CHAPTER 20

Bases at oo

20.1. THE BASIS AT 00 OF A,

20.1.1. Let M be an object of C’. We define a basis at oo of M to be a
pair consisting of

(a) a free A-submodule L of M such that M = Q(v) ®a L = M and

(b) a basis b of the Q-vector space L/v~1L;
it is required that the properties (c)-(f) below are satisfied.

(c) L is stable under the operators E;, F; : M — M for all i; thus, E;, F;
act on L/v‘lL;

(d) F;(b) c bu {0} and E;(b) c bu {0} for all 4;

(e) we have L = @L* where L* = LN M* and b = Ub* where b* =
bN (L* v~ 1L*);

(f) given b,b’ € b and i € I, we have E;b =1V if and only if F;b' = b.

The definition given above of bases at co is due to Kashiwara who calls
* them crystal bases.

Lemma 20.1.2. Let x € LN M?* and let i € I. Let t = (i,\). Write
T =3, 550,420 Fz, where z, € ker(E; : MM*' — M) and z, = 0 for
large enough s. (See 16.1.4.)

(a) For all s > 0 we have z, € L.

(b) Ifz mod v—!L belongs to b, then there exists sy such that x, € v-1L
for s # sp, 5, mod v1L belongs to b and x = E(s°)x80 mod v~!L.

We prove (a) by induction on N > 0 such that z, = 0 for s > N. For

N = 0, the result is clear. Assume now that N > 1. We have E;z =
Zs;szl;sﬂzo Fi(s_l)a:s where z; = 0 for s > N. By definition, we have
Eiz € LN M>*, Hence if ¢/ = (i,A + ) = t + 2, we have E;z =
Za’;s'20;3’+t’21 Fi(s )m31+1 and zs41 = 0 for & > N. By the induction

hypothesis, we have z, € L for all s > 1. Since L is stable under F; and
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Fi(’)a:_, = F?x,, it follows that F,-(s)xs € L for all s > 1. Since z € L, we
deduce that zo € L. This proves (a).

We prove (b) by induction on N > 0 as above. If N = 0, there
is nothing to prove. Assume that N > 1. If E;z € v~lL, then
v Zs’;s'20;8'+t'21 Fi(s')a:slﬂ € L and by (a) we have vz, 4, € L for all s’ >
0. Hence z, € v~1L for all s > 1. As before we then have Fi(s)xs ev1L
for s > 1and £ = 9 mod v~ L. If E;z ¢ v L, then E;z mod v~1L
belongs to b. By the induction hypothesis, there exists sg > 1 such that
z, € v IL for s # sp and s > 1. Therefore we have E;z = Fz-(“"’_l)ass0
mod v~'L. Equivalently, we have E;z = F"i"’"la:s(, mod v~ !L. Applying
F; to this and using 20.1.1(f), we obtain ¢ = F,E;z = Ff"mso = Fi(s")a:s
mod v~!L. The lemma is proved.

20.1.3. In the next theorem we assume that the root datum is Y-regular.
Let A € X*. Let L be the A-submodule of Ay generated by the canonical
basis B(A,) and let b be the image of the canonical basis in L/v~1L.

Theorem 20.1.4. (L,b) is a basis at 0o of Ajy.

Property 20.1.1(c) follows from Theorem 18.3.8. We prove that property
20.1.1(d) is satisfied. Let b € b. There exists 8 € B such that b is S~
mod v~!L. From Theorem 18.3.8 we see that F}b is ¢;(8)"nx mod v‘lL
and E;b is &(8)"nx» mod v~1L or zero. By 17.3.7, we have ét(ﬁ)
mod v~ L(f) for some 8’ € B and this is necessarily in B. Then 6:(B)~ m =
B~ mod v~'L so that Fbis #/~ny mod v='L and #/~n, mod v™
is in bU {0}.

By 17.3.7, we have either €(8) = §” mod v~1L(f) for some 3" € B
(which is necessarily in B) or €(8) = 0 mod v=1L(f). Then &(B8) " n\ =
B"~nx mod v~ L or &(B) " nx» = 0 mod v~L so that E;b is 8" n,
mod v~!L or 0. Now 8”15 mod v~L is in bu{0}. This proves property
20.1.1(d).

Property 20.1.1(e) is clearly satisfied. We prove that property 20.1.1(f)
is satisfied. Let b,b’ € b. We have b = 875 mod v~!L and &' = 8’
mod v~ !L where 3,3’ € B.

By 18.3.8, we have E;b = V' if and only if (¢;8) " nx = /~nx mod v~!L.
This is equivalent to the condition that

(a) &B = B mod v=1L(f).

Similarly, the condition that F;b’ = b is equivalent to the condition that
(b) ¢:8' = 8 mod v~1L(Ff).

Now conditions (a) and (b) are equivalent by 17.3.7. The theorem is proved.
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20.2. BASIS AT o IN A TENSOR PRODUCT

20.2.1. Let M, M’ € C’. Assume that M and M’ have finite dimensional
weight spaces. Assume that (L, b) (resp. (L’,b’)) is a given basis at oo of
M (resp. M'). Consider the tensor product M @ M’ € C'.

Theorem 20.2.2. The free A-submodule L ®a L' of M ® M’ and the Q-
basisb®b’ of (L®a L')/v ™Y (L®a L') = (L/v"'L)®q (L' /v"'L’) define
a basis at 0o of M @ M.

Only properties (c),(d),(f) in the definition 20.1.1 need to be verified. In
verifying these properties, we shall fix ¢ € I and write Lt for the sum &L*
over all ) such that (i, \) = t. The notation L’* has a similar meaning.

Let G* be the set of all z € L* such that z mod v~ 'L belongs to b
and such that E;z = 0. Let G’t be the set of all 2 € L'* such that 2’
mod v~ 1L’ belongs to b’ and such that E;2’ = 0. From the definitions, all
elements of the form Fi(s)z (z € Gt,s € [0,t]) belong to b modulo v=!L
and according to 20.1.2, all elements of b are obtained in this way.

Similarly, all elements of the form Fi(s,)z’ (' € G'Y,s’ € [0,t]) belong
to.b’ modulo v~!L’ and all elements of b’ are obtained in this way.

Using Nakayama’s lemma, which is applicable since the weight spaces are
assumed to be finite dimensional, we deduce that the elements Fi(s)z (z €
Gt, s € [0,t]) generate the A-module L; similarly, the elements Fi(sl)z’ (' €
G't',s' € [0,t]) generate the A-module L'.

Let z€ Gt, 2’ € G'Y,s € [0,1],s' € [0,t']. According to 17.2.4, we have

F(F®z Fi(s')z') =F*2¢ Fi(s'H)z’ mod v~ (L ®a L')
ifs+d <t

Fi(Fi(s)Z ® F;-(SI)ZI) — Fi(s+l)z ® Fi(s’)z' mod v~} (L ®a L')
ifs+s >t

Ei(F® 2@ Fi(sl)z') =F":g Fi("_l)z' mod v~ (L ®a L)
ifs+s <t

E(FPz® Fi(s')z') =F Y20 Fi(s’)z' mod v~} (L ®a L')

ifs+s >t.

It follows that Ei, I:‘,- map a set of generators of the A-module L ® L’
into L®a L'; hence they map L ®a L’ into L®a L’. This verifies property
20.1.1(c) of a basis at co. Properties 20.1.1(e),(f) of a basis at oo are also
clear from the previous formulas. The theorem is proved.
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20.2.3. Assume that z € G*,2' € G'* and that s € [0,t],s' € [0,t'] are
such that t + ¢’ = 2(s + s’). By the formulas in 20.2.2, the condition that
E(Fi(")z ® Fi(sl)z’) € v (L ®a L') is that either s’ =’ and s+ s’ < #/, or
s =t and s+ s’ > t'. The first case cannot occur since s > 0. Hence the
condition is that s =t and s + s’ > ¢'. But if s =t then t’ = s + 2s’ hence
s+ 5" > s+ 2s' so that s/ = 0. Thus the conditionis s=t=1¢,s' = 0. We
can reformulate this as follows.

Proposition 20.2.4. Let (M,L,b),(M’,L',b’) be as above. Let b €
b, € b’. Assume that b € b* and ¥ € b and (i,)) + (i, ') = 0.
Then the following two conditions are equivalent:

(a) F;(b®@¥Y)=01in (L®A L) /v (L®a L');

(b) F;y(b) =0 in L/v~'L and E;(') =0 in L' /v~ 1L".



