Kashiwara's Operators in Rank 1

16.1. Definition of the Operators $ilde{\phi}_i, ilde{\epsilon}_i$ and $ilde{F}_i, ilde{E}_i$

16.1.1. In this chapter we fix $i \in I$. Besides the category C'_i (see 5.1.1), we shall consider another category \mathcal{D}_i which shares some of the properties of C'_i .

Let \mathcal{D}_i be the category whose objects are $\mathbf{Q}(v)$ -vector spaces P provided with two $\mathbf{Q}(v)$ -linear maps $\epsilon_i, \phi_i : P \to P$ such that ϵ_i is locally nilpotent and

(a)
$$\epsilon_i \phi_i = v_i^2 \phi_i \epsilon_i + 1;$$

the morphisms in the category are $\mathbf{Q}(v)$ -linear maps commuting with ϵ_i, ϕ_i .

For $P \in \mathcal{D}_i$ and $s \in \mathbf{Z}$, let $\phi_i^{(s)}: P \to P$ be defined as $\phi_i^s/[s]_i^!$ if $s \ge 0$ and as 0, if s < 0. From (a) we deduce by induction on N:

(b)
$$\epsilon_i \phi_i^{(N)} = v_i^{2N} \phi_i^{(N)} \epsilon_i + v_i^{N-1} \phi_i^{(N-1)}$$
 for all N .

For any $t \geq 0$, we consider the operator

$$\Pi_t = \sum_{s \ge 0} (-1)^s v_i^{s(s-1)/2} \phi_i^{(s)} \epsilon_i^{s+t} : P \to P.$$

This is well-defined, since ϵ_i is locally nilpotent. For $N \geq 0$, we define a subspace P(N) of P by $P(0) = \{x \in P | \epsilon_i(x) = 0\}$ and $P(N) = \phi_i^{(N)} P(0)$.

Lemma 16.1.2. (a) We have $\epsilon_i \Pi_t = 0$ for all $t \geq 0$.

- (b) We have $\sum_{t\geq 0} v^{-t(t-1)/2} \phi_i^{(t)} \Pi_t = 1$. The sum is well-defined since, for any $x \in P$, we have $\Pi_t(x) = 0$, for large t.
- (c) We have a direct sum decomposition $P = \bigoplus_{N \geq 0} P(N)$ as a vector space. Moreover, for any $N \geq 0$, the map $\phi_i^{(N)}$ restricts to an isomorphism of vector spaces $P(0) \cong P(N)$.
 - (d) $\phi_i: P \to P$ is injective.

Using 16.1.1(b), we have

$$\begin{split} \epsilon_i \Pi_t &= \sum_{s \geq 0} (-1)^s v_i^{s(s-1)/2} (v_i^{2s} \phi_i^{(s)} \epsilon_i^{s+t+1} + v_i^{s-1} \phi_i^{(s-1)} \epsilon_i^{s+t}) \\ &= \sum_{s \geq 0} (-1)^s \phi_i^{(s)} \epsilon_i^{s+t+1} (v_i^{s(s-1)/2+2s} - v_i^{s(s+1)/2+s}) = 0 \end{split}$$

and (a) is proved. Now (b) follows immediately from 1.3.4.

We prove (c). If $x \in P$, we have by (b): $x = \sum_{N} \phi_i^{(N)} x_N$ where $x_N = v_i^{-N(N-1)/2} \Pi_N(x)$. By (a), we have $x_N \in P(0)$. It remains to show the uniqueness of the x_N ; it is enough to prove the following statement. If $0 = \sum_{N \geq 0} \phi_i^{(N)} x_N$, where $x_N \in P(0)$ are zero for all $N > N_0$ (for some $N_0 \geq 0$), then $x_{N_0} = 0$.

We argue by induction on N_0 . For $N_0 = 0$ there is nothing to prove. Assume that $N_0 \geq 1$. Applying ϵ_i and using 16.1.1(b), we obtain $0 = \sum_{N\geq 0} v_i^{(N-1)} \phi_i^{(N-1)} x_N$. The induction hypothesis is applicable to this equation and gives $x_{N_0} = 0$. This proves (c).

- (d) follows immediately from (c).
- **16.1.3.** We define linear maps $\tilde{\phi}_i, \tilde{\epsilon}_i : P \to P$ by $\tilde{\phi}_i(\phi_i^{(N)}y) = \phi_i^{(N+1)}y$ and $\tilde{\epsilon}_i(\phi_i^{(N)}y) = \phi_i^{(N-1)}y$ for all $y \in P(0)$.

Lemma 16.1.4. Let $M \in \mathcal{C}'_i$ and let $x \in M^t$.

- (a) We can write uniquely $x = \sum_{s;s \geq 0; s+t \geq 0} F_i^{(s)} x_s$ where $x_s \in \ker(E_i : M^{t+2s} \to M)$ and $x_s = 0$ for large enough s; we can write uniquely $x = \sum_{s;s \geq 0; s-t \geq 0} E_i^{(s)} x_s'$ where $x_s' \in \ker(F_i : M^{t-2s} \to M)$ and $x_s' = 0$ for large enough s.
- (b) We have $\sum_{s;s\geq 0;s+t\geq 0} F_i^{(s+1)} x_s = \sum_{s;s\geq 0;s-t\geq 0} E_i^{(s-1)} x_s'$. We denote either of these sums by $\tilde{F}_i(x)$.
- (c) We have $\sum_{s;s\geq 0;s+t\geq 0} F_i^{(s-1)} x_s = \sum_{s;s\geq 0;s-t\geq 0} E_i^{(s+1)} x_s'$. We denote either of these sums by $\tilde{E}_i(x)$.

This follows from 5.1.5 (we are reduced by 5.1.4 to the case considered there.)

The operators $\tilde{\phi}_i$, $\tilde{\epsilon}_i$ and \tilde{F}_i , \tilde{E}_i in this and the previous subsection are called *Kashiwara's operators*.

16.1.5. Let $M \in \mathcal{C}'_i$. Consider the $\mathbf{Q}(v)$ -linear maps $\tilde{E}_i, \tilde{F}_i: M \to M$ defined in the previous lemma. We have

$$x \in M^n \implies \tilde{E}_i(x) \in M^{n+2}, \tilde{F}_i(x) \in M^{n-2}.$$

16.2. Admissible Forms

16.2.1. We fix $P \in \mathcal{D}_i, M \in \mathcal{C}'_i$. We will study the properties of the operators $\tilde{\phi}_i : P \to P, \tilde{\epsilon}_i : P \to P$ and $\tilde{F}_i : M \to M, \tilde{E}_i : M \to M$ in parallel.

- **16.2.2.** A symmetric bilinear form $(,): P \times P \to \mathbf{Q}(v)$ is said to be *admissible* if
 - (a) $(x, \epsilon_i(y)) = (1 v_i^{-2})(\phi_i x, y)$ for all $x, y \in P$.

A symmetric bilinear form $(,): M \times M \to \mathbf{Q}(v)$ is said to be admissible if

- (a') $(M^n, M^{n'}) = 0$ for $n \neq n'$ and
- (b') $(E_i x, y) = v_i^{n-1}(x, F_i y)$ for all $x \in M^{n-2}, y \in M^n$.
- **16.2.3.** Besides the subrings $\mathcal{A} = \mathbf{Z}[v, v^{-1}]$ and $\mathbf{A} = \mathbf{Q}[[v^{-1}]] \cap \mathbf{Q}(v)$ of $\mathbf{Q}(v)$ we shall need the subrings $\mathbf{A}(\mathbf{Z}) = \mathbf{Z}[[v^{-1}]] \cap \mathbf{Q}(v)$ and $\hat{\mathcal{A}} = \mathbf{Z}((v^{-1})) \cap \mathbf{Q}(v)$ of $\mathbf{Q}((v^{-1}))$.
- **16.2.4.** Let B be a basis of the $\mathbf{Q}(v)$ -vector space P (resp. M). We say that B is *integral* if
- (a) the \mathcal{A} -submodule $_{\mathcal{A}}P$ of P generated by B is stable under $\epsilon_{i}, \phi_{i}^{(t)}: P \to P$ for all $t \geq 0$ (resp. the $\hat{\mathcal{A}}$ -submodule $_{\hat{\mathcal{A}}}M$ of M generated by B is stable under $E_{i}^{(t)}, F_{i}^{(t)}: M \to M$ for all $t \geq 0$); in the case of M, it is further assumed that $B \cap M^{n}$ is a basis of M^{n} for all n.

Assume that we are given an admissible form (,) and an integral basis B for P (resp. M) which is almost orthonormal (see 14.2.1). Let

$$\mathcal{L}(P) = \{ x \in {}_{\mathcal{A}}P | (x, x) \in \mathbf{A} \}$$

and

$$\mathcal{L}(M) = \{x \in {}_{\hat{\mathcal{A}}}M | (x,x) \in \mathbf{A}\}.$$

Lemma 16.2.5. (a) $\mathcal{L}(P)$ is a $\mathbf{Z}[v^{-1}]$ -submodule of ${}_{\mathcal{A}}P$ and B is a basis of it.

- (b) Let $x \in AP$ be such that $(x, x) \in 1 + v^{-1}A$. Then there exists $b \in B$ such that $x = \pm b \mod v^{-1}\mathcal{L}(P)$.
 - (c) Let $x \in {}_{\mathcal{A}}P$ be such that that $(x,x) \in v^{-1}\mathbf{A}$. Then $x \in v^{-1}\mathcal{L}(P)$.
 - (d) $\mathcal{L}(M)$ is an $\mathbf{A}(\mathbf{Z})$ -submodule of $_{\hat{A}}M$ and B is a basis of it.
- (e) Let $x \in {}_{\hat{\mathcal{A}}}M$ be such that $(x,x) \in 1 + v^{-1}\mathbf{A}$. Then there exists $b \in B$ such that $x = \pm b \mod v^{-1}\mathcal{L}(M)$.
 - (f) Let $x \in {}_{\hat{\mathcal{A}}}M$ be such that that $(x,x) \in v^{-1}\mathbf{A}$. Then $x \in v^{-1}\mathcal{L}(M)$.

This follows from Lemma 14.2.2.

Lemma 16.2.6. Let $y \in {}_{\mathcal{A}}P$ (resp. $y \in {}_{\hat{\mathcal{A}}}M \cap M^t$ with $t \geq 0$) be such that $\epsilon_i y = 0$ (resp. $E_i y = 0$); let $n \geq 0$ (resp. $0 \leq n \leq t$). We have $(\phi_i^{(n)} y, \phi_i^{(n)} y) = \pi_n(y, y)$ (resp. $(F_i^{(n)} y, F_i^{(n)} y) = \pi'_n(y, y)$) where $\pi_n \in 1 + v^{-1}\mathbf{Z}[[v^{-1}]]$ (resp. $\pi'_n \in 1 + v^{-1}\mathbf{Z}[[v^{-1}]]$).

It suffices to show that

$$(\phi_i^{(n+1)}y,\phi_i^{(n+1)}y) = \pi(\phi_i^{(n)}y,\phi_i^{(n)}y)$$

(resp. $(F_i^{(n+1)}y, F_i^{(n+1)}y) = \pi'(F_i^{(n)}y, F_i^{(n)}y)$) where $\pi \in 1 + v^{-1}\mathbf{Z}[[v^{-1}]]$ (resp. $\pi' \in 1 + v^{-1}\mathbf{Z}[[v^{-1}]]$) and $n \ge 0$ (resp. $0 \le n < t$).

We have

$$\begin{split} &(\phi_i^{(n+1)}y,\phi_i^{(n+1)}y) = ([n+1]_i^{-1}\phi_i\phi_i^{(n)}y,\phi_i^{(n+1)}y) \\ &= (1-v_i^{-2})^{-1}[n+1]_i^{-1}(\phi_i^{(n)}y,\epsilon_i\phi_i^{(n+1)}y) \\ &= (1-v_i^{-2})^{-1}[n+1]_i^{-1}v_i^n(\phi_i^{(n)}y,\phi_i^{(n)}y). \end{split}$$

Similarly,

$$\begin{split} &(F_i^{(n+1)}y,F_i^{(n+1)}y) = ([n+1]_i^{-1}F_iF_i^{(n)}y,F_i^{(n+1)}y) \\ &= v_i^{-t+2n+1}[n+1]_i^{-1}(F_i^{(n)}y,E_iF_i^{(n+1)}y) \\ &= v_i^{-t+2n+1}[-n+t]_i[n+1]_i^{-1}(F_i^{(n)}y,F_i^{(n)}y). \end{split}$$

It remains to observe that

$$[n+1]_i^{-1}v_i^n \in 1 + v^{-1}\mathbf{Z}[[v^{-1}]]$$

for $0 \le n$ and

$$v_i^{-t+2n+1}[-n+t]_i[n+1]_i^{-1} \in 1+v^{-1}\mathbf{Z}[[v^{-1}]]$$

for $0 \le n < t$. The lemma follows.

Lemma 16.2.7. (a) Let $x \in {}_{\mathcal{A}}P$; write $x = \sum_{N \geq 0} y_N$ where $y_N = \phi_i^{(N)} x_N$ and $x_N \in P(0)$ are zero for large N (see 16.1.2(c)). Then $x_N \in {}_{\mathcal{A}}P$ for all N.

(b) If $x \in \mathcal{L}(P)$, then each x_N and y_N above is in $\mathcal{L}(P)$. If, in addition, $(x,x) \in 1 + v^{-1}\mathbf{A}$, then there exists $N_0 \geq 0$ and $b \in B$ such that $x_{N_0} = \pm b \mod v^{-1}\mathcal{L}(P)$ and $x_N = 0 \mod v^{-1}\mathcal{L}(P)$, $y_N = 0 \mod v^{-1}\mathcal{L}(P)$ for all $N \neq N_0$.

- (c) Let $x \in M^t \cap_{\hat{\mathcal{A}}} M$. We write $x = \sum_{s;s \geq 0; s+t \geq 0} y_s$ where $y_s = F_i^{(s)} x_s$ and $x_s \in \ker(E_i : M^{t+2s} \to M)$ are zero for large enough s; then $x_s \in_{\hat{\mathcal{A}}} M$ for all s.
- (d) If $x \in M^t \cap \mathcal{L}(M)$, then each x_s and y_s above is in $\mathcal{L}(M)$. If, in addition, $(x,x) \in 1 + v^{-1}\mathbf{A}$, then there exists $s_0 \geq 0$ and $b \in B$ such that $x_{s_0} = \pm b \mod v^{-1}\mathcal{L}(M)$ and $x_s = 0 \mod v^{-1}\mathcal{L}(M)$, $y_s = 0 \mod v^{-1}\mathcal{L}(M)$ for all $s \neq s_0$.

We prove (a). We have $x_N = v_i^{-N(N-1)/2} \Pi_N(x)$. Since ${}_{\mathcal{A}}P$ is stable under ϵ_i and $\phi_i^{(t)}$ for all t, we see that ${}_{\mathcal{A}}P$ is stable under $\Pi_N: P \to P$. Hence $x_N \in {}_{\mathcal{A}}P$. This proves (a).

Next we show that the subspaces $\phi^{(N)}P(0)$, $\phi^{(N')}P(0)$ are orthogonal to each other under (,), if $N \neq N'$. We argue by induction on N+N'. If $N \geq 1$, we have for $z, z' \in P(0)$ that $(\phi_i^{(N)}z, \phi_i^{(N')}z')$ is equal to a scalar times $(\phi_i^{(N-1)}z, \epsilon_i\phi_i^{(N')}z')$, hence to a scalar times $(\phi_i^{(N-1)}z, \phi_i^{(N'-1)}z)$ so that it is zero by the induction hypothesis. We treat similarly the case where $N' \geq 1$. If $N \leq 0$ and $N' \leq 0$, the result is trivial; our assertion follows.

Now let $x \in {}_{\mathcal{A}}P$ be non-zero. We have $(x,x) = \sum_N (y_N,y_N)$. We can find $t \in \mathbf{Z}$ such that $v^{-t}y_N \in \mathcal{L}(P)$ for all N and $v^{-t+1}y_N \notin \mathcal{L}(P)$ for some N. Then there exist integers $a_N \geq 0$, not all equal to 0 such that $v^{-2t}(y_N,y_N) - a_N \in v^{-1}\mathbf{A}$ for all N. Hence

(e)
$$v^{-2t}(x,x) - \sum_{N} a_{N} \in v^{-1} \mathbf{A}$$
 and $\sum_{N} a_{N} > 0$.

If $x \in \mathcal{L}(P)$, then (e) shows that $t \leq 0$; hence $y_N \in \mathcal{L}(P)$ for all N and, using the previous lemma, we see that $x_N \in \mathcal{L}(P)$ for all N. If now $x \in \mathcal{L}(P)$ satisfies $(x,x) \in 1 + v^{-1}\mathbf{A}$, then (e) shows that t = 0 and $a_{N_0} = 1$ for some N_0 and $a_N = 0$ for all $N \neq N_0$. In other words, we have $(y_{N_0}, y_{N_0}) \in 1 + v^{-1}\mathbf{A}$ and $(y_N, y_N) \in v^{-1}\mathbf{A}$ for all $N \neq N_0$. Using 16.2.6, we deduce that $(x_{N_0}, x_{N_0}) \in 1 + v^{-1}\mathbf{A}$ and $(x_N, x_N) \in v^{-1}\mathbf{A}$ for all $N \neq N_0$ and the second assertion of (b) follows from 16.2.5.

We prove (c). If $x_s=0$ for all s, then there is nothing to prove. Hence we may assume that $x_s\neq 0$ for some s and we denote by N the largest index such that $x_N\neq 0$. We have $N\geq 0, N+t\geq 0$. We argue by induction on N. If N=0, there is nothing to prove; hence we may assume that N>0. We have $E_i^{(N)}x=\sum_{s;s\geq 0;s+t\geq 0}E_i^{(N)}F_i^{(s)}x_s=\begin{bmatrix}2^{N+t}\\N\end{bmatrix}_ix_N$. Since $E_i^{(N)}{}_{\hat{A}}M\subset {}_{\hat{A}}M$, we have ${2N+t\brack N}_ix_N\in {}_{\hat{A}}M$. We have ${2N+t\brack N}_i=\hat{A}$, hence $x_N\in {}_{\hat{A}}M$. Then $x'=x-F_i^{(N)}x_N\in {}_{\hat{A}}M$. The induction hypothesis is applicable to x' and (c) follows.

Next we show that $(F_i^{(N)}z, F_i^{(N')}z') = 0$ if $N \neq N'$ and z, z' are homogeneous elements in the kernel of E_i . We argue by induction on N+N'. If $N \geq 1$, we have that $(F_i^{(N)}z, F_i^{(N')}z')$ is equal to a scalar times $(F_i^{(N-1)}z, E_iF_i^{(N')}z')$, hence to a scalar times $(F_i^{(N-1)}z, F_i^{(N'-1)}z)$ so that it is zero, by the induction hypothesis. We treat similarly the case where $N' \geq 1$. If $N \leq 0$ and $N' \leq 0$, the result is trivial; our assertion follows. The remainder of the proof is entirely similar to that of (b).

Lemma 16.2.8. (a) $\tilde{\phi}_i, \tilde{\epsilon}_i : P \to P \text{ map } \mathcal{L}(P) \text{ into itself.}$

(b) $\tilde{F}_i, \tilde{E}_i : M \to M \text{ map } \mathcal{L}(M) \text{ into itself.}$

Let $x \in \mathcal{L}(P)$. We must show that $\tilde{\phi}_i x \in \mathcal{L}(P)$, $\tilde{\epsilon}_i x \in \mathcal{L}(P)$. By 16.2.7, we may assume that $x = \phi_i^{(N)} x_N$ for some x_N as in that lemma. But then $\tilde{\phi}_i x = \phi_i^{(N+1)} x_N \in \mathcal{L}(P)$ and $\tilde{\epsilon}_i x = \phi_i^{(N-1)} x_N \in \mathcal{L}(P)$, by 16.2.6. We argue in the same way for M.

16.2.9. For any $N \geq 0$, we denote by $T_N(P)$ the set of all $x \in {}_{\mathcal{A}}P$ such that $x = \phi_i^{(N)}x'$ for some $x' \in P(0) \cap {}_{\mathcal{A}}P$ with $(x', x') = 1 \mod v^{-1}\mathbf{A}$.

For any s,t such that $s \geq 0, s+t \geq 0$, we denote by $T_{s,t}(M)$ the set of all $x \in {}_{\hat{\mathcal{A}}}M$ such that $x = F_i^{(s)}x'$ for some $x' \in \ker(E_i : M^{t+2s} \to M) \cap {}_{\hat{\mathcal{A}}}M$ with $(x',x')=1 \mod v^{-1}\mathbf{A}$.

From the definitions we see that

- (a) $\phi_i(T_N(P)) \subset T_{N+1}(P);$
- (b) $\tilde{\epsilon}_i(T_N(P)) \subset T_{N-1}(P)$ for $N \geq 1$, $\tilde{\epsilon}_i(T_0(P)) = 0$;
- (c) if $N \geq 0$, then $\tilde{\phi}_i : T_N(P) \to T_{N+1}(P)$ and $\tilde{\epsilon}_i : T_{N+1}(P) \to T_N(P)$ are inverse bijections;
- (d) $\tilde{F}_i(T_{s,t}(M)) \subset T_{s+1,t-2}(M)$ if $s \geq 0, s+t \geq 1$, and $\tilde{F}_i(T_{s,t}(M)) = 0$ if $s \geq 0, s+t = 0$;
- (e) $\tilde{E}_i(T_{s,t}(M)) \subset T_{s-1,t+2}(M)$ if $s \ge 1, s+t \ge 0$, and $\tilde{E}_i(T_{s,t}(M)) = 0$ if $s = 0, t \ge 0$;
- (f) if $s \geq 0, s+t \geq 1$, then $\tilde{F}_i: T_{s,t}(M) \to T_{s+1,t-2}(M)$ and $\tilde{E}_i: T_{s+1,t-2}(M) \to T_{s,t}(M)$ are inverse bijections.

Lemma 16.2.10. (a) Case of P. We have

$$\pm B + v^{-1}\mathcal{L}(P) = \bigcup_{N \ge 0} T_N(P) + v^{-1}\mathcal{L}(P).$$

Moreover, the sets $B_N = B \cap (T_N(P) + v^{-1}\mathcal{L}(P))$ $(N \ge 0)$ form a partition of B.

(b) Case of M. We have

$$\pm B + v^{-1}\mathcal{L}(M) = \bigcup_{s,t;s \ge 0, s+t \ge 0} T_{s,t}(M) + v^{-1}\mathcal{L}(M).$$

Moreover, the sets $B_{s,t} = B \cap (T_{s,t}(M) + v^{-1}\mathcal{L}(M))$ $(s \ge 0, s + t \ge 0)$ form a partition of B.

By 16.2.6 and 16.2.5, we have $T_N(P) \subset \pm B + v^{-1}\mathcal{L}(P)$. Conversely, let $x \in \pm B$. We have $(x,x) \in 1+v^{-1}\mathbf{A}$. Hence, by 16.2.7, we have x = y' + y'' where $y'' \in v^{-1}\mathcal{L}(P)$ and $y' = \phi_i^{(N)}x'$ for some $x' \in P(0) \cap_{\mathcal{A}}P$ such that $x' \in \pm B + v^{-1}\mathcal{L}(P)$ and some $N \geq 0$. Thus $x \in T_N(P) + v^{-1}\mathcal{L}(P)$ and the first assertion of (a) follows. To prove the second assertion of (a), it is enough to show that $T_{N_1}(P) \cap (T_{N_2}(P) + v^{-1}\mathcal{L}(P))$ is empty for $N_1 \neq N_2$. Assume that $\phi_i^{(N_1)}x_1 = \phi_i^{(N_2)}x_2 + v^{-1}z$ where $z \in \mathcal{L}(P)$ and $x_1, x_2 \in P(0) \cap (\mathcal{A}P)$ satisfy $(x_1, x_1) = 1 \mod v^{-1}\mathbf{A}$ and $(x_2, x_2) = 1 \mod v^{-1}\mathbf{A}$. By 16.2.7, we can write $z = \sum_{N \geq 0} \phi_i^{(N)} z_N$ where $z_N \in \mathcal{L}(P) \cap P(0)$. We have $\phi_i^{(N_1)}x_1 = \phi_i^{(N_2)}x_2 + v^{-1}\sum_{N \geq 0} \phi_i^{(N)}z_N$. This implies, by 16.1.2(c), that $z_N = 0$ for $N \neq N_1, N_2, v^{-1}z_{N_1} = x_1$ and $v^{-1}z_{N_2} = -x_2$. From the last equality we deduce that $(x_2, x_2) = v^{-2}(z_{N_2}, z_{N_2}) \in v^{-2}\mathbf{A}$, a contradiction. Thus (a) is proved. The proof of (b) is entirely similar.

16.2.11. Using the previous lemma and the results in 16.2.9, we deduce the following.

In the case of P we have:

- (a) $\tilde{\phi}_i(\pm B_N + v^{-1}\mathcal{L}(P)) \subset \pm B_{N+1} + v^{-1}\mathcal{L}(P);$
- (b) $\tilde{\epsilon}_i(\pm B_N + v^{-1}\mathcal{L}(P)) \subset \pm B_{N-1} + v^{-1}\mathcal{L}(P)$ for $N \geq 1$, and $\tilde{\epsilon}_i(\pm B_0 + v^{-1}\mathcal{L}(P)) \subset v^{-1}\mathcal{L}(P)$;
- (c) if $N \geq 0$, then $\tilde{\phi}_i : \pm B_N + v^{-1}\mathcal{L}(P) \to \pm B_{N+1} + v^{-1}\mathcal{L}(P)$ and $\tilde{\epsilon}_i : \pm B_{N+1} + v^{-1}\mathcal{L}(P) \to \pm B_N + v^{-1}\mathcal{L}(P)$ are inverse bijections.

In the case of M we have:

- (d) $\tilde{F}_i(\pm B_{s,t} + v^{-1}\mathcal{L}(M)) \subset \pm B_{s+1,t-2} + v^{-1}\mathcal{L}(M))$ if $s \ge 0, s+t \ge 1$, and $\tilde{F}_i(\pm B_{s,t} + v^{-1}\mathcal{L}(M)) = 0$ if $s \ge 0, s+t = 0$;
- (e) $\tilde{E}_i(\pm B_{s,t} + v^{-1}\mathcal{L}(M)) \subset \pm B_{s-1,t+2} + v^{-1}\mathcal{L}(M))$ if $s \ge 1, s+t \ge 0$, and $\tilde{E}_i(\pm B_{s,t} + v^{-1}\mathcal{L}(M)) = 0$ if $s = 0, t \ge 0$;
- (f) if $s \geq 0, s+t \geq 1$, then $\tilde{F}_i : \pm B_{s,t} + v^{-1}\mathcal{L}(M)) \to \pm B_{s+1,t-2} + v^{-1}\mathcal{L}(M)$) and $\tilde{E}_i : \pm B_{s+1,t-2} + v^{-1}\mathcal{L}(M)) \to \pm B_{s,t} + v^{-1}\mathcal{L}(M)$) are inverse bijections.

16.3. ADAPTED BASES

- **16.3.1.** P, M, (,) are as in the previous section. We say that a basis B of P is adapted if there exists a partition $B = \bigcup_{n \geq 0} B(n)$ and bijections $\pi_n : B(0) \to B(n)$ for all $n \geq 0$ such that
 - (a) for any $N \ge 0$, $B(N) \cup B(N+1) \cup B(N+2) \cup ...$ is a basis of $\phi_i^{(N)} P$;
 - (b) for any $b \in B(0)$ and any $N \ge 0$ we have $\phi_i^{(N)}b \pi_N(b) \in \phi_i^{(N+1)}P$.

We say that a basis B of M is adapted if there exists a partition

$$B = \cup_{s,t;s \ge 0, s+t \ge 0} B(s,t)$$

and bijections

$$\pi_{s,t}: B(0,2s+t) \to B(s,t)$$

for all s, t as above, such that

- $B(s,t) \cup B(s+1,t) \cup B(s+2,t) \cup \dots$ is a basis of $M^t \cap F_i^{(s)}M$;
 - (b) for any $b \in B(0, 2s + t)$, we have $F_i^{(s)}b \pi_{s,t}(b) \in F_i^{(s+1)}M$.

In this section it is assumed that B is integral, almost orthonormal (with respect to (,)) and adapted.

Lemma 16.3.2. *Let* $b \in B$.

- (a) Case of P. We have $b \in B_0$ if and only if $b \notin \phi_i(P)$.
- (b) Case of M. We have $b \in \bigcup_{t \geq 0} B_{0,t}$ if and only if $b \notin F_i M$.

We prove (a). Assume first that $b \in B_N$ with N > 0. Then $b = \phi_i^{(N)}x' + v^{-1}z$ where $z \in \mathcal{L}(P)$ and $x' \in P$. Since B is adapted, we can write $\phi_i^{(N)}x' = \sum c_{b'}b'$ where b' runs over $B \cap \phi_i^{(N)}P$ and $c_{b'} \in \mathbf{Q}(v)$. We can also write $z = \sum_{b''}d_{b''}b''$ where b'' runs over B and $d_{b''} \in \mathbf{Z}[v^{-1}]$. If $b \notin \phi_i^{(N)}P$, then by comparing the coefficients of b, we obtain $1 = v^{-1}d_b$, a contradiction. Thus, we have $b \in \phi_i^{(N)}P$. Since N > 0, we have $b \in \phi_iP$. Conversely, assume that $b \in \phi_iP$ and $b \in B_0$. Then $b = x' + v^{-1}z$ where $z \in \mathcal{L}(P), x' \in P(0)$, and $b \in \sum_{N>0} \phi^{(N)}P(0)$; using the equation $(P(0), \phi_i^{(N)}P(0)) = 0$ for N > 0, we deduce that (x', b) = 0, hence $(b, b) = v^{-1}(z, b) \in v^{-1}\mathbf{A}$, a contradiction. This proves (a). The proof of (b) is entirely similar.

Lemma 16.3.3. (a) Case of P. Let $b \in B_0, N \ge 0$ and let b' be the unique element of $\pm B$ such that $\tilde{\phi}_i^N(b) = b' \mod v^{-1}\mathcal{L}(P)$. Then $b' = \pi_N b$.

(b) Case of M. Let $b \in B_{0,s+2t}$ where $s \ge 0$. If $s+t \ge 0$, then there is a unique element $b' \in \pm B$ such that $\tilde{F}_i^s(b) = b' \mod v^{-1}\mathcal{L}(M)$ and $b' = \pi_{s,t}b$. If s+t < 0, then $\tilde{F}_i^s(b) = 0 \mod v^{-1}\mathcal{L}(M)$.

We prove (a). We write $b = x + v^{-1}z$ where $z \in \mathcal{L}(P)$ and $x \in P(0) \cap_{\mathcal{A}} P$ satisfies $(x, x) = 1 \mod v^{-1} \mathbf{A}$. Using 16.2.7, we write $z = \sum_{N'} z_{N'}$ where $z_{N'} \in \mathcal{L}(P) \cap \phi_i^{(N')} P(0)$ for all N'. Replacing x by $x + v^{-1}z_0$ and z by $z - z_0$, we see that we may assume that z satisfies in addition $z \in \phi_i P$. The equalities $\tilde{\phi}_i^N b = \phi_i^{(N)} x + v^{-1} \tilde{\phi}_i^N z$ and $\phi_i^{(N)} b = \phi_i^{(N)} x + v^{-1} \phi_i^{(N)} z$, together with $\tilde{\phi}_i^N z \in \mathcal{L}(P)$ and $\phi_i^{(N)} z \in \phi_i^{(N+1)} P$, imply

$$\tilde{\phi}_i^N b = \phi_i^{(N)} b \mod v^{-1} \mathcal{L}(P) + \phi_i^{(N+1)} P.$$

By assumption we have $\tilde{\phi}_{i}^{N}(b) = b' \mod v^{-1}\mathcal{L}(P)$. Hence

$$b' = \phi_i^{(N)} b \mod v^{-1} \mathcal{L}(P) + \phi_i^{(N+1)} P.$$

Moreover, we have

$$\phi_i^{(N)}b = b_1 \mod \phi_i^{(N+1)}P$$

where $b_1 = \pi_N b \in B$.

We must prove that $b'=b_1$. We have $b_1+c_1=b'+c'$ where $c_1\in \phi_i^{(N+1)}P$ and $c'\in v^{-1}\mathcal{L}(P)$. We have $b_1\notin \phi_i^{(N+1)}P$. (Otherwise, we would have $\phi_i^{(N)}b\in \phi_i^{(N+1)}P$; hence $b\in \phi_iP$, contradicting the previous lemma.) Hence, if we express b_1+c_1 as a $\mathbf{Q}(v)$ -linear combination of elements of B, the element $b_1\in B$ will appear with coefficient 1. On the other hand, if we express b'+c' as a $\mathbf{Q}(v)$ -linear combination of elements of B, then all coefficients are in $v^{-1}\mathbf{Z}[v^{-1}]$ except that of $\pm b'$.

This forces $b_1 = b'$ or $b_1 = -b'$. If $b_1 = -b'$, then we have $2b_1 + c_1 = c'$ and $\pm b_1$ appears in the left hand side with coefficient 2 and in the right hand side with coefficient in $v^{-1}\mathbf{A}$, a contradiction. Hence we have $b_1 = b'$ and (a) is proved.

The proof of (b) is entirely similar.

16.3.4. The following result shows that the action of the operators $\tilde{\phi}_i, \tilde{\epsilon}_i$ (resp. \tilde{F}_i, \tilde{E}_i) on the elements of B is described up to elements in $v^{-1}\mathcal{L}(P)$ (resp. $v^{-1}\mathcal{L}(M)$) in terms of the bijections π_n (resp. $\pi_{s,t}$) in 16.3.1.

Proposition 16.3.5.

- (a) Case of P. Let $b \in B(N)$. Let $b_0 \in B(0)$ be the unique element such that $\pi_N b_0 = b$. We have $\tilde{\phi}_i(b) = \pi_{N+1} b_0 \mod v^{-1} \mathcal{L}(P)$. We have $\tilde{\epsilon}_i(b) = \pi_{N-1} b_0 \mod v^{-1} \mathcal{L}(P)$ if $N \geq 1$ and $\tilde{\epsilon}_i(b) = 0 \mod v^{-1} \mathcal{L}(P)$ if N = 0. In particular, we have $B_N = B(N)$ for all N.
- (b) Case of M. Let $b \in B(s,t)$. Let $b_0 \in B(0,2s+t)$ be the unique element such that $\pi_{s,t}b_0 = b$. We have $\tilde{F}_i(b) = \pi_{s+1,t-2}b_0 \mod v^{-1}\mathcal{L}(M)$ if $s+t \geq 1$ and $\tilde{F}_i(b) = 0 \mod v^{-1}\mathcal{L}(M)$ if s+t = 0. We have $\tilde{E}_i(b) = \pi_{s-1,t+2}b_0 \mod v^{-1}\mathcal{L}(M)$ if $s \geq 1$ and $\tilde{E}_i(b) = 0 \mod v^{-1}\mathcal{L}(M)$ if s = 0. In particular, we have $B_{s,t} = B(s,t)$ for all s,t.

This follows from 16.3.3.