g(a—_s_p) [s - 2 + q] E,(a—S)g—p ® Fi(b—S)nq.
82>0;8<a,s<d i
This element is fixed by the involution ¥ of “A, ® A4, since the element
25.3.1(a) is fixed by = : U — U. Using the definitions, we see that this
element is (05")0910’))?,(,. Hence the element 25.3.1(a) is 95“)0_n+259§b).
The image of the element 25.3.1(b) is zero unless n —2a = ¢—p, in which
case it is
b a b a
Fi( )Eg )(f—p ®ng) = Fi( )(Ez( )5—11 ® 7q)
’ II_ / b’ a b/’
= > AVIEDEPe 0 ',
b +b"=b
¥ —big[—a+b +p —t) (b —t b
= Z Zvi q[ ¢ ] Ei(a )Fi( )f—p®Fi( )774;
b +b'=b t>0 i
= 3 o B e, 0 R,

820;3<a,8<b t

1

As before, we see that this is equal to (9,(“)00?)),,&. The proposition
follows.

25.4. STRUCTURE CONSTANTS

25.4.1. For any triplet a,b,c € B, we define elements mS, € A by ab =
S, mS,c (ab is the product in U). We also define elements m2® € A by
the following requirement: for any \j, A, A5, A\ € X and any ¢ € BN
(x 423 Uay4ay) we have

_ ~ab .
Aoy (€) =) meta®b;

a,b
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in the last formula, Axi ay.ag,ay is as in 23.1.5; a runs over BN (a Uar);
b runs over BN (\Usy). Ifa e Bn (xUap),b € Bn (x,Uxy) and c €
BN (x;Uay), and either A3 # X} + A5 or A§ # A{ + A, then /M2 is defined
to be 0.

The elements mS,, ¢, are called the structure constants of U. They
satisfy the following identities, for all a,b,d,e € B and ) € X:

(8) Yo mapmey = 3o Mg Mig;

(b) 3o, mebimg? = 3, mecmb?;

. 'd’

(C) Ec mzbmgd = Ea’ b\ d' m a¥’ mg ma c'mb'd'

(d) m$® =1ifa=1x,b=1x,X + X =X and m$® = 0 otherwise.

In each sum, all but finitely many terms are zero. The identity (a)
expresses the associativity of multiplication in U; (b) is a consequence of
the coassociativity of comultiplication in U; (c¢),(d) are consequences of the

Yy

fact that the comultiplication A : U - U®U is an algebra homomorphism
preserving 1.

Conjecture 25.4.2. If the Cartan datum is symmetric, then the structure

constants mS,, M2 are in Nfv,v71].

This would generalize the positivity theorem 14.4.13. For the proof an
interpretation of (U, B) in terms of perverse sheaves, generalizing that of
(f, B) will be required.

M



