CHAPTER 17

Applications

17.1. FIRST APPLICATION TO TENSOR PRODUCTS

17.1.1. In this chapter we shall give three applications of Proposition
16.3.5: two to tensor products, and one to f.

17.1.2. Let M, M € C.. Then M®M is an object in C} (see 5.3.1). Now let
P € D; and M € C,. We define Q(v)-linear maps ¢;,¢; : PO M - PO M
by

¢i(z®y) = 4i(2) ® K[ 'y + 2 ® Fi(y)

6(z®y) = 6(x) @ K7 \y+ (v; — vy )z ® K7 E;(y)
where K; : M — M is the linear map given by K;y = viyforye M™. Itis
© easy to check that (P® M, ¢, e,')~ is an object of D;. (This also follows from
15.1.5.) Hence the linear maps ¢;,¢é; : PQ M — P ® M are well-defined.

From the definitions we deduce (using the quantum binomial formula)
that ) 3 .
| ¢£t)(x®y) — Zvi—tt ¢Et )$®K1_t Fi(t )y

for all z € P,y € M and t > 0; the sum is taken over all ¢,t” € N such
that ¢/ +t" =1t.

Lemma 17.1.3. (a) If (,) : Px P — Qv) and (,) : M x M — Q(v)
are admissible symmetric bilinear forms in the sense of 16.2.2, then the
symmetric bilinear form on P Q@ M given by (z®y,2’ ®y') = (z,2')(y,v')
s admissible.

) If(,) : M x M — Q(v) and (,) : M x M — Q(v) are admissible
symmetric bilinear forms in the sense of 16.2.2, then the symmetric bilinear
form on M @ M given by (zQy,z’ ®y') = (z,2')(y,y’) is admissible.

We prove (a). Let 2,2’ € P,y € M™,y' € M™ . We have
(z®y,&(r' ®Y)) = (2®y,a(@) ®K 'y + (v — v )2’ @ K Ei(y))
= (2, &)W, K7'Y') + (v — o7 (2, 2") (v, KT Ei(y))
= bnw v (1= 07 ) iz, 2') (v, )
+ 62 0 (0~ o) (2, @) (Fi(W), ¥)-
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On the other hand, we have

(¢i(z®y), 2’ ®Y) = (¢:(z) ® K 'y + 2 ® Fi(y), 2’ ® y')
= n,n'vi_n(‘ﬁi(x)v Jt’)(y, yl) + 6n-2,n' (17, xl)(Fi(y)a yl)'

This proves (a). The proof of (b) is entirely similar.

17.1.4. We consider the following example. Let Py be the Q(v)-vector
space with basis 8y, 81, B2, . ... We define Q(v)-linear maps ¢;,¢; : Py — Py
by ¢i(Bs) = [s + 1]iBs+1 for s > 0 and €;(8s) = vf‘lﬁs_l for s > 0 (with
the convention 8_; = 0). It is easy to check that this makes P, into an
object of D;.

We have ¢£t)(ﬁ3) = [’:’t] Bsys for s > 0,t > 0, and € (Bs)
v{t(t+1)/2+’tﬁ3_t, for s > 0,t > 0, (with the convention f_; = B_s =

---=0). Let (,) be the symmetric bilinear form on Py given by

8
(Be Bar) = b0 [T (1 = 072) 7%
t=1
It-is easy to check that this bilinear form is admissible.

17.1.5. We fix an integer n > 0. Let M, be the Q(v)-vector space with
basis by, by, ..., b, with Z-grading such that b,, has degree n — 2m. It will
be convenient to define b,, = 0 for m > n and for m < 0.

Let E;, F; : M,, — M, be the linear maps given by FE;(bs) = [n — s +
1);bs—1 and F;(bs) = [s+1];bs41 for all s. It is easy to check that in this way
M, is an object of C]. Note that for t > 0, we have E,-(t)(ba) = ["_f“]ibs_t

and Fi(t)(bs) = [*F*] ,bs4+¢ for all 5. Let (,) be the bilinear form on M,, given

by (bs,bs) = 63,3/'01._3("_3) [';], for0<s<nand0<s <n. ltiseasy to
check that (,) is an admissible form on M,,.

17.1.6. Let P, be as in 17.1.4 and let M, be as in 17.1.5 (n > 0). Then,
as in 17.1.2, P = Py ® M,, is a well-defined object of D;. Note that P has
a basis {bs s = Bs ® bs'|s > 0,0 < s’ < n}.

For any ¢ > 0 we have

—t(n-2s'—t"y[t' + 8] [t + s
¢$t)bs’s' — Z ,Uz (n S ) [ t’ ] ' [ t// bs+t/,8/+t”
1

1

where the sum is taken over all ', € N such that t' +¢” =t, and

’ ’
Eibs,s' =; nt2sts lbs——l,s’ + v; nt2s Z(Ui —-v; 1)[” -5+ I]ibs,s'—l-
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By convention, we set by »» = 0 if either s <0 or s’ < 0 or s’ > n.

For any m € Z, we define P™ to be the Q(v)-subspace of P spanned by
the vectors by s with s + s’ = m. We have P = @,,P™, ¢{) pm ¢ pm+t
and ¢, P™ C P™1,

By definition, the operator ¢; : P — P (resp. & : P — P) is an (infinite)
linear combination of operators ¢£t+1)55 (resp. ¢£t)ef+1); it follows that

(a) ¢:(P™) c P™*! and &(P™) Cc P™-1,

17.1.7. Let

’

- s+t
Cs,sr = Zv:t(n+t—s ! [ t ] bstt,s'—t
t=0

fors>0,8>0,s+s <mn,

8,

_ n+t—s

Cs,s' = E :'Ui t(3+t)[ t ] b3+t,s’—t
t=0

1

1

for s > 0,0 < s <n, s+ > n; the two definitions agree if s + s’ = n.
~Note that {, € P5t°.
For s + s’ > n, we have

sl
s g |[-1—n+5
(a') bs,s’ = Zvi tet [ ] Cs-H,’,s’—t’-

’
t'=0 ¢ 1

Indeed, the right hand side of this equality is, by definition,

s’ &=t

Z —t"(s+t'+t")—t's—t' [N+ =& +t] [-1—n+s

'Ui t” t’ bs+t’+t”,s’—t’—t” .
t/=0¢t"=0 i

1

The coefficient of bg44,s—; (Where 0 <t < §') is
—t"(s+t'+t")—t's—t' n + t— SI _1 —n+ SI
Z Y; t i t N
t 4t =t i i

We replace the exponent —t"(s +t' +t") —t's—t' by (n +t — s')t' —
(-1—n+s)t"+ f where f =t(—n—t— s+ s’ — 1) depends on t/,t" only
through their sum. Hence the coefficient of bsys ¢ —¢ is

f (ntt—s")t' —(—1—n+s')’ [N+t —58"] [-1—-n+§
v; z vy [ t t .
't =t i [

t—1
=Uf[ ¢ ]=vf5t,0=5t,0;
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(a) is proved.

From the definitions and from (a), we see that the subset B of P con-
sisting of the vectors (s s (with s > 0 and 0 < s’ < n) is a basis of P.

For m € Z, let L™ be the Z[v~!]-submodule of P generated by the
vectors b, o+ with s + 8 =m.

Lemma 17.1.8. (a) For any s > 0 and 0 < s’ < n, we have

’
Cs,s' — bs,s’ evlLete,

(b) Form > 0, L™ is the Z[v~!]-submodule of P generated by the vectors
Cs,r with s+ 5 =m.

Assume first that s + s’ < n. The coefficient of b4 s —¢ in (54 is in
vi_t("“_sl)"'”(l + v~ 1Z[v~1]). Here t > 0; hence —t(n +t — s') + st =
t(s + s’ — n) — t? < 0; the inequality becomes an equality only for ¢ = 0.

Assume next that s + s’ > n. The coefficient of bs4¢ s —¢ in (5,6 is in

v;—t(s+t)+t(n—s')(1 + ’U_IZ[’U_I])-

Here t > 0; hence —t(s+t)+t(n—s') = t(n—s—s’) —t2 < 0; the inequality
becomes an equality only for t = 0. This proves (a).

The previous proof also shows that the matrix expressing the vectors
. Ls,s in térms of the vectors b, o+ (with s+’ = m fixed) is upper triangular,
with diagonal entries equal to 1 and with off-diagonal entries in v—'Z[v™1].
This implies (b). The lemma is proved.

Lemma 17.1.9. The A-submodule 4P of P generated by B is stable under
€, d)gt) : P — P forallt > 0. (In other words, the basis B of P is integral.)

The formulas in 17.1.6 show that €;(b; ) € 4P and d),(-t)(bs,s/) € 4P for
all £ > 0. The lemma follows.

Lemma 17.1.10. Assume that 0 < s<mn andt > 0. We have
¢¢('t)bs,0 = Cs,t

ifs+t<nand

t+s—n
¢,(-t)bs,0 = 2 [ J Cs-}—u,t—u
€

u
wu20u>t—nu<ls+t—n
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ifs+t>n.
Assume first that s +t < n. We have

: ' t'+s

—t'(n—t+4t’

¢§t)bs,o = Yi (=) | Dsrer it = Cope
t/=0 t

1

Assume now that s + ¢t > n. We have

’

®) _ —t'(n~t+t') [t + 8

d’i bs,O = E v; 4 bs+t',t—z'
it/ >0t <t;t—t'<n

1

_tll tl _tll _tl _t tl
ot ()=t (k)

't ENE +t <tjt—t'<n

—1—-n+t-t] [t'+s
X t” - t’ ‘(3+tl+tll’t_tl_tll
1 i

= zt:( Z 'U._t”(‘9+tl)_t"_t,(n_t+tl)

u=0 ¢t/ t";t' +t" =u;t' >0;t" >0;t' >t—n

—1-n+t—-t [t'+s
X " ¥ Cs+u,t—u)-
i i

Since the index t’ satisfies t' > t—n and u > ¢/, the index u must satisfy u >
. —1—n+t—t'7 _ " rm—t+ t'+s] _ ' r—s—1
t—n. V‘,’? Su‘t,)sm;‘}lt‘f [ 1:," li= (_l)f [* % u],; P A Co Vil i P
and vi_t (s+t")—t"—t' (n—t+t") — vi—(n—t+u)t +(—s—-1)t )
~The condition on u implies n—t+u > 0; hence ""tf,*" "]1. is automatically
zerd unless n —t +u > t”, i.e., if t > t — n. Thus the condition ¢’ >t —n

can be omitted in the summation and we obtain

> 3 (i

0<u<t t’,t”zo
uzt_n t'+t"=u

n—t+u| |—-s—1
X " ] ¥ .Cs+u,t—u

1

= (e [” Tttuss- 1] Cotrupm

u
u;0<u<Lt;u>t—n d

—n+t+s
= Z [ u :l Cs+u,t—u-
u;0<u<tju>t—n i
(We have used 1.3.1(e), 1.3.1(a).) Recall that s +¢ > n. It follows that
[_"TLH’L = 0 unless u < t + s — n and then the condition u < ¢ is au-

: t+s—n
tomatic. Hence our sum becomes 3°,..50.u>¢ nu<sttion [F+e ]iC3+u,t—u-
The lemma is proved.
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Lemma 17.1.11. We consider the partition of B into the subsets
B(t) = {Cotls +t < n}U{C+2s-n,n—s|s +1 > n}
wheret=0,1,2,....

(a) For anyt > 0, the set B(t)UB(t+1)UB(t+2)U--- is a basis of
¢ P.

(b) The basis B of P is adapted.

From 17.1.10, we see that

Cot € P
ifs+t<nand
Cs,t € ¢£2t+s—n)P
if s +t > n. (The last inclusion is seen by induction on ¢.) It follows that

(c) Bt)UB(t+1)UB(t+2)u---c ¢ P.

Hence X (t) C qbgt)P where X (t) is the subspace of P spanned by B(t) U
B(t+1)UB(t+2)U-:-. We now prove the inclusion

(d) 66 X (2)
forany b € Bn P™, by induction on m > 0.

Note that B(0) = {(50]0 < s < n} = {bs0]0 < s < n}. If b € B(0),
then (d) follows from 17.1.10. If m = 0, then b = by € B(0), hence (d)
holds. Assume now that m > 1. If b € B(0), then (d) holds; hence we may
assume that b € B—B(0). Then b € X (1) and by (c) we have b = ¢;y where
-y € Pm=1, By the induction hypothesis we have ¢1(-t+1)y € X(t+1) C X(¢),
hence ¢§t)b € X (t). This proves (d). Thus (a) is proved.

From (a) we see that {b € B|b ¢ ¢; P} = B(0). Let m, : By — B; be the
bijection given by

(€) mCs0 = (ot if s+t < n and M50 = Ct425—nn—s if S+t 21
From 17.1.10, we see that qﬁgt)Cs,o — m(s,0 € X(t + 1), hence

(£) ${7¢s,0 = meCs,0 mod gV P.

The lemma is proved.

Lemma 17.1.12. Consider the admissible form (,) on P defined as in
17.1.8, in terms of the admissible forms 17.1.4, 17.1.5, on M, and P,.
Then B is almost orthonormal with respect to (,).

From the definition it is clear that the basis (bs s ) of P is almost or-
thonormal (actually different elements in this basis are orthogonal to each
other). Since B is related to this basis as described in 17.1.8, it follows that
B is also almost orthonormal.
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We now see that the hypotheses of 16.3.5 are verified in our case. Ap-
plying Proposition 16.3.5 to B, and taking into account 17.1.11(e),(f), we
obtain the following result.

Proposition 17.1.13. We have

Gi(Corsr) = Coory1 mod v™IL(P) if s+’ <,

i(Cs,57) = (41, mod vTIL(P) if s+ ' 2 m,

€i(Cs,s') =Cs,9—1 mod v IL(P) ifs+s' <mnands >1,

€i((s,s) = (s—1,»» mod v IL(P) if s+ s’ >n,

€i(¢s,0) =0 mod v~1L(P) if s < n.

Using Lemma 17.1.8, we can restate the proposition as follows.
Corollary 17.1.14. ¢;(bss') = by w41 mod v-1L(P)NP*+'+1 ifs + s’ < n,

bi(bs,s) = boy1,e mod v IL(P)N P+ ifs 45" >n,

€i(bs,s') = bs,er—1 mod v IL(P)N P+ =1 if s+ ' <n,

€i(bs,er) = bs—1,4 mod v IL(PYNP+ -1 ifs+ ¢ >n.

What we actually get are the statements of the corollary with £(P) N

~ Ps+s'E1 peplaced by L(P). But b,y € P*t%; hence from 17.1.6(a),
Gi(bs,or) € PoHe'+1 and &(bs ) € P*+'~1, The corollary follows.

Corollary 17.1.15. Let P € D;, M € C! and let (P ® M, ¢;,¢;) € D; be
defined as in 17.1.2. Let x € P and y € M™ be such that ¢;z = 0, E;y = 0.
(Then n > 0.) For any m > 0, let L., be the Z[v—']-submodule of P ® M
generated by the vectors ¢§s)z ® Fi(s )y withs+ s =m. Weset L_; =0.
We have
367z ® Fy) = 62 @ F' Yy mod v™'Lypyir if s+ < n;
&6z 0 Fy) = {2 @ F' ™y mod v='Loyy_y f s+ <n;
(8720 Fy) = ¢ V2@ Fy mod v Lovy—r f s+ >n.
We may identify Py ® M,, with the subspace of P ® M spanned by the
vectors ¢§s)x ® Fi(s )y with s > 0 and 0 < s’ < n. It is in fact a subobject
in D;. Therefore the result follows from the previous corollary.

17.2. SECOND APPLICATION TO TENSOR PRODUCTS

17.2.1. We consider two integers p > 0 and n > 0 and form the tensor
product M = M, ® M,,. This is again an object of C; hence the operators
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E‘i,f‘i : M, ® M, - M, ® M, are well-defined. Now M, has a basis
{bs|0 < s’ < n} as in 17.1.5; similarly, M), has a basis {b,|0 < s < p} as in
17.1.5; Then

{bs,s =bs ® by |0 < s < p,0 <8 <n}

is a basis of M. As in 17.1.7, we define

!

8
- —g)|s+t
Cs'sl = Zv«i t(n+t—s') [ :I bs+i,3'—t

t=0 t

1

for0<s<p s >0,s+5 <n,

3/

- n+t—s

(o, = E :Ui t(s-H)[ t ] btt,er—t
t=0

)

for 0 < s <p,0< s <n,s+s > n; the two definitions agree if s+ s’ = n.

The vectors (, ,» just described form a basis B of the vector space M,
which is related to the basis (b, ) by a matrix with entries in Z[v~!] whose
constant terms form the identity matrix. (This is seen as in 17.1.8 or can
be deduced from that lemma, using the natural surjective map P — M
which takes bs,s» to bs o if s < p and to zero if s > p; that map also takes
(s,s to (5,¢ if s < p and to zero if s > p.) Hence the A(Z)-submodule of
M, generated by the elements (b, ), coincides with the A(Z)-submodule
generated by the elements ((; s ); we denote it by L(M).

Asin 17.1.9, we see that the .A-submodule of M generated by B is stable
" under El.(h),Fi("); hence B is an integral basis. As in 17.1.12, we see that
- B is almost orthonormal with respect to the form (,) on M defined as in
17.1.3 in terms of the forms (,) on M,, M,, (see 17.1.5). As in 17.1.11, we
see that the basis B of M is adapted. (Again, this could be deduced from
the corresponding result for P.)

We now see that the hypotheses of 16.3.5 are verified in our case. Ap-
plying Proposition 16.3.5 to B, we obtain the following result, analogous
to 17.1.13.

Proposition 17.2.2. We have
Fi(Caw) = Cow+1 mod v IL(M) if s+ <n;
Fy(Cs,s) = Cs+1,6¢ mod v IL(M) if s <p and s+ s' > n;
Fy(¢pe) =0 mod v=1L(M) if s+ &' > n;
Ei(Cowr) = Coy—1 mod v™'L(M) if s+ <n and s’ > 1;
Ei(Cs,s) = Co—1,0 mod v 1L(M) if s+ 5 > n;
Ei(Cs0) =0 mod v~1L(M) if s < n.
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As in 17.1.4, we can restate the proposition as follows.

Corollary 17.2.3. Fi(b, o) = bs 41 mod v 1L(M) if s+ 8 < n;
f‘i(bs,sr) =bst1,¢ mod v IL(M) ifs<pands+s >n;
Fi(bps) =0 mod v 1L(M) if s+5 >n;
Ei(bs o) =bso—1 mod v 1L(M) ifs+s <nands >1;
E‘i(bs‘s:) =bs_1,# mod v IL(M) if s+ >n;
Ei(b,0) =0 mod v-1L(M) if s < n.
Corollary 17.2.4. Let M € C!, M € C. and let M ® M € C! be defined as

in 5.8.1. Let x € MP and y € M™ be such that Eiz = 0, E;y = 0.~(Then
p>0,n2>0.) For any m > 0, let L be the A(Z)-submodule of M @ M

generated by the vectors Fi(s)a: ® Fi(s,)y. We have
ﬁ}(Fi(s)m ® Fi(sl)y) = Fi(s)x ® F'i(8’+l)y mod v=1L if s+ &' < n;
F(FPz@ F*y) = F**Y2 @ F*)y mod v-!L if s+ >n;
E,-(Fi(s):v ® Fi(sl)y) = F,-(s)a: ® Fi(sl_l)y mod v™!L if s+ <n;
E(FPz@Fy) = F* V2@ F)y mod v1L if s+ > n.

We may identify M, ® M, with the subspace of M ® M spanned by
the vectors Fi(s)z ® Fi(s )y with0 < s<pand 0 < s’ <n. Itisin fact a
subobject in C;. Therefore the result follows from the previous corollary.

17.3. THE OPERATORS ¢;,&; : f — f

17.3.1. We shall regard f as a {{-module as in 15.1.4. Thus, for each ¢ € I,
¢; : £ — f acts as left multiplication by 8; and ¢; : f — f is the linear map
;v in 1.2.13. For any ¢ € I, f with the operators ¢;,¢; : f — f is then an
object of D;. (See 16.1.1.) Hence the operators ¢;,é; : f — f (see 16.1.3)
are well-defined.

Note that the form (,) on f is admissible in the sense of 16.2.2 for any 1.

17.3.2. For a fixed i € I, we define a Q(v)-basis B* of f as follows. By
definition, B* = L>0B(t) where Bi(0) is any subset of B such that
B;,o = B*(0) U (—B*(0)) and, for t > 0, Bi(t) is the image of B*(0) under
mit : Bio = By (see 14.3.2(c)). By definition, we have B = B*U(—B?) and
Bt is adapted (in the sense of 16.3.1) to f € D;.

By definition of B, we see that B' is almost orthonormal for (,) and the
A-module it generates is 4f.
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17.3.3. Let L(f) = {z € af|(z,z) € A}. From Theorem 14.2.3 and
Lemma 14.2.2, it follows that £(f) is the Z[v~!]-submodule of f generated
by Bt
Lemma 17.3.4. (a) af is stable under the operators e,-,d)gt) :f — £, for
anyi € l.

(b) L(f) is stable under the operators bi, &£ —f, foranyieI.

The stability under qﬁgt) is clear from definitions. The stability under ¢;
follows from 13.2.4. This gives (a). Now (b) follows from Lemma 16.2.8(a)
applied to f, (,) and B*.

Applying Proposition 16.3.5 to our case, we see that the following holds.

Proposition 17.3.5. Letbe B’;(t). Let by € B*(0) be the unique element
such that m;1bp = b. We have ¢;(b) = m; 44100 mod v~'L(f). We have
&(b) = mit—1bp mod v IL(f) if t > 1 and &(b) = 0 mod v~ 1L(f) if
t=0.

17.3.6. The following result shows that the endomorphisms of the Z-
médule L£(f)/v~1L(f) induced by ¢;, & act, with respect to the signed basis
given by the image of B, in a very simple way, described in terms of the
bijections ; , in 14.3.2(c).

Corollary 17.3.7. Leti € I and let b € B;;;. Let by € B;;p be the unique
_ element such that m; bo = b. We have

(a) $i(b) = mi 4100 mod vTIL(F);

(b) &(b) = mis—1bo mod v L(f) if t > 1 and &(b) = 0 mod v~'L(f)
ift =0.

(c) Ifi € I and b € B, then we have ¢;(b) = b’ mod v~ L(f) for a
unique b’ € B. Moreover, &b’ = b mod v~ 1L(f).

(d) If i € I and b € B;,, for some n > 0, then we have &(b) = b’
mod v~ L(f) for a unique b € B. Moreover, ¢;b"” =b mod v~ L(f).

We apply 17.3.5 to b if b € B or to —b if —b € B;. This gives (a) and
(b).

Let ' = ;i nt+1bo € Bi;ny1. We have q—S,-(b) =b mod v~'L(f) by (a) and
& (') = b mod v~ L(f) by (b). This proves (c).

Assume now that b € B;,, with n > 0. Let b” = m; ,_1bp € Bi.n—1. We
have &(b) = b mod v~1L(f) by (b) and ¢;(b") = b mod v=1L(f) by (a).
This proves (d).



