CHAPTER 10

Fourier-Deligne Transform

10.1. FOURIER-DELIGNE TRANSFORM AND RESTRICTION

10.1.1. In addition to the orientation h — h’, h — h” in 9.1.1, we shall
consider a new orientation of our graph. Thus, we assume we are given two
new maps H — I denoted h — 'h and h — "h, such that for any h € H,
the subset [h] of I consists precisely of ‘h,”h. Let

Hy={h€ H'h="h and "h=h"}; Hy={h€ H'h=h"and "h=h'}.

Then H,, H, form a partition of H.
For V € V, we define 'Ev like Ev in 9.1.2, but using the new orientation:
"By = ®regHom(Viy, Viry). This has a natural Gy-action just like Ey.
We have

Ev = ®rey, Hom(Vy, Vi) @ (Bren, Hom(Vir, Vi),
- /By = ®nen, Hom(Vy/, Vi) @ (Brer,Hom(Vir, Vi),
Let Ey be the vector space
®her, Hom(Vy, Vi )& (@re i, Hom(Viy, Vi ))& (Dhe o, Hom(Virr, Vi),
We have the diagram
(a) Ey < Ev 5 'Ev

where s,t are the obvious projections.

Let T : Eyv — k be the map given by T(e) = Zh€H2 tr (Vo — Vo —
V) where the two unnamed maps are components of e. Let us consider
the Fourier-Deligne transform @ : D(Ey) — D('Ey) defined by ®(K) =
ti(s*(K) ® Lr)[dv] where dy = ),y dimVy dim Vye. (See 8.1.11.)
Now let T, W be as in 9.2.1. We may consider a diagram like (a) for T
and for W instead of V; taking direct products, we obtain the diagram

ETXEwiETXEw—EP/ETXIEw.
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On each of ET and Ew we have a linear form like T' above; the sum of
these gives a linear form T : Ex x Ew — k. The Fourier-Deligne transform
®: D(Et x Ew) — D(Et x 'Ew) is given by

©(K) = t(5*(K) ® L)[dr + dw].
The following result shows the relation between the Fourier-Deligne

transform and the restriction functor.

Proposition 10.1.2. For any K € Qv we have

B(Resywk) = Resy w(®(K))[r]

where
T = Z (dim Thn dim th — dim Th/ dim Whu).
heH;

We consider the commutative diagram of vector spaces and linear maps

ErxEw 2 F - Ev

S | 1

ErxBw «2— 9w 4% p_¢ ., = ‘ » By

o 4

’

'Et X 'Ew —2 !
where the following notation is used.

F is the set of all z € Ev such that z,(W4/) C Wy for all h € H; pis
the obvious surjective map and ¢ is the obvious imbedding.

'F is the set of all z € "Evy such that x,(W/,) C Wy, for all h € H;'p
is the obvious surjective map and ‘¢ is the obvious imbedding.

Fistheset ofall z € Ev such that sz € F and tz € 'F.

E is defined by the condition that (i,t,¢,’t) is a cartesian diagram.

¥ is defined by the condition that (3, p,p, 3) is a cartesian diagram.

q is such that sq and pq are the obvious surjective maps.

¢ is such that i¢ and i¢ are the obvious imbeddings.

We have E = 'F @ (®nen, Hom(Vy, V). Let Z be the subspace of =
consisting of the elements such that each component Vi — Vh: (h € Hy)
carries Wy~ to 0 and all other components are zero. Let ¢ : E — Z/Z be
the canonical map. Let T : £ — k be given by T(z) = T(«(z)). From
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definitions, it follows immediately that the restriction of T to a fibre (& Z)
of c: E — E/Z is an affine-linear function which is constant if and only if
that fibre is contained in the subspace ¢(F).

Let & = Z — ((F), and let (E/Z) = ¢(E'). We have Z C {(F); hence
all fibres of ¢’ : & — (E/Z)’ (restriction of ¢) are isomorphic to Z.

Let T' : &' — k be the restriction of 7. As we have seen above, the
restriction of 7" to any fibre of ¢’ : ' — (£/Z)’ is a non-constant affine-

=/

linear function. Hence the local system L7+ on E' satisfies ¢|(L7/) = 0
(see 8.1.13). Using the distinguished triangle associated to the partition
E = E' U ((F), we deduce that ai((*Ls) = als. It is clear that the
composition si : E — Evy factors through E/Z; hence {*s*K is in the
image of ¢* so that the previous equality implies
Cg(ég(é*ﬁf-) ®i*s*K) = C!(ET ®i*s*K).
It is also clear that the composition /pt : & — 'Ex x 'Ew factors through
E/Z. Hence the previous equality implies
"ot ($(( L) ®iTs*K) = "pity(L7 © i*s*K).

We have Ti¢ = Tpg; hence p*¢*Ls = (*i*Lr = (*L;. Since ¢ is a

surjective linear map with kernel of dimension

m= Z dim Thu dim Wh/,
heH,
we obtain ¢1¢*L = L{—2m)] for all L € D(¥). We have

®(Resy. wK) = h(Lr ® 5pu* K)ldr + dw]
=h(Lr @ pi§* L K)[dr + dw]
= H(Lr @ pgig* 8" K [2m])[dt + dw]
= tp@(p*4" (Lr) ® §*$"° K)[2m + dr + dw]
= 'pgt'gclg(]')*d*(ﬁrf) ® é*i*s*K)[2m +dt + dw]
="pby(G(p* ¢ L7) ® i*s* K)[2m + d + dw]
= ,pgt'!(c'!(é*[:j‘) ® i*s*K)[2m + dt + dw]
='ph(Ls ® i*s*K)[2m + dt + dw]
and
Res¥,w((1>(K))[7r] ='p/*ty (LT ® s*K)[m + dv]
= ’pgt‘!i*(ﬁT ® s*K)[r + dv]
='pt(Ls ® i*s*K)[m + dv].

It remains for us to observe that m+dv = 2m-+dr+dw. The proposition
is proved.
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10.1.3. We can reformulate the previous proposition using Res.}'yw instead

of R~es¥’w; the shift by = will then disappear:

®(Resy. wK) = Res¥. w (®(K)).

10.2. FOURIER-DELIGNE TRANSFORM AND INDUCTION

10.2.1. Let v = (v!,%,...,0™) € X be such that dim V; = ¥,/ for all i.
Recall that we have a natural proper morphism =, : 7, —» Ev. The same
definition with the new orientation for our graph gives a proper morphism
'my, : 'F, — 'Ev, where 'F, is the variety of all pairs (z, f) such that
z € 'Ev and f € F, is z-stable; 'm, is the first projection.

Recall the definition L, = (o)1 € D(Ey). Similarly, we set 'L, =
('m )1 € D(Evy).

Proposition 10.2.2. &(L,) = 'L, [M] where

’ ’ ’
M= E Wk —vhvts).
heHal>1

Consider the commutative diagram

o — 5 -
3 =

~| el |

Ev —— Ey —— 'Ey

«— [}

where the following notation is used.

E is the set of all (z,y, f) where z € Ev, f is an z-stable flag in F,, and
y € 'Ev is such that y, = x5, : Vi — Vi for any h € H;.

E is the set of all (y, f) wherey € 'Ey and f = (V=V°>Vl>... 5
V™ =0) is a flag in F,, such that y,(V},) C V., for all [ and all h € H;.

The lower horizontal maps are as in 10.1.1(a); the other maps are the
obvious ones. The left square is cartesian. We have s*(m, )11 = pr1. Hence

®(L,) = ti(Lr ® p1)[dv] = (L) [dv]

where T : Ey — k is as in 1011, T : E > k is given by T = Tp and
t=tp:= - 'Ey.
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The fibres of c are affine spaces of dimension N = 3, ., v, z/,';,,.
(In the formula for N we have v},v}, =0 for l = I’, since /! is discrete.)

We have a partition = = Zy U Z; where = is the closed subset of =
consisting of those (z,y, f) such that f is y-stable. It can be verified that
the restriction of T to the fibre of ¢ at c(z,y, f) is an affine-linear function
and that this function is constant if and only if (z,y, f) € Zp. Note that
Zo is a union of fibres of c.

Using 8.1.13, it follows that (c1)(L5|z,) = 0, where ¢’ : £; — Z is the
restriction of c. Hence, if j : £y — Z is the inclusion, we have ¢ (].'*ﬁq:) =
¢i1Ly. From the commutative diagram above, it then follows that

(o) (Ls = (to)(Lsl=,)

where tg : E9 — 'Ev is the restriction of tp.
Let (z,y, f) € Ep with f as above. We have

T(z,y,f) =T(z,9) = D> tr (Yazn: Viw = Vi),
heH,

Since f is stable under both x and y, we have

tr (ynzp : Vi — Vhr) = z tr (yhmh : VLTI/Vl ;= Vﬁ;,l/Vﬁl,,).
1
For any [, at least one of the vector spaces V;Jl /Vi,, V;;,l / V%, is zero,
since v/} is discrete. Thus, tr (ypzh : Vi — V1) = 0 for each h € Hy, so
" that T(x,y, f) = 0. Since T is identically zero on =, we have Lilzg =1
and we see that
(to0(Ls = (o)L

Now g can be factored as a composition Sy — 'F,, —% 'Ey, where the
first map (restriction of ¢) is a vector bundle of dimension N. Hence

(to)gl = (’71',,)!1[—2N] = ,Ly[—2N].

It follows that (tp)1(Ls = (to)11 = 'L,[—2N]. It remains for us to observe
that dyv — 2N = M. The proposition is proved.

10.2.3. Using the proposition and the general properties of the Fourier-
Deligne transform (see 8.1.11) we see that ® : D(Ey) — D('Ey) defines
an equivalence of categories Qv — 'Qy and Py — Py, where 'Qv, Py
are defined as Qv, Py but using the new orientation of our graph. Hence
® induces a bijection between the set of simple objects in Py and that in
"Py.
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10.2.4. We have a natural action of (k*)¥ on Ev (resp. on F, ) given by
(¢n) = (zn) = (Chzn) (resp. (Cu) @ ((zn), f) = ((Chzn), f). The map m, is
compatible with these actions. It follows that H"L, is (k*)¥-equivariant
for any n. Hence any K € Py is (k*)¥-equivariant. In particular, we have
j*K = K, where j : Eyv — Ev is the involution which acts as —1 on the
summands Hom(Vys, V) for h € Hz and as 1 on the other summands.
Hence for K € Py, the Fourier inversion formula (see 8.1.11) simplifies to

B(®(K)) = K.

10.2.5. Let A € Qv and let A’ € 'Qv.. For any j € Z, we have a canonical
isomorphism

Dj (EV’ GV; A’ ‘I)(A,)) = Dj (IEVa GV; Q(A)> A,)
This follows by applying 8.1.12 to the diagram
Gv\(T x Ey) — Gv\(T x Ev) - Gv\(T x 'Ey)

obtained from 10.1.1(a), where I is a suitable smooth variety with a free
Gvr-action.

Proposition 10.2.6. With the notations of Proposition 10.1.2, let L €
Ot ,w. There exists an isomorphism in'Qy:

O(Indy. wL) = Indy.  (SL).

Since 'Py is stable under Verdier duality, we see from 9.1.6 that it suffices
to check that
(a)
dimD;('Ev, Gv; ®(IndY wL),®K) = dimD;('Ev, Gv;Ind¥.  (®L), 2K)

for any K € Py and any j € Z.
By 10.2.5, the left hand side of (a) is equal to

dimD;(Ev, Gv;Ind¥ wL, K)
and by 9.2.9, this is equal to
dimD;(Et x Ew, Gt x Gw; L, Res¥ w K).
By 9.2.9, the right hand side of (a) is equal to

dimD;('Er x "Ew, Gt x Gw; ®L, ResY. w (2K))
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and by 10.2.5, this is equal to
dim D;(Er x Ew, Gt X Gw; L, ®(Resy. w (2K))).
Hence (a) is equivalent to

dim D;(Et x Ew,Gt X Gw; L, Res¥. w K)
= dim D;(ET x Ew, G x Gw; L, ®(Res¥. w (2K))).

But this follows from Resy wK = ®(Resy. w(®K)) (see 10.1.3). The
proposition is proved.

10.3. A KEy INDUCTIVE STEP

Lemma 10.3.1. Let I',~y be as in 9.3.1. The Fourier-Deligne transform
® : Pv — "Py defines an equivalence of categories between Py,1., and
the analogous category 'Pv.v;, defined as Py, with respect to the new
orientation.

{This follows immediately from the definitions since the Fourier-Deligne
transform commutes with Ind.

Proposition 10.3.2. Let ',y be as in 9.8.1. Let W be a graded subspace
of V such that T = V/W satisfies dimT; = ~; for alli€ I’ and Ty =0
foralli eI-T.

(a) Let B be a simple object of Py,r;v. We have
ResY wB = A® (&;L;[j])

where A is a simple object of Pw,y;0 and Lj € Pw,r;>0 for all j.
(b) Let A be a simple object of Pw.1;,0. We have

IndY wA = B & (®;C;lj])
where B is a simple object of Py,1;, and
Cj € Pviri>y

for all 5.

(c) The maps B — A in (a) and A — B in (b) are inverse bijections
between the set of isomorphism classes of simple objects in Py,r,y and the
analogous set for Pw.r 0.
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This statement is independent of the orientation of our graph: we use the
previous lemma and the fact that the Fourier-Deligne transform commutes
with Ind and Res. Hence it is enough to prove the proposition under the
additional assumption that h’ ¢ I’ for any h € H. We can achieve this by
a change of orientation.

Let A be as in (b). By Lemma 9.3.5 , the support of A meets Ew,.
Hence Proposition 9.3.3 is applicable to A,I’; it shows that Ind}”wA x
B & (®,C;[j]) where B is a simple object of Py such that the support of
B is contained in Ev;>, and meets Ev,; C; € Py has support contained
in Ev,>, and is disjoint from Ev,, for any j. By Lemma 9.3.5, we then
have B € Py.r;y and Cj € Py,1/;>.

Conversely, let B be as in (a). By Lemma 9.3.5, we have that the support
of B is contained in Ev,>, and meets Ev,,. Hence Proposition 9.3.3 is
applicable to B and I'. It shows that ResY wB = A @ (&;L,[j]) where
A is a simple object of Pw such that the support of A meets Ew., and
L; € Pw has support disjoint from Ew,o for any j. By Lemma 9.3.5 we
then have A € Pw,r;0 and L; € Pw,r;>0. This proves (a), (b). Statement
(c) follows from the last assertion of Proposition 9.3.3.

10.3.3. Remark. The previous proof shows that, given I’ as above and a
simple object B in Py, there is a unique v € N[I] with support contained
in I’ such that B € Py,r;y.

_The existence of v is obvious. To prove uniqueness, we may assume that
the ‘orientation has been chosen as in the previous proof; but then « is such
that the support of B is contained in Ev,>, and meets Ev,, and these
conditions determine <y uniquely since the support of B is irreducible.

10.3.4. Passage to the opposite orientation. Let V € V. For each
i € I, let V; be the dual space of V; and let V* = &; V] € V. Assume
now that the new orientation (see 10.1.1) of our graph is the opposite of
the old one, that is, ’h = h” and "h = k' for all h € H. We have an
isomorphism p : Ey = ‘Ey. given by p(z) = z’ where z}, : V};, — V}, is
the transpose of z, : Vi — V. This induces an equivalence of categories
pr : D(Ev) = D(Ey-) with inverse p*.

Let v = (v1,12,...,v™) € X be such that dim V; = 2 viforallieL
Let v/ = (v™,v™71,...,v!) € X. It follows immediately from definitions
that pL, = L,» € D(Ey.). From this we deduce that p, defines equiva-
lences of categories Py — Py« and Qv — 'Qy-.



