Inner Product on Λ

19.1. First Properties of the Inner Product

19.1.1. In this chapter, we preserve the setup of the previous chapter. In particular, we write $\Lambda = \Lambda_{\lambda}$ where $\lambda \in X^{+}$ is fixed, except in subsections 19.2.3, 19.3.6 and 19.3.7.

Let $\rho_1: \mathbf{U} \to \mathbf{U}$ be the algebra isomorphism given by

$$\rho_1(E_i) = -v_i F_i, \quad \rho_1(F_i) = -v_i^{-1} E_i, \quad \rho_1(K_\mu) = K_{-\mu}.$$

Let $\rho: \mathbf{U} \to \mathbf{U}^{opp}$ be the algebra isomorphism given by the composition $S\rho_1$ where $S: \mathbf{U} \to \mathbf{U}^{opp}$ is the antipode. We have

$$\rho(E_i) = v_i \tilde{K}_i F_i, \quad \rho(F_i) = v_i \tilde{K}_{-i} E_i, \quad \rho(K_\mu) = K_\mu.$$

It is clear that $\rho^2 = 1$.

Proposition 19.1.2. There is a unique bilinear form $(,): \Lambda \times \Lambda \to \mathbf{Q}(v)$ such that

- (a) $(\eta, \eta) = 1$;
- (b) $(ux, y) = (x, \rho(u)y)$ for all $x, y \in \Lambda$ and $u \in \mathbf{U}$.

This bilinear form is symmetric. If $x \in (\Lambda)_{\nu}$, $y \in (\Lambda)_{\nu'}$ with $\nu \neq \nu'$, then (x,y) = 0.

For any $u \in \mathbf{U}$, we consider the linear map of the dual space $\Lambda^* = \operatorname{Hom}(\Lambda, \mathbf{Q}(v))$ into itself, given by $\xi \mapsto u(\xi)$ where $u(\xi)(x) = \xi(\rho(u)x)$ for all $x \in \Lambda$. This defines a **U**-module structure on Λ^* , since $\rho : \mathbf{U} \to \mathbf{U}^{opp}$ is an algebra homomorphism. Let $\xi_0 \in \Lambda^*$ be the unique linear form such that $\xi_0(\eta) = 1$ and ξ_0 is zero on $(\Lambda)_{\nu}$ for $\nu \neq 0$. It is clear that $E_i \xi_0 = 0$ for all $i \in I$ and $K_{\mu} \xi_0 = v^{(\mu,\lambda)} \xi_0$ for all $\mu \in Y$. We show that $F_i^{(i,\lambda)+1} \xi_0 = 0$. It is enough to show that, for any x in a weight space of Λ , the vector $E_i^{(i,\lambda)+1}x$ cannot be a non-zero multiple of η . This follows from Lemma 5.1.6, since $E_i \eta = 0$ and $F_i^{(i,\lambda)+1} \eta = 0$. From the description 18.1.1(a) of

 Λ , we now see that there is a unique homomorphism of U-modules $\Lambda \to \Lambda^*$ which takes η to ξ_0 .

Now it is clear that there is a 1-1 correspondence between homomorphisms of U-modules $\Lambda \to \Lambda^*$ which take η to ξ_0 and bilinear forms (,) on Λ which satisfy (a) and (b). The existence and uniqueness of the form $x, y \mapsto (x, y)$ follow. The form $x, y \mapsto (y, x)$ satisfies the defining properties of the form $x, y \mapsto (x, y)$, since $\rho^2 = 1$. By the uniqueness, we see that these two forms coincide; hence (,) is symmetric.

Proposition 19.1.3. Let $\nu \in \mathbb{N}[I]$.

- (a) We have $(L(\Lambda)_{\nu}, L(\Lambda)_{\nu}) \in \mathbf{A}$.
- (b) For any $i \in I$ such that $\nu_i > 0$, and any $x \in L(\Lambda)_{\nu-i}, x' \in L(\Lambda)_{\nu}$ we have $(\tilde{F}_i x, x') = (x, \tilde{E}_i x')$ modulo $v^{-1} \mathbf{A}$.

When tr $\nu=0$, (a) and (b) are trivial. We may therefore assume that tr $\nu=N>0$ and that both (a),(b) are already known for ν' with tr $\nu'< N$. Since $L(\Lambda)_{\nu}=\sum_{i;\nu_{i}>0}\tilde{F}_{i}L(\Lambda)_{\nu-i}$, and $\tilde{E}_{i}(L(\Lambda)_{\nu})\subset L(\Lambda)_{\nu-i}$ whenever $\nu_{i}>0$, we see that (a) for ν follows from the induction hypothesis. (We use (a) and (b) for tr $\nu'=N-1$.)

We now prove (b) for ν . Let i, x, x' be as in (b). By 18.2.2, we may assume that $x = F_i^{(s)} y$ and $x' = F_i^{(s')} y'$ where $y \in L(\Lambda)_{\nu-i-si}$, $y' \in L(\Lambda)_{\nu-s'i}$, $E_i y = E_i y' = 0$ and $s \ge 0$, $s' \ge 0$, $s + \langle i, \lambda - \nu + i' \rangle \ge 0$, $s' + \langle i, \lambda - \nu \rangle \ge 0$. We must show that

(c)
$$(F_i^{(s+1)}y, F_i^{(s')}y') = (F_i^{(s)}y, F_i^{(s'-1)}y') \mod v^{-1}\mathbf{A}$$
.

For any r, r' we have from the definitions

$$\begin{split} (F_i^{(r)}y, F_i^{(r')}y') &= (y, v_i^{r^2} \tilde{K}_{-ri} E_i^{(r)} F_i^{(r')} y') \\ &= v_i^{r^2} \begin{bmatrix} r - r' + \langle i, \lambda - \nu + s'i' \rangle \\ r \end{bmatrix}_i (y, K_{-ri} F_i^{(r'-r)} y'). \end{split}$$

This is zero unless $r' \geq r$. By symmetry, it is also zero unless $r \geq r'$. Thus

$$\begin{split} (F_i^{(r)}y, F_i^{(r')}y') &= \delta_{r,r'} v_i^{r^2} \begin{bmatrix} \langle i, \lambda - \nu + s'i' \rangle \\ r \end{bmatrix}_i (y, K_{-ri}y') \\ &= \delta_{r,r'} v_i^{r^2 - r\langle i, \lambda - nu + s'i' \rangle} \begin{bmatrix} \langle i, \lambda - \nu + s'i' \rangle \\ r \end{bmatrix}_i (y, y'). \end{split}$$

Hence (c) is equivalent to

$$\delta_{s+1,s'}v_i^{-(s+1)((s+1)+\langle i,\lambda-\nu\rangle)} \begin{bmatrix} 2(s+1)+\langle i,\lambda-\nu\rangle \\ s+1 \end{bmatrix}_i (y,y')$$
(d)
$$=\delta_{s,s'-1}v_i^{-s(s+2+\langle i,\lambda-\nu\rangle)} \begin{bmatrix} 2(s+1)+\langle i,\lambda-\nu\rangle \\ s \end{bmatrix}_i (y,y') \mod v^{-1}\mathbf{A}.$$

We may therefore assume that s+1=s'. Now y,y' are contained in $L(\Lambda)_{\nu-i-si}$ and tr $(\nu-i-si) < N$; hence, by the induction hypothesis, we have $(y,y') \in \mathbf{A}$. We see that to prove (d) it suffices to prove

$$v_i^{-(s+1)((s+1)+\langle i,\lambda-\nu\rangle)} \begin{bmatrix} 2(s+1)+\langle i,\lambda-\nu\rangle \\ s+1 \end{bmatrix}_i$$
(e)
$$= v_i^{-s(s+2+\langle i,\lambda-\nu\rangle)} \begin{bmatrix} 2(s+1)+\langle i,\lambda-\nu\rangle \\ s \end{bmatrix}_i \mod v^{-1} \mathbf{Z}[v^{-1}].$$

From the inequality $s+1+\langle i,\lambda-\nu\rangle\geq 0$, we deduce $2(s+1)+\langle i,\lambda-\nu\rangle\geq s+1$ and $2(s+1)+\langle i,\lambda-\nu\rangle\geq s$. Since $v_i^{-pq}{p+q\brack p}_i\in 1+v^{-1}\mathbf{Z}[v^{-1}]$ for $p\geq 0, q\geq 0$, it follows that we have

$$v_i^{-(s+1)((s+1)+\langle i,\lambda-\nu\rangle)} \begin{bmatrix} 2(s+1)+\langle i,\lambda-\nu\rangle \\ s+1 \end{bmatrix}_i \in 1+v^{-1}\mathbf{Z}[v^{-1}]$$

and

$$v_i^{-s(s+2+\langle i,\lambda-\nu\rangle)} \begin{bmatrix} 2(s+1)+\langle i,\lambda-\nu\rangle \\ s \end{bmatrix}_i \in 1+v^{-1}\mathbf{Z}[v^{-1}]$$

and (e) follows. The proposition is proved.

Lemma 19.1.4. Let $b, b' \in \mathcal{B}(\lambda)$.

- (a) If $b' \neq \pm b$ then $(b^-\eta, b'^-\eta) \in v^{-1}\mathbf{A}$.
- (b) We have $(b^-\eta, b^-\eta) \in 1 + v^{-1}\mathbf{A}$.

We may assume that $b,b' \in \mathcal{B}_{\nu}$ for some ν . We argue by induction on $N=\operatorname{tr}\nu$. The case where N=0 is trivial. Assume now that $N\geq 1$. We can find $i\in I$ such that $\nu_i>0$ and $b_1\in \mathcal{B}_{\nu-i}$ such that $\tilde{\phi}_ib_1=b$ and $\tilde{\epsilon}_ib=b_1$ (both equalities are modulo $v^{-1}\mathcal{L}(\mathbf{f})$). By 18.3.8, we have $\tilde{E}_i(b^-\eta)=b_1^-\eta$ and $\tilde{F}_i(b_1^-\eta)=b^-\eta$ (both equalities are modulo $v^{-1}L(\Lambda)$). It follows that $b_1^-\eta\neq 0$. (From $b_1^-\eta=0$ we could deduce by applying \tilde{F}_i that $b^-\eta\in v^{-1}L(\Lambda)$ which contradicts $b\in \mathcal{B}(\lambda)$.) Thus $b_1\in \mathcal{B}(\lambda)$. Using again 18.3.8, we have $\tilde{E}_i(b'^-\eta)=(\tilde{\epsilon}_ib')^-\eta\mod v^{-1}L(\Lambda)$.

Using the previous proposition, we have

(c)
$$(b^-\eta, b'^-\eta) = (\tilde{F}_i(b_1^-\eta), b'^-\eta) = (b_1^-\eta, \tilde{E}_i(b'^-\eta)) = (b_1^-\eta, (\tilde{\epsilon}_ib')^-\eta)$$
 equalities modulo $v^{-1}\mathbf{A}$. Assume first that $b = b'$. Then $(\tilde{\epsilon}_ib')^-\eta = b_1^-\eta$ mod $v^{-1}L(\Lambda)$ and (c) becomes $(b^-\eta, b^-\eta) = (b_1^-\eta, b_1^-\eta) \mod v^{-1}L(\Lambda)$; by the induction hypothesis, we have $(b_1^-\eta, b_1^-\eta) \in 1 + v^{-1}\mathbf{A}$ so that $(b^-\eta, b^-\eta) \in 1 + v^{-1}\mathbf{A}$, as required.

Assume next that $b' \neq \pm b$. There are two cases: we have either $\tilde{\epsilon}_i b' = b_2 \mod v^{-1} \mathcal{L}(\mathbf{f})$ for some $b_2 \in \mathcal{B}$ or $\tilde{\epsilon}_i b' \in v^{-1} \mathcal{L}(\mathbf{f})$. If the second alternative occurs, then $(b_1^- \eta, (\tilde{\epsilon}_i b')^- \eta) \in v^{-1} \mathbf{A}$ by 19.1.3(a); hence $(b^- \eta, b'^- \eta) \in v^{-1} \mathbf{A}$, by (c). If the first alternative occurs, then $b_2 \in \mathcal{B}(\lambda)$ (by the same argument as the one showing that $b_1 \in \mathcal{B}(\lambda)$) and we have $b_2 \neq \pm b_1$ (if we had $b_2 = \pm b_1$, then by applying $\tilde{\phi}_i$ we would deduce $b' = \pm b \mod v^{-1} \mathcal{L}(\mathbf{f})$; hence $b' = \pm b$).

From (c) we have $(b^-\eta, b'^-\eta) = (b_1^-\eta, b_2^-\eta) \mod v^{-1}\mathbf{A}$ and from the induction hypothesis we have $(b_1^-\eta, b_2^-\eta) \in v^{-1}\mathbf{A}$. It follows that $(b^-\eta, b'^-\eta) \in v^{-1}\mathbf{A}$. The lemma is proved.

19.2. NORMALIZATION OF SIGNS

19.2.1. Let \mathbf{B}_{ν} be as in 14.4.2. From 17.3.7 and 18.1.7, we see that the following two conditions for an element $x \in \mathbf{f}_{\nu}$ are equivalent:

- (a) $x \in \mathbf{B}_{\nu} + v^{-1} \mathcal{L}(\mathbf{f})_{\nu}$
- (b) $x = \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} 1 \mod v^{-1} \mathcal{L}(\mathbf{f})_{\nu}$,

for some sequence i_1, i_2, \ldots, i_t in I such that $i_1 + i_2 + \cdots + i_t = \nu$.

For the proof of Theorem 14.4.3, we shall need the following result. We regard $f \otimes \Lambda$ as an f-module with θ_i acting as ϕ_i (see 18.1.3.)

- **Lemma 19.2.2.** (a) Let $b \in \mathbf{B}_{\nu}$ and $b' \in \mathbf{B}_{\nu'}$. The vector $\tilde{\phi}_i(b \otimes b'^- \eta)$ is equal modulo $v^{-1}\mathcal{L}(\mathbf{f}) \odot L(\Lambda)$ to $\tilde{\phi}_i(b) \otimes b'^- \eta$ or to $b \otimes \tilde{F}_i(b'^- \eta)$.
- (b) Let $b_0 \in \mathbf{B}_{\nu}$. The vector $b_0(1 \otimes \eta)$ is equal modulo $v^{-1}\mathcal{L}(\mathbf{f}) \odot L(\Lambda)$ to $b_1 \otimes b_2^- \eta$ for some $b_1 \in \mathbf{B}_{\nu_1}$, $b_2 \in \mathbf{B}_{\nu_2}$ with $\nu_1 + \nu_2 = \nu$.

We prove (a). By 18.2.2, (which is now known to be valid unconditionally) there exists $r_0 \geq 0$ such that $\nu_i' \geq r_0$ and $b'^- \eta = F_i^{(r_0)} x' \mod v^{-1} L(\Lambda)$ where $x' \in L(\Lambda)_{\nu'-r_0i}$, $E_i x' = 0$, $x' \neq 0$.

By 16.2.7(b), there exists $r_1 \geq 0$ such that $\nu_i \geq r_1$ and $b = \phi_i^{(r_1)} x$ mod $v^{-1} \mathcal{L}(\mathbf{f})$ where $x \in \mathcal{L}(\mathbf{f})_{\nu-r_1}$, $\epsilon_i x = 0, x \neq 0$.

By 18.2.5 (which is now known to hold unconditionally), we have $\tilde{\phi}_i(b \otimes b'^- \eta) = \tilde{\phi}_i(\phi_i^{(r_1)} x \otimes F_i^{(r_0)} x') \mod v^{-1} \mathcal{L}(\mathbf{f}) \odot L(\Lambda)$.

By 17.1.15, $\tilde{\phi}_i(\phi_i^{(r_1)}x\otimes F_i^{(r_0)}x')$ is equal modulo $v^{-1}\mathcal{L}(\mathbf{f})\odot L(\Lambda)$ to $\tilde{\phi}_i^{r_1+1}x\otimes \tilde{F}_i^{r_0}x'$ or to $\tilde{\phi}_i^{r_1}x\otimes \tilde{F}_i^{r_0+1}x'$ or equivalently to $\tilde{\phi}_i(b)\otimes b'^-\eta$ or $b\otimes \tilde{F}_i(b'^-\eta)$. This proves (a).

We prove (b). From 19.2.1, it follows that

$$b_0 = \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} 1 \mod v^{-1} \mathcal{L}(\mathbf{f}),$$

for some sequence i_1, i_2, \ldots, i_t in I such that $i_1 + i_2 + \cdots + i_t = \nu$. We have

$$b_0(1 \otimes \eta) = b_0 \Xi(1) = \Xi(b_0) = \Xi(\tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} 1)$$

= $\tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} (\Xi(1)) = \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} (1 \otimes \eta).$

The third equality is modulo $v^{-1}\mathcal{L}(\mathbf{f}) \odot L(\Lambda)$.

It remains to show that $\tilde{\phi}_{i_1}\tilde{\phi}_{i_2}\cdots\tilde{\phi}_{i_t}(1\otimes\eta)$ is equal to $b_1\otimes b_2^-\eta$ mod $v^{-1}\mathcal{L}(\mathbf{f})\odot L(\Lambda)$ for some $b_1\in\mathbf{B}_{\nu_1}$ and $b_2\in\mathbf{B}_{\nu_2}$ with $\nu_1+\nu_2=\nu$. We show that this holds for any sequence i_1,i_2,\ldots,i_t , by induction on t. The case where t=0 is trivial. We assume that $t\geq 1$. Using the induction hypothesis and (a), we have that $\tilde{\phi}_{i_1}\tilde{\phi}_{i_2}\cdots\tilde{\phi}_{i_t}(1\otimes\eta)$ is equal to $\tilde{\phi}_{i_1}b\otimes b'^-\eta$ or to $b\otimes \tilde{F}_{i_1}(b'^-\eta)$ modulo $v^{-1}\mathcal{L}(\mathbf{f})\odot L(\Lambda)$, for some $b\in\mathbf{B}_{\nu_1},b'\in\mathbf{B}_{\nu_2}$ such that $\nu_1+\nu_2=\nu-i_1$. We have $\tilde{\phi}_{i_1}b=b_1\mod v^{-1}\mathcal{L}(\mathbf{f})$ for some $b_1\in\mathbf{B}_{\nu_1+i_1}$ and $\tilde{F}_{i_1}(b'^-\eta)=(\tilde{\phi}_{i_1}b')^-\eta=b_2^-\eta\mod v^{-1}\mathcal{L}(\mathbf{f})$ for some $b_2\in\mathbf{B}_{\nu_2+i_1}$; (b) follows.

19.2.3. Proof of Theorem 14.4.3. The theorem is obvious when $\nu = 0$. Thus we may assume that $\text{tr } \nu = N > 0$ and that the result is true when N is replaced by $N' \in [0, N-1]$.

We first prove part (b) of the theorem. Recall that $\sigma(\mathcal{B}_{\nu}) = \mathcal{B}_{\nu}$. (See 14.2.5(c).) Assume that $b, b' \in \mathbf{B}_{\nu}$ satisfy $\sigma(b) = -b'$. We will show that this leads to a contradiction.

We can find $i \in I, n > 0$ such that $\nu_i \geq n$, and $b'' \in \mathbf{B}_{\nu-ni} \cap \mathcal{B}_{i;0}$ such that $b = \pi_{i,n}b''$. By 17.3.7, we have $\tilde{\phi}_i^n b'' = b \mod v^{-1}\mathcal{L}(\mathbf{f})$. Since $b'' \in \mathcal{B}_{i;0}$, we can find $\beta \in \mathcal{L}(\mathbf{f})$ such that $\epsilon_i(\beta) = 0$ and $b'' = \beta \mod v^{-1}\mathcal{L}(\mathbf{f})$. This is a special case of the equality $B_N = B(N)$ in 16.3.5(a). By definition, we have $\tilde{\phi}_i^n \beta = \phi_i^{(n)} \beta$. Since $\tilde{\phi}_i^n$ preserves $v^{-1}\mathcal{L}(\mathbf{f})$, we have $\tilde{\phi}_i^n \beta = \tilde{\phi}_i^n b''$ mod $v^{-1}\mathcal{L}(\mathbf{f})$; hence $b = \phi_i^{(n)} \beta \mod v^{-1}\mathcal{L}(\mathbf{f})$.

For any $j \in I$, we define $c_j \in \mathbb{N}$ by $b'' \in \mathcal{B}_{j;c_j}$. Thus, we have $c_i = 0$. Since the root datum is assumed to be Y-regular, we can find $\lambda \in X$ such that $\langle i, \lambda \rangle = 0$ and $\langle j, \lambda \rangle \geq c_j$ for all $j \in I - \{i\}$. These inequalities show, using the definition of the c_j , that $\sigma(b'')\eta \neq 0$, where $\eta \in \Lambda = \Lambda_{\lambda}$ is as in 3.5.7.

In the **f**-module $\mathbf{f} \otimes \Lambda$, we have $\theta_i^{(n)}(1 \otimes \eta) = \theta_i^{(n)} \otimes \eta$ since $F_i \eta = 0$ and $\tilde{K}_{-i} \eta = 0$ (recalling that $\langle i, \lambda \rangle = 0$). By definition of the **f**-module structure on $\mathbf{f} \otimes \Lambda$, we have

$$\sigma(\beta)\theta_i^{(n)}(1\otimes\eta) = \sigma(\beta)(\theta_i^{(n)}\otimes\eta) = \theta_i^{(n)}\otimes\sigma(\beta)(\eta) + z$$

where z is in the kernel of the obvious projection $pr_n : \mathbf{f} \otimes \Lambda \to \mathbf{f}_{ni} \otimes \Lambda$. Since $b = \theta_i^{(n)} \beta \mod v^{-1} \mathcal{L}(\mathbf{f})$, we have $-b' = \sigma(b) = \sigma(\beta) \theta_i^{(n)} \mod v^{-1} \mathcal{L}(\mathbf{f})$; hence

(a)
$$-b'(1 \otimes \eta) = \theta_i^{(n)} \otimes \sigma(\beta)(\eta) + z \mod v^{-1} \mathcal{L}(\mathbf{f}) \odot L(\Lambda).$$

We have used that $x \in \mathcal{L}(\mathbf{f}) \implies x(1 \otimes \eta) \in \mathcal{L}(\mathbf{f}) \odot L(\Lambda)$; since $x(1 \otimes \eta) = \Xi(x)$, this follows from Lemma 18.2.7, which is now known unconditionally. By 19.2.2(b), we have $b'(1 \otimes \eta) = b_1 \otimes b_2 \eta \mod v^{-1}\mathcal{L}(\mathbf{f}) \odot L(\Lambda)$ where

By 19.2.2(b), we have $b'(1 \otimes \eta) = b_1 \otimes b_2 \eta \mod v^{-2}L(1) \odot L(\Lambda)$ where $b_1 \in \mathbf{B}_{\nu_1}, B_2 \in \mathbf{B}_{\nu_2}$ and $\nu_1 + \nu_2 = \nu$. Comparing with (a), we deduce that

$$\theta_i^{(n)} \otimes \sigma(\beta)^-(\eta) + b_1 \otimes b_2^- \eta + z \in v^{-1} \mathcal{L}(\mathbf{f}) \odot L(\Lambda).$$

Since $\beta = b'' \mod v^{-1}\mathcal{L}(\mathbf{f})$, we have $\sigma(\beta) = \sigma(b'') \mod v^{-1}\mathcal{L}(\mathbf{f})$. By the induction hypothesis, we have $\sigma(b'') \in \mathbf{B}_{\nu-ni}$. Recall also that $\sigma(b'') \eta \neq 0$. Thus we have

$$\theta_i^{(n)} \otimes \sigma(b'')\eta + b_1 \otimes b_2^- \eta + z \in v^{-1} \mathcal{L}(\mathbf{f}) \odot L(\Lambda).$$

By the definition of z, this implies that

$$\sigma(b'')^- \eta + b_2^- \eta \in v^{-1} L(\Lambda)$$

if $b_2 \in \mathbf{B}_{\nu-ni}$ and $b_2^- \eta \neq 0$ and

$$\sigma(b'')^-\eta \in v^{-1}L(\Lambda)$$

if $b_2 \notin \mathbf{B}_{\nu-ni}$ or $b_2^- \eta = 0$.

Both alternatives are impossible, since, by the induction hypothesis, $\sigma(b'')^-\eta$, $b_2^-\eta$ (in the first case) and $\sigma(b'')^-\eta$ (in the second case) are a part of an **A**-basis of $L(\Lambda)$; by the induction hypothesis, we cannot have $\sigma(b'') + b_2 = 0$. This proves part (b) of the theorem.

We now prove part (a) of the theorem. Assume that $b, b' \in \mathbf{B}_{\nu}$ satisfy b' = -b. Since $\sigma(b) \in \mathcal{B}_{\nu} = \mathbf{B}_{\nu} \cup (-\mathbf{B}_{\nu})$, we have either $\sigma(b) = b_1$ with $b_1 \in \mathbf{B}_{\nu}$ or $\sigma(b) = -b_2$ with $b_2 \in \mathbf{B}_{\nu}$. The second alternative cannot occur,

by part (b). Thus the first alternative holds. But then $b_1 = -\sigma(b')$ and this again contradicts part (b). This proves part (a).

We prove part (c). Let $b \in \mathbf{B}_{\nu}$. We have $\sigma(b) \in \mathbf{B}_{\nu} \cup (-\mathbf{B}_{\nu})$ and $\sigma(b) \notin (-\mathbf{B}_{\nu})$ by (b), hence $\sigma(b) \in \mathbf{B}_{\nu}$. This proves part (c). Clearly, parts (d) and (e) follow from part (a) since \mathcal{B}_{ν} is a signed basis of \mathbf{f}_{ν} . The theorem is proved.

19.3. Further Properties of the Inner Product

19.3.1. We shall denote by $_{\mathcal{A}}\Lambda_{\lambda}$ the image of the canonical map $_{\mathcal{A}}\mathbf{f} \to \Lambda_{\lambda}$. The canonical basis $\mathbf{B}(\Lambda_{\lambda})$ of Λ_{λ} (see 14.4.11) is clearly an \mathcal{A} -basis of $_{\mathcal{A}}\Lambda_{\lambda}$. For any $\nu \in \mathbf{N}[I]$, let $(_{\mathcal{A}}\Lambda_{\lambda})_{\nu}$ be the image of $_{\mathcal{A}}\mathbf{f}_{\nu}$ under the canonical map $\mathbf{f} \to \Lambda_{\lambda}$. We have a direct sum decomposition $_{\mathcal{A}}\Lambda_{\lambda} = \bigoplus_{\nu} (_{\mathcal{A}}\Lambda_{\lambda})_{\nu}$.

Proposition 19.3.2. $_{\mathcal{A}}\Lambda_{\lambda}$ is stable under the operators $x^{-}, x^{+}: \Lambda_{\lambda} \to \Lambda_{\lambda}$, for any $x \in {}_{\mathcal{A}}\mathbf{f}$.

For x^- , this is obvious. To prove the assertion about x^+ , we may assume that $x=\theta_i^{(n)}$ for some i,n. Let $y\in ({}_{\mathcal{A}}\Lambda_{\lambda})_{\nu}$. We show that $E_i^{(n)}y\in {}_{\mathcal{A}}\Lambda_{\lambda}$ by induction on $N=\operatorname{tr}\nu$. If N=0, the result is obvious. Assume that $N\geq 1$. We may assume that $y=F_j^{(t)}y'$ where $1\leq t\leq \nu_j$ and $y'\in ({}_{\mathcal{A}}\Lambda_{\lambda})_{\nu-tj}$. By 3.4.2(b), the operator $E_i^{(n)}F_j^{(t)}$ on Λ_{λ} is an \mathcal{A} -linear combination of operators $F_j^{(t')}E_i^{(n')}$. By the induction hypothesis, we have $E_i^{(n')}y'\in {}_{\mathcal{A}}\Lambda_{\lambda}$; hence $F_j^{(t')}E_i^{(n')}y'\in {}_{\mathcal{A}}\Lambda_{\lambda}$ so that $E_i^{(n)}y=E_i^{(n)}F_j^{(t)}y'\in {}_{\mathcal{A}}\Lambda_{\lambda}$. This completes the proof.

The following result is a strengthening of Lemma 19.1.4.

Proposition 19.3.3. Let $b, b' \in \mathcal{B}(\lambda)$.

- (a) If $b' \neq \pm b$ then $(b^-\eta, b'^-\eta) \in v^{-1}\mathbf{Z}[v^{-1}]$.
- (b) We have $(b^-\eta, b^-\eta) \in 1 + v^{-1}\mathbf{Z}[v^{-1}]$.

We shall prove by induction on $\operatorname{tr} \nu$ that

(c) $(x,y) \in \mathcal{A}$

for any $x, y \in ({}_{\mathcal{A}}\Lambda_{\lambda})_{\nu}$. When tr $\nu = 0$, (c) is trivial. We may therefore assume that tr $\nu = N > 0$ and that (c) is already known for ν' with tr $\nu' < N$. We may assume that $x = F_i^{(r)}x'$ where $0 < r \le \nu_i$ and $x' \in ({}_{\mathcal{A}}\Lambda_{\lambda})_{\nu-ri}$. From the definitions we have

(d)
$$(F_i^{(r)}x', y) = (x', v_i^{r^2} \tilde{K}_{-ri} E_i^{(r)} y).$$

By 19.3.2, we have $\tilde{K}_{-ri}E_i^{(r)}y \in ({}_{\mathcal{A}}\Lambda_{\lambda})_{\nu-ri}$; hence the right hand side of (d) is in \mathcal{A} , by the induction hypothesis. This proves (c). The proposition follows by combining (c) with Lemma 19.1.4, since $\mathbf{A} \cap \mathcal{A} = \mathbf{Z}[v^{-1}]$.

19.3.4. From the description 18.1.1(a) of Λ_{λ} , we see that there is a unique **Q**-linear isomorphism $\bar{} : \Lambda_{\lambda} \to \Lambda_{\lambda}$ such that $\bar{u}\eta_{\lambda} = \bar{u}\eta_{\lambda}$ for all $u \in \mathbf{U}$. It has square equal to 1.

Theorem 19.3.5. Let $b \in \Lambda_{\lambda}$. We have $b \in \mathbf{B}(\Lambda_{\lambda})$ if and only if

- (1) $b \in {}_{\mathcal{A}}\Lambda_{\lambda}$, $\bar{b} = b$ and
- (2) there exists a sequence i_1, i_2, \ldots, i_p in I such that $b = \tilde{F}_{i_1} \tilde{F}_{i_2} \cdots \tilde{F}_{i_p} \eta_{\lambda} \mod v^{-1} L(\Lambda_{\lambda})$.

We have $b \in \pm \mathbf{B}(\Lambda_{\lambda})$ if and only if b satisfies (1) and

(3) $(b, b) = 1 \mod v^{-1} \mathbf{Z}[v^{-1}].$

If $b \in \pm \mathbf{B}(\Lambda_{\lambda})$, then b obviously satisfies (1); it satisfies (3) by 19.3.3.

Assume now that b satisfies (1) and (3). Since the canonical basis is almost orthonormal, from Lemma 14.2.2 it follows that there exists $b' \in \mathbf{B}(\Lambda_{\lambda})$ such that $b = \pm b' \mod v^{-1}L(\Lambda_{\lambda})$. Since $\overline{b - (\pm b')} = b - (\pm b')$, it follows that $b - (\pm b') = 0$.

Assume now that $b \in \mathbf{B}(\Lambda_{\lambda})$. We show that b satisfies (2). We have $b = \beta^{-}\eta_{\lambda}$ for some $\beta \in \mathbf{B}$. We can find a sequence $i_{1}, i_{2}, \ldots, i_{p}$ in I such that $\beta = \tilde{\phi}_{i_{1}}\tilde{\phi}_{i_{2}}\cdots\tilde{\phi}_{i_{p}}1 \mod v^{-1}\mathcal{L}(\mathbf{f})$. Using 18.3.8, it follows that $b = \tilde{F}_{i_{1}}\tilde{F}_{i_{2}}\cdots\tilde{F}_{i_{p}}\eta_{\lambda} \mod v^{-1}L(\Lambda_{\lambda})$, as required.

Finally, assume that b satisfies (1),(2). Let i_1,i_2,\ldots,i_p in I be as in (2). Using again 18.3.8, we see that $b=(\tilde{\phi}_{i_1}\tilde{\phi}_{i_2}\cdots\tilde{\phi}_{i_p}1)^-\eta_{\lambda}\mod v^{-1}L(\Lambda_{\lambda})$. Let β be the unique element of $\mathbf B$ such that

$$\beta = \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_p} 1 \mod v^{-1} \mathcal{L}(\mathbf{f}).$$

We have $b = \beta^- \eta_{\lambda} \mod v^{-1} L(\Lambda_{\lambda})$. Let $b' = \beta^- \eta_{\lambda}$. Then $b - b' \in {}_{\mathcal{A}}\Lambda_{\lambda}$, $\overline{b - b'} = b - b'$ and $b - b' \in v^{-1} L(\Lambda_{\lambda})$. It follows that b - b' = 0. Thus, $b \in \mathbf{B}(\Lambda_{\lambda})$. The theorem is proved.

19.3.6. We will now investigate the relation between the inner product (,) on f (see 1.2.5) and the inner product (,) on Λ_{λ} , which we now denote by $(,)_{\lambda}$ since $\lambda \in X^+$ will vary.

Proposition 19.3.7. Let $x, y \in \mathbf{f}$. When $\lambda \in X^+$ tends to ∞ (in the sense that $\langle i, \lambda \rangle$ tends to ∞ for all i), then the inner product $(x^-\eta_\lambda, y^-\eta_\lambda)_\lambda \in \mathbf{Q}(v)$ converges in $\mathbf{Q}((v^{-1}))$ to (x, y).

We may assume that both x and y belong to \mathbf{f}_{ν} for some ν . We prove the proposition by induction on $N = \text{tr } \nu$. When N = 0, the result is

1 29 CF

trivial. Assume now that $N \ge 1$. We may assume that $\nu_i > 0$ and $x = \theta_i x'$ for some i and some $x' \in \mathbf{f}_{\nu-i}$. We have

$$(x^-\eta_{\lambda}, y^-\eta_{\lambda})_{\lambda} = (F_i x'^-\eta_{\lambda}, y^-\eta_{\lambda})_{\lambda} = (x'^-\eta_{\lambda}, v_i \tilde{K}_{-i} E_i y^-\eta_{\lambda})_{\lambda}.$$

Using the commutation formula 3.1.6(b) and the equality $E_i\eta_{\lambda}=0$ we see that the last inner product is equal to

$$\begin{split} &(v_{i}-v_{i}^{-1})^{-1}(x'^{-}\eta_{\lambda},v_{i}\tilde{K}_{-i}(-r_{i}(y)^{-}\tilde{K}_{-i}+\tilde{K}_{i}(ir(y)^{-}))\eta_{\lambda})_{\lambda} \\ &=-(v_{i}-v_{i}^{-1})^{-1}v_{i}^{-2\langle i,\lambda\rangle+\langle i,|y|\rangle-1}(x'^{-}\eta_{\lambda},r_{i}(y)^{-}\eta_{\lambda})_{\lambda} \\ &+(1-v_{i}^{-2})^{-1}(x'^{-}\eta_{\lambda},ir(y)^{-}\eta_{\lambda})_{\lambda}. \end{split}$$

Using the induction hypothesis, we see that in the last expression, the first term converges to 0 for $\lambda \to \infty$ (note that $v_i^{-\langle i,\lambda\rangle}$ converges to 0) and the second term converges to $(1-v_i^{-2})^{-1}(x',ir(y))$ which by 1.2.13(a), is equal to (x,y). The proposition is proved.