Study of the Operators \tilde{F}_i, \tilde{E}_i on Λ_{λ}

18.1. PRELIMINARIES

18.1.1. In this chapter we assume that the root datum is Y-regular. Let $\lambda \in X^+$. As in 3.5.6, we set $\Lambda_{\lambda} = \mathbf{f}/\sum_i \mathbf{f} \theta_i^{\langle i, \lambda \rangle + 1}$. Since λ will be fixed in this chapter, we shall write Λ instead of Λ_{λ} . As in 3.5.7, we denote the image of $1 \in \mathbf{f}$ by $\eta \in \Lambda$.

Recall that there is a unique **U**-module structure on Λ such that $E_i \eta = 0$ for all $i \in I$, $K_{\mu} \eta = v^{\langle \mu, \lambda \rangle} \eta$ for all $\mu \in Y$, and F_i acts by the map obtained from left multiplication by θ_i on **f**. From the triangular decomposition for **U**, we see that Λ can be naturally identified with the **U**-module

(a)
$$\mathbf{U}/(\sum_{i} \mathbf{U} E_{i} + \sum_{\mu} \mathbf{U}(K_{\mu} - v^{\langle \mu, \lambda \rangle}) + \sum_{i} \mathbf{U} F_{i}^{\langle i, \lambda \rangle + 1})$$

by the unique isomorphism which makes η correspond to the image of $1 \in \mathbb{U}$.

For any $\nu \in \mathbf{N}[I]$, we denote by $(\Lambda)_{\nu}$ the image of \mathbf{f}_{ν} under the canonical map $\mathbf{f} \to \Lambda$. We have a direct sum decomposition $\Lambda = \bigoplus_{\nu} (\Lambda)_{\nu}$. Note that $(\Lambda)_{\nu}$ is contained in the $(\lambda - \nu)$ -weight space $\Lambda^{\lambda - \nu}$ (the containment may be strict if the root datum is not X-regular).

- **18.1.2.** By Theorem 14.3.2(b), the subset $\bigcup_{i,n;n\geq\langle i,\lambda\rangle+1}{}^{\sigma}\mathcal{B}_{i;n}$ of \mathcal{B} is a signed basis of the $\mathbf{Q}(v)$ -subspace $\sum_{i} \mathbf{f} \theta_{i}^{\langle i,\lambda\rangle+1}$ of \mathbf{f} . Hence the natural projection $\mathbf{f} \to \Lambda$ maps this subset to zero and maps its complement $\mathcal{B}(\lambda) = \bigcap_{i\in I} (\bigcup_{n;0\leq n\leq\langle i,\lambda\rangle}{}^{\sigma}\mathcal{B}_{i,n})$ bijectively onto a signed basis of the $\mathbf{Q}(v)$ -vector space Λ . Thus $\{b^{-}\eta|b\in\mathcal{B}(\lambda)\}$ is a signed basis of Λ .
- **18.1.3.** We shall regard \mathbf{f} as an object of \mathcal{D}_i , for any $i \in I$ as in 17.3.1. Since \mathbf{f} is a \mathfrak{U} -module (see 15.1.4), the tensor product $\mathbf{f} \otimes \Lambda$ is a \mathfrak{U} -module with

$$\phi_i(x \otimes y) = \phi_i(x) \otimes \tilde{K}_i^{-1} y + x \otimes F_i(y)$$

and

$$\epsilon_i(x \otimes y) = \epsilon_i(x) \otimes \tilde{K}_i^{-1} y + (v_i - v_i^{-1}) x \otimes \tilde{K}_i^{-1} E_i(y)$$

for all $x \in \mathbf{f}$ and $y \in \Lambda$. (See 15.1.5.) Hence for each $i \in I$, we have $\mathbf{f} \otimes \Lambda \in \mathcal{D}_i$.

Lemma 18.1.4. There is a unique $\mathbf{Q}(v)$ -linear map $\Xi: \mathbf{f} \to \mathbf{f} \otimes \Lambda$ such that

- (a) $\Xi(1) = 1 \otimes \eta$;
- (b) $\Xi(\phi_i x) = \phi_i(\Xi(x))$ for all $x \in \mathbf{f}$ and all $i \in I$;
- (c) $\Xi(\epsilon_i x) = \epsilon_i(\Xi(x))$ for all $x \in \mathbf{f}$ and all $i \in I$.

By 3.1.4, there is a unique algebra homomorphism $\mathbf{f} \to \mathbf{f} \otimes \mathbf{U}$ such that $\theta_i \mapsto \theta_i \otimes \tilde{K}_{-i} + 1 \otimes F_i$ for all $i \in I$. Composing this with the linear map $\mathbf{f} \otimes \mathbf{U} \to \mathbf{f} \otimes \Lambda$ (identity on the first factor, the map $u \mapsto u\eta$ on the second factor) we obtain a linear map $\Xi : \mathbf{f} \to \mathbf{f} \otimes \Lambda$ which clearly satisfies (a) and (b). We show that it satisfies (c). For x = 1, (c) is trivial. Since the algebra \mathbf{f} is generated by the various θ_j , it is enough to show that (c) holds for $x = \theta_j x'$, assuming that it holds for x'. We have

$$\Xi(\epsilon_i x) = \Xi(\epsilon_i \phi_j x') = \Xi(v^{i \cdot j} \phi_j \epsilon_i x' + \delta_{i,j} x') = v^{i \cdot j} \phi_j \epsilon_i \Xi(x') + \delta_{i,j} \Xi(x')$$

and

$$\epsilon_i(\Xi(x)) = \epsilon_i(\Xi(\phi_j x')) = \epsilon_i \phi_j(\Xi(x'));$$

hence (c) holds for x. This proves the existence of Ξ . The uniqueness of Ξ (assuming only (a),(b)) is clear since \mathbf{f} is generated by the θ_i as an algebra.

18.1.5. Let $\mathcal{L}(\mathbf{f})$ be as in 17.3.3. We have $\mathcal{L}(\mathbf{f}) = \bigoplus_{\nu} \mathcal{L}(\mathbf{f})_{\nu}$ (sum over all $\nu \in \mathbf{N}[I]$) where $\mathcal{L}(\mathbf{f})_{\nu}$ is the $\mathbf{Z}[v^{-1}]$ -submodule of \mathbf{f} generated by \mathcal{B}_{ν} .

Lemma 18.1.6. (a) If $b \in \mathcal{B}$ is not equal to ± 1 , then there exist $i \in I$ and $b'' \in \mathcal{B}$ such that $b - \tilde{\phi}_i b'' \in v^{-1} \mathcal{L}(\mathbf{f})$.

(b) If $\nu \in \mathbb{N}[I]$ is non-zero, then

$$\mathcal{L}(\mathbf{f})_{
u} = \sum_{i;
u_i>0} \tilde{\phi}_i(\mathcal{L}(\mathbf{f})_{
u-i}).$$

We prove (a). According to 14.3.3, if b is as in (a), then there exist $i \in I$ and n > 0 such that $b \in \mathcal{B}_{i,n}$. By 17.3.7, we then have $\tilde{\phi}_i b'' - b \in v^{-1} \mathcal{L}(\mathbf{f})$ for some $b'' \in \mathcal{B}$.

We prove (b). The sum $\sum_{i;\nu_i>0} \tilde{\phi}_i(\mathcal{L}(\mathbf{f})_{\nu-i})$ is a $\mathbf{Z}[v^{-1}]$ -submodule of $\mathcal{L}(\mathbf{f})_{\nu}$ (by 17.3.4) and the corresponding quotient module is annihilated by v^{-1} (by (a)). By Nakayama's lemma, this quotient is zero; therefore (b) holds. The lemma is proved.

Proposition 18.1.7. Let $\nu \in \mathbb{N}[I]$.

- (a) $\mathcal{L}(\mathbf{f})_{\nu}$ coincides with the $\mathbf{Z}[v^{-1}]$ -submodule of \mathbf{f} generated by the elements $\tilde{\phi}_{i_1}\tilde{\phi}_{i_2}\cdots\tilde{\phi}_{i_t}1$ for various sequences i_1,i_2,\ldots,i_t in I in which i appears exactly ν_i times for each $i \in I$.
- (b) The subset of $\mathcal{L}(\mathbf{f})_{\nu}/v^{-1}\mathcal{L}(\mathbf{f})_{\nu}$ consisting of the images of the elements $\pm \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} 1$ for various i_1, i_2, \ldots, i_t , as above, coincides with the image of \mathcal{B}_{ν} in $\mathcal{L}(\mathbf{f})_{\nu}/v^{-1}\mathcal{L}(\mathbf{f})_{\nu}$.

This follows immediately from the previous lemma.

18.1.8. We will denote by $L(\Lambda)$ the **A**-submodule of Λ generated by the signed basis $\{b^-\eta|b\in\mathcal{B}(\lambda)\}$ of Λ . We have a direct sum decomposition $L(\Lambda)=\oplus_{\nu}L(\Lambda)_{\nu}$ (ν runs over $\mathbf{N}[I]$) where $L(\Lambda)_{\nu}$ is the **A**-submodule of Λ generated by the elements $\{b^-\eta|b\in\mathcal{B}(\lambda)\cap\mathcal{B}_{\nu}\}$. We have $L(\Lambda)_{\nu}\subset(\Lambda)_{\nu}$.

Since Λ is integrable (see 3.5.6), Λ belongs to the category C'_i for any $i \in I$; hence the operators $\tilde{E}_i, \tilde{F}_i : \Lambda \to \Lambda$ (see 16.1.4) are well-defined. For any $\nu \in \mathbf{N}[I]$, we will denote by $L'(\Lambda)_{\nu}$ the **A**-submodule of Λ generated by the elements $\tilde{F}_{i_1}\tilde{F}_{i_2}\cdots\tilde{F}_{i_t}\eta$ for various sequences i_1,i_2,\ldots,i_t in I in which i appears exactly ν_i times for each $i \in I$.

Let
$$L'(\Lambda) = \sum_{\nu} L'(\Lambda)_{\nu} \subset \Lambda$$
. We have $L'(\Lambda)_{\nu} \subset (\Lambda)_{\nu}$.

18.2. A GENERAL HYPOTHESIS AND SOME CONSEQUENCES

Until the end of 18.3.6, we shall make the following

General hypothesis 18.2.1. N is a fixed integer ≥ 1 such that, for any $\nu \in \mathbf{N}[I]$ with $tr \nu < N$, we have

- (a) $L(\Lambda)_{\nu} = L'(\Lambda)_{\nu}$;
- (b) if i is such that $\nu_i > 0$, then $\tilde{F}_i(x^-\eta) = (\tilde{\phi}_i x)^- \eta \mod v^{-1} L(\Lambda)$, for all $x \in \mathcal{L}(\mathbf{f})_{\nu-i}$;
- (c) if i is such that $\nu_i > 0$, then $\tilde{E}_i(b^-\eta) = (\tilde{\epsilon}_i b)^- \eta \mod v^{-1} L(\Lambda)$, for all $b \in \mathcal{B}_{\nu}$ such that $b^-\eta \neq 0$; in particular, $\tilde{E}_i(L(\Lambda)_{\nu}) \subset L(\Lambda)_{\nu-i}$.

In this section and the next we will derive various consequences of the general hypothesis; we will eventually show that this is not only a hypothesis, but a theorem (see 18.3.8).

Lemma 18.2.2. Let ν be such that $tr \ \nu < N$, let $i \in I$ and let $x \in L'(\Lambda)_{\nu}$. Write $x = \sum_{r=0}^{\nu_i} F_i^{(r)} x_r$ where the $x_r \in (\Lambda)_{\nu-ri}$ satisfy $E_i x_r = 0$ for all r and $x_r = 0$ unless $r + \langle i, \lambda - \nu \rangle \ge 0$ (see 16.1.4). Then

(a)
$$x_r \in L'(\Lambda)_{\nu-ri}$$
 for all r .

(b) If, in addition, $x = b^- \eta \mod v^{-1} L(\Lambda)$ for some $b \in \mathcal{B}_{\nu} \cap \mathcal{B}(\lambda)$, then there exist $r_0 \in [0, \nu_i]$ and $b_0 \in \mathcal{B}_{\nu-r_0i} \cap \mathcal{B}(\lambda)$ such that $x_{r_0} = b_0^- \eta \mod v^{-1} L'(\Lambda)_{\nu-r_0i}$, and $x_r \in v^{-1} L'(\Lambda)_{\nu-r_i}$ for all $r \neq r_0$.

Let t be an integer such that $0 \le t \le \nu_i$ and $x_r = 0$ for r > t. We prove (a) by induction on t. If t = 0, then (a) is obvious. Assume now that $t \ge 1$. We have $\tilde{E}_i x = \sum_{r=0}^{t-1} F_i^{(r)} x_{r+1}$ and $x_{r+1} = 0$ unless $r + \langle i, \lambda - \nu + i' \rangle \ge 0$. (If we had simultaneously $x_{r+1} \ne 0$ and $r + \langle i, \lambda - \nu + i' \rangle < 0$ then $r + 1 + \langle i, \lambda - \nu \rangle < 0$, a contradiction.) By the general hypothesis, we have $\tilde{E}_i x \in L(\Lambda)_{\nu-i}$. By the induction hypothesis applied to $\tilde{E}_i x$, we have $x_r \in L'(\Lambda)_{\nu-ri}$ for all r > 0. Hence $F_i^{(r)} x_r = \tilde{F}_i^r x_r \in L'(\Lambda)_{\nu}$ for all r > 0. Since $x \in L'(\Lambda)_{\nu}$, it follows that $x_0 \in L'(\Lambda)_{\nu}$. This proves (a).

We prove (b) by induction on t as above. If t = 0, then (b) is obvious. Assume now that $t \geq 1$. By the general hypothesis, we have $\tilde{E}_i x = (\tilde{\epsilon}_i b)^- \eta$ mod $v^{-1}L(\Lambda)$. By 17.3.7, we have that $\tilde{\epsilon}_i b$ is equal modulo $v^{-1}L(\mathbf{f})$ to either 0 or to b' for some $b' \in \mathcal{B}_{\nu-i}$.

If the first alternative occurs, or if the second alternative occurs with $(b')^-\eta=0$, then $\tilde{E}_i(b^-\eta)\in v^{-1}L(\Lambda)$; applying (a) to $v\tilde{E}_i(b^-\eta)$ we see that $x_r^{(r)}\in v^{-1}L(\Lambda)$ for all r>0. We then have $x_0=b^-\eta\mod v^{-1}L(\Lambda)$, as required.

Hence we may assume that

(c) $\tilde{\epsilon}_i b = b' \mod v^{-1} \mathcal{L}(\mathbf{f})$, where $b' \in \mathcal{B}_{\nu-i} \cap \mathcal{B}(\lambda)$.

We have, by assumption,

(d) $\tilde{E}_i x = \tilde{E}_i(b^- \eta) \mod v^{-1} \tilde{E}_i \mathcal{L}(\mathbf{f})_{\nu}$.

By the general hypothesis, we have $\tilde{E}_i \mathcal{L}(\mathbf{f})_{\nu} \subset \mathcal{L}(\mathbf{f})_{\nu-i}$ and $\tilde{E}_i(b^-\eta) = (\tilde{\epsilon}_i b)^- \eta \mod v^{-1} L(\Lambda)_{\nu-i}$ (we have $b^- \eta \neq 0$, by assumption). Introducing this in (d), and using (c), we obtain

$$\tilde{E}_i x = b'^- \eta \mod v^{-1} \mathcal{L}(\mathbf{f})_{\nu-i}.$$

By the induction hypothesis applied to $\tilde{E}_i x$, we see that there exist $r_0 \in [1, \nu_i]$ and $b_0 \in \mathcal{B}_{\nu-r_0 i} \cap \mathcal{B}(\lambda)$ such that $x_{r_0} = b_0^- \eta \mod v^{-1} L'(\Lambda)_{\nu-r_0 i}$, and $x_r \in v^{-1} L'(\Lambda)_{\nu-r_i}$ for all r such that r > 0 and $r \neq r_0$. It follows that

$$\tilde{E}_i x = \tilde{F}_i^{r_0 - 1} x_{r_0} \mod v^{-1} L(\Lambda).$$

By the general hypothesis, we have

$$\tilde{F}_i \tilde{E}_i x = \tilde{F}_i \tilde{E}_i (b^- \eta) = \tilde{F}_i ((\tilde{\epsilon}_i b)^- \eta) = (\tilde{\phi}_i \tilde{\epsilon}_i b)^- \eta$$

(equalities modulo $v^{-1}L(\Lambda)$.) Since $\tilde{\epsilon}_i b = b' \mod v^{-1}\mathcal{L}(\mathbf{f})$, we see from 17.3.7 that $\tilde{\phi}_i \tilde{\epsilon}_i b = b \mod v^{-1}\mathcal{L}(\mathbf{f})$. It follows that $\tilde{F}_i \tilde{E}_i x = b^- \eta = x$ (equalities modulo $v^{-1}L(\Lambda)$). We deduce that $x = \tilde{F}_i(\tilde{F}_i^{r_0-1}x_{r_0}) = \tilde{F}_i^{r_0}x_{r_0}$ (equalities modulo $v^{-1}L(\Lambda)$.) Since $\tilde{F}_i^r x_r \in v^{-1}L(\Lambda)$ for all r > 0, $r \neq r_0$ and $x = \sum_r \tilde{F}_i^r x_r$, we deduce that $x_0 \in v^{-1}L(\Lambda)$. This completes the proof.

Lemma 18.2.3. Let $i \in I$ and let $x \in \mathcal{L}(\mathbf{f})$. Write $x = \sum_{r \geq 0} \phi_i^{(r)} x_r$ where $x_r \in \mathbf{f}$ are 0 for all but finitely many r and $\epsilon_i x_r = 0$ for all r (see 16.1.2(c)). Then $x_r \in \mathcal{L}(\mathbf{f})$ for all r.

This is a special case of Lemma 16.2.7(b).

18.2.4. If H, H' are two subsets of \mathbf{f}, Λ respectively, we denote by $H \odot H'$ the subgroup of $\mathbf{f} \otimes \Lambda$ generated by the vectors $h \otimes h'$ with $h \in H, h' \in H'$.

Lemma 18.2.5. Assume that $tr \nu < N$ and let $i \in I$. Then

$$ilde{\phi}_i(\mathcal{L}(\mathbf{f})\odot L'(\Lambda)_
u)\subset \mathcal{L}(\mathbf{f})\odot L'(\Lambda)$$

and

$$\tilde{\epsilon}_i(\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)_{\nu}) \subset \mathcal{L}(\mathbf{f}) \odot L'(\Lambda).$$

By Lemmas 18.2.2(a) and 18.2.3, the **A**-module $\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)_{\nu}$ is generated by elements $\phi^{(a)}x \otimes F_i^{(a')}x'$ where $x \in \mathcal{L}(\mathbf{f})$ and $x' \in L'(\Lambda)_{\nu-a'i}$ satisfy $\epsilon_i(x) = 0$ and $E_i(x') = 0$. The image of such elements under $\tilde{\phi}_i$ or $\tilde{\epsilon}_i$ is contained in $\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$ by Corollary 17.1.15. The lemma follows.

Lemma 18.2.6. Let $x \in L'(\Lambda)_{\nu}$ where $tr \nu < N$. Assume that there exists $b \in \mathcal{B}_{\nu} \cap \mathcal{B}(\lambda)$ such that $x = b^{-}\eta \mod v^{-1}L'(\Lambda)$. Assume also that $\tilde{F}_{i}x \notin v^{-1}L'(\Lambda)$. Then $\tilde{\phi}_{i}(1 \otimes x) = 1 \otimes \tilde{F}_{i}x \mod v^{-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$.

By 18.2.2, we may assume that $x = F_i^{(s)} x'$ where $x' \in L'(\Lambda)_{\nu-si}$ satisfies $E_i x' = 0$. Since $x' \neq 0$ and $E_i x' = 0$, we have $n = \langle i, \lambda - \nu + si' \rangle \in \mathbf{N}$; moreover, $F_i^{(n+1)} x' = 0$. By Corollary 17.1.15, $\tilde{\phi}_i(1 \otimes F_i^{(s)} x')$ is equal modulo $v^{-1} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$ to $1 \otimes F_i^{(s+1)} x'$ (if s < n) or to $\theta_i \otimes F_i^{(s)} x'$ (if $s \ge n$). If the second alternative occurs, then $\tilde{F}_i x = \tilde{F}_i^{s+1} x' = 0$, contradicting our assumptions. Thus the first alternative occurs and the lemma is proved.

Lemma 18.2.7. For any ν such that $tr \nu \leq N$, we have $\Xi(\mathcal{L}(\mathbf{f})_{\nu}) \subset \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$.

We argue by induction on tr ν . If $\nu = 0$, the result is obvious. Assume that $\nu \neq 0$ and that the result is known when ν is replaced by ν' with tr $\nu' < \text{tr } \nu$. By 18.1.6(b), the $\mathbf{Z}[v^{-1}]$ -module $\mathcal{L}(\mathbf{f})_{\nu}$ is spanned by vectors $\tilde{\phi}_i x$ with $i \in I$ and $x \in \mathcal{L}(\mathbf{f})_{\nu-i}$, so it suffices to show that for such i, x, we have $\Xi(\tilde{\phi}_i x) \in \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$. Since Ξ is a morphism in \mathcal{D}_i , we have $\Xi(\tilde{\phi}_i x) = \tilde{\phi}_i(\Xi(x))$. By the induction hypothesis, we have $\Xi(x) \in \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$.

From the definition of Ξ we see immediately that

$$\Xi(\mathbf{f}_{\nu'}) \subset \sum_{\nu''; \ \mathrm{tr} \ \nu'' \leq \ \mathrm{tr} \ \nu'} \mathbf{f} \otimes \mathbf{U}_{\nu''}^- \eta.$$

Combining this with the previous inclusion, we see that

$$\Xi(x) \in \sum_{\nu''; \text{ tr } \nu'' < N} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)_{\nu''}.$$

Hence it is enough to show that

$$ilde{\phi}_i(\mathcal{L}(\mathbf{f})\odot L'(\Lambda)_{
u''})\subset \mathcal{L}(\mathbf{f})\odot L'(\Lambda)$$

whenever tr $\nu'' < N$.

Now the A-module $\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)_{\nu''}$ is spanned by vectors of the form $\phi^{(a)}x \otimes F_i^{(c)}y$ where $x \in \mathcal{L}(\mathbf{f}), y \in L'(\Lambda)_{\nu''-ci}$ satisfy $\epsilon_i x = 0, E_i y = 0$ (see Lemmas 18.2.2, 18.2.3). Hence it suffices to show that $\tilde{\phi}_i(\phi_i^{(a)}x \otimes F_i^{(c)}y)$ belongs to the $\mathbf{Z}[v^{-1}]$ -submodule generated by the vectors $\phi_i^{(a')}x \otimes F_i^{(c')}y$ for various $a', c' \geq 0$. But this follows from Corollary 17.1.15. The lemma is proved.

18.2.8. Consider the linear form $\mathbf{f} \to \mathbf{Q}(v)$ which takes \mathbf{f}_{ν} to zero for all $\nu \neq 0$ and takes 1 to 1; tensoring it with the identity map of Λ , we obtain a $\mathbf{Q}(v)$ -linear map $pr : \mathbf{f} \otimes \Lambda \to \Lambda$.

From the definitions, we see easily that

(a) $pr(\Xi(x)) = x^- \eta$ for all $x \in \mathbf{f}$.

Lemma 18.2.9. (a) We have $pr(\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)) \subset L'(\Lambda)$.

(b) Let $i \in I$. Let $y \in \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)_{\nu}$ where $\operatorname{tr} \nu < N$. We have $\operatorname{pr}(\tilde{\phi}_i(y)) = \tilde{F}_i(\operatorname{pr}(y)) \mod v^{-1}L'(\Lambda)_{\nu+i}$.

Let $x \in \mathcal{L}(\mathbf{f})_{\nu}$ and let $x' \in L'(\Lambda)_{\nu'}$. If $\nu \neq 0$, we have $pr(x \otimes x') = 0$; if $\nu = 0$, we have x = f1 where $f \in \mathbf{Z}[v^{-1}]$ and $pr(x \otimes x') = fx'$. Thus (a) holds.

We prove (b). By Lemmas 18.2.2, 18.2.3, we may assume that $y=\phi_i^{(a)}z\otimes F_i^{(a')}z'$ where $z\in\mathcal{L}(\mathbf{f})$ (homogeneous) and $z'\in L'(\Lambda)_{\nu'}$ satisfy $\epsilon_i(z)=0,\,E_i(z')=0$ and $a,a'\in\mathbf{N}$. We may assume that $z'\neq 0$. Let n be the smallest integer ≥ 0 such that $F_i^{n+1}z'=0$. By Corollary 17.1.15, we have that $\tilde{\phi}_i(y)$ is equal to

(c)
$$\phi_i^{(a+1)}z\otimes F_i^{(a')}z'$$
 modulo $v^{-1}\mathcal{L}(\mathbf{f})\odot L'(\Lambda)$, if $a+a'\geq n$, and to

(d)
$$\phi_i^{(a)} z \otimes F_i^{(a'+1)} z'$$
 modulo $v^{-1} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$, if $a + a' < n$.

If a>0 or $z\notin \mathbf{f}_0$, then y and both vectors (c),(d) are in the kernel of pr, by the definition of pr; on the other hand, by (a), we have $pr(v^{-1}\mathcal{L}(\mathbf{f})\odot L'(\Lambda))\subset v^{-1}L'(\Lambda)$. Hence in this case the lemma holds for y. Hence we may assume that a=0 and z=1. We then have $pr(y)=F_i^{(a')}z'$; moreover, by the previous argument:

$$pr(\tilde{\phi}_i(y)) = F_i^{(a'+1)}(z') \mod v^{-1}L'(\Lambda)$$

if a' < n and

$$pr(\tilde{\phi}_i(y)) = 0 \mod v^{-1}L'(\Lambda)$$

if $a' \geq n$.

On the other hand, by the definition of \tilde{F}_i , we have

$$\tilde{F}_i(pr(y)) = \tilde{F}_i(F_i^{(a')}(z')) = F_i^{(a'+1)}(z').$$

It remains to observe that $F_i^{(a'+1)}(z') = 0$ if $a' \ge n$ (by the definition of n). The lemma is proved.

Lemma 18.2.10. Let $x \in \mathcal{L}(\mathbf{f})_{\nu}$ with $tr \nu < N$. We have $(\tilde{\phi}_i x)^- \eta = \tilde{F}_i(x^- \eta) \mod v^{-1} L'(\Lambda)$.

Using 18.2.8(a) and the commutation of Ξ with $\tilde{\phi}_i$, we have

$$(\tilde{\phi}_i x)^- \eta = pr(\Xi(\tilde{\phi}_i x)) = pr(\tilde{\phi}_i(\Xi(x))).$$

Using again 18.2.8(a), we have

$$\tilde{F}_i(x^-\eta) = \tilde{F}_i(pr(\Xi(x))).$$

It remains to show that

$$pr(\tilde{\phi}_i(\Xi(x))) = \tilde{F}_i(pr(\Xi(x))) \mod v^{-1}L'(\Lambda).$$

This follows from Lemma 18.2.9(b) applied to $y = \Xi(x)$. (We have $\Xi(x) \in \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$ by 18.2.7, and $\Xi(x) \in \sum_{\nu''; \text{ tr } \nu'' < \text{ tr } \nu} \mathbf{f} \otimes \mathbf{U}_{\nu''}^{-} \eta$; hence

$$\Xi(x) \in \sum_{\nu'': \text{ tr } \nu'' < N} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)_{\nu''}$$

so that Lemma 18.2.9(b) is applicable.) The lemma is proved.

Lemma 18.2.11. If $tr \nu = N$, we have $L(\Lambda)_{\nu} \subset L'(\Lambda)_{\nu}$.

By definition, $L(\Lambda)_{\nu}$ consists of the vectors of form $x^{-}\eta$ where $x \in \mathcal{L}(\mathbf{f})_{\nu}$. Since $\nu \neq 0$, the $\mathbf{Z}[v^{-1}]$ -module $\mathcal{L}(\mathbf{f})_{\nu}$ is equal to $\sum_{i;\nu_{i}>0} \tilde{\phi}_{i}(\mathcal{L}(\mathbf{f})_{\nu-i})$ (see 18.1.6). Hence it suffices to show that $(\tilde{\phi}_{i}(x))^{-}\eta \in L'(\Lambda)_{\nu}$ for any $i \in I$ such that $\nu_{i} > 0$ and any $x \in \mathcal{L}(\mathbf{f})_{\nu-i}$. By 18.2.10, we have $(\tilde{\phi}_{i}x)^{-}\eta = \tilde{F}_{i}(x^{-}\eta)$ mod $v^{-1}L'(\Lambda)_{\nu}$. Hence it suffices to show that $\tilde{F}_{i}(x^{-}\eta) \in L'(\Lambda)_{\nu}$.

By the definition of $L(\Lambda)_{\nu-i}$, we have $x^-\eta \in L(\Lambda)_{\nu-i}$. Using our general hypothesis, we deduce that $x^-\eta \in L'(\Lambda)_{\nu-i}$. It remains to observe that $\tilde{F}_i(L'(\Lambda)_{\nu-i}) \subset L'(\Lambda)_{\nu}$ (from the definitions). The lemma is proved.

Lemma 18.2.12. If $tr \nu = N$, we have $L'(\Lambda)_{\nu} \subset L(\Lambda)_{\nu} + v^{-1}L'(\Lambda)_{\nu}$.

We have

$$L'(\Lambda)_{\nu} = \sum_{i;\nu_{i}>0} \tilde{F}_{i}L'(\Lambda)_{\nu-i} = \sum_{i;\nu_{i}>0} \tilde{F}_{i}L(\Lambda)_{\nu-i}$$
$$= \sum_{i;\nu_{i}>0} \mathbf{A}\tilde{F}_{i}(\mathcal{L}(\mathbf{f})_{\nu-i}^{-}\eta).$$

The first and third equalities are by definition; the second one follows from our general hypothesis. Hence it suffices to show that

$$\tilde{F}_i(x^-\eta) \in L(\Lambda)_{\nu} + v^{-1}L'(\Lambda)_{\nu}$$

for all $x \in \mathcal{L}(\mathbf{f})_{\nu-i}$ (where $\nu_i > 0$).

By 18.2.10, we have $\tilde{F}_i(x^-\eta) = (\tilde{\phi}_i x)^- \eta \mod v^{-1} L'(\Lambda)_{\nu}$. On the other hand, we have $\tilde{\phi}_i x \in \mathcal{L}(\mathbf{f})_{\nu}$ (see 17.3.4); hence we have $(\tilde{\phi}_i x)^- \eta \in L(\Lambda)_{\nu}$. The lemma is proved.

Lemma 18.2.13. If $tr \nu = N$, we have $L(\Lambda)_{\nu} = L'(\Lambda)_{\nu}$.

By 18.2.11, $L(\Lambda)_{\nu}$ is an A-submodule of $L'(\Lambda)_{\nu}$. The corresponding quotient module is annihilated by v^{-1} , see Lemma 18.2.12. This quotient is then zero by Nakayama's lemma. The lemma is proved.

18.3. FURTHER CONSEQUENCES OF THE GENERAL HYPOTHESIS

Lemma 18.3.1. Let $y = \tilde{F}_{i_1} \tilde{F}_{i_2} \cdots \tilde{F}_{i_t} \eta \in \Lambda$ where $i_1 + i_2 + \cdots + i_t = \nu$ and $t = tr \nu \leq N$. Let $x = \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} (1 \otimes \eta) \in \mathbf{f} \otimes \Lambda$. Assume that $y \notin v^{-1}L'(\Lambda)$. Then $x = 1 \otimes y \mod v^{-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$.

We argue by induction on t. If t = 0, there is nothing to prove. Assume now that t > 0 and that the result is known for t - 1.

Let $y' = \tilde{F}_{i_2} \cdots \tilde{F}_{i_t} \eta \in \Lambda$ and let $x' = \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} (1 \otimes \eta) \in \mathbf{f} \otimes \Lambda$. Since $\tilde{F}_{i_1}(v^{-1}L'(\Lambda)) \subset v^{-1}L'(\Lambda)$, and $y \notin v^{-1}L'(\Lambda)$, we have $y' \notin v^{-1}L'(\Lambda)$. By the induction hypothesis, we have $x' = 1 \otimes y' \mod v^{-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$. Applying $\tilde{\phi}_{i_1}$ and using 18.2.5, we deduce that $x = \tilde{\phi}_{i_1}x' = \tilde{\phi}_{i_1}(1 \otimes y') \mod v^{-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$.

By our general hypothesis, we have $y'=(\tilde{\phi}_{i_2}\cdots\tilde{\phi}_{i_t}1)^-\eta\mod v^{-1}L(\Lambda);$ hence, by 18.1.7(b), we have $y'=b^-\eta\mod v^{-1}L(\Lambda)_{\nu-i_1}$ for some $b\in\mathcal{B}_{\nu-i_1}$. Since $y'\notin v^{-1}L'(\Lambda)_{\nu-i_1}$, we have $b\in\mathcal{B}(\lambda)$. Applying Lemma 18.2.6, we see that $\tilde{\phi}_{i_1}(1\otimes y')=1\otimes \tilde{F}_{i_1}y'=1\otimes y\mod v^{-1}\mathcal{L}(\mathbf{f})\odot L'(\Lambda).$ (That lemma is applicable since $\tilde{F}_{i_1}y'=y\notin v^{-1}L'(\Lambda)$.) Hence $x=1\otimes y\mod v^{-1}\mathcal{L}(\mathbf{f})\odot L'(\Lambda)$. The lemma is proved.

Lemma 18.3.2. If $tr \nu \leq N$, then $\tilde{E}_i(L(\Lambda)_{\nu}) \subset L'(\Lambda)$.

We will prove, for any $n \geq 0$, that $\tilde{E}_i(L(\Lambda)_{\nu}) \subset v^n L'(\Lambda)$, by descending induction on n. This is obvious for n large since $L(\Lambda)_{\nu}$ is a finitely generated **A**-module. Hence it is enough to prove the following statement.

(a) Assume that $n \geq 1$ and $\tilde{E}_i(L(\Lambda)_{\nu}) \subset v^n L'(\Lambda)$; then $\tilde{E}_i(L(\Lambda)_{\nu}) \subset v^{n-1}L'(\Lambda)$.

We first show that

(b)
$$\tilde{\epsilon}_i(\mathcal{L}(\mathbf{f})_{\nu'} \odot L(\Lambda)_{\nu''}) \subset v^n \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$$

provided that $\nu' + \nu'' = \nu$. In the case where $\operatorname{tr} \nu'' < N$, this follows from 18.2.5. Assume now that $\operatorname{tr} \nu'' = N$; then $\nu' = 0$. It suffices to show that $\tilde{\epsilon}_i(1 \otimes x) \in v^n \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$ for any $x \in L(\Lambda)_{\nu}$. We write $x = \sum_{r \geq 0} F_i^{(r)} x_r$ where $x_r = 0$ unless $r + \langle i, \lambda - \nu \rangle \geq 0$ and $E_i x_r = 0$. By the assumption of (a), we have $\sum_{r \geq 1} F_i^{(r-1)} x_r \in v^n L'(\Lambda)$ and by 18.2.2, we deduce that $F_i^{(r-1)} x_r \in v^n L'(\Lambda)$ for $r \geq 1$, or equivalently, $\tilde{F}_i^{r-1} x_r \in v^n L'(\Lambda)$ for $r \geq 1$. Using the general hypothesis (r-1) times, we have $\tilde{E}_i^{r-1}(\tilde{F}_i^{r-1} x_r) \subset v^n L'(\Lambda)$; hence $x_r \in v^n L'(\Lambda)$ for all $r \geq 1$. We have $\tilde{\epsilon}_i(1 \otimes x) = \sum_{r \geq 1} \tilde{\epsilon}_i(1 \otimes F^{(r)} x_r)$ since $\epsilon_i(1 \otimes x_0) = 0$. By 17.1.15, this belongs to the $\mathbf{Z}[v^{-1}]$ -submodule generated by the elements $\theta_i^{(r_1)} \otimes F^{(r_2)} x_r$ with $r \geq 1$ and $r_1 + r_2 = r - 1$ and these elements belong to $v^n \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$. Thus (b) is proved.

To prove (a), it suffices to show that $\tilde{E}_i(y) \in v^{n-1}L'(\Lambda)$ for all y of the form $y = \tilde{F}_{i_1}\tilde{F}_{i_2}\dots\tilde{F}_{i_t}\eta$ where $i_1+i_2+\dots+i_t=\nu$. If $y \in v^{-1}L'(\Lambda)$, then our inductive assumption shows that $\tilde{E}_i(vy) \in v^nL'(\Lambda)$; hence $\tilde{E}_i(y) \in v^{n-1}L'(\Lambda)$, as desired. Thus we may assume that $y \notin v^{-1}L'(\Lambda)$. Using now Lemma 18.3.1, we see that

(c)
$$\tilde{\phi}_{i_1}\tilde{\phi}_{i_2}\cdots\tilde{\phi}_{i_t}(1\otimes\eta)=(1\otimes y)+v^{-1}z$$

where $z \in \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$. From the definition of the operators $\tilde{\phi}_i$ on $\mathbf{f} \otimes \Lambda$ we see that we have necessarily

$$z \in \sum_{\nu' + \nu'' = \nu} \mathcal{L}(\mathbf{f})_{\nu'} \odot L'(\Lambda)_{\nu''}.$$

Hence, by (b), we have

$$\tilde{\epsilon}_i(z) \in v^n \mathcal{L}(\mathbf{f}) \odot L'(\Lambda).$$

Thus applying $\tilde{\epsilon}_i$ to (c), we obtain

(d)
$$\tilde{\epsilon}_i \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} (1 \otimes \eta) = \tilde{\epsilon}_i (1 \otimes y) \mod v^{n-1} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$$
.

We have (using 18.2.7)

$$\tilde{\epsilon}_i \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} (1 \otimes \eta) = \tilde{\epsilon}_i \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} (\Xi(1)) = \Xi(\tilde{\epsilon}_i \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_t} 1)$$

$$\subset \Xi(\mathcal{L}(\mathbf{f})_{\nu}) \subset \mathcal{L}(\mathbf{f}) \odot L'(\Lambda) \subset v^{n-1} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda).$$

Hence from (d) we deduce that

(e)
$$\tilde{\epsilon}_i(1 \otimes y) \in v^{n-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$$
.

We write $y = \sum_{r\geq 0} F_i^{(r)} y_r$, where the $y_r \in (\Lambda)_{\nu-ri}$ satisfy $E_i y_r = 0$ for all r and $y_r = 0$ unless $r + \langle i, \lambda - \nu \rangle \geq 0$.

By our inductive assumption, we have $\tilde{E}_i y = \sum_{r \geq 1} F_i^{(r-1)} y_r \in v^n L(\Lambda)$. Using 18.2.2, we deduce that $y_r \in v^n L(\Lambda)$ for $r \geq 1$. We have $\tilde{\epsilon}_i (1 \otimes y) = \sum_{r \geq 1} \tilde{\epsilon}_i (1 \otimes F_i^{(r)} y_r)$, since $\epsilon_i (1 \otimes y_0) = 0$. By 17.1.15, we have for any $r \geq 1$, $\tilde{\epsilon}_i (1 \otimes F_i^{(r)} y_r) = 1 \otimes F_i^{(r-1)} y_r$ plus a linear combination with coefficients in $v^{-1}\mathbf{Z}[v^{-1}]$ of terms $\theta_i^{(r_1)} \otimes F_i^{(r_2)} y_r$ where $r_1 + r_2 = r - 1$. The last linear combination is in $v^{n-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$ since $y_r \in v^n L(\Lambda)$ for $r \geq 1$. Taking sum over $r \geq 1$ we obtain

$$\tilde{\epsilon}_i(1 \otimes y) = 1 \otimes \tilde{E}_i y \mod v^{n-1} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda).$$

Using this and (e), we deduce that $1 \otimes \tilde{E}_i y \in v^{n-1} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$. Applying pr, we obtain

$$pr(1 \otimes \tilde{E}_i y) \in v^{n-1} pr(\mathcal{L}(\mathbf{f}) \odot L'(\Lambda));$$

hence $\tilde{E}_i y \in v^{n-1} L'(\Lambda)$. The lemma is proved.

Lemma 18.3.3. Let ν be such that $tr \nu \leq N$, let $i \in I$ and let $x \in L'(\Lambda)_{\nu}$. Write $x = \sum_{r=0}^{\nu_i} F_i^{(r)} x_r$ where the $x_r \in (\Lambda)_{\nu-ri}$ satisfy $E_i x_r = 0$ for all r and $x_r = 0$ unless $r + \langle i, \lambda - \nu \rangle \geq 0$ (see 16.1.4). Then $x_r \in L'(\Lambda)_{\nu-ri}$ for all r.

When tr $\nu < N$, this is just Lemma 18.2.2(a). In the case where tr $\nu = N$, we can use the same proof since the inclusion $\tilde{\epsilon}_i(L(\Lambda)_{\nu}) \subset L'(\Lambda)$ is now known for tr $\nu = N$ by the previous lemma.

Lemma 18.3.4. Let $x \in L'(\Lambda)_{\nu}$ where $tr \nu \leq N$. We have

$$\tilde{\epsilon}_i(1 \otimes x) = 1 \otimes \tilde{E}_i x \mod v^{-1} \mathcal{L}(\mathbf{f}) \odot L'(\Lambda).$$

Using the previous lemma we can assume that $x = F_i^{(r)} x'$ where $x' \in L'(\Lambda)_{\nu-ri}$ and $E_i x' = 0$. We can assume that $x' \neq 0$. Then

$$n = \langle i, \lambda - \nu + ri' \rangle \in \mathbf{N};$$

we have $F_i^{(n+1)}x' = 0$. By 17.1.15, $\tilde{\epsilon}_i(1 \otimes F_i^{(s)}x') = 1 \otimes F_i^{(s-1)}x'$ mod $v^{-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$. The lemma follows.

Lemma 18.3.5. Assume that $tr \nu \leq N$. Then

$$\tilde{\epsilon}_i(\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)_{\nu}) \subset \mathcal{L}(\mathbf{f}) \odot L'(\Lambda).$$

When $\operatorname{tr} \nu < N$ this is shown in 18.2.5. When $\operatorname{tr} \nu \leq N$, the same proof applies since Lemma 18.3.3 is now available.

Lemma 18.3.6. Assume that $tr \nu = N$. Let i be such that $\nu_i > 0$. Then $\tilde{E}_i(b^-\eta) = (\tilde{\epsilon}_i b)^- \eta \mod v^{-1} L'(\Lambda)$, for all $b \in \mathcal{B}_{\nu}$ such that $b^- \eta \neq 0$.

We can find i_1, i_2, \ldots, i_N with $i_1 + i_2 + \cdots + i_N = \nu$ such that

$$b = \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_N} 1 \mod v^{-1} \mathcal{L}(\mathbf{f})$$

(see 18.1.7(b)). Then

$$y = \tilde{F}_{i_1} \tilde{F}_{i_2} \cdots \tilde{F}_{i_N} \eta \in L(\Lambda)_{\nu}$$

satisfies $b^-\eta=y\mod v^{-1}L'(\Lambda)_{\nu}$ (see Lemma 18.2.10) and $y\notin v^{-1}L'(\Lambda)$. By 18.3.1, we have $\tilde{\phi}_{i_1}\tilde{\phi}_{i_2}\cdots\tilde{\phi}_{i_N}(1\otimes\eta)=1\otimes y=1\otimes b^-\eta$ up to elements in $v^{-1}\sum_{{\rm tr}\ \nu'\leq N}\mathcal{L}(\mathbf{f})\odot L'(\Lambda)_{\nu'}$. From this we deduce using Lemma 18.3.5, that

$$\tilde{\epsilon}_i\tilde{\phi}_{i_1}\tilde{\phi}_{i_2}\cdots\tilde{\phi}_{i_N}(1\otimes\eta)=\tilde{\epsilon}_i(1\otimes b^-\eta)\mod v^{-1}\mathcal{L}(\mathbf{f})\odot L'(\Lambda).$$

We have

$$\begin{split} \tilde{\epsilon}_i \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_N} (1 \otimes \eta) &= \tilde{\epsilon}_i \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_N} (\Xi(1)) \\ &= \Xi (\tilde{\epsilon}_i \tilde{\phi}_{i_1} \tilde{\phi}_{i_2} \cdots \tilde{\phi}_{i_N} 1) \\ &= \Xi (\tilde{\epsilon}_i (b)) \end{split}$$

modulo $v^{-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$ (using Lemma 18.2.7). Using Lemma 18.3.4, we have $\tilde{\epsilon}_i(1 \otimes b^-\eta) = 1 \otimes \tilde{E}_i(b^-\eta) \mod v^{-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$. We deduce that $\Xi(\tilde{\epsilon}_i(b)) = 1 \otimes \tilde{E}_i(b^-\eta) \mod v^{-1}\mathcal{L}(\mathbf{f}) \odot L'(\Lambda)$. Apply pr to this congruence and use $pr(\Xi(x)) = x^-\eta$ for all $x \in \mathbf{f}$. We deduce that $(\tilde{\epsilon}_i(b))^-\eta = \tilde{E}_i(b^-\eta) \mod v^{-1}L'(\Lambda)$. The lemma is proved.

18.3.7. From the lemmas above, we see that, if we assume the general hypothesis 18.2.1 for N, then the properties (a),(b),(c) in 18.2.1 also hold when N is replaced by N+1. Since they are obvious for N=1, we see that we have proved by induction the following result.

Theorem 18.3.8. Let $\nu \in \mathbb{N}[I]$. We have

- (a) $L(\Lambda)_{\nu} = L'(\Lambda)_{\nu}$;
- (b) for any i we have $\tilde{F}_i(x^-\eta) = (\tilde{\phi}_i x)^- \eta \mod v^{-1} L(\Lambda)$, for all $x \in \mathcal{L}(\mathbf{f})_{\nu}$;
- (c) if i is such that $\nu_i > 0$, then $\tilde{E}_i(b^-\eta) = (\tilde{\epsilon}_i b)^- \eta \mod v^{-1} L(\Lambda)$, for all $b \in \mathcal{B}_{\nu}$ such that $b^-\eta \neq 0$; in particular, $\tilde{E}_i(L(\Lambda)_{\nu}) \subset L(\Lambda)_{\nu-i}$.

From now on, we shall not distinguish between $L(\Lambda)$ and $L'(\Lambda)$.