CHAPTER 18

Study of the Operators F, E, on A,

18.1. PRELIMINARIES

18.1.1. In this chapter we assume that the root datum is Y-regular. Let
A€ X*. Asin 3.5.6, we set Ay = £/ 3, f9°M*1, Since A will be fixed
in this chapter, we shall write A instead of A). As in 3.5.7, we denote the
image of 1 € f by 5 € A.

Recall that there is a unique U-module structure on A such that E;n =0
forallie I, K,n= vi#Nq for all p € Y, and F; acts by the map obtained
from left multiplication by 6; on f. From the triangular decomposition for
U, we see that A can be naturally identified with the U-module

(2) /(S UE:+ Y UK, — o) + 3 UFEN

V by the unique isomorphism which makes 7 correspond to the image of
1eU.

For any v € N[I], we denote by (A), the image of f, under the canonical
map f — A. We have a direct sum decomposition A = @, (A),. Note that
(A),, is contained in the (A — v)-weight space A*~” (the containment may
be strict if the root datum is not X-regular).

18.1.2. By Theorem 14.3.2(b), the subset U; n.n>¢i,2)+17Bi;n of B is a
signed basis of the Q(v)-subspace ), f01-<i’}‘> +
projection f — A maps this subset to zero and maps its complement B(\) =
Nier(Unjo<n<(i,n) " Bin) bijectively onto a signed basis of the Q(v)-vector
space A. Thus {b"n|b € B(\)} is a signed basis of A.

of f. Hence the natural

18.1.3. We shall regard f as an object of D;, for any 7 € I as in 17.3.1.
Since f is a 4-module (see 15.1.4), the tensor product f ® A is a Y-module
with
$i(z ®y) = ¢i(z) ® K; 'y + 2 ® Fi(y)
and
e(z®y) = €i(x) @ K7 'y + (vi — v )z © K Ei(y)

for all z € f and y € A. (See 15.1.5.) Hence for each i € I, we have
f®AeD;.
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Lemma 18.1.4. There is a unique Q(v)-linear map = : f — £ ® A such
that

(a) E() =1®mn;
(b) E(¢iz) = ¢i(E(z)) forallz € f and alli € I;
(c) E(eix) = €i(ZE(z)) for allz € f and all i € I.

By 3.1.4, there is a unique algebra homomorphism f — f ® U such that
9, — 6; ® K -i+1Q® F; for all i € I. Composing this with the linear map
f®U — f® A (identity on the first factor, the map u — un on the second
factor) we obtain a linear map = : f — f ® A which clearly satisfies (a)
and (b). We show that it satisfies (¢). For z = 1, (c) is trivial. Since the
algebra f is generated by the various 8;, it is enough to show that (c) holds
for x = 0;x’', assuming that it holds for z’. We have

E(E,‘:l:) = E(6i¢j$,) = E(vi'jqﬁjeix' + 5,',]'11/) = ’Ui'j¢j€i5($l) + 6,',1'5(:1?')

and
i €i(E(z)) = €:(2(¢52")) = €:;(E(2"));

hence (c) holds for z. This proves the existence of =. The uniqueness of =
(assuming only (a),(b)) is clear since f is generated by the ; as an algebra.

~18.1.5." Let L(f) be as in 17.3.3. We have L(f) = @,L(f), (sum over all
v € N[I]) where L(f), is the Z[v~!]-submodule of f generated by B,,.

Lemma 18.1.6. (a) Ifb € B is not equal to £1, then there existi € I and
b € B such that b— ¢;b” € v1L(f).

(b) If v € N[I] is non-zero, then

LE) = Y GilL(E)u-s)-

t;v; >0

We prove (a). According to 14.3.3, if b is as in (a), then there exist i € I
and n > 0 such that b € B;.,,. By 17.3.7, we then have (iib” —bev1L(f)
for some b” € B.

We prove (b). The sum -, ., $:i(L(f),_;) is a Z[v~!]-submodule of
L(f), (by 17.3.4) and the corresponding quotient module is annihilated by
v~! (by (a)). By Nakayama’s lemma, this quotient is zero; therefore (b)
holds. The lemma is proved.
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Proposition 18.1.7. Let v € N[I].

(a) L(f), coincides with the Z[v~!]-submodule of f generated by the el-
ements ¢, i, - -+ ¢i,1 for various sequences iy, ia,...,% in I in which i
appears exactly v; times for each i € I.

(b) The subset of L(£), /v L(f), consisting of the images of the el-
ements x¢;, ¢i, - - - @i, 1 for various iy,4,... ,%, as above, coincides with

the image of B, in L(f), /v 1L(f), .

This follows immediately from the previous lemma.

18.1.8. We will denote by L(A) the A-submodule of A generated by the
signed basis {b~7n|b € B(A)} of A. We have a direct sum decomposition
L(A) = &,L(A), (v runs over N[I]) where L(A), is the A-submodule of A
generated by the elements {b~7|b € B(A\) N B,}. We have L(A), C (A),.
Since A is integrable (see 3.5.6), A belongs to the category C. for any
i € I; hence the operators E F,:A— A (see 16.1.4) are well-defined. For
any v € N[I], we will denote by L’(A), the A-submodule of A generated by
the elements Filﬁ'i, ‘.- ﬁ‘iﬂl for various sequences i1, i2,...,%; in I in which

1 appears exactly v; times for each i € I.
Let L'(A) = Y, L'(A), € A. We have L'(A), C (A),.

18.2. A GENERAL HYPOTHESIS AND SOME CONSEQUENCES

Yntil the end of 18.3.6, we shall make the following
General hypothesis 18.2.1. N is a fized integer > 1 such that, for any
v € N[I] with trv < N, we have

(a) L(A), = L'(A);

(b) ifi is such that v; > 0, then Fy(z™n) = (¢:x)~n mod v~ 1L(A), for
allz € L(£)y—i;

(c) if i is such that v; > 0, then E‘i(b‘n)~= (€&:6)™n mod v~L(A), for
all b € B, such that b=n # 0; in particular, E;(L(A),) C L(A)y—;.

In this section and the next we will derive various consequences of the
general hypothesis; we will eventually show that this is not only a hypoth-
esis, but a theorem (see 18.3.8).

Lemma 18.2.2. Let v be such that trv < N, leti € I and let z € L'(A),.
Writex = 5_/% Fi(r)a:r where the z, € (A)y—_ri satisfy E;x, =0 for all r
and z, = 0 unless r + (i, A —v) > 0 (see 16.1.4). Then

(a) z, € L'(A)y—ri for all 7.
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(b) If, in addition, z = b™n mod v~ L(A) for some b € B, N B()\),
then there exist ro € [0,v;] and by € B,_,; N B(X) such that z,, = byn
mod v~ L(A),—ryi, and =, € v 1L/ (A)y_r; for all v # ro.

Let ¢t be an integer such that 0 < ¢ < y; and z,. = 0 for r > t. We prove
(a) by induction on ¢. If t = 0, then (a) is obvious. Assume now that ¢ > 1.
We have E;z = Zi;}) Fi(r)a:,H and z,4+1 = O unless r + (i, A — v +14') >
0. (If we had simultaneously z,41 # 0 and r + (i,A — v + 4’} < O then
r+ 1+ (i,A —v) < 0, a contradiction.) By the general hypothesis, we
have E;z € L(A),_;. By the induction hypothesis applied to E;z, we have
zy € L'(A),—p; for all r > 0. Hence Fi(r)xr = Frz, € L'(A), for all r > 0.
Since z € L'(A),, it follows that zo € L'(A),. This proves (a).

We prove (b) by induction on t as above. If ¢ = 0, then (b) is obvious.
Assume now that ¢ > 1. By the general hypothesis, we have E;z = (€)™ 7
mod v~1L(A). By 17.3.7, we have that &b is equal modulo v~!1L(f) to
either 0 or to b’ for some b’ € B, _;.

If the first alternative occurs, or if the second alternative occurs with
(¥)~n = 0, then E;(b~7n) € v=1L(A); applying (a) to vE;(b~7) we see that
z,“€ v"1L(A) for all r > 0. We then have 7o = b1 mod v~!L(A), as
required.

Hence we may assume that

(c) &b=1b" mod v~1L(f), where b’ € B,_; N B()\).

We have, by assumption,

(d) E;z = Ei(b~n) mod v 1E;L(f), .

By the general hypothesis, we have E;L(f), C L(f),_; and E;(b™n) =
(€:6)"n mod v~'L(A),_; (we have b—n # 0, by assumption). Introducing
this in (d), and using (c), we obtain

Eix=b"7n mod v 1L(f),_;.
By the induction hypothesis applied to E;z, we see that there exist

o € [1,v;] and by € By —riNB(A) such that z,, = bgn mod v L' (A)y_ryi,
and z, € v"1L/(A),_,; for all 7 such that r > 0 and r # ro. It follows that

Ex = 13‘{°_le mod v~ L(A).

0

By the general hypothesis, we have

FEiz = F,E;(b™n) = Fi((&b)™n) = (4:&:d) ™
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(equalities modulo v~'L(A).) Since &b = ¥ mod v 1Ll(f) we see from
17.3.7 that ¢;&b = b mod v=1L(f). It follows that F;E;z = b~ n =

(equalities modulo v~'L(A)). We deduce that « = F;(F/°'z,,) = FT °a:,0
(equalities modulo v~*L(A).) Since FTz, € v"'L(A) for all r > 0, 7 # 7
and ¢ = ), Frz,, we deduce that zo € v~ !L(A). This completes the

proof.

Lemma 18.2.3. Let i € I and let z € L(f). Writez = 3 5, d)l(.r)a:,
where x, € £ are 0 for all but finitely many r and ¢;x, = 0 for all r (see
16.1.2(c)). Then z, € L(f) for all r.

This is a special case of Lemma 16.2.7(b).

18.2.4. If H, H' are two subsets of f, A respectively, we denote by H ® H’
the subgroup of f ® A generated by the vectors h@ h' with h € H, k' € H'.

Lemma 18.2.5. Assume that trv < N and leti € I. Then
$:i(L(F) ® L'(A),) € L(f) © L'(A)

and
&(L(E) O L'(A),) c LE) O L'(A).

By Lemmas 18.2.2(a) and 18.2.3, the A-module £(f) ® L'(A), is gener-
ated by elements qb(“)x@F(a )2’ where € L(f) and 2’ € L'(A),_q; satisfy
€:(z) = 0 and E;(z') = 0. The image of such elements under ¢; or §; is
contained in £(f) ® L'(A) by Corollary 17.1.15. The lemma. follows.

Lemma 18.2.6. Let x € L'(A), where trv < N. Assume that there
exists b € B, N B(A) such that z = b~n mod v~ IL/(A). Assume also that
Fiz ¢ v 'L'(A). Then ¢;(1®z) = 1® Fx mod v~ 1L(f) ® L'(A).

By 18.2.2, we may assume that z = Fi(s):zz’ where ' € L'(A),_g; satisfies
E;z’ = 0. Since ' # 0 and E;z’ = 0, we have n = (i, A — v + s¢’) € N;
moreover, F("+l):c’ = 0. By Corollary 17.1.15, ¢;(1 ® F, (#) g z') is equal
modulo v~ !L(£)®L/(A) to 1®F(3+1) ' (if s < n)or to 6; ®F(s) " (if s > n).
If the second alternative occurs, then Fiz = F’+1 " = 0, contradicting our
assumptions. Thus the first alternative occurs and the lemma is proved.
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Lemma 18.2.7. For any v such that trv < N, we have E(L(f),) C
L(f)yo L'(A).

We argue by induction on tr v. If v = 0, the result is obvious. Assume
that v # 0 and that the result is known when v is replaced by v/ with
tr v/ < tr v. By 18.1.6(b), the Z[v—!]-module L(f), is spanned by vectors
é;x with i € I and = € L(f),_;, so it suffices to show that for such i, z, we
have Z(¢iz) € L(f)®L'(A). Since = is a morphism in D;, we have Z(¢;z) =
¢:(E(z)). By the induction hypothesis, we have Z(z) € L(f) ® L'(A).

From the definition of = we see immediately that

E(f) C > feU.n

vtr v’ < tr v/

Combining this with the previous inclusion, we see that

E@e Y, LEOL(A)

v tr v’ <N

Hence it is enough to show that
$:(L(£) © L'(A),r) € L(F) © L'(A)

whenever tr v’ < N.

Now the A-module £(f) ® L'(A),~ is spanned by vectors of the form
dWz® Fi(c)y where z € L(f),y € L'(A),_.; satisfy ¢,z = 0, E;y = 0 (see
- -Lemmas-18.2.2, 18.2.3). Hence it suffices to show that q~3i(¢£a):c ® F,-(c)y)
belongs to the Z[v—!]-submodule generated by the vectors ¢{* )z @ F{*)y
for various a’,¢’ > 0. But this follows from Corollary 17.1.15. The lemma
is proved.

18.2.8. Consider the linear form f — Q(v) which takes f, to zero for all
v # 0 and takes 1 to 1; tensoring it with the identity map of A, we obtain
a Q(v)-linear map pr: f ® A — A.

From the definitions, we see easily that

(a) pr(E(z)) =z nforall z € f.
Lemma 18.2.9. (a) We have pr(L(f) ® L'(A)) C L'(A).

(b) Let i € I. Lety € L(f) ® L'(A), where trv < N. We have
pr(i(y) = Fi(pr(y)) mod v='L'(A)y+.

Let z € L(f), and let 2’ € L'(A),,. If v # 0, we have pr(z ® =) = 0; if
v =0, we have z = f1 where f € Z[v™!] and pr(z ® ') = fz’. Thus (a)
holds.
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We prove (b). By Lemmas 18.2.2, 18.2.3, we may assume that y =
¢§°)z ® Fi(“ )2 where z € L(f) (homogeneous) and 2’ € L'(A), satisfy
€:(z) =0, E;(2') = 0 and a,a’ € N. We may assume that z’ # 0. Let n be
the smallest integer > 0 such that F**'z’ = 0. By Corollary 17.1.15, we
have that ¢;(y) is equal to

(c) ${* V2 ® F,-(al)z’ modulo v~ 1£L(f) ® L'(A), if a + a’ > n, and to

(d) qﬁga)z ® Fi(al“)z' modulo v~ !£(f) ® L'(A), if a + @’ < n.

If a > 0 or z ¢ fo, then y and both vectors (c),(d) are in the kernel of pr,

by the definition of pr; on the other hand, by (a), we have pr(v-1L(f) ®
L'(A)) c v=1L’(A). Hence in this case the lemma holds for y. Hence we

may assume that a = 0 and z = 1. We then have pr(y) = Fi(a’)z' ; moreover,
by the previous argument:

pr(¢:() = F**V() mod v™'L'(A)

if a’ < n and 3
pr(di(y) =0 mod v1L'(A)
if a' > n.
On the other hand, by the definition of F;, we have

Fi(pr(y)) = F(F™ () = F* ().
It remains to observe that Fi(a,“)(z' ) = 0 if a’ > n (by the definition of
n). The lemma is proved.
Lemma 18.2.10. Let z € L(f), with trv < N. We have (¢ix)™n =
F;(z™n) mod v~1L/(A).

Using 18.2.8(a) and the commutation of E with é;, we have
($iz)"n = pr(E(diz)) = pr($:(E(2)))-
Using again 18.2.8(a), we have
Fi(z™n) = Fi(pr(E(z))).
It remains to show that
pr($:(E(x))) = Fi(pr(E(2))) mod v™'L'(A).
This follows from Lemma 18.2.9(b) applied to y = Z(z). (We have ZE(z) €
L(f) © L'(A) by 18.2.7, and E(z) € }_ . 41 yrr< 1, £ ® U um; hence
E@e ), LEOL(A)w
v tr v'<N

so that Lemma 18.2.9(b) is applicable.) The lemma is proved.
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Lemma 18.2.11. If trv = N, we have L(A), C L'(A),.

By definition, L(A), consists of the vectors of form z~n where z € L(f),.
Since v # 0, the Z[v~!]-module L(f), is equal to }_;. >0 b:(L(£),—i ) (see
18.1.6). Hence it suffices to show that (¢;(z)) "5 € L’ (A),, for any 7 € I such
that v; > 0 and any z € L(f),_;. By 18.2.10, we have (¢;z)"n = Fi(z™n)
mod v~1L’(A),. Hence it suffices to show that F;(z™n) € L’(A),,.

By the definition of L(A),—;, we have z7n € L(A),_;. Using our general
hypothesis, we deduce that z7n € L/(A),_;. It remains to observe that
F;(L'(A),—;) € L'(A), (from the definitions). The lemma is proved.

Lemma 18.2.12. If trv= N, we have L'(A), C L(A), +v~*L'(A),.
We have

L)y = Y FELA)_i= Y FL(A),

1;0>0 v >0
= Y AFR(L(f),_m)
;>0

The first and third equalities are by definition; the second one follows from
our general hypothesis. Hence it suffices to show that

Fy(z™n) € L(A), +v71L'(A),

for all z € L(f),_; (where v; > 0).

By 18.2.10, we have Fi(z™7n) = (¢;z)"n mod v='L’(A),. On the other
hand, we have ¢;z € L(f), (see 17.3.4); hence we have (¢;z)"n € L(A),.
The lemma is proved.

Lemma 18.2.13. If trv = N, we have L(A), = L'(A),.

By 18.2.11, L(A), is an A-submodule of L’(A),. The corresponding
quotient module is annihilated by v~!, see Lemma 18.2.12. This quotient
is then zero by Nakayama’s lemma. The lemma is proved.

18.3. FURTHER CONSEQUENCES OF THE GENERAL HYPOTHESIS

Lemma 18.3.1. Lety—ﬁ‘ﬁ‘ . ,,nEAwherezlﬂ-zz-i- i =v
andt = trv < N. Letx = ¢5,¢i,- - $:,(1®1n) € f @ A. Assume that
y¢ v IL'(A). Thenz=1®y mod v 1L(f) ® L'(A).

We argue by induction on ¢. If ¢ = 0, there is nothing to prove. Assume
now that ¢ > 0 and that the result is known for £ — 1.
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Lety = F,---FypeAandlet 2’ = ¢;,---¢;,(1®7) € f® A. Since
F; (v1L'(A)) € v"'L'(A), and y ¢ v='L/(A), we have ¢/ ¢ v 1L/(A).
By the induction hypothesis, we have ' = 1 ® ¥’ mod v=1L(f) ® L'(A).
Applying ¢;, and using 18.2.5, we deduce that z = q;ila:’ = ¢;,(1®7Y)
mod v~ 1L(f) ® L'(A).

By our general hypothesis, we have 3’ = (¢, - - - #;,1)"n mod v~1L(A);
hence, by 18.1.7(b), we have 3y’ = b~n mod v~ 'L(A),—;, for some b €
B,_;,. Since y' ¢ v~!L'(A),—;,, we have b € B()\). Applying Lemma
18.2.6, we see that ¢;,(1®¢') =1Q F;,y’ =1®y mod v~1L(f) ® L'(A).
(That lemma is applicable since F,y/ =y ¢ v"'L’(A).) Hence z = 1Qy
mod v~!£L(f) ® L'(A). The lemma is proved.

Lemma 18.3.2. If trv < N, then E;(L(A),) C L'(A).

We will prove, for any n > 0, that E;(L(A),) C v*L'(A), by descending
induction on n. This is obvious for n large since L(A), is a finitely generated
A-module. Hence it is enough to prove the following statement.

(a) Assume that n > 1 and E;(L(A),) € v™L/(A); then E;(L(A),) C
v 1L (A).

We first show that

(b) &(L(£)y © L(A)u) C v"L(f) © L'(A)
provided that v/ + v = v. In the case where tr v < N, this follows
from 18.2.5. Assume now that tr»” = N; then v/ = 0. It suffices to
show that &(1 ® ) € v"L(f) ® L'(A) for any x € L(A),. We write z =
2 >0 Fi(r):z;r where z, = 0 unless r + (i,A — v} > 0 and E;z, = 0. By
the assumption of (a), we have ¥ ., Fi(r_l)xr € v"L’'(A) and by 18.2.2,
we deduce that Fi(r—l):z:,. € v"L'(A) for 7 > 1, or equivalently, F7 "'z, €
v*L'(A) for > 1. Using the general hypothesis (r — 1) times, we have
ET"Y(Fr'z,) € v"L/(A); hence z, € v"L'(A) for all r > 1. We have
E(l®z) = 3,5, &1 ® FNz,) since €;(1 ® 7o) = 0. By 17.1.15, this
belongs to the Z[v~1]-submodule generated by the elements Ofrl) ® F(ra)g,
with 7 > 1 and r; + 72 = 7—1 and these elements belong to v L(f) ® L’(A).
Thus (b) is proved.

To prove (a), it suffices to show that E;(y) € v* 'L’(A) for all y of
the form y = F; F;, . ..ﬁ'it'r) where i1 +ig+---+ i, = v. If y € v IL/(A),
then our inductive assumption shows that E;(vy) € v™L’(A); hence E;(y) €
v"~1L/(A), as desired. Thus we may assume that y ¢ v~1L’(A). Using now
Lemma 18.3.1, we see that

(c) i, @i 6:,(10N) =(1Qy) +v7 12
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where z € L(f) ® L'(A). From the definition of the operators ¢; on f ® A
we see that we have necessarily

A Z C(f),,/ ® L’(A),,n.
vi+v''=v
Hence, by (b), we have
€(z) e v"L(f) ® L'(A).
Thus applying €; to (c), we obtain

(d) & di -+~ di,(1®n) = &(1®y) mod v 1L(f) © L'(A).

We have (using 18.2.7)

Eidi, iy - bi, (1@ ) = Ei, biy -+~ 63, (E(1)) = EEdhiy by -+~ 3, 1)
C E(L(f),) C L(F) © L'(A) c v™1L(f) © L'(A).
Hence from (d) we deduce that

(e) &(1®y) e v 1L(f) ® L'(A).

We write y = 3 - Fi(r)yr, where the y, € (A),_,; satisfy E;y, = 0 for all
r and y, = 0 unless 7 + (i, A —v) > 0.

By our inductive assumption, we have E;y = erl Fi(r_l)yr € v"L(A).
Using 18.2.2, we deduce that y, € v"L(A) for r > 1. We have (1 ®y) =
ZTZI Ei(1®Fi(r)y,.), since €;(1®yo) = 0. By 17.1.15, we have for any r > 1,
&E(1® Fi(r)y,.) =1® E(r_l)y, plus a linear combination with coefficients in
“v=1Z[v~1] of terms 6™ ® F{"™)y, where ry + 5 = r — 1. The last linear
~ combination is in v*1L(f) ® L'(A) since y, € v"L(A) for r > 1. Taking
sum over 7 > 1 we obtain

&(1®y)=1® Eyy mod v" 1L(f) ® L'(A).

Using this and (e), we deduce that 1 ® E;y € v*~1L(f) © L'(A). Applying
pr, we obtain

pr(1® Eyy) € v"'pr(L(f) © L'(A));
hence E;y € v*~1L’(A). The lemma is proved.

Lemma 18.3.3. Let v be such that trv < N, leti € I and letz € L'(A),.
Writex = Y 0%, Fi(r)zr where the . € (A),_p; satisfy E;xz. = 0 for all r
and x, =0 unless v+ (i, A\ — v) > 0 (see 16.1.4). Then z, € L'(A),_,; for
all r.

When tr v < N, this is just Lemma 18.2.2(a). In the case where tr v =
N, we can use the same proof since the inclusion €;(L(A),) C L’(A) is now
known for tr v = N by the previous lemma.
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Lemma 18.3.4. Let x € L'(A), where trv < N. We have
&(1®z)=1® E;xz mod v~ L(f) ® L'(A).

Using the previous lemma we can assume that z = Fi(r):c’ where 2’ €
L'(A)y—r; and E;z’ = 0. We can assume that z’ # 0. Then

n={(i,A—v+ri)eN;
we have F"*Vz/ = 0. By 17.1.15, &(1 ® F2') = 1 ® F
mod v~ L(f) ©® L’(A). The lemma follows.
Lemma 18.3.5. Assume that trv < N. Then
&(L(F) © L'(A),) C L(E) © L'(A).

When tr v < N this is shown in 18.2.5. When tr v < N, the same
proof applies since Lemma 18.3.3 is now available.

Lemma 18.3.6. Assume that trv = N. Let i be such that v; > 0. Then
E;(b=n) = (&b)™n mod v=L/(A), for all b € B, such that b=n # 0.

We can find y,12,... ,ix5 with 4y + 42 4+ --- + iy = v such that
b= i, bi, diy1 mod v 1L(£)
(see 18.1.7(b)). Then
y=F,F, - -Fyne L),

satisfies b~n =1y mod v~'L(A), (see Lemma 18.2.10) and y ¢ v~ 1L'(A).
By 18.3.1, we have ¢;,¢i, - - ¢in(1®7) =1®y =1Q® b~ 7 up to elements
inv™ 'Y, <y L(F)®L'(A),. From this we deduce using Lemma 18.3.5,
that -

&di,bi, - iy (1®7) =&(1®b7n) mod v~ L(F) © L'(A).
We have
Eidiy big -+~ i (1® M) = &y, i, -+~ Bip (E(1))
= E(&i, i - bin1)
= E(&(b))
modulo v~1L(f) ® L'(A) ~(using Lemma 18.2.7). Using Lemma 18.3.4, we
have &(1 ® b™n) = 1 ® E;(bn) mod v~'L(f) ® L'(A). We deduce that
Z(&(b)) = 1®E;(b~n) mod v~ L(f)®L’(A). Apply pr to this congruence

and use pr(Z(z)) = =~ for all z € f. We deduce that (&(b))~n = E;(b~n)
mod v~'L’(A). The lemma is proved.



18.8. Further Consequences of the General Hypothesis 163

18.3.7. From the lemmas above, we see that, if we assume the general
hypothesis 18.2.1 for N, then the properties (a),(b),(c) in 18.2.1 also hold
when N is replaced by N + 1. Since they are obvious for N = 1, we see
that we have proved by induction the following result.

Theorem 18.3.8. Let v € N[I]. We have

(a) L(A)y = L'(A)y;

(b) for any i we have Fi(z™n) = (¢:x)~n mod v=1L(A), for all z €
E(f)u;

(c) if i is such that v; > 0, then E’i(b‘n):—- (&b)~n mod v~ L(A), for
all b € B, such that b= # 0; in particular, E;(L(A),) C L(A)y—;.

From now on, we shall not distinguish between L(A) and L'(A).



