The Algebras o'k and k

13.1. THE ALGEBRA O'k

13.1.1. We preserve the setup of the previous chapter. Given $\nu \in \mathbf{N}[\mathbf{I}]^a$, we may regard $\mathbf{V} \mapsto \mathcal{K}(Q_{\mathbf{V}})$ as a functor on the category \mathcal{V}^a_{ν} with values in the category of \mathcal{O}' -modules. An isomorphism $\mathbf{V} \cong \mathbf{V}'$ in \mathcal{V}^a_{ν} induces an isomorphism $\mathbf{E}_{\mathbf{V}} \cong \mathbf{E}_{\mathbf{V}'}$ compatible with the a-actions; this induces an isomorphism $Q_{\mathbf{V}} \cong Q_{\mathbf{V}'}$ which induces an isomorphism $\mathcal{K}(Q_{\mathbf{V}}) \cong \mathcal{K}(Q_{\mathbf{V}'})$ that is actually independent of the choice of the isomorphism $\mathbf{V} \cong \mathbf{V}'$ by the equivariance properties of the complexes considered. Hence we may take the direct limit $\lim_{\longrightarrow \mathbf{V}} \mathcal{K}(Q_{\mathbf{V}})$ over the category \mathcal{V}^a_{ν} . This direct limit is denoted by $\mathcal{O}'_{\mathbf{k}_{\nu}}$. By the previous discussion, the natural homomorphism $\mathcal{K}(Q_{\mathbf{V}}) \to \mathcal{O}'_{\mathbf{k}_{\nu}}$ is an isomorphism for any $\mathbf{V} \in \mathcal{V}^a_{\nu}$.

The signed basis $\mathcal{B}_{\mathbf{V}}$ of $\mathcal{K}(\mathcal{Q}_{\mathbf{V}})$ (see 12.6.4) (where $\mathbf{V} \in \mathcal{V}_{\nu}^{a}$) can be regarded as a signed basis of the \mathcal{O}' -module $\mathcal{O}'\mathbf{k}_{\nu}$, independent of \mathbf{V} ; we denote it by \mathcal{B}_{ν} . It is a finite set.

13.1.2. Let $\mathcal{O}' \mathbf{k} = \bigoplus_{\nu} (\mathcal{O}' \mathbf{k}_{\nu})$ (ν runs over $\mathbf{N}[\mathbf{I}]^a$). Let $\mathcal{B} = \bigsqcup_{\nu} \mathcal{B}_{\nu}$, a signed basis of the \mathcal{O}' -module $\mathcal{O}' \mathbf{k}$. An element $x \in \mathcal{O}' \mathbf{k}$ is said to be homogeneous if it belongs to $\mathcal{O}' \mathbf{k}_{\nu}$ for some ν ; we then write $|x| = \nu$.

The homomorphisms $\operatorname{ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}$ can be regarded as \mathcal{O}' -linear maps $_{\mathcal{O}'}\mathbf{k}_{\tau}\otimes_{\mathcal{O}'}(_{\mathcal{O}'}\mathbf{k}_{\omega})\to_{\mathcal{O}'}\mathbf{k}_{\nu}$, defined whenever $\tau,\omega,\nu\in\mathbf{N}[\mathbf{I}]^a$ satisfy $\tau+\omega=\nu$. They define a multiplication operation, hence they define a structure of \mathcal{O}' -algebra on $_{\mathcal{O}'}\mathbf{k}$. For any $\boldsymbol{\nu}=(\nu^1,\ldots,\nu^m)\in\mathcal{X}^a$, we may regard $L_{\boldsymbol{\nu}}$ as an element in $_{\mathcal{O}'}\mathbf{k}_{\nu}$ where $\nu_{\mathbf{i}}=\sum_{l}\nu_{\mathbf{i}}^{l}$ for all \mathbf{i} .

Lemma 12.3.3 can be now restated as follows:

$$(a) L_{\boldsymbol{\nu}'}L_{\boldsymbol{\nu}''} = L_{\boldsymbol{\nu}'\boldsymbol{\nu}''}.$$

Since the elements L_{ν} generate $_{\mathcal{O}'}\mathbf{k}$ as a \mathcal{O}' -module (see 12.6.3), it follows that the algebra structure on $_{\mathcal{O}'}\mathbf{k}$ is associative. One can also see this more directly.

13.1.3. The homomorphisms $\operatorname{res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}$ can be regarded as \mathcal{O}' -linear maps $\mathcal{O}'\mathbf{k}_{\nu} \to \mathcal{O}'\mathbf{k}_{\tau} \otimes_{\mathcal{O}'}(\mathcal{O}'\mathbf{k}_{\omega})$, defined whenever $\tau, \omega, \nu \in \mathbf{N}[\mathbf{I}]^a$ satisfy $\tau + \omega = \nu$. By taking direct sums, we obtain an \mathcal{O}' -linear map $\bar{\tau} : \mathcal{O}'\mathbf{k} \to \mathcal{O}'\mathbf{k} \otimes_{\mathcal{O}'}(\mathcal{O}'\mathbf{k})$.

13.1.4. We have a symmetric bilinear pairing $\mathbf{Z}[\mathbf{I}] \times \mathbf{Z}[\mathbf{I}] \to \mathbf{Z}$ given by

$$\nu \cdot \nu' = 2 \sum_{\mathbf{i}} \nu_{\mathbf{i}} \nu'_{\mathbf{i}} - \sum_{\mathbf{h}} (\nu_{h'} \nu'_{h''} + \nu_{h''} \nu'_{h'}).$$

This bilinear form is independent of orientation. Let $_{\mathcal{O}'}\mathbf{k}\bar{\otimes}_{\mathcal{O}'}(_{\mathcal{O}'}\mathbf{k})$ be the \mathcal{O}' -module $_{\mathcal{O}'}\mathbf{k}\otimes_{\mathcal{O}'}(_{\mathcal{O}'}\mathbf{k})$ with the \mathcal{O}' -algebra structure given by

$$(x \otimes y)(x' \otimes y') = v^{-|x'| \cdot |y|} xx' \otimes yy'$$

for x, x', y, y' homogeneous.

Lemma 13.1.5. $\bar{r}:_{\mathcal{O}'}\mathbf{k}\to_{\mathcal{O}'}\mathbf{k}\bar{\otimes}_{\mathcal{O}'}(_{\mathcal{O}'}\mathbf{k})$ is a homomorphism of \mathcal{O}' -algebras.

We must check that $\bar{r}(xy) = \bar{r}(x)\bar{r}(y)$ for any $x, y \in \mathcal{O}'\mathbf{k}$. Since the elements $L_{\boldsymbol{\nu}}$ generate the \mathcal{O}' -module $\mathcal{O}'\mathbf{k}$ (see 12.6.3), we may assume that $x = L_{\boldsymbol{\nu}'}, y = L_{\boldsymbol{\nu}''}$, where $\boldsymbol{\nu}' = (\nu'^1, \dots, \nu'^m)$ and $\boldsymbol{\nu}'' = (\nu''^1, \dots, \nu''^n)$ are elements of \mathcal{X}^a . We have

(a)
$$\bar{r}(L_{\nu'}) = \sum v^{M'(\tau',\omega')} L_{\tau'} \otimes L_{\omega'}$$

where the sum is taken over all $\tau' = (\tau'^1, \dots, \tau'^m)$ and $\omega' = (\omega'^1, \dots, \omega'^m)$ in \mathcal{X}^a such that $\tau'^l + \omega'^l = \nu'^l$ for $1 \le l \le m$; $M'(\tau', \omega')$ is as in 9.2.11.

Similarly, we have

$$\bar{r}(L_{m{
u}^{\prime\prime}}) = \sum v^{M^{\prime}(m{ au}^{\prime\prime},m{\omega}^{\prime\prime})} L_{m{ au}^{\prime\prime}} \otimes L_{m{\omega}^{\prime\prime}}$$

where the sum is taken over all $\tau'' = (\tau''^{(m+1)}, \dots, \tau''^{(m+n)})$ and $\omega'' = (\omega''^{(m+1)}, \dots, \omega''^{(m+n)})$ in \mathcal{X}^a such that $\tau''^l + \omega''^l = \nu''^{l-m}$ for $m+1 \leq l \leq m+n$. Hence

$$\bar{r}(L_{\nu'})\bar{r}(L_{\nu''}) = \sum v^{M'(\tau',\omega')+M'(\tau'',\omega'')+|L_{\omega'}|\cdot|L_{\tau''}|} L_{\tau'\tau''} \otimes L_{\omega'\omega''}$$

where the sum is taken over all $\boldsymbol{\tau}'=(\tau'^1,\ldots,\tau'^m),\ \boldsymbol{\omega}'=(\omega'^1,\ldots,\omega'^m),\ \boldsymbol{\tau}''=(\tau''^{(m+1)},\ldots,\tau''^{(m+n)}),\ \boldsymbol{\omega}''=(\omega''^{(m+1)},\ldots,\omega''^{(m+n)})$ in \mathcal{X}^a such that $\tau'^l+\omega'^l=\nu'^l$ for $1\leq l\leq m$ and $\tau''^l+\omega''^l=\nu''^{l-m}$ for $m+1\leq l\leq m+n$.

We have

$$\bar{r}(L_{\nu'}L_{\nu''}) = \bar{r}(L_{\nu'\nu''}) = \sum v^{M'(\tau,\omega)}L_{\tau} \otimes L_{\omega}$$

where the sum is taken over all $\boldsymbol{\tau} = (\tau^1, \dots, \tau^{m+n})$ and $\boldsymbol{\omega} = (\omega^1, \dots, \omega^{m+n})$ in \mathcal{X}^a such that $\tau^l + \omega^l = \nu'^l$ for $1 \leq l \leq m$ and $\tau^l + \omega^l = \nu''^{l-m}$ for $m+1 \leq l \leq m+n$.

It remains to show that

$$|L_{\boldsymbol{\omega}'}| \cdot |L_{\boldsymbol{\tau}''}| = M'(\boldsymbol{\tau}'\boldsymbol{\tau}'', \boldsymbol{\omega}'\boldsymbol{\omega}'') - M'(\boldsymbol{\tau}', \boldsymbol{\omega}') - M'(\boldsymbol{\tau}'', \boldsymbol{\omega}'').$$

This follows by a straightforward computation. The lemma is proved.

13.1.6. The pairing $\{,\}$ on $\mathcal{K}(\mathcal{Q}_{\mathbf{V}})$ (see 12.1.2) (where $\mathbf{V} \in \mathcal{V}_{\nu}^{a}$) can be regarded as an \mathcal{O}' -bilinear pairing $\{,\}:_{\mathcal{O}'}\mathbf{k}_{\nu} \times_{\mathcal{O}'}\mathbf{k}_{\nu} \to \mathcal{O}((v))$, which is independent of \mathbf{V} . This extends to an \mathcal{O}' -bilinear pairing $\{,\}:_{\mathcal{O}'}\mathbf{k} \times_{\mathcal{O}'}\mathbf{k} \to \mathcal{O}((v))$ such that for homogeneous $x,y, \{x,y\}$ is given by the previous pairing if |x| = |y|, and is zero if $|x| \neq |y|$.

13.1.7. We define a \mathcal{O}' -bilinear pairing $\{,\}$ on $\mathcal{O}' \mathbf{k} \otimes \mathcal{O}' (\mathcal{O}' \mathbf{k})$ by

$$\{x' \otimes x'', y' \otimes y''\} = \{x', y'\}\{x'', y''\}.$$

The identity

4.3

$$\{x, y'y''\} = \{\bar{r}(x), y' \otimes y''\}$$

for all $x, y', y'' \in \mathcal{O}(\mathbf{k})$, follows immediately from 12.2.2.

- **13.1.8.** The homomorphism $D: \mathcal{K}(\mathcal{Q}_{\mathbf{V}}) \to \mathcal{K}(\mathcal{Q}_{\mathbf{V}})$ (where $\mathbf{V} \in \mathcal{V}_{\nu}^{a}$) can be regarded as a group homomorphism $D:_{\mathcal{O}'}\mathbf{k}_{\nu} \to _{\mathcal{O}'}\mathbf{k}_{\nu}$ that has square 1 and is semi-linear with respect to the ring involution $-:\mathcal{O}' \to \mathcal{O}'$ given by $v^{n} \mapsto v^{-n}$ and $\zeta \mapsto \zeta^{-1}$ for $\zeta \in \mathcal{O}, \zeta^{n} = 1$. By taking direct sums we obtain $D:_{\mathcal{O}'}\mathbf{k} \to _{\mathcal{O}'}\mathbf{k}$ which, by 12.4.3, is a ring homomorphism.
- **13.1.9.** We shall regard $\mathcal{O}' \mathbf{k} \otimes \mathcal{O}' (\mathcal{O}' \mathbf{k})$ as an \mathcal{O}' -algebra with

$$(x \otimes y)(x' \otimes y') = v^{|x'| \cdot |y|} xx' \otimes yy'$$

for x, x', y, y' homogeneous. This should be distinguished from the algebra $\mathcal{O}'\mathbf{k}\bar{\otimes}_{\mathcal{O}'}(\mathcal{O}'\mathbf{k})$. Let $D: \mathcal{O}'\mathbf{k}\bar{\otimes}_{\mathcal{O}'}(\mathcal{O}'\mathbf{k}) \to \mathcal{O}'\mathbf{k}\otimes_{\mathcal{O}'}(\mathcal{O}'\mathbf{k})$ be the ring isomorphism given by $D(x\otimes y) = D(x)\otimes D(y)$ for all x, y.

Let $r: _{\mathcal{O}'}\mathbf{k} \to _{\mathcal{O}'}\mathbf{k} \otimes _{\mathcal{O}'}(_{\mathcal{O}'}\mathbf{k})$ be the \mathcal{O}' -algebra homomorphism defined as the composition

$$\mathcal{O}'\mathbf{k} \xrightarrow{D} \mathcal{O}'\mathbf{k} \xrightarrow{\bar{r}} \mathcal{O}'\mathbf{k} \otimes \mathcal{O}'(\mathcal{O}'\mathbf{k}) \xrightarrow{D} \mathcal{O}'\mathbf{k} \otimes \mathcal{O}'(\mathcal{O}'\mathbf{k}).$$

13.1.10. Let $(,): \underline{\sigma'}\mathbf{k} \times \underline{\sigma'}\mathbf{k} \to \mathcal{O}((v^{-1}))$ be the \mathcal{O}' -bilinear pairing given by $(x,y) = \overline{\{D(x),D(y)\}}$. Here, $\overline{}: \mathcal{O}((v)) \to \mathcal{O}((v^{-1}))$ is given by $\sum_n a_n v^n \mapsto \sum_n \overline{a}_n v^{-n} \quad (a_n \in \mathcal{O})$.

From 13.1.7, we deduce the identity

(a)
$$(x, y'y'') = (r(x), y' \otimes y'')$$

for all $x, y', y'' \in \mathcal{O}' \mathbf{k}$.

13.1.11. From the definition we have

(a) D(b) = b for all $b \in \mathcal{B}$.

We have

(b) $\{b, b'\} \in v\mathbf{Z}[[v]] \cap \mathbf{Q}(v)$ for any $b, b' \in \mathcal{B}$ such that $b' \neq \pm b$.

Indeed, $\{b, b'\}$ is in $v\mathcal{O}[[v]]$ by 12.5.3 and in $\mathbf{Z}((v))$ by 12.6.2 and 12.6.3, and hence in $v\mathbf{Z}[[v]]$.

We have

(c) $\{b, b\} \in 1 + v\mathbf{Z}[[v]] \cap \mathbf{Q}(v)$ for all $b \in \mathcal{B}$.

Indeed, $\{b, b\}$ is in $1 + v\mathcal{O}[[v]]$ by 12.5.3 and in $\mathbf{Z}((v))$ by 12.6.2 and 12.6.3, and hence in $1 + v\mathbf{Z}[[v]]$.

From (a),(b),(c) we deduce:

- (b') $(b,b') \in v^{-1}\mathbf{Z}[[v^{-1}]] \cap \mathbf{Q}(v)$ for any $b,b' \in \mathcal{B}$ such that $b' \neq \pm b$.
- (c') $(b, b) \in 1 + v^{-1}\mathbf{Z}[[v^{-1}]] \cap \mathbf{Q}(v)$ for all $b \in \mathcal{B}$.
- **13.1.12.** Let i be an a-orbit on \mathbf{I} and let $\gamma = \sum_{\mathbf{i} \in i} \mathbf{i}$. For any $n \geq 0$, $_{\mathcal{O}'}\mathbf{k}_{n\gamma}$ has a distinguished element denoted $\mathbf{1}_{ni}$; it corresponds to $[\mathbf{1}, \mathbf{1}] \in \mathcal{K}(\mathcal{Q}_{\mathbf{V}})$ where $\mathbf{V} \in \mathcal{V}_{n\gamma}^a$. This element forms a basis of the \mathcal{O}' -module $_{\mathcal{O}'}\mathbf{k}_{n\gamma}$. When n = 0, this is independent of i and is denoted simply by $\mathbf{1} \in _{\mathcal{O}'}\mathbf{k}_0$. Note that
 - (a) 1 is the unit element of the algebra O'k.
- (b) The elements $L_{\nu} \in \mathcal{O}'\mathbf{k}$ are precisely the elements of $\mathcal{O}'\mathbf{k}$ which are products of elements of form $\mathbf{1}_{ni}$ for various i, n. Hence the elements $\mathbf{1}_{ni}$ generate $\mathcal{O}'\mathbf{k}$ as an \mathcal{O}' -algebra.
- (c) We have $\mathbf{1}_{i}\mathbf{1}_{(n-1)i}=v^{d(n-1)}(\sum_{s=0}^{n-1}v^{-ds})\mathbf{1}_{ni}$ (for $n\geq 1$), where d is the number of elements in the orbit i. (See 12.3.4.)

From 12.3.6, we have

(d)
$$\{\mathbf{1}_i, \mathbf{1}_i\} = (1 - v^{2d})^{-1}$$
 (where d is as above)

or equivalently, since $D(\mathbf{1}_i) = \mathbf{1}_i$:

(d')
$$(\mathbf{1}_i, \mathbf{1}_i) = (1 - v^{-2d})^{-1}$$
.

From (b) and (c) we see that

(e)
$$\bar{r}(\mathbf{1}_i) = r(\mathbf{1}_i) = \mathbf{1}_i \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1}_i$$
.

This is obvious from the definitions. It is clear that

(f)
$$(1,1) = \{1,1\} = 1$$
.

13.1.13. From 10.3.4, it follows easily that there is a unique \mathcal{O}' -linear map $\sigma: _{\mathcal{O}'}\mathbf{k} \to _{\mathcal{O}'}\mathbf{k}$ such that $\sigma(L_{\boldsymbol{\nu}}) = L_{\boldsymbol{\nu}'}$ for any $\boldsymbol{\nu} = (\nu^1, \nu^2, \dots, \nu^m) \in \mathcal{X}^a$, where $\boldsymbol{\nu}' = (\nu^m, \nu^{m-1}, \dots, \nu^1) \in \mathcal{X}^a$; moreover, we have $\sigma(\mathcal{B}) = \mathcal{B}$. It follows that σ is the unique isomorphism of $\sigma'\mathbf{k}$ onto the algebra opposed to $\sigma'\mathbf{k}$ such that $\sigma(\mathbf{1}_{ni}) = \mathbf{1}_{ni}$ for all $i \in I$ and $n \geq 0$.

13.2. THE ALGEBRA k

- 13.2.1. Let $_{\mathcal{A}}\mathbf{k}$ be the \mathcal{A} -submodule of $_{\mathcal{O}'}\mathbf{k}$ spanned by \mathcal{B} , or equivalently (see 12.6.3), by the elements L_{ν} for various $\nu \in \mathcal{X}^a$. Thus, on the one hand, $_{\mathcal{A}}\mathbf{k}$ is the \mathcal{A} -subalgebra of $_{\mathcal{O}'}\mathbf{k}$ generated by the elements $\mathbf{1}_{ni}$ as in 13.1.12(b), and on the other hand, \mathcal{B} is a signed basis for the \mathcal{A} -module $_{\mathcal{A}}\mathbf{k}$. We have $_{\mathcal{A}}\mathbf{k} = \oplus_{\nu}(_{\mathcal{A}}\mathbf{k}_{\nu})$ where $_{\mathcal{A}}\mathbf{k}_{\nu}$ is the \mathcal{A} -submodule generated by \mathcal{B}_{ν} .
- **13.2.2.** From 13.1.5(a), we see that \bar{r} restricts to an \mathcal{A} -linear map $_{\mathcal{A}}\mathbf{k} \to _{\mathcal{A}}\mathbf{k} \otimes_{\mathcal{A}} (_{\mathcal{A}}\mathbf{k})$, denoted again by \bar{r} ; this is an \mathcal{A} -algebra homomorphism if $_{\mathcal{A}}\mathbf{k} \otimes_{\mathcal{A}} (_{\mathcal{A}}\mathbf{k})$ (which is naturally imbedded in $_{\mathcal{O}'}\mathbf{k}\bar{\otimes}_{\mathcal{O}'}(_{\mathcal{O}'}\mathbf{k})$) is given the induced \mathcal{A} -algebra structure (see 13.1.5).
- **13.2.3.** By 13.1.11(a), the ring homomorphism $D:_{\mathcal{O}'}\mathbf{k} \to_{\mathcal{O}'}\mathbf{k}$ restricts to a ring homomorphism $D:_{\mathcal{A}}\mathbf{k} \to_{\mathcal{A}}\mathbf{k}$ which has square 1 and is semi-linear with respect to the ring involution $\bar{}: \mathcal{A} \to \mathcal{A}$.
- **13.2.4.** From 13.2.3 and 13.2.2, it follows that the \mathcal{O}' -algebra homomorphism $r:_{\mathcal{O}'}\mathbf{k} \to_{\mathcal{O}'}\mathbf{k} \otimes_{\mathcal{O}'}(_{\mathcal{O}'}\mathbf{k})$ (see 13.1.9) restricts to an \mathcal{A} -algebra homomorphism $_{\mathcal{A}}\mathbf{k} \to _{\mathcal{A}}\mathbf{k} \otimes_{\mathcal{A}}(_{\mathcal{A}}\mathbf{k})$, denoted again by r. This is an \mathcal{A} -algebra homomorphism if $_{\mathcal{A}}\mathbf{k} \otimes_{\mathcal{A}}(_{\mathcal{A}}\mathbf{k})$ (which is naturally imbedded in $_{\mathcal{O}'}\mathbf{k} \otimes_{\mathcal{O}'}(_{\mathcal{O}'}\mathbf{k})$) is given the induced \mathcal{A} -algebra structure (see 13.1.9).
- **13.2.5.** The pairing $(,):_{\mathcal{O}'}\mathbf{k}\times_{\mathcal{O}'}\mathbf{k}\to\mathcal{O}((v^{-1}))$ (see 13.1.10) restricts to an \mathcal{A} -bilinear pairing $(,):_{\mathcal{A}}\mathbf{k}\times_{\mathcal{A}}\mathbf{k}\to\mathbf{Z}((v^{-1}))\cap\mathbf{Q}(v)$ (see 13.1.11(b'),(c')). The equation analogous to 13.1.10(a) continues of course to hold over \mathcal{A} .
- **13.2.6.** Let **k** be the $\mathbf{Q}(v)$ -algebra $\mathbf{Q}(v) \otimes_{\mathcal{A}} (_{\mathcal{A}}\mathbf{k})$. Note that \mathcal{B} is a signed basis of the $\mathbf{Q}(v)$ -vector space **k**. We have a direct sum decomposition $\mathbf{k} = \bigoplus_{\nu} \mathbf{k}_{\nu}$ where \mathbf{k}_{ν} is the subspace spanned by \mathcal{B}_{ν} .

From 13.2.1 and 13.1.12(c), we see by induction on n that k is generated as a $\mathbf{Q}(v)$ -algebra by the elements $\mathbf{1}_i$ for the various a-orbits on \mathbf{I} .

13.2.7. The homomorphism r in 13.2.4 extends to a $\mathbf{Q}(v)$ -algebra homomorphism $\mathbf{k} \to \mathbf{k} \otimes_{\mathbf{Q}(v)} \mathbf{k}$ (denoted again by r) where $\mathbf{k} \otimes_{\mathbf{Q}(v)} \mathbf{k}$ is regarded as a $\mathbf{Q}(v)$ -algebra by the same rule as in 13.1.9.

13.2.8. The pairing (,) on $_{\mathcal{A}}\mathbf{k}$ extends to a $\mathbf{Q}(v)$ -bilinear pairing (,): $\mathbf{k} \times \mathbf{k} \to \mathbf{Q}(v)$. From 13.1.11(b'),(c'), we see that the restriction of this pairing to \mathbf{k}_{ν} is non-degenerate, for any ν . (Its determinant with respect to a basis contained in \mathcal{B}_{ν} belongs to $1 + v^{-1}\mathbf{Z}[[v^{-1}]] \cap \mathbf{Q}(v)$ and hence is non-zero.)

13.2.9. Let I be the set of a-orbits on I. We identify $\mathbf{Z}[I]$ with the subgroup

$$\mathbf{Z}[\mathbf{I}]^a = \{ \nu \in \mathbf{Z}[\mathbf{I}] | \nu_{\mathbf{i}} = \nu_{a(\mathbf{i})} \quad \forall \mathbf{i} \in \mathbf{I} \}$$

of $\mathbf{Z}[\mathbf{I}]$ by associating to each $\nu \in \mathbf{Z}[I]$ the element of $\mathbf{Z}[\mathbf{I}]$ (denoted again ν), in which the coefficient of \mathbf{i} is ν_i where i is the a-orbit of \mathbf{i} .

For $\nu, \nu' \in \mathbf{Z}[I]$ we define $\nu \cdot \nu' \in \mathbf{Z}$ by regarding ν, ν' as elements of $\mathbf{Z}[\mathbf{I}]$ as above and then computing $\nu \cdot \nu'$ according to 13.1.4. (This is a symmetric bilinear form). According to this rule, we have, for $i, j \in I$: $i \cdot j = \text{minus}$ the number of $h \in H$ such that [h] consists of a point in i and a point in j, if $i \neq j$ and $i \cdot i = \text{twice}$ the number of elements in the orbit i. Note that, if $i \neq j$ then $-2\frac{i \cdot j}{i \cdot i} \in \mathbf{N}$; indeed, this is the number of $h \in H$ such that [h] consists of a given point in i and some point in j. Hence we have obtained a Cartan datum (I, \cdot) .

13.2.10. Let **f** be the $\mathbf{Q}(v)$ -algebra, defined as in 1.2.5, in terms of the Cartan datum (I,\cdot) just described. Recall that $\mathbf{f} = '\mathbf{f}/\mathcal{I}$ where '**f** is the free associative $\mathbf{Q}(v)$ -algebra on the generators $\theta_i(i \in I)$ and \mathcal{I} is a two-sided ideal defined as the radical of a certain symmetric bilinear form (,) on '**f**. Let $\chi: '\mathbf{f} \to \mathbf{k}$ be the unique homomorphism of $\mathbf{Q}(v)$ -algebras with 1 such that $\chi(\theta_i) = \mathbf{1}_i$ for each $i \in I$.

Theorem 13.2.11. χ induces an algebra isomorphism $\mathbf{f} = {}'\mathbf{f}/\mathcal{I} \cong \mathbf{k}$.

The homomorphism χ is surjective, since **k** is generated by the $\mathbf{1}_i$ as a $\mathbf{Q}(v)$ -algebra (see 13.2.6.)

The homomorphism $r: \mathbf{f} \to \mathbf{f} \otimes \mathbf{f}$ (see 1.2.2) and the homomorphism $r: \mathbf{k} \to \mathbf{k} \otimes \mathbf{k}$ (see 13.2.7) make the following diagram commutative:

Indeed, first we note that $\chi \otimes \chi$ is an algebra homomorphism, since $\nu \cdot \nu'$ on $\mathbf{Z}[I]$ has been defined in terms of the pairing on $\mathbf{Z}[I]$. Hence the two possible compositions in the diagram are algebra homomorphisms; to check that they are equal, it suffices to do this on the generators θ_i . But they both take θ_i to $\mathbf{1}_i \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1}_i$ (see 13.1.12(e)).

For $x, y \in {}'\mathbf{f}$, we set $((x, y)) = (\chi(x), \chi(y))$ (the right hand side is as in 13.2.8). We have

(a)
$$((\theta_i, \theta_i)) = (\mathbf{1}_i, \mathbf{1}_i) = (1 - v^{-i \cdot i/2})^{-1}$$
 (see 13.1.12(d')); $((\theta_i, \theta_j)) = (\mathbf{1}_i, \mathbf{1}_j) = 0$, if $i \neq j$ (trivially);

$$\begin{split} ((x,y'y'')) &= (\chi(x),\chi(y')\chi(y'')) = (r(\chi(x)),\chi(y')\otimes\chi(y'')) \\ (b) &= (\chi\otimes\chi)(r(x),\chi(y')\otimes\chi(y'')) = ((r(x),y'\otimes y'')); \end{split}$$

we have used 13.1.10(a) and the commutativity of the diagram above. By (b) and the symmetry of ((,)), we obtain

(c)
$$((xx',y)) = ((x \otimes x', r(y))).$$

We have ((1,1)) = 1 (see 13.1.12(f)). Thus, ((x,y)) satisfies the defining properties of (,) in 1.2.3; hence it coincides with (,). Since \mathcal{I} is defined as the radical of (,) on 'f, we also get

(d)
$$\mathcal{I} = \{ x \in {}'\mathbf{f} | (\chi(x), \chi(y)) = 0 \quad \forall y \in {}'\mathbf{f} \}.$$

Hence, if $x \in {}'\mathbf{f}$ satisfies $\chi(x) = 0$, then $x \in \mathcal{I}$, so that $\ker \chi \subset \mathcal{I}$. Conversely, assume that $x \in \mathcal{I}$. Let $z \in \mathbf{k}$. We have $z = \chi(y)$ for some $y \in {}'\mathbf{f}$ (recall that χ is surjective). We have $(\chi(x), z) = (\chi(x), \chi(y)) = 0$ by (d). Thus $\chi(x)$ is in the radical of the form (,) on \mathbf{k} . But this radical is zero (see 13.2.8). Hence $\chi(x) = 0$. Thus we have proved that $\ker \chi = \mathcal{I}$. The theorem follows.