CHAPTER 19

Inner Product on A

19.1. FIRST PROPERTIES OF THE INNER PRODUCT

19.1.1. In this chapter, we preserve the setup of the previous chapter. In
particular, we write A = A, where A € X7 is fixed, except in subsections
19.2.3, 19.3.6 and 19.3.7.

Let p; : U — U be the algebra isomorphism given by

P (E:) = —viF;, po(Fi) = "'Ui_lEiy p1(Ky) = K_.

Let p : U — U°P be the algebra isomorphism given by the composition
. Spy where S : U — U°P? is the antipode. We have

P(Ei) = 'Uz'f(z'Fi, p(F;) = vif(_,-Ei, P(Ku) =K,.

It is clear that p? = 1.

Pfo’bosition 19.1.2. There is a unique bilinear form (,) : A x A — Q(v)
such that

(@) (mn)=1;
(b) (uz,y) = (z,p(u)y) for allz,y € A and u € U.

This bilinear form is symmetric. If € (A),,y € (A), withv # V', then
(z,y) =0.

For any u € U, we consider the linear map of the dual space A* =
Hom(A, Q(v)) into itself, given by & — u(£) where u(§)(z) = £(p(u)z) for
all z € A. This defines a U-module structure on A*, since p : U — UPP
is an algebra homomorphism. Let £, € A* be the unique linear form such
that &(n) = 1 and & is zero on (A), for v # 0. It is clear that E;£, = 0 for
all i € I and K, & = v#Ng for all u € Y. We show that F\"M g = 0.
It is enough to show that, for any z in a weight space of A, the vector
Efi"\)ﬂz cannot be a non-zero multiple of 7. This follows from Lemma
5.1.6, since E;n = 0 and Fi(i”\)“n = 0. From the description 18.1.1(a) of
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A, we now see that there is a unique homomorphism of U-modules A — A*
which takes 7 to &.

Now it is clear that there is a 1-1 correspondence between homomor-
phisms of U-modules A — A* which take 1 to & and bilinear forms (,)
on A which satisfy (a) and (b). The existence and uniqueness of the form
z,y +— (z,y) follow. The form z,y — (y, =) satisfies the defining properties
of the form z,y — (z,v), since p2 = 1. By the uniqueness, we see that
these two forms coincide; hence (,) is symmetric.

Proposition 19.1.3. Let v € N[I].
(a) We have (L(A),,L(A),) € A.

(b) Foranyie I such that v; >0, and any = € L(A)y_i,x’' € L(A), we
have (Fix,z') = (z, Eiz') modulo v™A.

When trv = 0, (a) and (b) are trivial. We may therefore assume
that tr v = N > 0 and that both (a),(b) are already known for v/ with
tr v/ < N. Since L(A), = ¥, 50 FiL(A)y—i, and E;(L(A),) C L(A),—;
whenever v; > 0, we see that (a) for v follows from the induction hypothesis.
(We use (a) and (b) for tr v/ =N —1.)

We now prove (b) for v. Let i,z,2’ be as in (b). By 18.2.2, we may
assume that r = Fi(s)y and ' = Fi(s’)y’ where y € L(A)y—i—si, ¥ €

‘LA)y_si,Ey=Ey’ =0and s > 0,8’ >0, s+ (i, A\ —v+i) > 0,8 +
(i, A — v) > 0. We must show that

(c) (FCy, Fyy = (F)y, F " Vy’) mod v'A.

For any 7,7’ we have from the definitions

r r 2 7 r r
(FMy, Fy) = (y,0f K_EXFy)

2

2 [r—r'+ (i,/\—u+s’i’)]

, ; (@ KwF ),
1
This is zero unless 7’ > r. By symmetry, it is also zero unless r > r’. Thus

(G, A —v+8'7)

(Fi(r)y, Flz‘(r,)y’) = 67-‘,-"():2 [ r

]i(y, K_.iy')

r?—r(i,\—nu+s'i’ ia A—v+si
(i +3'4") [( )] (y, yl)

1

= bp .
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Hence (c) is equivalent to

- s t,A—v 23+1+1,A—V
s+1 i
(d)

— iL,A—v 2 1 ‘a A— -
= 05,617; s ))[ e+ t(z V>] '(yay,) mod v~ lA.

We may therefore assume that s + 1 = s’. Now g,y are contained in

L(A),—i—si and tr (v — i — si) < N; hence, by the induction hypothesis,
we have (y,y’) € A. We see that to prove (d) it suffices to prove

o= EFD(+D+EA-0) [2(s + 1) + (A — )
¢ s+1 i

(e) _ oA A [2(3 +1) 4; (i, A — V)] mod v~ 1Z[v~1].
i

From the inequality s +1+ (i, A — v) > 0, we deduce 2(s+1) + (i, A —v) >
~ 8+1and 2(s + 1) + (i, A — v) > s. Since v; ™ [”:q]i € 1+v712Z[v7] for
p > 0,q >0, it follows that we have

P (FDFD+EA-)) [2(8 + 1)3-:(12', A— V)] €142

i
and’

P S THEA=L) [2(3 +1) J;(” A= ">] €l+v'Z[v™]

)

and (e) follows. The proposition is proved.

Lemma 19.1.4. Let bt/ € B()).
(a) If b’ # +b then (b n,b'"n) € v 1A.
(b) We have (b~n,b™n) € 1 +v 1A,

We may assume that b,d’ € B, for some v. We argue by induction on
N = trv. The case where N = 0 is trivial. Assume now that N > 1.
We can find ¢ € I such that v; > 0 and b; € B,_; such that q?),-bl =b
and €b = b, (both equalities are modulo v='£(f)). By 18.3.8, we have
E;(b=n) = byn and F;(b]n) = b~n (both equalities are modulo v~1L(A)).
It follows that b7 # 0. (From by = 0 we could deduce by applying F;
that b=n € v=!L(A) which contradicts b € B()\).) Thus b, € B(\). Using
again 18.3.8, we have E;(b'~n) = (&)~ mod v=1L(A).
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Using the previous proposition, we have

(c) (b7n,b'~n) = (Fi(bym),b'~n) = (bym, E(b'™m)) = (by 7, (&)™)
equalities modulo v~!A. Assume first that b = b’. Then (&V) 1 = b7
mod v~!L(A) and (c) becomes (b~7n,b™n) = (byn,byn) mod v~1L(A);
by the induction hypothesis, we have (by7n,b7n) € 1+ v~!A so that
(b~n,b7n) € 1 + v~ A, as required.

Assume next that b’ # =+b. There are two cases: we have either
&b = by mod v—!L(f) for some b, € B or &b € v IL(f). If the sec-
ond alternative occurs, then (b7, (&b')™n) € v™!A by 19.1.3(a); hence
(b=n,b'"n) € v A, by (c). If the first alternative occurs, then by € B())
(by the same argument as the one showing that b; € B())) and we have
by # +by (if we had b; = +b;, then by applying é; we would deduce b’ = +b
mod v~ !L(f); hence b’ = +b).

From (c) we have (b=n,b'~n) = (b7 n,b51) mod v~'A and from the in-
duction hypothesis we have (b 7,b5 1) € v~ A. It follows that (b™n,b'~n) €
v~!A. The lemma is proved.

19.2. NORMALIZATION OF SIGNS

19.2.1. Let B, be as in 14.4.2. From 17.3.7 and 18.1.7, we see that the
following two conditions for an element = € f, are equivalent:

(a') m E Bu + 'U_IC(f)u

(b) = ¢i, iy - $i,1 mod v 1L(F),,
~ for some sequence %1,%2,... ,% in I such that iy + 2 +--- + 4 = v.

For the proof of Theorem 14.4.3, we shall need the following result. We
regard f ® A as an f-module with 6; acting as ¢; (see 18.1.3.)

Lemma 19.2.2. (a) Let b € B, and b’ € B,.. The vector (b V) is
equal modulo v L(f) ® L(A) to ¢:(b) ® ¥'"n or to b F;(V'™n).

(b) Let by € B,. The vector by(1 ® 1) is equal modulo v='L(f) © L(A)
to by ® by n for some by € B,,, by € B,, withv, +v; =v.

We prove (a). By 18.2.2, (which is now known to be valid uncon-
ditionally) there exists 7o > 0 such that v/ > ro and b~ = Fi(r")x'
mod v~!L(A) where 2’ € L(A)y—ryi, Bsiz’ =0, 2’ #0.

By 16.2.7(b), there exists r; > 0 such that v; > 7, and b = ¢,(-")z
mod v~ L(f) where z € L(f),—r,i, €.z =0,z # 0.

By 18.2.5 (which is now known to hold unconditionally), we have
$:i(b® b ) = $:(¢{x ® F{™x') mod v 1L(f) © L(A).
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By 17.1.15, $i(¢{™z ® F{™)a') is equal modulo v~'L(f) ® L(A) to
qﬁr‘“z ® Fl°z’ or to ¢]'z ® FT°*'z’ or equivalently to ¢;(b) ® b'~n or
b® Fy(b ‘17) This proves (a).

We prove (b). From 19.2.1, it follows that

bo = ¢i i, -+ #;,1 mod vT1L(F),
for some sequence 11,12, ... ,%; in I such that 4; + i3+ -+ = v. We have

bo(1®n) = boZ(1) = E(bo) = =(s, by - -~ b3, 1)
= é;il&’iz ot (51': (E(l)) = &hq‘;i'z e &iz(l ® 77)

The third equality is modulo v~!L(f) ® L(A).

It remains to show that ¢,1¢,2 . ¢,t(1 ® n) is equal to b ® by
mod v~'L(f) ® L(A) for some b; € B,, and b, € B,, with v, + 1, = v.
We show that this holds for any sequence i,,1s,...,1;, by induction on t.
The case where t = 0 is trivial. We assume that ¢t > 1. Using the induction
hypothesis and (a), we have that ¢;, s, - - - ¢;, (1®7) is equal to ¢;, b ~n
-~ or to b® F;, (') modulo v~ £L(f) ® L(A), for some b € B,,, b’ € B,, such
that v; +1v5 = v—i,. We have d;,»lb =b; mod v~ 1L(f) for some b; € B,, 4,
and F;, (b'~n) = (#;,')"n = by mod v=1L(f) for some by € B,, s, ; (b)
follows.

19.2.3. Proof of Theorem 14.4.3. The theorem is obvious when v = 0.
Thus we may assume that tr v = N > 0 and that the result is true when
N is replaced by N’ € [0, N —1].

We first prove part (b) of the theorem. Recall that o(B,) = B,. (See
14.2.5(c).) Assume that b,d’ € B, satisfy o(b) = —b’. We will show that
this leads to a contradiction.

We can find i € I,n > 0 such that v; > n, and " € B, _,,;NB;o such that
b= mnb”. By 17.3.7, we have ¢Pb” = b mod v~'L(f). Since b” € By,
we can find B € L(f) such that ¢;(8) = 0 and b” = 8 mod v~ 'L(f). This
is a special case of the equality By = B(N) in 16.3.5(a). By definition,
we have ¢P = q’)l(")ﬁ. Since ¢7 preserves v~1L(f), we have ¢78 = ¢7b"
mod v=1L(f); hence b = ¢{™ 8 mod v—1L(F).

For any j € I, we define c; € N by b" € Bj,;. Thus, we have ¢; = 0.
Since the root datum is assumed to be Y-regular, we can find A € X such
that (i,A) = 0 and (j,A) > ¢; for all j € I — {i}. These inequalities show,
using the definition of the c;, that o(b”’)n # 0, where n € A = A, is as in
3.5.7.
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In the f-module f ® A, we have 0,(")(1 ®n) = 01(") ® n since F;n = 0
and K_;n = 0 (recalling that (i,A\) = 0). By definition of the f-module
structure on f ® A, we have

a0 (1 ®n) = o (8)(0™ ®n) = 6™ ® 7 (B)(n) + =

where z is in the kernel of the obvious projection pr, : f®A — £,;®A. Since
b =63 mod v=1L(f), we have —b' = o(b) = o(8)8™ mod v1L(f);
hence

(a) -b(1®n) = 0§n) ®o(B)(n) + z mod v IL(f) ® L(A).

We have used that z € L(f) = z(1®7n) € L(f) ® L(A); since z(1®7n) =
Z(x), this follows from Lemma 18.2.7, which is now known unconditionally.

By 19.2.2(b), we have (1 ®n) = b; ® b; 7 mod v~ L(f) ® L(A) where
b, € B,,, B; € B,, and v + v = v. Comparing with (a), we deduce that

6™ @ a(B)"(n) + by ® byn + z € v 1L(F) ® L(A).

Since B =b" mod v~ 1L(f), we have o(8) = ¢(b”) mod v—1L(f). By the
induction hypothesis, we have o(b”) € B,_,;. Recall also that o(b")n # 0.
Thus we have

0 @ o(b")n + by ® by + 2 € vT1L(F) ® L(A).
By the definition of z, this implies that
o) n+byn € v L(A)
if b € B,_p; and by # 0 and
o) n e v L(A)

if b ¢ B,_p; or byn=0.

Both alternatives are impossible, since, by the induction hypothesis,
a(¥")™n,b3n (in the first case) and o(b”)™n (in the second case) are a
part of an A-basis of L(A); by the induction hypothesis, we cannot have
o(b") + by = 0. This proves part (b) of the theorem.

We now prove part (a) of the theorem. Assume that b,b' € B, satisfy
b = —b. Since o(b) € B, = B, U (—B,), we have either o(b) = b; with
b, € B, or o(b) = —bz with by € B,. The second alternative cannot occur,
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by part (b). Thus the first alternative holds. But then b; = —o(b’) and
this again contradicts part (b). This proves part (a).

We prove part (c). Let b € B,. We have o(b) € B, U (—-B,) and
o(b) ¢ (—B,) by (b), hence o(b) € B,. This proves part (c). Clearly,
parts (d) and (e) follow from part (a) since B, is a signed basis of f,. The
theorem is proved.

19.3. FURTHER PROPERTIES OF THE INNER PRODUCT

19.3.1. We shall denote by 4A, the image of the canonical map 4f — Aj.
The canonical basis B(A)) of Ay (see 14.4.11) is clearly an A-basis of 4Aj.
For any v € N[I], let (4A). be the image of 4f, under the canonical map
f — A,. We have a direct sum decomposition 4Ax = @, (4A7)-
Proposition 19.3.2. 4A), is stable under the operators z—,x% : Ay — Ay,
for any z € 4f.

For z—, this is obvious. To prove the assertion about z*, we may assume
that = = 91(") for some i,n. Let y € (4Ax),. We show that E§")y € 4l
.. by induction on N = trv. If N = 0, the result is obvious. Assume
that N > 1. We may assume that y = Fj(t)y’ where 1 < t < v; and
Yy’ € (aAx)u—tj. By 3.4.2(b), the operator E,.(n)FJ(t) on Ay is an A-linear
combination of operators Fj(tl)Ei("l). By the induction hypothesis, we have
Ez("’)y’ € aAy; hence F}t’)Ei("’)y' € A, so that E,-(")y = Ei(")Fj(t)y’ €
A This completes the proof.

The following result is a strengthening of Lemma 19.1.4.

Proposition 19.3.3. Let b,b' € B(\).

(a) If b/ # £b then (b=n,b/~n) € v 1Z[v71].

(b) We have (b™n,b"n) € 1+ v 1Z[v7Y].

We shall prove by induction on tr v that

(c) (z,y) e A
for any z,y € (4Ar),. When tr v = 0, (c) is trivial. We may therefore
assume that trv = N > 0 and that (c) is already known for v/ with
tr ¥ < N. We may assume that z = Fi(r)a:’ where 0 < r < y; and
z' € (4Ax)y—ri- From the definitions we have

(d) (F"a',y) = (2,0 K_riB{"y).

By 19.3.2, we have f{_riEi(r)y € (aAx)u—ri; hence the right hand side of
(d) is in A, by the induction hypothesis. This proves (c). The proposition
follows by combining (c) with Lemma 19.1.4, since AN.A = Z[v™!].
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19.3.4. From the description 18.1.1(a) of Ay, we see that there is a unique
Q-linear isomorphism ~ : Ay — A, such that @7y = 4, for allu € U. It
has square equal to 1.

Theorem 19.3.5. Let b€ Ay. We have b € B(A)) if and only if
(1) b€ 4Ax, b=1b and

(2) there exists a sequence iy, ia, . . . ,ip in I such thatb= F; F;, - ﬁ’ipn,\
mod v~ 1L(A,).

We have b € £B(A)) if and only if b satisfies (1) and
(3) (b,b) =1 mod v~1Z[v™1].

If b € £B(A)), then b obviously satisfies (1); it satisfies (3) by 19.3.3.

Assume now that b satisfies (1) and (3). Since the canonical basis is
almost orthonormal, from Lemma 14.2.2 it follows that there exists b’ €
B(A,) such that b = £ mod v~!L(A,). Since b— (£V') = b — (£b'), it
follows that b — (£b') =0

Assume now that b € B(A)). We show that b satisfies (2). We have

= B~ n, for some f € B. We can find a sequence i,%2,...,%p in [

such that 8 = i, i, -+ - $i,1 mod v~1L(f). Using 18.3.8, it follows that
b=F, F, - Fpn,\ mod v~!L(A,), as required.

Finally, assume that b satisfies (1),(2). Let iy,12,...,4p in I be as in (2).
Using again 18.3.8, we see that b = (¢; &, -- ¢,p1) nx mod v~1L(A}).
. Let 3 be the unique element of B such that

B =di,di, - $:,1 mod v L(f).

We have b = B~n» mod v~ 'L(A,). Let b’ = B7nx. Then b — b € 4A,,
b—% =b—b and b— b € v"'L(A,). It follows that b — ¥ = 0. Thus,
b € B(Ay). The theorem is proved.

19.3.6. We will now investigate the relation between the inner product (,)
on f (see 1.2.5) and the inner product (,) on Ay, which we now denote by
(,)a since A € Xt will vary.

Proposition 19.3.7. Letz,y € f. When A € X tends to oo (in the sense
that (i, \) tends to oo for all i), then the inner product (x™nx, ¥~ MA)x €
Q(v) converges in Q((v71)) to (z,y).

We may assume that both = and y belong to f, for some v. We prove
the proposition by induction on N = tr v. When N = 0, the result is
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trivial. Assume now that N > 1. We may assume that v; > 0 and z = 6,2’
for some ¢ and some z’ € f,_;. We have

@,y M) = (B’ ~ma, ") = (&, i Ko Eiy ™ m)a

Using the commutation formula 3.1.6(b) and the equality E;nx = 0 we see
that the last inner product is equal to

(vi — o7 )TN @ " K _i(—mi(y) Ko + Ki(ir()7))m)a

1y 21

=—(vi—v;")” ' 70, ri(y) TmA)A

+ (1= 2) ' o, i () T

Using the induction hypothesis, we see that in 1_;he last expression, the
first term converges to 0 for A — oo (note that v;” X converges to 0) and
the second term converges to (1 — v, 2)~!(z/,;r(y)) which by 1.2.13(a), is

equal to (z,y). The proposition is proved.



