CHAPTER 14

The Signed Basis of f

14.1. CARTAN DATA AND GRAPHS WITH AUTOMORPHISMS

14.1.1. There is a very close connection between Cartan data and graphs
with automorphisms. Given an admissible automorphism a of a finite graph
(I, H,h + [h]) (see 12.1.1), we define I to be the set of a-orbits on I. For
1,j € I, we define i - j € Z as follows: if ¢ # j in I, then 7 - j is —1 times
the number of edges which join some vertex in the a-orbit i to some vertex
in the a-orbit j; 7 -4 is 2 times the number of vertices in the a-orbit i. As
shown in 13.2.9, (I, ) is a Cartan datum. Conversely, we have the following
result. .

Proposition 14.1.2. Let (I,-) be a Cartan datum. There exists a finite
graph (I, H, h — [h]) and an admissible automorphism a of this graph such
that (I,-) is obtained from them by the construction in 14.1.1.

For each i € I, we consider a set D; of cardinal d; =i -i/2 and a cyclic
permutation a : D; — D;. Let I = U;e;D; and let a : I — I be the
permutation whose restriction to each D; is the permutation a : D; — D;
considered above.

For each unordered pair %, j of distinct elements of I, we choose an a-
orbit p of the permutation a x @ : D; x D; — D; x D;. Then p has
cardinality equal to the lowest common multiple I(d;,d;) of d; and dj,
which by the definition of a Cartan datum, divides —i - j. Hence we may
consider a set H; ; which is a disjoint union of —i - j/I(d;,d;) copies of p
with a permutation a : H; ; — H; ; whose restriction to each copy of p is
the permutation defined by a x a. We have a natural map H; ; — D; x D,
whose restriction to each copy of g is the imbedding p — D; x D);.

Let H = UH; ; (union over the unordered pairs i, j of distinct elements
in I). This has a permutation a : H — H (defined by the permutations
a:H;; — H;;)and amap H — UD; x D; (union over the unordered pairs
i,j of distinct elements in J) induced by H;; — D; x D;. This defines a
structure of a graph on I, H. This clearly has the required properties.
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14.1.3. Remark. In general, the graph with automorphism whose exis-
tence is asserted in the previous proposition is not uniquely determined by
(1,-). However, if the Cartan datum (Z,-) is symmetric, the construction in
the previous proposition attaches to (I,-) a graph (I, H, h — [h]), called the
graph of (I,-), which is unique up to isomorphism; in this case, I = I, H; ;
is a set with —% - j elements and a is the identity automorphism.

14.1.4. Classification of symmetric Cartan data of affine or finite
type. The symmetric Cartan data of affine type are completely described
by their graphs. We enumerate below the graphs that appear in this way.

A, (n > 1); a polygon with n + 1 vertices; for n = 1, this is the graph
with two vertices which are joined with two edges.

Dy (n > 4) (a graph with n + 1 vertices):
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According to McKay, these graphs are in 1-1 correspondence with the
various finite subgroups of SLs(C), up to isomorphism.

Certain vertices of these graphs are said to be special : namely, all
vertices for A,, the four end points for D,, the three end points for FEs,
the two end points furthest from the branch point for E;, the end point
furthest from the branch point for Es.

The group of automorphisms of any of the graphs above acts transitively
on the set of special vertices. Therefore, by removing a special vertex from
one of the graphs above, we obtain a graph which is independent of the
special vertex chosen. The resulting graphs are denoted A,, Dy, Fe, E7, Es.
We get in this way the various graphs corresponding to irreducible, simply
laced Cartan data of finite type.

14.1.5. Classification of non-symmetric Cartan data of affine
type. Let us consider one of the graphs An, ..., Fs, together with an ad-
missible automorphism a of order n > 1, which has at least one fixed vertex.
We enumerate the various possibilities (up to isomorphism).

(a) A, (n > 3, odd), n = 2 and a has 2 fixed vertices:

€ me e e >
<G —mmmm—>

(b) D, n =2 and a has n — 1 fixed vertices:

ST

(c) Dn, (n >5), n=2 and a has n — 3 fixed vertices.

——e >

-



14. The Signed Basis of £

116

(d) Dy, (n even), n = 2 and a has 1 fixed vertex:

() Dy, (n even), n = 4 and a has 1 fixed vertex:

(f) D4, n = 3 and a has 2 fixed vertices:
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(g) Eg, n =2 and a has 3 fixed vertices:

117

In each case (a)—(i), we may define a Cartan datum as in 14.1.1. We
then obtain exactly the various affine non-symmetric Cartan data, up to
proportionality (see 1.1.1) which were classified by Kac, Macdonald, Moody

and Bruhat-Tits.

14.1.6. Classification of irreducible, non-symmetric Cartan data
of finite type. We consider one of the graphs A,,..., Es, together with

an admissible automorphism a of order n > 1.

We enumerate the various possibilities (up to isomorphism).

(a) A, (n >3, 0dd), n = 2.
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(b) Dpy,n=2.
(¢) D4y n=3.
(d) Ee, n=2

In each case (a)-(d), we may define a Cartan datum as in 14.1.1. We
then obtain exactly the irreducible non-symmetric Cartan data of finite
type, up to proportionality.

14.2. THE SIGNED Basis B

14.2.1. Let V be a Q(v)-vector space with a given basis B and a given
symmetric bilinear form (,) : V x V — Q(v). We say that B is almost
orthonormal for (,) if

(a) (b,d') € bppr + v 1Z[[v7 ]| N Q(v) for all b, € B.

Let A = Q[[v™1]] N Q(v). Let 4V be the A-submodule of V' generated
by B and let L(V) = {z € V|(z,z) € A}.

Lemma 14.2.2. In the setup above, the following hold.

(a) L(V) is an A-submodule of V and B is a basis of it.

(b) Let x € AV be such that (z,z) € 1+ v~ 'A. Then there exists b€ B
such that x = £b mod v~ !L(V).

(c) Let x € V be such that (z,z) € v"!A. Thenz € v 1L(V).

- Let z € V. Assume that = # 0. We can write uniquely x = ), p cob
with ¢, € Q(v). Since only finitely many ¢, are non-zero, we can find
uniquely ¢t € Z and p, € Z (zero for all but finitely many b, but non-zero
for some b) such that, for all b, we have v='c, — p, € v 1A,

We have (z,z) = (3, p2)v* mod v?*~1A. Note that 3, p is a rational
number > 0. Hence (z,z) € A if and only if ¢ < 0; this is equivalent to the
condition that ¢, € A for all b and (a) follows.

If (x,z) € v~!A, then we must have ¢ < 0; hence ¢, € v~ 1A for all b;
(c) follows. If x € 4V and (z,z) € 1+v~!A, then we must have t = 0 and
>, P2 =1 with py € Z; hence p, = £1 for some b and p, = 0 for all other
b; thus, (b) follows. The lemma is proved.

In the remainder of this chapter we fix a Cartan datum (I, -). Let f, 4f
be defined in terms of (7,-) as in 1.2.5, 1.4.7.

Theorem 14.2.3. Let B be the set of allz € f such that x € 4f, T =z
and (z,z) € 1 + v~ Z[[v™Y]]. (The last condition is equivalent to {z,z} €
1+ vZ[[v]] since Z ==z.)
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(a) B is a signed basis of the A-module 4f and of the Q(v)-vector space
f.

(b) If b,¥' € B and V' # 1b, then (b,b') € v~ Z[[v™Y]] and {b,¥'} €
vZ[[v]].

By 14.1.2, we can find a finite graph (I, H,h — [h]) and an admissible
automorphism a of this graph such that (I,-) is obtained from these data
by the construction in 14.1.1. Let n > 1 be such that a® = 1. Then, by
13.2.11, f has a natural isomorphism, say x, onto the corresponding algebra
k (see 13.2.6). Under x, the pairings (,) and (,) on k and f correspond
to each other. This has been seen in the proof of 13.2.11. Moreover, the
involutions D : k — k and ~ : f — f correspond to each other (they both
map the generators 1; and 6; to themselves).

Note that x carries 1,; € k to 95") for any ¢ € I and any n > 0 (this
follows from 13.1.12(c)); hence it carries the A-subalgebra 4k (which is
generated by the 1,; ) onto 4f (see 1.4.7). Moreover, x carries the signed
basis B of k (see 13.1.2) onto a signed basis of f, which we denote by the
same letter. By the already known properties of the signed basis of k, it
remains to prove the following statement: let x € 4f be such that z = z
and (z,r) € 1+ v !Z[[v™!]]; then € B. Let B be a basis of f such that
B = BU (—B). We can write uniquely z = }, c,b where b runs over B
and ¢, € A are zero except for finitely many b. Using 14.2.2(b), we see that
there is a unique b € B such that ¢, € +1+v~!Z[v"!] and ¢y € v~ Z[v]
~for b #b. From Z =z and ¥ = b’ for all ¥’ € B, it follows that &y = cy
for all ¥’ € B. It follows that ¢, = +1 and ¢y = 0 for all ¥’ # b. Thus,
z € BU (—B). The theorem is proved.

14.2.4. Definition. B is called the canonical signed basis of f.

Although the proof of the existence of B requires a choice of a graph
with automorphism, which is not unique in general, the resulting signed
basis is independent of any choice, hence the word canonical.

14.2.5. The following properties of B follow immediately from the defini-
tions.
(a) We have B = U, B, where B, = BNf,.
(b) We have 053) € B for any i € I and s > 0; in particular, 1 € B.
Using 1.2.8(b), we see that

(c) o(B) = B.
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Proposition 14.2.6. (a) r and 7 map af into the A-submodule Af® 4(af)
of fRf.

(b) For any z,y € af we have (z,y) € Z[[v7']] N Q(v) and {z,y} €
Z{[v]] N Qo).

This follows immediately from the analogous properties of gk (see 13.2.2,
13.2.4, 13.2.5) which are already known.

14.3. THE SUBSETS B;;, OF B

14.3.1. Giveni € I and n > 0, we set B;;>, = BNO}f and 7 B;;>,, = BNfo}.
Let Bi;n =Di>n — Bi;Zn-H and 7B;., = UB,';Zn - UB,';Z,,_H. Thus, we have
partitions Bi.>n = Un'>nBisns and B> = Un'>n?Binr. Since o(B) = B
and o(07f) = £07, we have “B;;>, = 0(B;;>n) and 7 B;;n = 0(Bi;n).

Theorem 14.3.2. (a) B;;>, is a signed basis of the Q(v)-vector space 67'f
and of the A-module 3, ..,./>,, Hgnl)Af.

(b) “Bi;>n is a signed basis of the Q(v)-vector space £f07 and of the
. A-module En,m,Zn(Afﬁ?gnl)).

(c) If b € B;,o, then there is a unique element b’ € By, such that 9§n)b =
b’ plus an A-linear combination of elements in By;>nt1. Moreover, b— b
is a bijection ; n : Bi;o — Bi;n.

(d) If b € ?B;o, then there is a unique element b € “Bin such that
bB,("a = b"” plus an A-linear combination of elements in “Bi;>n41. More-
over, b b" is a bijection °; n : “Bi;o — 7 Bisn.

For the proof we place ourselves in the setup considered in the proof of
Theorem 14.2.3. Thus ¢ is now regarded as an a-orbit in I. Let V € V7. For
any n > 0, let By, be the set of all £[B,¢] € By (see 12.6.4) such that
B € Py,iny where v = 3, .i. By 10.3.3 and 12.5.1, we have a partition
By = Up>0Bv;i;n- By our identification By = B,, this becomes a partition
Bu = UnzOBu;i;n-

Let B, = U,B,;n. We will show below that B; , just defined is the
same as B;, in 14.3.1; see (h) below. We then have a partition B =
Un>0B;p.

Translating the geometric properties of By.,;., expressed by 10.3.2(c) we
obtain the following property of B;.,.

(e) For any n > 0, there is a unique 1-1 correspondence b < b’ between

B, and B, such that Bgn)b = b’ plus an A-linear combination of elements
in U'n’>nB;;n/ .
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Let M, = Zn,m,zn 0,(",) Af and let M, be the A-submodule of f gener-
ated by Up/.s>nB,.,.,. We show that for fixed v,

in'*
(f) any b € B,;;;n is contained in M,.

We argue by descending induction on n; note that B,.;., is empty unless
n < y; for any i € i. By (e), we have

beb™Mat+ > AB,ia

n’in'>s

by the induction hypothesis, we have B,.;,» C M, and it follows that
b € My,. Thus (f) is proved. Thus we have B;, C M,. If n’ > n, we have
B}, C M, C My,. It follows that, for any n > 0, we have M/, C M,.

1

Next we show that

(g) for any b € B,, we have 6{™b € M.

We argue by induction on ¢(b) = > ;1. If b € B,,;;; where t > 0,
then as we have seen, we have b € M;; hence b is an A-linear combination
of glements 0§m)b1 with m > t and with b; € B such that the induction
hypothesis applies to b;. Then 91(")6 is an A-linear combination of elements
Gfm)f)gn)bl with b; as above. By the induction hypothesis, we have 95")b1 €
M. Hence 6(be ¥, 6™ M/, c M, as required.

Next we assume that b € B,;;0. Then 01.(")b € M] by (e). Thus, (g) is
proved. It follows that, for any n > 0, we have

My= Y 6M™kc S M, cM,

n'n'>n n:n'>n

We have proved that M, C M, C M,. Thus, M} = M,. It follows
that (a) holds and B;;>, = un,m,z,,B;m,. In particular, we have

() Bisn = Bip.

We now prove (c). The existence of ¥’ asserted in (c) follows immediately
from (e). We now prove uniqueness. Assume that b} € B;., has the same
property as that asserted for b’ in (c). Then b’ — b is on the one hand a
linear combination of elements in Un/5,B;.ns and on the other hand it is a
linear combination of elements in B;.,. It follows that ¥ = b} and (c) is
proved.

Now (b) and (d) follow from (a),(c) by applying ¢. The theorem is
proved.
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14.3.3. By 12.5.1(c), we have

B — {£1} = Uicr;n>0Bin-

14.4. THE CANONICAL BAsis B oF f

14.4.1. We would like to find in a natural way a basis of f contained in
its canonical signed basis. If (I,-) is symmetric, such a basis is given by
geometry. In this case, a is the identity automorphism of our graph and
we can take n = 1. Hence we have O’ = A and K(Qv) = 4K(Qv) (for
V € V) has not only a natural signed basis, but a natural basis consisting
of the elements [B, 1] where B is a simple object of Py and 1 is the identity
isomorphism 1: B = B.

14.4.2. In the general case, the descent from a signed basis to a basis will
be non-geometric. We lay the groundwork with some definitions.

For any v € NJ[I] we define a subset B, of B, by induction on
tr v as follows. If v = 0, we set B, = {1}, If trv > 0, we set
B, = Uiel,n>0:>nTin (Bu—m'. N Bi;O)-

Let B = U, B, C B. By 14.3.3, we have that B = BU (—B). We can
now state the following result.

Theorem 14.4.3. Let v € N[I]. Then
(a) B, N(-B,)=0;
(b) B, N (-o(B,)) =0;
(c) o(B,) =B,.

(d) B is a basis of the A-module Af and a basis of the Q(v)-vector space
f.

(e) For any v, B, is a basis of the A-module 4f, and a basis of the
Q(v)-vector space f,.

14.4.4. Proof of the theorem, assuming that (I,-) is symmetric. In
this case, as in the proof of Theorem 14.2.3, we have a natural choice for
the graph (with identity automorphism a), see Remark 14.1.3. Moreover
since a=1, the corresponding algebra k has a natural basis inside its natural
signed basis, defined as in 14.4.1. From the definitions, it is clear that this
basis (transferred to f) coincides with B and has all the required properties.
This completes the proof (in the symmetric case).
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14.4.5. The proof of Theorem 14.4.3 in the general case will be given in
19.2.3; in the remainder of this section we shall assume that the theorem
is known in general.

14.4.6. Definition. B is called the canonical basis of f.

We shall use the following notation: B;,, = B;.,, N B for any i € I and
n € N; note that m; , defines a bijection B;;0 = B;;,. Set “B;., = 0(Bi.0).
Then °m; 5, defines a bijection 7B;;p = 7B;;p.

14.4.7. We can regard B as the set of vertices of a graph colored by
I x {1,2,...} in which b,b' are joined by an edge of color (i,n) if b €
Bi,, b’ € B;,,, and b’ = m; ,(b). This is called the left graph on B.

Similarly, we can regard B as the set of vertices of a graph colored
by I x {1,2,...} in which b,b” are joined by an edge of color (i,n) if
b € 7B;;,b" € “B;;, and b’ = ?m; ,(b). This is called the right graph on
B.

14.4.8. Let us choose a finite graph (I, H,h — [h]) and an admissible
autpmorphism a of this graph such that (/,-) is obtained from them by
the construction in 14.1.1. We define a new (symmetric) Cartan datum
(I,-) associated to the same graph and to its identity automorphism, as in
14.1.3. More precisely, we have I=1i-i=2 and, for i # j € I, we have
that i- j is —1 times the number of edges joining i to j.
 Let f be the algebra defined like f, in terms of the Cartan datum I,
and let B c f be its canonical basis. Similarly, let m; ,, : Bl 0 — Bl ., and
Ty - B,‘o — B,,n be the bijections analogous to 7; , : B;;o — B,
and ‘7, : 7 Bio — 7By, in 14.4.6. Now a : I — I induces an algebra
automorphism a : f — f which restricts to a bijection a : B — B whose
fixed point set is denoted by Be.

The Ix {1,2,... }-colored left graph structure on B (as in 14.4.7) defines
aIx{1,2,...}-colored graph structure on the subset B® as follows. We say
that b,b’ € B® are joined by an edge of color (¢, n) if they can be joined in
the left graph on B by a sequence of edges of colors (i1, n), (i2,n), ..., (is,n)
where iy, i2,. .., 1, is an enumeration of the elements of 7 in some order. This
is called the left graph on B®. By replacing “left” by “right” we obtain a
Ix{1,2,...}-colored graph structure on B?, called the right graph on B®.

Theorem 14.4.9. There is a unique bijection x : B — Be compatible
with the structures of I x {1,2,...}-colored left (resp. right) graphs and
such that x(1) = 1. The two bijection corresponding to “left” and “right”
coincide.
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The inverse bijection is obtained geometrically by attaching to a pair
(B, ¢) where B is a simple object of a suitable Py and ¢ is an isomor-
phism a*B = B, the simple object B without specifying ¢. The fact that
this bijection is compatible with the colored graph structures is also clear
geometrically (using, in particular, 12.5.1(a)).

14.4.10. Remark. This theorem shows that to describe the left or right
graph structure on B it is enough to do the same in the case where the
Cartan datum is symmetric.

Theorem 14.4.11. Assume that the root datum is Y -regular. Let \ € Xt
and let Ay = £/ 3, f0N+1 be the U-module defined in 3.5.6. As in 3.5.7,
let 1 € Ay be the image of 1. Let B(A) = Nicr(Un;o<n<(i,n) " Bin)-

(a) The map b — b™n define a bijection of B()X) onto a basis B(Ay) of
Ax.

(b) Ifbe B —B()), then b"n = 0.

An equivalent statement is that

Ui nin>(i,0)+1° Bin
is a basis of 3, f§(»+1. This follows immediately from Theorem 14.3.2.
14.4.12. Definition. B(A,) is called the canonical basis of Aj.

Theorem 14.4.13 (Positivity). Assume that (I,-) is symmetric.
“(a) For any b,/ € B, we have
B = > cop v’
b €B;neZ
where cp i b n € N are zero except for finitely many b”,n.
(b) For any b € B we have
r(b) = Z dp b b7 0" @b
b.b’eB;nez
where dy p p'n € N are zero except for finitely many V', 4", n.
(c) For any b,b' € B we have
6,8) =" fopmv "
neN
where fb,b’,n € N.
The theorem asserts the positivity of certain integers; in our definition

in the framework of perverse sheaves, these integers are the dimensions of
certain Q;-vector spaces. The theorem follows.
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14.4.14. Remark. For non-symmetric (I,-), the integers in question are
not dimensions, but traces of automorphisms of finite order of certain Q;-
vector spaces and it is not clear whether they are positive or not.

14.4.15. In the case where (I, -) is symmetric, the set B, is (conjecturally)
in natural 1 — 1 correspondence with the set X, of irreducible components
of a certain Lagrangian variety naturally attached to (I,-) and to v (see
(9, 13.7]). The union U, X, has a natural colored graph structure (defined
as in [8]) and one can hope that the previous bijection respects the colored
graph structures.

14.5. EXAMPLES

14.5.1. Assume that (I,-) is a simply laced Cartan datum of finite type.
Let (I, H,...) be the graph of (I,-) (see 14.1.3); note that I = I. We choose
an orientation of this graph. Let V € V and let Gv,Ev be as in 9.1.2.

From the results in [9], it follows that there is a 1-1 correspondence
between the set of orbits of Gv on Ey (a finite set, by Gabriel’s theorem)
and the set of isomorphism classes of objects of Py (see 9.1.3): to an orbit
of Gv corresponds the Gy-equivariant simple perverse sheaf whose support
is the closure of that orbit. This is well-defined since the action of Gv has
connected isotropy groups.

14.5.2. Assume that (I,-)issuch that I = {i,j} andi-i =j-j=2,i-j =
j-i=—2. Then (I,-) is a symmetric Cartan datum of affine type.

Let (I,H,...) be the graph of (I,-) (see 14.1.3); note that I = I and
H has two elements. We orient this graph so that h’ = ¢ for both h € H.
Let V € V and let Gyv,Ev be as in 9.1.2. Note that Ev consists of all
pairs T, T’ of linear maps V; — V. Assume that both V; and V, are n-
dimensional and n > 2. Then Gv acts on Ey with infinitely many orbits.

Let v = (i,5,%,j,...) (2n terms). Then 7, : F, — Ey (see 9.1.3) is
a principal covering with group S, (the symmetric group) over an open
dense subset of Ey. This gives rise to irreducible local systems over an
open dense subset of Ey, and hence to simple perverse sheaves on Ev,
indexed by the irreducible representations of S,,. These simple perverse
sheaves belong to Py .

14.5.3. Assume that (7,-) is such that I = {i} and i-i = 2. The canonical
basis B of f consists of the elements 91(“) (a € N).
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14.5.4.  Assume that (I,-) is such that I = {i,j} and i-i = j-j =
2and i-j = j-i = —1. The canonical basis B of f consists of
the elements 0§a)0§b)9§c) (a,b,c € N,b > a + c) and of the elements
0§°)0§b)0§“) (a,b,c € N,b > a + ¢) with the identification 0§°)0§b)0§°) =
8766'*) for b=a +c.

14.5.5. Assume that (I,-) is as in 14.5.2. The elements of B;; are
0:0;,0;6;.
The elements of By;; are:

676\9,6\76,0,676:,0,69;,6.6,6,0; — 6.76$),6,6:0;6; — 6$62.

J 7

For further examples, see [11].
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1. The canonical basis of f has been introduced by the author in [7], assuming that
the Cartan datum is symmetric, of finite type. In fact, in [7] two definitions
for the canonical basis were given: an elementary algebraic one, involving
braid group actions, and a topological one, based on quivers and perverse
sheaves. (The elementary definition applies essentially without change to not
necessarily symmetric Cartan data of finite type.) The topological definition in
[7] was in terms of intersection cohomology of certain singular varieties arising
from quivers by a construction reminiscent of that in [4] of the new basis of a
Hecke algebra (which used the intersection cohomology of Schubert varieties).
One of the main observations of [7] was that the canonical basis of f gives rise
simultaneoulsy to a canonical basis in each U-module A, which had rather
favourable properties.

2. After [7] became available, Kashiwara announced an elementary algebraic def-

inition of the canonical basis which applied to an arbitrary Cartan datum.
Kashiwara’s paper [3] contains an inductive construction of the canonical ba-
sis, both of f and of Ay, which advances like a huge spiral. His construction
agrees with that in [7], as shown in [8].
On the other hand, the author [9] extended the topological definition 7] of
the canonical basis to arbitrary (symmetric) Cartan data. (The case of not
necessarily symmetric Cartan data was only sketched in [9].) The definition
of [9] resembles that of character sheaves [5]. While the method of [9] is not
elementary, it has the advantage of being more global and to yield positivity
results which cannot be obtained by the elementary approach. The agreement
of the definitions in (3], [9], was proved in [2].

3. The exposition in Part II essentially follows the treatment in [9], with two main
differences. First, in order to include not necessarily symmetric Cartan data in
our treatment, we have to take into account the action of a cyclic group, which
is a complicating factor, not present in [9], where only symmetric Cartan data
were treated. In addition, we make use of the geometric interpretation of the
inner product on f given in [2]; this simplifies somewhat the original proof in
[9] and provides the link with [3].

4. The basic reference for the theory of perverse sheaves on algebraic varieties is
the work of Beilinson, Bernstein, Deligne and Gabber [1].

5. The representation theory of quivers (which is implicit in the constructions in
Chapter 9) has a long history going back to Kronecker. In Ringel’s work [12],
the connection between the representations of a quiver of finite type over a
finite field Fy and the plus part of the corresponding Drinfeld-Jimbo algebra
at parameter \/(} was observed for the first time. This work of Ringel was an
important source of inspiration for the author’s work on the canonical basis.
In particular, the definition of the induction functor in 9.2 was inspired by
Ringel’s definition of the Hall algebra arising from quivers over F;. On the
other hand, the definition of the restriction functor in 9.2 was inspired by the
analogous concept for character sheaves [5).

6. The geometric definition of the inner product in 12.2 is taken from [2] where,
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10.
11.

12.

however, the cyclic group action was not present.

The idea that the canonical basis can be characterized by an almost orthonor-
mality property for the natural inner product, has originally appeared in
Kashiwara’s paper [3] and has been later used in [2]. This is analogous to
the orthogonality properties of character sheaves [5); it is a hallmark of inter-
section cohomology.

. The description of non-symmetric affine Cartan data given in 14.1.5 is different,

as far as I know, from the ones in the literature.

The ingredients for the definition of the colored graph in 14.4.7 were introduced
in [9]; it turns out that that graph contains the same information as the colored
graph defined by Kashiwara (but the two graphs are different).

The statement 14.4.13 appeared in [2].

The example in 14.5.2 is a special case of the results in [10] where the perverse
sheaves which constitute the canonical basis in the affine case are described
explicitly. (The results in [10] dealt with symmetric affine Cartan data; but
in view of Theorem 14.4.9, the same results can be applied in the case of
non-symmetric affine Cartan data.)

The geometric method used here to construct canonical bases can be applied,
more or less word by word, to quivers in which edges joining a vertex with itself
are allowed. (This includes, for example, the classical Hall algebra with its
canonical basis.) We have not included this more general case in our discussion
(but see [11)).
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