Part III

KASHIWARA'’S OPERATORS
AND APPLICATIONS

In the author’s elementary algebraic definition [4] of the canonical basis of f,
there were three main ingredients: (a) the basis was assumed to be integral
in a suitable sense; (b) the basis was assumed fixed by the involution —;
(c) the basis was assumed to be in a specified Z[v~!]-lattice £ and had
prescribed image in £/v™!L.

Of these three ingredients, the last one is the most subtle; in [4], £ and
the basis of £L/v~1L were defined in terms of a braid group action. This
definition does not work for Cartan data of infinite type.

Kashiwara’s scheme [2] to define a basis of f involves again the ingredi-
ents (a),(b),(c) above, but he proposes a quite different way to construct
the lattice £ and the basis of £/v~'L, which makes sense for any Car-
tan datum. The main ingredients in his definition were certain operators
&,¢i : £ — f and some analogous operators E;, F; on any integrable U-
module. (The last operators were already introduced, in a dual form, in an
earlier paper [1].)
~ Part III gives an account of Kashiwara’s approach and its applications.
" (The results in Part IIT will be needed in Part IV.) Our exposition differs
from that of Kashiwara to some extent. In particular, we will make use of
the existence of canonical bases (up to sign) established in Part II, while
for Kashiwara, that existence was one of the goals.

The algebra 4 in Chapter 15 is defined in a different way than in [2],
but eventually, the two definitions agree. The operators ¢€;, &i,Ei,IT} are
defined in Chapter 16. Chapter 17 contains a proof of a crucial result of
Kashiwara on the behaviour of E;, F; in a tensor product. Chapters 18
and 19 are concerned with various properties of the canonical basis of Ay,
in particular with the fact that this basis is almost orthonormal for the
natural inner product. Chapter 20 deals with bases at oo (or crystal bases
in Kashiwara’s terminology). Chapter 21 deals with the special features
which hold in the case where the Cartan datum is of finite type. Chapter
22 contains some new positivity results.

In the remainder of this book we assume that, unless otherwise specified,
a Cartan datum (I,-) and a root datum (Y, X,...) of type (I,-) have been
fized. The notation £,U, etc. will refer to these fized data.



CHAPTER 15

The Algebra Al

Lemma 15.1.1. The algebra homomorphism x : 'f — U given by 8; —
E! = (v; —v;Y ) K_;E; (i € I) factors through an algebra homomorphism
f-U.

Let x’ : 'f — U be the algebra homomorphism given by 8; — E; (i €
I). A simple computation shows that, if f € ’f,, then

x(f) =N (i = vy ) K 15X (f)

1

where N depends only on v and not on f. Hence if f is a homogeneous
element in Z (so that x’'(f) = 0), then x(f) = 0. The lemma is proved.

15.1.2. Let Ut be the image of x. Using the previous lemma we see that
E; s E! defines an algebra isomorphism U+ = U*.

Let U° be the subalgebra of U generated by the elements K_; fori € I.
From the triangular decomposition of U, we can deduce that multiplication
defies injective maps U~ ®@U°@U* — U and Ut®@U°QU~ — U. These
maps have the same image, which is a subalgebra U of U; this follows from
the identity E/F; = v*IF;E! + 6; ;(1 — K2,) for all i,5. Note that the
elements K_; which are invertible in U are not invertible in U. The left
ideal generated by them in U coincides with the right ideal generated by
them in U. The quotient of U by this ideal will be denoted by {I. We have
obvious algebra homomorphisms U~ — 4 and U* — {l and it is clear that

(a) multiplication defines isomorphisms of vector spaces U~ @ Ut 2 g
and Ut U~

(b) the algebra il is defined by the generators €;,¢; (i € I) and the
relations €;¢; = v*"I¢;€;,+6; ; for all i, j, together with the relations f(e;) =
f(¢:) = 0 for any homogeneous f = f(6;) € Z. Here, €;, ¢; are the images
of E/, F; in 4.

15.1.3. There is a unique Q-algebra homomorphism w : Y — Y such that
w(e) =vigs, w($i) = —vie;, w(v)=v"1. We will not use it. Note that
w?=1.
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Lemma 15.1.4. For each i € I we define ¢; : f — £ to be left multiplica-
tion by 6; and ¢; : £ — £ to be the linear map ;v in 1.2.18.

(a) @i, €; make £ into a left U-module.
(b) € : £ — £ is locally nilpotent for any i € I.

The identity €;¢; = v*7¢;e;+6; ; (as maps f — f) follows from ;7(6,y) =
ir(0;)y+v70;(;r(y)). Let f = £(6;) be a homogeneous element of Z. From
the definition we have f(¢;) = 0 as a linear map f — f. We must show
that f(e;) = 0. Let f' = o(f) € Z. From the definition we have

(z,6()) = (1 - v7*)(diz,y)

for all z,y € f. It follows that (z, f(e:)(y)) = c(f(¢:)(z),y) where c €
Q(v). From f’(¢:)(z) = 0 we deduce that (z, f(e;)(y)) = 0. By the non-
degeneracy of (, ), this implies that f(e;) = 0 as a linear map f — f. Thus
the relations 15.1.2(b) of U are verified; (a) is proved.

Ifzef, thene(z) € f,_; if v; > 1 and ¢;(z) =0 if v; = 0. It follows
that ¢; : £ — f is locally nilpotent. The lemma is proved.

Lgmmé 15.1.5. There is a unique algebra homomorphism d : 4 — 1~1® U
such that d(¢;) = $:;®K_;+1®F; and d(€;) = ;K _;+(vi—v; ) 1K _,E;
forallieI.

The homomorphism A : U — U®U, satisfies A(F}) = F;Q K_;+1QF;,
A(E) =E/QK_;+(v;—v; )1QK_;E;, and A(K_;) = K_;® K_;. Hence
A restricts to an algebra homomorphism U — U ® U and this induces an
algebra homomorphism d : 4 — {{ ® U which has the required properties.



