CHAPTER 16

Kashiwara’s Operators in Rank 1

16.1. DEFINITION OF THE OPERATORS ¢;,¢; AND F; E;

16.1.1. In this chapter we fix ¢ € I. Besides the category C; (see 5.1.1), we
shall consider another category D; which shares some of the properties of
C..

Let D; be the category whose objects are Q(v)-vector spaces P provided
with two Q(v)-linear maps €;,¢; : P — P such that ¢; is locally nilpotent
and

(a) €ipi = vidie: + 1;

the morphisms in the category are Q(v)-linear maps commuting with
€y ¢i-

For P € D; and s € Z, let ¢1(-3) : P — P be defined as ¢7/[s]} if s > 0
" and as 0, if s < 0. From (a) we deduce by induction on N:

(b) €™ = vV g{Ve; + vV 1NV for all N.

For any t > 0, we consider the operator

Ht — Z(_l)sv?(s—l)/2¢(3)f§+t P> P
2 ) i ‘ *

3 >0
This is well-defined, since ¢; is locally nilpotent. For N > 0, we define a
subspace P(N) of P by P(0) = {z € Ple;(z) = 0} and P(N) = ¢\ P(0).
Lemma 16.1.2. (a) We have ¢II, =0 for all t > 0.

(b) We have 3,5, v“(t'l)/zqﬁgt)ﬂt = 1. The sum is well-defined since,
for any x € P, we have I1;(z) = 0, for large t.

(c) We have a direct sum decomposition P = @&n>oP(N) as a vector
space. Moreover, for any N > 0, the map QSEN) restricts to an isomorphism
of vector spaces P(0) = P(N).

(d) ¢; : P — P is injective.

Using 16.1.1(b), we have

11, = Z(—l)svf(s_l)/z(U?3¢£S)Cf+t+l + vf“lqbgs_l)ef“)
8>0
— Z(_l)s¢(s)fg+t+1(v‘_s(s—l)/2+2s _ v._s(s+1)/2+s) -0
1 1 1 1
320
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and (a) is proved. Now (b) follows immediately from 1.3.4.

We prove (c). If z € P, we have by (b): z =55 ¢£-N):rN where zn =
vi_N(N_l)/ZHN(a:). By (a), we have zny € P(0). It remains to show the
uniqueness of the zy; it is enough to prove the following statement. If
0=>3nN>o ¢£N)xN, where zn € P(0) are zero for all N > Ny (for some
Ny > 0), then zn, = 0.

We argue by induction on Ny. For Ny = 0 there is nothing to prove.
Assume that Ny > 1. Applying ¢; and using 16.1.1(b), we obtain 0 =
Y N>0 vgN_1)¢£N_l)a:N. The induction hypothesis is applicable to this
equation and gives zx, = 0. This proves (c).

(d) follows immediately from (c).

16.1.3. We define linear maps ¢;,¢; : P — P by
88" y) = 6"y and &(sMy) = p{N Dy for all y € P(0).

Lemma 16.1.4. Let M € C and let z € M*.

(a) We can write uniquely £ =3, 50,1150 Fi(’)zs where z, € ker(E; :
Mt*2s —, M) and z, = 0 for large enough s; we can write uniquely z =
D aie>0ia 0 E®)z, where , € ker(F; : M*=2* — M) and =/, = 0 for large
enough s.

b) We h Fetz, = EC V. Wed

( ) € have 23;320;3+t20~i Ts = ZS;SZO;S—tZO i Ts- € ae
note either of these sums by Fi(x).

-1 +1

(C)’ We have 23;320;s+220~1::i(s )333 = Zs;sZO;s—tZO Ei(s ).'17; We de-
note either of these sums by E;(z).

This follows from 5.1.5 (we are reduced by 5.1.4 to the case considered

there.)
The operators 4~Si,€,- and F‘,—, E; in this and the previous subsection are
called Kashiwara’s operators.

16.1.5. Let M € C]. Consider the Q(v)-linear maps E,F,: M - M
defined in the previous lemma. We have

reM” = E,(IL’) (S Mn+2,F~‘¢(.’E) e M™ 2,

16.2. ADMISSIBLE FORMS

16.2.1. We fix P € D;,M € C;. We will study the properties of the
operators ¢; : P - Pj¢,: P > Pand F; - M - M,E; : M - M in
parallel.
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16.2.2. A symmetric bilinear form (,) : P x P — Q(v) is said to be
admissible if

(a) (z,€:(y)) = (1 — v 2)(¢iz,y) for all z,y € P.

A symmetric bilinear form (,) : M x M — Q(v) is said to be admissible
if

(a') (M™,M™) =0 for n # n’ and

(b') (Biz,y) = vP~ Yz, Fiy) for all z € M™2,y € M™.

16.2.3. Besides the subrings A = Z[v,v71] and A = Q[[v7!]] N Q(v)
of Q(v) we shall need the subrings A(Z) = Z[[v!]] N Q(v) and A =
Z((v™1)) N Q(v) of Q((v71)).

16.2.4. Let B be a basis of the Q(v)-vector space P (resp. M). We say
that B is integral if

(a) the A-submodule 4P of P generated by B is stable under ¢;, ¢l(-t) :
P — P for allt > 0 (resp. the A-submodule AM of M generated by B
- is stable under E,.(t),ﬂ.(t) :M — M for all t > 0); in the case of M, it is
further assumed that BN M™ is a basis of M™ for all n.

Assume that we are given an admissible form (,) and an integral basis
B for P (resp. M) which is almost orthonormal (see 14.2.1). Let

L(P) = {z € 4P|(z,z) € A}

and
L(M) = {z € ;M|(z,z) € A}.

Lemma 16.2.5. (a) L(P) is a Z[v~!]-submodule of 4P and B is a basis
of it.

(b) Let x € 4P be such that (x,z) € 1 +v~'A. Then there erists b€ B
such that z = £b mod v~1L(P).

(c) Let x € AP be such that that (z,z) € v='A. Then z € v 1L(P).
(d) £(M) is an A(Z)-submodule of ;M and B is a basis of it.

(e) Let x € 4M be such that (z,z) € 1+v~'A. Then there ezists bc B
such that £ = £b mod v=!L(M).

(f) Let z € 4M be such that that (z,z) € v-1A. Then z € v~ 1L(M).

This follows from Lemma 14.2.2.
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Lemma 16.2.6. Let y € 4P (resp. y € ;M N M* with t > 0) be such
that e,y = 0 (resp. E;y = 0); let n > 0 (resp. 0 < n < t). We have

(6, 6{7y) = ma(v,9) (resp. (F™y, FVy) = w,(y,y)) where m, € 1+
v71Z[[v7Y]] (resp. w, € 1+ v 1Z[[v7Y))).

It suffices to show that
(8" Dy, 9" Vy) = m(¢My, 9My)

(resp. (F"Vy, FVy) = o/ (F™My, FMy)) where 7 € 1 + v='Z[[v~"]]
(resp. 7' € 1+ v71Z[[v"!]]) and n > 0 (resp. 0 < n < t).
We have
@, 8 Vy) = (n+ 17 60y, 47 y)
= (1 -7 n + 10716y, e Vy)
= (1-v7) 7+ 10702 6y, 6V y).
Similarly,
(F"y, ) = ([ + 1) RFMy, FMy)
— vi—t+2n+1[n + llfl(ﬂ(n)MEiF}(nH)y)
=072 ot t)ifn 4+ 17N (FMy, FMy).

It remz;,iﬁs to observe that
[n+1)7 0 € 1+v71Z[p7 Y
for 0 < n and
o n i+ 107 € 14+ v 2]
for 0 < n < t. The lemma follows.

Lemma 16.2.7. (a) Letz € aoP; writex = } 5o YN where yny = d)EN)xN
and zn € P(0) are zero for large N (see 16.1.2(c)). Then xn € 4P for all
N.

(b) If z € L(P), then each xn and yn above is in L(P). If, in addition,
(z,z) € 1+ v~ 1A, then there exists No > 0 and b € B such that zn, = +b
mod v~!£L(P) and zy = 0 mod v=1L(P), yv = 0 mod v~ 1L(P) for all
N # No.
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(c) Letx € M*N ;M. We write z = zs;szo;s+t20 ys where y, = Fi(s)zS
and =, € ker(E; : M*+?® — M) are zero for large enough s; then z, € iM
for all s.

(d) If € M*N L(M), then each z, and y, above is in L(M). If,
in addition, (z,z) € 1 + v~ 1A, then there exists s > 0 and b € B
such that z,, = b mod v~ 1L(M) and z, = 0 mod v~ 1L(M), y, = 0
mod v~ 1L(M) for all s # sq.

We prove (a). We have zy = vi_N(N_l)ﬂHN(:c). Since 2P is stable

under ¢; and rj)gt) for all t, we see that 4P is stable under IIy : P — P.
Hence zn € 4P. This proves (a).

Next we show that the subspaces ¢(¥) P(0), $N") P(0) are orthogonal to
each other under (,), if N # N’. We argue by induction on N + N’. If
N > 1, we have for 2,2’ € P(0) that (d)SN)z, ¢§N’)z') is equal to a scalar
times (¢£N_l)z, e,-qb,(Nl)z’), hence to a scalar times (d)EN_l)z,qﬁgN/_l)z) S0
that it is zero by the induction hypothesis. We treat similarly the case
where N’ > 1. If N < 0 and N’ < 0, the result is trivial; our assertion
.. follows.

Now let z € 4P be non-zero. We have (z,z) = 3 5 (y~n,yn). We can
find t € Z such that v™*yy € L(P) for all N and v—**lyy ¢ L(P) for
some N. Then there exist integers ay > 0, not all equal to 0 such that
v™ 2 (yn,yn) —an € v 1A for all N. Hence

(&) v"#(z,z) — Y yan €v 1A and 3y an > 0.

If z € L(P), then (e) shows that t < 0; hence yy € L(P) for all N
and, using the previous lemma, we see that xn € L(P) for all N. If now
z € L(P) satisfies (z,z) € 1+ v™'A, then (e) shows that ¢t = 0 and
an, = 1 for some Ny and ay = 0 for all N # Ny. In other words, we
have (yn,,¥n,) € 1 + v A and (yn,yn) € v A for all N # Ny. Using
16.2.6, we deduce that (zn,,zn,) € 1+ v 'A and (zn,zN) € v 1A for all
N # Ny and the second assertion of (b) follows from 16.2.5.

We prove (c). If z; = 0O for all s, then there is nothing to prove. Hence we
may assume that z, # 0 for some s and we denote by N the largest index
such that zxy # 0. We have N > 0,N +¢ > 0. We argue by induction
on N. If N = 0, there is nothing to prove; hence we may assume that
N > 0. We have EMz = D ei>0i84£30 EMFOg, = [*% ]z~ Since
Ei(N)AM C 4M, we have [2’}{,'”]1.:1:1\; € ;M. We have [21}(,“];1 € A, hence

zNy € ;M. Then z’ = z — F,-(N)zN € 4M. The induction hypothesis is
applicable to z’ and (c) follows.
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Next we show that (F}(N)z,Fi(N')z’) = 0if N # N’ and 2,2’ are
homogeneous elements in the kernel of E;. We argue by induction on
N+ N'. If N > 1, we have that (ﬂ(N)z, Fi(N,)z') is equal to a scalar
times (Fi(N_l)z, EiFi(N')z’), hence to a scalar times (Fi(N_l)z, Fi(Nl_l)z)
so that it is zero, by the induction hypothesis. We treat similarly the case
where N’ > 1. If N < 0 and N’ < 0, the result is trivial; our assertion
follows. The remainder of the proof is entirely similar to that of (b).

Lemma 16.2.8. (a) ¢;,& : P — P map L(P) into itself.

(b) Fy, E; : M — M map L(M) into itself.

Let z € L(P). We must show that biz € L(P),&x € L(P). By 16.2.7,
we may assume that z = c/)z(N)a:N for some z as in that lemma. But then
#iz =N Vzy € £(P) and &z = ¢V Van € L(P), by 16.2.6. We argue
in the same way for M.

16.2.9. For any N > 0, we denote by Tn(P) the set of all x € 4P such
that z = ’¢£N)$, for some z’ € P(0) N 4P with (z’,2') =1 mod v~'A.
"For any s,t such that s > 0,s +¢ > 0, we denote by Ts,+(M) the set of
all z € 4 M such that r = Fi(s)a:' for some z’ € ker(E; : M**?* — M)n ;M
with (z/,2') =1 mod v'A.
From the definitions we see that
(a) $(Tn(P)) C Tn41(P);
(b) E.,(TN(P)) C TN_l(P) for N > 1, E,(To(P)) =0;
(c) if N > 0, then ¢; : Tn(P) — Tny1(P) and & : Tyy1(P) — Tn(P)
are inverse bijections;
(d) Fi(Ts:(M)) C Tog1,—2(M) if s > 0,5+t > 1, and Fi(T, (M)) =0
ifs>0,s+t=0;
(e) Ei(Ts,t(M)) C Ts—l,t+2(M) if s > 1,3 +t> 0, and E,;(Tsyt(M)) =0
if s=0,t>0;
(f) if s > 0,s +t > 1, then F Ts (M) — Tsy1,4—2(M) and E; :
Tsy1,0—2(M)) — T, (M) are inverse bijections.

Lemma 16.2.10. (a) Case of P. We have
1B+ v ' L(P) = Un>oTn(P) + v~ 1L(P).

Moreover, the sets By = BN(Tn(P)+v~1L(P)) (N > 0) form a partition
of B.
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(b) Case of M. We have
+B+v7IL(M) = Us t;0,s+¢20Ts ¢ (M) + v 1 L(M).

Moreover, the sets Byy = BN (Ts (M) + v 1L(M)) (s> 0,5+t > 0)
form a partition of B.

By 16.2.6 and 16.2.5, we have T (P) C B + v~1L(P). Conversely, let
z € £B. We have (z,z) € 1+ v~ 'A. Hence, by 16.2.7, we have z = ¢/ +y”
where y” € v™1L(P) and ¢ = ¢£N)x’ for some 2’ € P(0) N 4P such that
t’ € B + v~ 'L(P) and some N > 0. Thus z € Tn(P) + v— L(P) and
the first assertion of (a) follows. To prove the second assertion of (a), it is
enough to show that Tn, (P) N (Tn,(P) + v~ L(P)) is empty for Ny # Ns.
Assume that d),(.N‘):c] = ¢£N2)x2+v‘1z where z € L(P) and z1,z2 € P(0)N
(4P) satisfy (z1,z1) = 1 mod v~'A and (x2,72) = 1 mod v~!A. By
16.2.7, we can write z =Yy, d)EN)zN where zy € L(P)N P(0). We have
¢£N‘):z:1 = ¢£N2):r2 + v Y v rb,(-N)zN. This implies, by 16.1.2(c), that
_zy =0 for N # Ny,N,, v-lzy, = z, and v~ 12y, = —z2. From the last
 equality we deduce that (z3,z9) = v~2(2n,, 2n,) € v 2A, a contradiction.
Thus (a) is proved. The proof of (b) is entirely similar.

16.2.11. Using the previous lemma and the results in 16.2.9, we deduce
the following.

In the case of P we have:

(a) ¢i(£BN +v™L(P)) C £Bn41 + v L(P);

(b) &(£Bn + v 'L(P)) C £Bn_1+ v 1L(P) for N > 1, and & (B +
v 1L(P)) Cc v 1L(P);

(c) if N > 0, then ¢; : £By + v"1L(P) — +Bn4, + v~ 1L(P) and
& :+tBny1 + v 1L(P) — £ By + v 1L(P) are inverse bijections.

In the case of M we have:

(d) Fy(£Bss +vL(M)) C £Boy1 42 + v 1L(M)) if s > 0,5+ > 1,
and F;(£B,; + v 1L(M))=0if s > 0,5+t =0;

(€) Ei(£B,; + v 'L(M)) C By 400 + v L(M))if s> 1,54+t >0,
and Ei(:th’t + ’U—IL:(M)) =0ifs= O,t > 0;

(f)if s > 0,s+t > 1, then F; : +B,; + v 'L(M)) — +B,14_2 +
v1L(M)) and E; : *Byp14-2 + v IL(M)) — £B,; + v~ 1L(M)) are
inverse bijections.



16.3. Adapted Bases 139

16.3. ADAPTED BASES

16.3.1. P, M, (,) are as in the previous section. We say that a basis B
of P is adapted if there exists a partition B = Un>0B(n) and bijections
my : B(0) — B(n) for all n > 0 such that

(a) for any N > 0, B(N)UB(N +1)UB(N +2)U... is a basis of 6" P;
(b) for any b € B(0) and any N > 0 we have ¢£N)b _n(b) € ¢£N+1)P.
We say that a basis B of M is adapted if there exists a partition

B = Us 1;5>0,s+t20B(s, 1)

and bijections
7o : B(0,25 +1) — B(s, 1)

for all s,t as above, such that
.(a) B(s,t) UB(s+1,t)UB(s + 2,£) U... is a basis of M* N F" M;
(b) for any b € B(0,2s +t), we have Fi(s)b — mse(b) € Fi(sH)M.

In this section it is assumed that B is integral, almost orthonormal (with
respect to (,)) and adapted.

Lemma 16.3.2. Letbe€ B.
(a) Case of P. We have b € By if and only if b ¢ ¢;(P).
(b) Case of M. We have b € Uy>By, if and only if b ¢ F; M.

We prove (a). Assume first that b € By with N > 0. Then b =
¢£N):1:’ + v~ !z where z € L(P) and z’ € P. Since B is adapted, we can
write ¢£N) "' =3 cpb’ where b runs over BN d),(-N)P and ¢y € Q(v). We
can also write z = Y, dyvb” where b” runs over B and dy» € Z[v™!]. If
b¢ ¢§N)P, then by comparing the coefficients of b, we obtain 1 = v~1d,,
a contradiction. Thus, we have b € d)gN)P. Since N > 0, we have b €
¢:P. Conversely, assume that b € ¢;P and b € By. Then b = =’ + v~12
where z € L(P),z’ € P(0), and b € Yy, #M) P(0); using the equation
(P(O),d)gN)P(O)) =0 for N > 0, we deduce that (z’,b) = 0, hence (b,b) =
v~1(2z,b) € v~1A, a contradiction. This proves (a). The proof of (b) is
entirely similar.
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Lemma 16.3.3. (a) Case of P. Letb € By, N > 0 and let b’ be the unique
element of +B such that ¢ (b) = b’ mod v=1L(P). Then b’ = myb.
(b) Case of M. Let b € By 412 where s > 0. If s+t > 0, then there

is a unique element b’ € +B such that Fs(b) = b mod v~1L(M) and
b =ms4b. If s+t <0, then F?(b) =0 mod v—1L(M).

We prove (a). We write b= z+v~1z where z € L(P) and = € P(0)N4P
satisfies (z,z) =1 mod v™'A. Using 16.2.7, we write 2 = Y, zn+ where
2y € L(P) N ¢ P(0) for all N’. Replacing z by  + v~12 and z by
z— zp, we see that we may assume that 2 satisfies in addition z € ¢; P. The
equalities ¢Vb = d)gN)m +v71¢Nz and ¢§N)b = ¢1(-N).’L‘ + v‘1¢>SN)z, together
with $¥z € L(P) and ¢V z € oD P, imply

Vb= ¢™b mod vIL(P) + VTV P,
By assumption we have ¢N (b) = ¥ mod v=1L(P). Hence
¥ =¢™b mod v 1L(P)+ ¢V VP.

Moreover, we have
¢™Mb=1b; mod stV P

where b, = mnb € B.

We must prove that & = b;. We have by + ¢; = b + ¢ where ¢; €
¢§N+1)P and ¢ € v"1L(P). We have b, ¢ qSEN“)P. (Otherwise, we would
have ¢,(-N)b € ¢,(-N+1)P; hence b € ¢; P, contradicting the previous lemma.)
Hence, if we express b; +¢; as a Q(v)-linear combination of elements of B,
the element b; € B will appear with coefficient 1. On the other hand, if
we express b’ + ¢ as a Q(v)-linear combination of elements of B, then all
coefficients are in v~!Z[v™1) except that of £¥'.

This forces by = b’ or by = —b'. If by = —V', then we have 2b; +¢; = ¢
and +b, appears in the left hand side with coefficient 2 and in the right
hand side with coefficient in v"! A, a contradiction. Hence we have b; = ¥’
and (a) is proved.

The proof of (b) is entirely similar.

16.3.4. The following result shows that the action of the operators ¢;, €;
(resp. Fj, E;) on the elements of B is described up to elements in v=1L(P)
(resp. v~1£(M)) in terms of the bijections 7, (resp. m, ;) in 16.3.1.
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Proposition 16.3.5.

(a) Case of P. Let b € B(N). Let by € B(0) be the unique element
such that mnbg = b. We have ¢~>,'(b) = n4+1bp mod v~ 1L(P). We have
&(b) = mn—1bp mod v L(P) if N > 1 and &(b) = 0 mod v IL(P) if
N = 0. In particular, we have By = B(N) for all N.

(b) Case of M. Let b € B(s,t). Let by € B(0,2s + t) be the unique
element such that 7, 4bo = b. We have I:‘,(b) = Ts41,6—2bp mod v~1L(M)
ifs+t>1and Fi(b) =0 mod v !L(M) if s+t = 0. We have E;(b) =
Ts—1,442bp mod v 1L(M) if s> 1 and E;(b) =0 mod v~1L(M) if s = 0.
In particular, we have Bs; = B(s,t) for all s,t.

This follows from 16.3.3.



