Periodic Functors

11.1.1. Let C be a category in which the space of morphisms between any two objects has a given $\bar{\mathbf{Q}}_l$ -vector space structure such that composition of morphisms is bilinear and such that finite direct sums exist. We say that C is a *linear* category.

A functor from one linear category to another linear category is said to be linear if it respects the $\bar{\mathbf{Q}}_l$ -vector space structures.

11.1.2. Assume that we are given an integer $n \ge 1$ and a linear functor $a^*: C \to C$ such that a^{*n} is the identity functor from C to C. We say that a is a periodic functor.

We define a new category \tilde{C} as follows. The objects of \tilde{C} are pairs (A,ϕ) where A is an object of C and $\phi:a^*A\to A$ is an isomorphism in C such that the composition

$$a^{*\mathbf{n}}A \xrightarrow{a^{*(\mathbf{n}-1)}\phi} a^{*(\mathbf{n}-1)}A \xrightarrow{a^{*(\mathbf{n}-2)}\phi} a^{*(\mathbf{n}-2)}A \longrightarrow \cdots \longrightarrow a^{*}A \xrightarrow{\phi} A$$

is the identity map of A.

Let (A, ϕ) and (A', ϕ') be two objects of \tilde{C} . There is a natural automorphism $u: \operatorname{Hom}(A, A') \to \operatorname{Hom}(A, A')$ given by $u(f) = \phi' a^*(f) \phi^{-1}$. From the definitions it follows that $u^{\mathbf{n}} = 1$. By definition,

$$\operatorname{Hom}_{\tilde{C}}((A,\phi),(A',\phi'))=\{f\in\operatorname{Hom}_{C}(A,A')|u(f)=f\}.$$

The composition of morphisms in \tilde{C} is induced by that in C. The direct sum of two objects (A, ϕ) and (A', ϕ') of \tilde{C} is $(A \oplus A', \phi \oplus \phi')$. Thus, \tilde{C} is in a natural way a linear category. Clearly, if (A, ϕ) is an object of \tilde{C} , then so is $(A, \zeta\phi)$ for any $\zeta \in \bar{\mathbf{Q}}_l$ such that $\zeta^{\mathbf{n}} = 1$.

- **11.1.3.** Assume that we are given three objects $(A, \phi), (A', \phi'), (A'', \phi'')$ of \tilde{C} and morphisms $i': (A', \phi') \to (A, \phi), p'': (A, \phi) \to (A'', \phi'')$ in \tilde{C} such that the following holds.
 - (a) There exist morphisms $i'':A''\to A$ and $p':A\to A'$ in C such that

$$p'i' = 1_{A'}, p'i'' = 0, p''i' = 0, p''i'' = 1_{A''}, i'p' + i''p'' = 1_{A}.$$

We show that $(A',\phi') \oplus (A'',\phi'') \cong (A,\phi)$ in \tilde{C} . Recall that $u^{\mathbf{n}}(i'') = i''$ where $u: \operatorname{Hom}_{C}(A'',A) \to \operatorname{Hom}_{C}(A'',A)$ is as in 11.1.2. Let $\tilde{i}'' = \sum_{j=1}^{\mathbf{n}} u^{j}(i'')/\mathbf{n}: A'' \to A$. Then $\tilde{i}'' \in \operatorname{Hom}_{\tilde{C}}(A'',A')$ and $p''\tilde{i}'' = 1_{A''}$.

We set the $\tilde{p}' = p' - p'\tilde{i}''p'' : A \to A'$. Then

$$\tilde{p}'i' = 1_{A'}, \, \tilde{p}'\tilde{i}'' = 0, \, p''i' = 0, \, i'\tilde{p}' + \tilde{i}''p'' = 1_A.$$

It follows that (i', \tilde{i}'') define an isomorphism $(A', \phi') \oplus (A'', \phi'') \rightarrow (A, \phi)$ (in \tilde{C}). Our assertion is proved.

- **11.1.4.** An object (A, ϕ) of \tilde{C} is said to be *traceless* if there exists an object B of C, an integer $t \geq 2$ dividing n, such that $a^{*t}B \cong B$, and an isomorphism $A \cong B \oplus a^*B \oplus \cdots \oplus a^{*(t-1)}B$ under which ϕ corresponds to an isomorphism $a^*B \oplus a^{*2}B \oplus \cdots \oplus a^{*t}B \cong B \oplus a^*B \oplus \cdots \oplus a^{*(t-1)}B$ carrying the summand $a^{*j}B$ onto the summand $a^{*j}B$ (for $1 \leq j \leq t-1$) and the summand $a^{*t}B$ onto the summand B.
- **11.1.5.** Let \mathcal{O} be the subring of $\bar{\mathbf{Q}}_l$ consisting of all **Z**-linear combinations of **n**-th roots of 1. We associate to C and a^* an \mathcal{O} -module $\mathcal{K}(C)$. By definition, $\mathcal{K}(C)$ is the \mathcal{O} -module generated by symbols $[B, \phi]$, one for each isomorphism class of objects (B, ϕ) of \tilde{C} , subject to the following relations:
 - (a) $[B, \phi] + [B', \phi'] = [B \oplus B', \phi \oplus \phi'];$
 - (b) $[B, \phi] = 0$ if (B, ϕ) is traceless;
 - (c) $[B, \zeta \phi] = \zeta[B, \phi]$ if $\zeta \in \bar{\mathbf{Q}}_l$ satisfies $\zeta^{\mathbf{n}} = 1$.

This definition is similar to that of a Grothendieck group.

- **11.1.6.** Now let C' be another linear category with a given functor a^* : $C' \to C'$ such that a^{*n} is the identity functor from C' to C'. Let b: $C \to C'$ be a linear functor. Assume that we are given an isomorphism of functors $ba^* = a^*b : C \to C'$. Then b induces a linear functor $\tilde{b} : \tilde{C} \to \tilde{C}'$ by $b(A, \phi) = (bA, \phi')$ where $\phi' : a^*bA \to bA$ is the composition $a^*bA = ba^*A \xrightarrow{b(\phi)} bA$. It is clear that $[A, \phi] \mapsto [bA, \phi']$ respects the relations of $\mathcal{K}(C), \mathcal{K}(C')$ and hence defines an \mathcal{O} -linear map $\mathcal{K}(C) \to \mathcal{K}(C')$.
- 11.1.7. Assume now that C is, in addition, an abelian category in which any object is a direct sum of finitely many simple objects. Let B be a simple object of C. Let t_B be the smallest integer ≥ 1 such that $(a^*)^{t_B}B$ is isomorphic to B; let $f_B:(a^*)^{t_B}B\to B$ be an isomorphism. We have $\mathbf{n}=n't_B$ where n' is an integer ≥ 1 .

The composition

(a)
$$B = (a^*)^{n't_B}B \to \cdots \xrightarrow{a^{*2t_B}f_B} a^{*2t_B}B \xrightarrow{a^{*t_B}f_B} a^{*t_B}B \xrightarrow{f_B} B$$

is a non-zero scalar times identity (since B is simple); hence by changing f_B by a non-zero multiple of f_B , we can assume that the composition (a) is the identity.

Consider the isomorphism

$$\phi_B: a^*(B \oplus a^*B \oplus \cdots (a^*)^{t_B-1}B) = a^*B \oplus a^{*2}B \oplus \cdots (a^*)^{t_B}B$$
$$\to B \oplus a^*B \oplus \cdots (a^*)^{t_B-1}B$$

which maps the summand $a^{*j}B$ onto the summand $a^{*j}B$ by the identity map (for $1 \le j \le t_B - 1$) and maps the summand $(a^*)^{t_B}B$ onto the summand B by f_B . From the definitions we see that

$$(B \oplus a^*B \oplus \cdots (a^*)^{t_B-1}B, \phi_B)$$

is an object of \tilde{C} .

Let S be a set of simple objects of C with the following property: any simple object in C is isomorphic to $a^{*j}B$ for a unique B in S and some $j \geq 0$. For each B in S we choose ϕ_B as above. It is easy to see that any object of \tilde{C} is isomorphic to

(b)
$$\oplus_{B\in\mathcal{S}}((B\oplus a^*B\oplus\cdots(a^*)^{t_B-1}B)\otimes E_B,\phi_B\otimes\psi_B)$$

where for each B, E_B is a finite dimensional $\bar{\mathbf{Q}}_l$ -vector space with a given automorphism $\psi_B: E_B \to E_B$ such that $\psi_B^{\mathbf{n}} = 1$ and $E_B = 0$ for all but finitely many B. Note that the summands corresponding to B such that $t_B \geq 2$ are traceless.

Let B be a simple object of C such that $a^*B \cong B$. The isomorphisms $\phi: a^*B \cong B$ such that $(B,\phi) \in \tilde{C}$, generate a free \mathcal{O} -submodule of rank 1 of $\operatorname{Hom}_C(a^*B,B)$; we denote this \mathcal{O} -submodule by \mathcal{O}_B . It is easy to see that \mathcal{O}_B depends only on the isomorphism class of B.

11.1.8. From 11.1.7 it follows easily that

(a)
$$\mathcal{K}(C) = \bigoplus_B \mathcal{O}_B$$

as \mathcal{O} -modules (the sum is taken over the isomorphism classes of simple objects B such that $a^*B \cong B$); to the element $\phi \in \mathcal{O}_B$ such that $(B, \phi) \in \tilde{C}$ corresponds the element $[B, \phi] \in \mathcal{K}(C)$.