CHAPTER 13

The Algebras -k and k

13.1. THE ALGEBRA o'k

13.1.1. We preserve the setup of the previous chapter. Given v € N[I]?,
we may regard V +— K(Qy) as a functor on the category V2 with values
in the category of @’-modules. An isomorphism V 2 V' in V2 induces
an isomorphism Ev, 2 Evy compatible with the a-actions; this induces an
isomorphism Qv = Qv which induces an isomorphism K(Qvy) = K(Qv/)
that is actually independent of the choice of the isomorphism V 2 V' by
the equivariance properties of the complexes considered. Hence we may
take the direct limit li_r)nv K(Qv) over the category V2. This direct limit is
denoted by ¢rk,. By the previous discussion, the natural homomorphism
. K(Qv) — o'k, is an isomorphism for any V € V2.

" The signed basis By of K(Qv) (see 12.6.4) (where V € V2) can be
regarded as a signed basis of the @’-module ¢-k,,, independent of V; we
denote it by B,. It is a finite set.

13.1.2. Let ok = ®,(0'k,) (v runs over N[I]*). Let B = U, B,, a signed
basis of the @’-module o-k. An element z € ok is said to be homogeneous
if it belongs to o'k, for some v; we then write |z| = v.

The homomorphisms ind‘.r”W can be regarded as O’-linear maps o'k, ®or
(o'kw) — o'k, defined whenever 7,w,v € N[I]* satisfy 7 + w = v.
They define a multiplication operation, hence they define a structure of
O'-algebra on ork. For any v = (v!,...,v™) € X%, we may regard L, as
an element in ok, where y; =3, Vil for all i.

Lemma 12.3.3 can be now restated as follows:

(a) Lul Luu = LV'V"'

Since the elements L, generate ok as a O’-module (see 12.6.3), it follows
that the algebra structure on ¢k is associative. One can also see this more
directly.

13.1.3. The homomorphisms resy. y can be regarded as O'-linear maps
o'k, = ok, ®0 (0rky), defined whenever 7, w, v € N[I]® satisfy 74w = v.
By taking direct sums, we obtain an O’-linear map 7 : -k — o0-k®o (0k).
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13.1.4. We have a symmetric bilinear pairing Z[I] x Z[I] — Z given by
v/ =2 E vy, — Z(Uh'u,'l" + Uprig).
i h

This bilinear form is independent of orientation. Let o'k®¢ (o k) be the
@’-module o'k ®0+ (o-k) with the O’-algebra structure given by

(®y)(z' ®y) = v e @ yy
for z,2’,y,y’ homogeneous.

Lemma 13.1.5. 7 : ook — ok®o(o/k) is a homomorphism of O'-
algebras.

We must check that 7(zy) = 7(z)7(y) for any =,y € o-k. Since the
elements L, generate the ’-module -k (see 12.6.3), we may assume that

& = Ly,y = Lyn, where v/ = (V'1,...,0'™) and v" = (V"1,...,V"™) are
elements of A*. We have

(a) F(Ly) = Z,vM'('r',w')LT, ® Lo

where the sum is taken over all 7/ = (7'1,...,7/™) and o’ = (u',...,w'™)

in-X2 such that 7! + W' = /! for 1 < I < m; M'(7',w’) is as in 9.2.11.
Similarly, we have

’F(Lvu) = Z’UM,(T”’“’")LT/I ® qu

where the sum is taken over all 7" = (7/(m+1) 7/(m4n)) and w” =
(WA (M) in X% such that 7 +w" ="M form+1 <1 <
m + n. Hence

f(Lu’)F(Lu") = Z'UM'("",w')+M'(‘r",w")+|Lw:|-|L.,n|L.,,,_,.,, ® Loy

where the sum is taken over all 7/ = (71,...,7'™), &' = (W'1,...,0'™),
o= (D ptmaAn)y = (WD W (mEn)) in X such
that 7' +w'!' =V for1<l<mand 7'+ =" form+1<1<
m + n.

We have

'F(LV'LVH) = F(LVIVII) = ZUM,("'»”)LT ® Lw

where the sum is taken over all 7 = (71,...,7"*") and w = (w!,...,w™t")
in X% such that 7' + w! = V! for 1 <1 < m and 7 + ! = V''"™ for
m+1<l<m+n.
It remains to show that
|Lw,| . |L1_,,| — M'(T’T",wlw”) _ M'('r’,w') _ M’(T",w”).

This follows by a straightforward computation. The lemma is proved.
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13.1.6. The pairing {,} on K(Qv) (see 12.1.2) (where V € V2) can be
regarded as an O’-bilinear pairing {,} : o'k, x ok, — O((v)), which is
independent of V. This extends to an (’-bilinear pairing {, } : ook x o'k —
O((v)) such that for homogeneous z,y, {z,y} is given by the previous
pairing if |z| = |y|, and is zero if |z| # |y|.

13.1.7. We define a O'-bilinear pairing {, } on o'k ®o (0 k) by
{x/ ® x//, yl ® yll} — {zl,y/}{xll, yll}.
The identity

{iL‘, yly”} = {7_‘(:1")1 y, ® y"}

for all z,v',y"” € ok, follows immediately from 12.2.2.

13.1.8. The homomorphism D : K(Qv) — K(Qv) (where V € V¢) can
be regarded as a group homomorphism D : ok, — o-k, that has square
1 and is semi-linear with respect to the ring involution = : @’ — @’ given
by v +— v™" and { — (71 for ( € O,¢(™ = 1. By taking direct sums we
obtain D : ork — ¢-k which, by 12.4.3, is a ring homomorphism.

13.1.9. We shall regard o'k ®¢ (0 k) as an O’'-algebra with

(@®y)(z' ®y) = v Wz’ @ yy/
for z,2’,y, 7y’ homogeneous. This should be distinguished from the algebra
o'k®o:(o'k). Let D : 0-k®eo (0'k) — o'k ®o (0-k) be the ring isomor-
phism given by D(z ® y) = D(z) ® D(y) for all z,y.

Let 7 : ok — o'k ®o- (0-k) be the (’-algebra homomorphism defined
as the composition

O’k 2} Olk —F-) OIk@OI(OIk) 2) O'k ®OI (O'k).
13.1.10. Let (,) : ok x ook — O((v™!)) be the O'-bilinear pairing
given by (z,y) = {D(z),D(y)}. Here, = : O((v)) — O((v71!)) is given

by 3, anv" — ) 8,07 (an € O).
From 13.1.7, we deduce the identity

(a) (z,3'y") = (r(z),y ®y")

for all z,y',y" € ok
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13.1.11. From the definition we have
(a) D(b) = b for all b € B.
We have
(b) {b,b'} € vZ[[v]] N Q(v) for any b,b’ € B such that b’ # +b.

Indeed, {b,b'} is in vO[[v]] by 12.5.3 and in Z((v)) by 12.6.2 and 12.6.3,
and hence in vZ[[v]].
We have

(c) {b,b} € 1 +vZ[[v]] N Q(v) for all b € B.

Indeed, {b,b} is in 1 + vO[[v]] by 12.5.3 and in Z((v)) by 12.6.2 and
12.6.3, and hence in 1 + vZ[[v]].
From (a),(b),(c) we deduce:

(") (b,%') € v 1Z[[v71]] N Q(v) for any b, b’ € B such that b’ # +b.
(c') (b,0) € 1 +v~1Z[[v~ 1)) N Q(v) for all b € B.

13.1.12. Let i be an a-orbit on I and let vy = ), i. For any n > 0, o/ky
has a distinguished element denoted 1,;; it corresponds to [1,1] € K(Qv)
where V € V.. This element forms a basis of the O’-module o-k,,. When
n = 0, this is independent of ¢ and is denoted simply by 1 € o-kp. Note
that

(a) 1 is the unit element of the algebra k.

(b) The elements L, € o-k are precisely the elements of o-k which are
products of elements of form 1,; for various 7,n. Hence the elements 1,;
generate ok as an O’-algebra.

(c) We have 1;1(,_1); = vd("_l)(Z::Ol v~ 4)1,,; (for n > 1), where d is
the number of elements in the orbit . (See 12.3.4.)

From 12.3.6, we have
(d) {1;,1;} = (1 — v??)~! (where d is as above)
or equivalently, since D(1;) = 1;:

(d) (15, 15) = 1 — w7271
From (b) and (c) we see that

(&) F(L) =r(1)=1,,®1+111,.
This is obvious from the definitions. It is clear that

() (1,1) = {1,1} = 1.
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13.1.13. From 10.3.4, it follows easily that there is a unique O’-linear map
o : ok — ok such that o(L,) = L, for any v = (v1,12,...,v™) € X9,
where v/ = (v™,v™"1,...,v!) € X% moreover, we have o(B) = B. It
follows that o is the unique isomorphism of -k onto the algebra opposed
to o-k such that ¢(1,;) =1,; foralli € I and n > 0.

13.2. THE ALGEBRA k

13.2.1. Let 4k be the A-submodule of ¢ -k spanned by B, or equivalently
(see 12.6.3), by the elements L, for various v € X*. Thus, on the one
hand, sk is the A-subalgebra of o-k generated by the elements 1,; as in
13.1.12(b), and on the other hand, B is a signed basis for the .A-module
k. We have gk = &, (4k,) where 4k, is the .A-submodule generated by
B,.

13.2.2. From 13.1.5(a), we see that 7 restricts to an .A-linear map 4k —
4k ® 4 (4k), denoted again by 7; this is an A-algebra homomorphism if
.. Ak ®4 (4k) (which is naturally imbedded in o k®o(0k)) is given the
~ induced A-algebra structure (see 13.1.5).

13.2.3. By 13.1.11(a), the ring homomorphism D : o-k — ok restricts to
a ring homomorphism D : gk — 4k which has square 1 and is semi-linear
with respect to the ring involution = : A — A.

13.2.4. From 13.2.3 and 13.2.2, it follows that the (’-algebra homomor-
phism 7 : ork — ok ®0’ (0-k) (see 13.1.9) restricts to an A-algebra homo-
morphism g2k — 42k ® 4 (4k), denoted again by r. This is an .A-algebra ho-
momorphism if 4k® 4 (4k) (which is naturally imbedded in ok ®¢ (0-k))
is given the induced .A-algebra structure (see 13.1.9).

13.2.5. The pairing (,) : ork X ok — O((v™!)) (see 13.1.10) restricts to an
A-bilinear pairing (,) : ak x 4k — Z((v71)) N Q(v) (see 13.1.11(b"),(c’)).
The equation analogous to 13.1.10(a) continues of course to hold over .A.

13.2.6. Let k be the Q(v)-algebra Q(v) ® 4 (4k). Note that B is a signed
basis of the Q(v)-vector space k. We have a direct sum decomposition
k = &,k, where k, is the subspace spanned by B, .

From 13.2.1 and 13.1.12(c), we see by induction on n that k is generated
as a Q(v)-algebra by the elements 1; for the various a-orbits on 1.
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13.2.7. The homomorphism r in 13.2.4 extends to a Q(v)-algebra homo-
morphism k — k®q(y) k (denoted again by r) where k ®q(.) k is regarded
as a Q(v)-algebra by the same rule as in 13.1.9.

13.2.8. The pairing (,) on 4k extends to a Q(v)-bilinear pairing (,) :
k x k — Q(v). From 13.1.11(b’),(c’), we see that the restriction of this
pairing to k, is non-degenerate, for any v. (Its determinant with respect
to a basis contained in B, belongs to 1+ v~'Z[[v=!]] N Q(v) and hence is
non-zero. )

13.2.9. Let I be the set of a-orbits on I. We identify Z[I] with the subgroup
ZM° = {v € Z[QJus = vozy Viel}

of Z[I] by associating to each v € Z[I] the element of Z[I] (denoted again
v), in which the coefficient of i is v; where 7 is the a-orbit of i.

For v, € Z[I] we define v - ' € Z by regarding v, v’ as elements of Z|[]]
as above and then computing v- v according to 13.1.4. (This is a symmetric
bilinear form). According to this rule, we have, for 7,5 € I: i -j = minus
the number of h € H such that [h] consists of a point in ¢ and a point in j,
if i # j and i - ¢ = twice the number of elements in the orbit i. Note that,
if i # j then —2%! € N; indeed, this is the number of h € H such that [h]
consists of a given point in ¢ and some point in 7. Hence we have obtained
a Cartan datum (7, ).

13.2.10. Let f be the Q(v)-algebra, defined as in 1.2.5, in terms of the
Cartan datum (I, -) just described. Recall that f = 'f/Z where 'f is the free
associative Q(v)-algebra on the generators 8;(¢ € I) and 7 is a two-sided
ideal defined as the radical of a certain symmetric bilinear form (,) on ‘f.
Let x : 'f — k be the unique homomorphism of Q(v)-algebras with 1 such
that x(0;) =1, foreach i € I.

Theorem 13.2.11. x induces an algebra isomorphism £ = 'f/T = k.

The homomorphism Y is surjective, since k is generated by the 1; as a
Q(v)-algebra (see 13.2.6.)

The homomorphism 7 : 'f — 'f ® 'f (see 1.2.2) and the homomorphism
r:k — k ®k (see 13.2.7) make the following diagram commutative:

 gu——— - Y

e

k —— k®k
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Indeed, first we note that x ® x is an algebra homomorphism, since v - v/
on Z[I] has been defined in terms of the pairing on Z[I]. Hence the two
possible compositions in the diagram are algebra homomorphisms; to check
that they are equal, it suffices to do this on the generators ;. But they
both take §; to 1, ® 1 + 1 ® 1; (see 13.1.12(e)).

For z,y € 'f, we set ((z,y)) = (x(z), x(y)) (the right hand side is as in
13.2.8). We have
(8) ((6:,69) = (1,1) = (1 = v=5¥%)1 (see 13.112(d)); ((6,6)) =
(1;,1;) =0, if ¢ # j (trivially);

((z,9'y")) = (x(@), x(¥")x(¥")) = (r(x(x)), x(¥') @ x(¥"))
(b) = (x @ x)(r(z), x(¥") ® x([¥")) = ((r(z), ¥ ®Y"));

we have used 13.1.10(a) and the commutativity of the diagram above. By
(b) and the symmetry of ((,)), we obtain

(c) ((zz’,y)) = (z ® 2, 7(1)))-

We have ((1,1)) = 1 (see 13.1.12(f)). Thus, ((z,y)) satisfies the defining
properties of (,) in 1.2.3; hence it coincides with (,). Since Z is defined as
the radical of (,) on ’f, we also get

(d) I ={z€'fl(x(x),x(y)) =0 Vye'f}.

Hence, if z € 'f satisfies x(z) = 0, then z € Z, so that Ker x C Z.
Conversely, assume that £ € Z. Let z € k. We have z = x(y) for some
y € 'f (recall that x is surjective). We have (x(z), z) = (x(z), x(v)) = 0 by
(d). Thus x(z) is in the radical of the form (,) on k. But this radical is
zero (see 13.2.8). Hence x(z) = 0. Thus we have proved that Ker x = Z.
The theorem follows.



