Positivity of the Action of F_i, E_i in the Simply-Laced Case

22.1.1. In this chapter, the root datum is assumed to be Y-regular. We fix $\lambda \in X^+$ and we set $\Lambda = \Lambda_{\lambda}$. The main result of this chapter is Theorem 22.1.7, which asserts, in the simply laced case, that the matrices of the linear maps E_i and F_i of Λ into itself, with respect to the canonical basis of Λ , have as entries polynomials with integer, ≥ 0 coefficients.

Using Theorem 18.3.8, we see that Lemma 18.2.7 is true unconditionally. We restate it here as follows.

Theorem 22.1.2. We have $\Xi(\mathcal{L}(\mathbf{f})) \subset \mathcal{L}(\mathbf{f}) \odot L(\Lambda)$.

22.1.3. In the following corollary we shall use the notation

$$\nu \circ \lambda = \sum_{i \in I} \nu_i \langle i, \lambda \rangle (i \cdot i/2)$$

for any $\nu \in \mathbf{Z}[I], \lambda \in X$.

Corollary 22.1.4. Let $b \in \mathbf{B}$. Write $r(b) = \sum h_{b;b_1,b_2}b_1 \otimes b_2$ and $\bar{r}(b) = \sum g_{b;b_1,b_2}b_1 \otimes b_2$ where $h_{b;b_1,b_2} \in \mathcal{A}$ and $g_{b;b_1,b_2} \in \mathcal{A}$; here b_1,b_2 run over \mathbf{B} . Thus, $g_{b;b_1,b_2} = \overline{h_{b;b_1,b_2}}$.

If $b_2 \in \mathbf{B}(\lambda)$ and $b, b_1 \in \mathbf{B}$, we have

$$v^{-|b_1|\circ(\lambda-|b_2|)}g_{b;b_1,b_2}\in \mathbf{Z}[v^{-1}]$$
 and $v^{|b_1|\circ(\lambda-|b_2|)}h_{b;b_1,b_2}\in \mathbf{Z}[v].$

It suffices to prove the statement about $g_{b;b_1,b_2}$.

By 3.1.5, we have $\Delta(b^-) = \sum g_{b;b_1,b_2} b_1^- \otimes \tilde{K}_{-|b_1|} b_2^-$. By the definition of Ξ , we have

$$\Xi(b) = \sum g_{b;b_1,b_2}b_1 \otimes \tilde{K}_{-|b_1|}b_2^-\eta = \sum v^{-|b_1|o(\lambda-|b_2|)}g_{b;b_1,b_2}b_1 \otimes b_2^-\eta.$$

By the previous theorem, if $b_2 \in \mathbf{B}(\lambda)$, the coefficient of $b_1 \otimes b_2^- \eta$ is in \mathbf{A} . This coefficient is clearly in \mathcal{A} ; hence it is in $\mathbf{Z}[v^{-1}]$. The corollary follows.

Corollary 22.1.5. Let $i \in I$. Let $b \in \mathbf{B}$. Let us write ${}_ir(b) = \sum_{b':n\in\mathbf{Z}} d_{b,\theta_i,b',n}v^nb'$ where b' runs over \mathbf{B} and $d_{b,\theta_i,b',n}$ are integers.

(a) Let $b' \in \mathbf{B}(\lambda)$ and let $n \in \mathbf{Z}$ be such that $d_{b,\theta_i,b',n} \neq 0$. Then

$$i \circ (\lambda - |b'|) + n \ge 0.$$

(b) We have

$$E_{i}(b^{-}\eta) = \sum_{b': n \in \mathbf{Z}} d_{b,\theta_{i},b',n} \frac{v^{i \circ (\lambda - |b'|) + n} - v^{-i \circ (\lambda - |b'|) - n}}{v_{i} - v_{i}^{-1}} b'^{-}\eta$$

where b' runs over $\mathbf{B}(\lambda)$.

We apply the previous corollary to $h_{b;b_1,b_2}$ with $b_1 = \theta_i$; we obtain

$$\sum_{n} v^{i \circ (\lambda - |b'|) + n} d_{b,\theta_i,b',n} \in \mathbf{Z}[v]$$

for any $b' \in \mathbf{B}(\lambda)$; (a) follows. We now prove (b). By 3.1.6(b), we have

$$E_i(b^-\eta) = (v_i - v_i^{-1})^{-1} (-r_i(b)^- \tilde{K}_{-i}\eta + v^{-|b|\cdot i + i \cdot i}{}_i r(b)^- \tilde{K}_i \eta)$$

since $E_i \eta = 0$. By 1.2.14, we have $r_i(b) = v^{|b| \cdot i - i \cdot i} \overline{r(b)}$, since $\overline{b} = b$. Note also that $\tilde{K}_{\pm i} \eta = v_i^{\pm \langle i, \lambda \rangle} \eta$. Thus,

$$E_i(b^-\eta) = \sum_{b':n} d_{b,\theta_i,b',n} \frac{v^{-|b|\cdot i + i \cdot i + n} v_i^{\langle i,\lambda \rangle} - v^{|b|\cdot i - i \cdot i - n} v_i^{-\langle i,\lambda \rangle}}{v_i - v_i^{-1}} b'^-\eta.$$

Using now |b| = |b'| + i, we obtain (b).

22.1.6. Let $b \in \mathbf{B}(\Lambda)$. For any $i \in I$, we set $F_i b = \sum_{b',n} f_{b,b',i,n} v^n b'$, $E_i b = \sum_{b',n} \tilde{f}_{b,b',i,n} v^n b'$ where b' runs over $\mathbf{B}(\Lambda)$ and n runs over \mathbf{Z} ; the coefficients $f_{b,b',i,n}, \tilde{f}_{b,b',i,n}$ are integers.

Theorem 22.1.7. Assume that the Cartan datum is simply laced. Then $f_{b,b',i,n} \in \mathbb{N}$ and $\tilde{f}_{b,b',i,n} \in \mathbb{N}$ for any b,b',i,n.

If $\beta, \beta' \in \mathbf{B}$ are such that $\beta \eta = b, \beta' \eta = b'$, then with the notation of Theorem 14.4.13, we have

$$f_{b,b',i,n} = c_{\theta_i,\beta,\beta',n}$$

and

$$\sum_{n} \tilde{f}_{b,b',i,n} v^{n} = \sum_{n} [i \circ (\lambda - |b'|) + n] d_{b,\theta_{i},b',n}$$

(we have used Corollary 22.1.5(b) and the equality $v_i = v$). By Theorem 14.4.13, the integers $c_{\theta_i,\beta,\beta',n}$ are ≥ 0 . Hence $f_{b,b',i,n} \in \mathbb{N}$.

Again by Theorem 14.4.13, the integers $d_{b,\theta_i,b',n}$ are ≥ 0 and, by Corollary 22.1.15(a), we have $i \circ (\lambda - |b'|) + n \geq 0$ for any n such that $d_{b,\theta_i,b',n} \neq 0$. Since [N] is a sum of powers of v if $N \geq 0$, we deduce that $\tilde{f}_{b,b',i,n} \in \mathbb{N}$. The theorem is proved.

Notes on Part III

ar 20 (3)

- 1. Most results in Part III are due to Kashiwara [2]. An exception is Theorem 22.1.7, which is new.
- 2. Although Theorem 22.1.2 does not appear explicitly in Kashiwara's papers, it is close to results which do appear; the same applies to the results in 17.1. The proofs in 17.2 are quite different from Kashiwara's.
- 3. The proof in 19.2.3 is an adaptation of arguments in [3].

REFERENCES

- M. Kashiwara, Crystallizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), 249-260.
- 2. _____, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
- 3. _____, Crystal base and Littelman's refined Demazure character formula, Duke Math. J. 71 (1993), 839-858.
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.