CHAPTER 24

Canonical Bases in Certain Tensor Products

24.1. INTEGRALITY PROPERTIES OF THE QUASI-R-MATRIX

24.1.1. Let M, M’ € C be such that either “M € C" or M’ € C* (see
3.4.7). We regard M ® M’ naturally as a U ® U-module and we define
alinear map 8 : MM’ - M@ M' by OB(m@m') =Y 6,(mem')
(notation of 4.1.2.) This is well-defined since only finitely many terms of
the sum are non-zero.

Lemma 24.1.2. Let M, M’ be as above. We have
(a) A(w)®(m e m’) = O(A(u)(m @ m')).

(b) Assume that we are given Q-linear maps ~: M — M and ~ : M’ —
M’ such thatwm = @m and um/ = @@’ forallu € U,m € M,m’ € M'. Let
T="® MM — M®M'. Then A(u)B(m®m') = 6(A(1)(m ® m'))
foranyme M,m’ € M’ and any u € U.

,The set of u for which (a) holds is clearly a subalgebra of U containing
all K,,. Hence it suffices to check (a) in the special case where u is one of the
algebra generators E;, F;. Applying both sides of the equalities 4.2.5(c),(d)
(with large p) to m®m’ € M ® M’, we obtain

(BE:®1+ K, @ E;)0(mem')=6(E;®1+ K_; ® E;)(me®m')
(1®9F+F®K_;)0(mem')=01® F+ F,® K;)(mom').
This proves (a). Now (b) is a consequence of (a). The lemma follows.
24.1.3. The following property is just a reformulation of the property in
Lemma 24.1.2(b). Let M, M’ be as in that lemma. Then for any m €

M,m’' € M’',u € U we have

(a) u(m ®m') = 8(a(m @ m')).
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Proposition 24.1.4. Let \, N € X. Consider the Verma modules My, M.
Note that M =“ My € C and M' = My, € C*; hence

O MM - MM

is well-defined. Then © leaves stable the A-submodule 4 M) ® 4 (aMy).

Since the ambient space of M and M’ is f, we may regard ~ : f — f as
maps ~ : M — M, : M’ — M’. Using the definition of Verma modules,
we may identify M’ =U/3, UE; + 3, U(K, — v{#A)1) as a U-module
so that = : M’ — M’ is induced by ~ : U — U. It follows that um’ = @m’
for all u € U and m' € M’. Similarly, we have wm = @m for all u € U and
me M.

Asin Lemma 24.1.2, weset =" Q@ " : MM — M ® M’ and we
have

uB(m ® m’) = 8(u(m ® m’'))

for all u € U,m € M,m’ € M’. In particular, takingm=1=1,m' =1 =
1, we obtain
Ha) u(l®1) =6(a(1®1)) for all u € U,
sincel1=1,1=1,and 6(1®1) =1Q®1. Let € 4M) ® 4 (4Mx/). Then
z = I’ where ' € M) ®4 (4My), since the involution ~® = : f — f
leaves 4of ® 4 (4f) stable.
~ With the notation of 23.3.2(a), we have z' = #'(u’) for some v’ €

4Uly_x. Since 4U1ly_y is stable under the involution = : U — U,
- we have v’ = @ for some u € 4U1ly_,. Hence z = %’ = 4(1 ®1). Using
(a), we have O(z) = O(2(1 ® 1)) = u(1®1) = n’(u). Using again 23.3.2(a),
we have 7'(u) € 4 My ®4 (aMy); hence ©(z) € 4My ®4 (aMy). The
proposition is proved.
Corollary 24.1.5. Assume that the root datum is Y -regular. Let A\, \' €
Xt. The map © : “Ay ® Ay — YAy ® Ay leaves stable the A-submodule
“A ®a (4AN).

This follows immediately from the previous proposition since Ay ® 4

(4Ax) is the image of 4 M\® 4 (4 M) under the natural map “ M @My —
“Ar® Ay

Corollary 24.1.6. Assume that (I,-) is of finite type. Write

6= Z Z popb” @V (Do € Qv)).

v bbeB,
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For any v° and any b°,b'° € B,o, we have pyo po € A.

We can find A\, )’ € X* such that ° € B(—wp(})), b’® € B(—wp()')). By
24.1.5,0 : “Ax® Ay — “Ax ® Ay maps the A-submodule 4Ax ®4 (4Ax)
into itself. By 21.1.2, we may canonically identify as U-modules YA, with
A_uo(n) and Ay with “A_,, (x) respecting the canonical bases. It follows
that © : A_yy(\)®“A_we(n') = A_wo(2)®“A_yo(r) maps the A-submodule
AA o (2) ®4 (YA _wo(xy) into itself. In particular, this submodule contains
the vector O(n ® &) = 3°, 3", » Poprb™n ® Y. Here, ) = n_y,(n) and
€ = €uo(n); b runs over B, NB(—wp(A)) and b’ runs over B, NB(—wp(X)).
Since the elements b7 ® b'*¢ (for all indices (v, b,b’) as in the sum) are a
part of an A-basis of 4A_y,(x) ®4 (4A—we(r)), and (¢0,8°,8°) is an index
in the sum, it follows that pyo ;0 € A. The corollary is proved.

24.2. A LEMMA ON SYSTEMS OF SEMI-LINEAR EQUATIONS

Lemma 24.2.1. Let H be a set with a partial order < such that for any

. h < K in H, the set {h"|h < h"” < K’} is finite. Assume that for each

h < k' in H we are given an element rp p € A such that
(a) rhp =1 for all h;
(b) Eh";hsh“sh' Fh'h”rh"lh' - 6h’h’ fOT all h _<__ hl Zn H.

Then there is a unique family of elements pnp € Z[v™'| defined for all
h < k' in H such that

(¢) php =1 forallh € H;
(d) prw € v Z[v™Y] for all h < B’ in H;

(e) Dh,p = Zh";hﬁh"sh' ﬁh,h”'rh"7h' fOT all h S h’ in H.

For h < b’ in H, we denote by d(h, h’) the maximum length of a chain
h=ho <hy <hy <---<hp, ="~ in H. Note that d(h,h’) < co by our
assumption. For any n > 0, we consider the statement P, which is the
assertion of the lemma restricted to elements h < h’ such that d(h, k') < n.
Note that property (e) is meaningful for this statement. We prove P, by
induction on n. The case n = 0 is trivial. Assume now that n > 1. Let
h < h'. If d(h,h') < n, then pp p is defined by P,_;. If d(h,h’') = n, we
note that ¢ = >, <pircps Ph,hTho e is defined. We show that §+¢ = 0.
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Indeed, using P,_; and (a),(b), we have

Gg+q= E PhhTh p + E Ph,hyThy b
hll;hshll<hl hl§h5h1<h’
= E Ph,hyThy ' Tht b + E Dh,hyThy bt Thet b
h',hi;h<hy <h" <h' h' hy;h<hi<h''=h'

= E PhohyThy b TR B = E Dh,hyOny n =0,
h' hyih<hy <h"<h';hy<h' hi;h<hy<h’

as required. Since ¢ € A satisfies § + ¢ = 0, there is a unique element
¢’ € v™'Z[v™!] such that ¢ — § = q. We set pp »» = ¢. Then properties
(c),(d),(e) are clearly satisfied as far as P, is concerned. This proves the
existence in P,. The previous proof also shows uniqueness. The lemma is
proved.

24.3. THE CANONICAL BASIS OF YAy ® Ay

24.3.1. . In this section we assume that the root datum is Y-regular.

Let A\, )’ € X*. We shall consider the following partial order on the set
B x B: we say that (b, b]) < (bg,b3) if tr [by]| — tr |b)| = tr |b2| — tr |b)]
and if we have either

tr |by| < tr |bo] and tr |b)} < tr |b5],

or
b1 = b2 and bll = blz

This induces, for given A, \’ € X, a partial order on the set B(\) x B(\).

As in 19.3.4, let ~ : Ax» — Ay be the unique Q-linear involution such
that wmy = any for all u € U; similarly, let = : “Ay — “A, be the
unique Q-linear involution such that uf_ = @_, for all u € U. Let
T="0 7 :“Ayx®Ax — YAy ® Ax. The elements bY£_) ® b’ ny with
b e B()) and ¥ € B(\') form a Q(v)-basis of “A, ® Ay.. They generate a
Z[v~!]-submodule £ = £, » and an .A-submodule 4L.

24.3.2. Now O : YAy ® Ay — “Ay ® Ay is well-defined (see 24.1.1).
Let ¥ : “Ay ® Ay — “A) ® Ay be given by ¥(z) = O(Z). Since 6
and ~ : YAy ® Ay — “Ay ® Ay leave 4L stable (see 24.1.5), we have
U(4L) C 4L. From 24.1.2 and 4.1.3, it follows that ¥? = 1. We clearly
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have ¥(fzr) = f¥(z) for all f € A and all z. From the definition we have
for all b; € B(\),b] € B(\):

Y(bTE_r @by ") = Z Pby b4 ;b2 b, b3 €2 @ by
b2€B(N),b,€B(N)

where pp, p:5,,6, € A, and pp, b;:b,6, = 0 unless (by,by) > (bo, b3); hence
the last sum is finite.
Note also that Pby byby b, = 1 and

Pby b, ;b2 b, Pba byibs by = Oby b3 Ob; b4 5
b2€B(A),by€B(\)

for any by, b3 € B(\), b}, b5 € B(X); the last condition follows from ¥? = 1.
Applying Lemma 24.2.1 to the set H = B()) x B()\’), we see that there
is a unique family of elements m, 4, o,k € Z[v~!] defined for by,by €
B()), b}, b5 € B()\') such that

Tby,blb1,0; = L3

by b ;b2,b € v Z[vT 1] of (by, b)) # (b2, b3);

by by ;be,by = O unless (b, by) > (b, by);

by by iba,by = Dby bl Tba,blibs,bs Pba,bhiba,by fOT all (b1, 1) > (ba, b))

We have the following result.

Theorem 24. 3.3. (a) For any (b,b)) € B(\) x B(), there is a unique
element (by Qb)) x € L such that

‘I’((b]Ob ))‘ )\/) = (b1<>b' ))‘ » and (bIObI ))‘ N — b+f A ®b I\ € ’U_IE.

(b) The element (byOby)an in (a) is equal to bié_\ ® by~ na plus a
linear combination of elements b £_» ®by~nx with (bz, by) € B(A) x B(Y),
(b2, by) < (b1, b)) and with coefficients in v=1Z[v~1).

(c) The elements (byOby)a x with by, b) as above form a Q(v)-basis of
“Ax ® Ay, an A-basis of AL and a Z[v~!]-basis of L.

(d) The natural homomorphism LNY(L) — L/v=1L is an isomorphism.

The element (b10b1)ax = 32, b Moy by0,53,03 €2 ® by "1 (see 24.3.2)
satisfies the requirements of (a). This shows existence in (a). It is also
clear that the elements (b;)b})x » just defined satisfy the requirements of
(b),(c),(d). It remains to show the uniqueness in (a). It is enough to show
that an element z € v~!L, such that £ = z, is necessarily 0. But this
follows from (d).
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24.3.4. The basis (b1 Ob))a,n in 24.3.3(c) is called the canonical basis of
“YAr® Ay

24.3.5. Let A, A € X*. Let (Y',X’,...) be the simply connected root
datum and let f : Y’ — Y,g: X — X’ be the unique morphism of root
data. Let U’ be the algebra defined like U, in terms of (Y, X',...). Let
N, X € X't be defined by X = g(A), X = g()). Then “A) ® Ay, defined
in terms of U, has the same ambient space as “Ay ® A % » defined in terms
of U’. We have a priori two definitions of the canonical basis of this space,
one in terms of U, one in terms of U’. From the definitions, we easily see
that these two bases coincide.



