Fourier-Deligne Transform

10.1. FOURIER-DELIGNE TRANSFORM AND RESTRICTION

10.1.1. In addition to the orientation $h \to h'$, $h \to h''$ in 9.1.1, we shall consider a new orientation of our graph. Thus, we assume we are given two new maps $H \to I$ denoted $h \mapsto 'h$ and $h \mapsto ''h$, such that for any $h \in H$, the subset [h] of I consists precisely of h', h'. Let

$$H_1 = \{h \in H | h = h' \text{ and } h = h''\}; \quad H_2 = \{h \in H | h = h'' \text{ and } h = h'\}.$$

Then H_1, H_2 form a partition of H.

For $\mathbf{V} \in \mathcal{V}$, we define ${}'\mathbf{E}_{\mathbf{V}}$ like $\mathbf{E}_{\mathbf{V}}$ in 9.1.2, but using the new orientation: ${}'\mathbf{E}_{\mathbf{V}}'' = \bigoplus_{h \in H} \mathrm{Hom}(\mathbf{V}_{h}, \mathbf{V}_{h})$. This has a natural $G_{\mathbf{V}}$ -action just like $\mathbf{E}_{\mathbf{V}}$. We have

$$\mathbf{E}_{\mathbf{V}} = \bigoplus_{h \in H_1} \operatorname{Hom}(\mathbf{V}_{h'}, \mathbf{V}_{h''}) \oplus (\bigoplus_{h \in H_2} \operatorname{Hom}(\mathbf{V}_{h'}, \mathbf{V}_{h''})),$$

 $\mathbf{E}_{\mathbf{V}} = \bigoplus_{h \in H_1} \operatorname{Hom}(\mathbf{V}_{h'}, \mathbf{V}_{h''}) \oplus (\bigoplus_{h \in H_2} \operatorname{Hom}(\mathbf{V}_{h''}, \mathbf{V}_{h'})).$

Let $\dot{\mathbf{E}}_{\mathbf{V}}$ be the vector space

$$\oplus_{h\in H_1}\mathrm{Hom}(\mathbf{V}_{h'},\mathbf{V}_{h''})\oplus(\oplus_{h\in H_2}\mathrm{Hom}(\mathbf{V}_{h'},\mathbf{V}_{h''}))\oplus(\oplus_{h\in H_2}\mathrm{Hom}(\mathbf{V}_{h''},\mathbf{V}_{h'})).$$

We have the diagram

(a)
$$\mathbf{E}_{\mathbf{V}} \stackrel{s}{\leftarrow} \dot{\mathbf{E}}_{\mathbf{V}} \stackrel{t}{\rightarrow} {}' \mathbf{E}_{\mathbf{V}}$$

where s, t are the obvious projections.

Let $T: \dot{\mathbf{E}}_{\mathbf{V}} \to k$ be the map given by $T(e) = \sum_{h \in H_2} \operatorname{tr}(\mathbf{V}_{h'} \to \mathbf{V}_{h''} \to \mathbf{V}_{h''})$ where the two unnamed maps are components of e. Let us consider the Fourier-Deligne transform $\Phi: \mathcal{D}(\mathbf{E}_{\mathbf{V}}) \to \mathcal{D}('\mathbf{E}_{\mathbf{V}})$ defined by $\Phi(K) = t_!(s^*(K) \otimes \mathcal{L}_T)[d_{\mathbf{V}}]$ where $d_{\mathbf{V}} = \sum_{h \in H_2} \dim \mathbf{V}_{h'} \dim \mathbf{V}_{h''}$. (See 8.1.11.) Now let \mathbf{T}, \mathbf{W} be as in 9.2.1. We may consider a diagram like (a) for \mathbf{T} and for \mathbf{W} instead of \mathbf{V} ; taking direct products, we obtain the diagram

$$\mathbf{E_T} \times \mathbf{E_W} \stackrel{\bar{s}}{\leftarrow} \dot{\mathbf{E}_T} \times \dot{\mathbf{E}_W} \stackrel{\bar{t}}{\rightarrow} {}'\mathbf{E_T} \times {}'\mathbf{E_W}.$$

On each of $\dot{\mathbf{E}}_{\mathbf{T}}$ and $\dot{\mathbf{E}}_{\mathbf{W}}$ we have a linear form like T above; the sum of these gives a linear form $\bar{T}: \dot{\mathbf{E}}_{\mathbf{T}} \times \dot{\mathbf{E}}_{\mathbf{W}} \to k$. The Fourier-Deligne transform $\Phi: \mathcal{D}(\mathbf{E}_{\mathbf{T}} \times \mathbf{E}_{\mathbf{W}}) \to \mathcal{D}('\mathbf{E}_{\mathbf{T}} \times '\mathbf{E}_{\mathbf{W}})$ is given by

$$\Phi(K) = \bar{t}_!(\bar{s}^*(K) \otimes \mathcal{L}_{\bar{T}})[d_{\mathbf{T}} + d_{\mathbf{W}}].$$

The following result shows the relation between the Fourier-Deligne transform and the restriction functor.

Proposition 10.1.2. For any $K \in \mathcal{Q}_{\mathbf{V}}$ we have

$$\Phi(\tilde{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}K) = \tilde{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(\Phi(K))[\pi]$$

where

$$\pi = \sum_{h \in H_2} (\dim \mathbf{T}_{h''} \dim \mathbf{W}_{h'} - \dim \mathbf{T}_{h'} \dim \mathbf{W}_{h''}).$$

We consider the commutative diagram of vector spaces and linear maps

where the following notation is used.

F is the set of all $x \in \mathbf{E}_{\mathbf{V}}$ such that $x_h(\mathbf{W}_{h'}) \subset \mathbf{W}_{h''}$ for all $h \in H$; p is the obvious surjective map and ι is the obvious imbedding.

'F is the set of all $x \in {}^{\prime}\mathbf{E}_{\mathbf{V}}$ such that $x_h(\mathbf{W}_{h}) \subset \mathbf{W}_{h}$ for all $h \in H$; 'p is the obvious surjective map and ' ι is the obvious imbedding.

 \dot{F} is the set of all $x \in \dot{\mathbf{E}}_{\mathbf{V}}$ such that $sx \in F$ and $tx \in {}'F$.

 Ξ is defined by the condition that $(i,t,\dot{t},'\iota)$ is a cartesian diagram.

 Ψ is defined by the condition that $(\dot{s}, p, \dot{p}, \bar{s})$ is a cartesian diagram.

 \dot{q} is such that $\dot{s}\dot{q}$ and $\dot{p}\dot{q}$ are the obvious surjective maps.

 $\dot{\zeta}$ is such that $i\dot{\zeta}$ and $\dot{t}\dot{\zeta}$ are the obvious imbeddings.

We have $\Xi = {}'F \oplus (\oplus_{h \in H_2} \operatorname{Hom}(\mathbf{V}_{h'}, \mathbf{V}_{h''}))$. Let Z be the subspace of Ξ consisting of the elements such that each component $\mathbf{V}_{h''} \to \mathbf{V}_{h'}$ $(h \in H_2)$ carries $\mathbf{W}_{h''}$ to 0 and all other components are zero. Let $c : \Xi \to \Xi/Z$ be the canonical map. Let $\tilde{T} : \Xi \to k$ be given by $\tilde{T}(x) = T(\iota(x))$. From

definitions, it follows immediately that the restriction of \tilde{T} to a fibre ($\cong Z$) of $c:\Xi\to\Xi/Z$ is an affine-linear function which is constant if and only if that fibre is contained in the subspace $\dot{\zeta}(\dot{F})$.

Let $\Xi' = \Xi - \dot{\zeta}(\dot{F})$, and let $(\Xi/Z)' = c(\Xi')$. We have $Z \subset \dot{\zeta}(\dot{F})$; hence all fibres of $c' : \Xi' \to (\Xi/Z)'$ (restriction of c) are isomorphic to Z.

Let $T': \Xi' \to k$ be the restriction of \tilde{T} . As we have seen above, the restriction of T' to any fibre of $c': \Xi' \to (\Xi/Z)'$ is a non-constant affine-linear function. Hence the local system $\mathcal{L}_{T'}$ on Ξ' satisfies $c'_{!}(\mathcal{L}_{T'}) = 0$ (see 8.1.13). Using the distinguished triangle associated to the partition $\Xi = \Xi' \cup \dot{\zeta}(\dot{F})$, we deduce that $c_{!}\dot{\zeta}_{!}(\dot{\zeta}^{*}\mathcal{L}_{\tilde{T}}) = c_{!}\mathcal{L}_{\tilde{T}}$. It is clear that the composition $si: \Xi \to \mathbf{E}_{\mathbf{V}}$ factors through Ξ/Z ; hence $i^{*}s^{*}K$ is in the image of c^{*} so that the previous equality implies

$$c_!(\dot{\zeta}_!(\dot{\zeta}^*\mathcal{L}_{\tilde{T}})\otimes i^*s^*K)=c_!(\mathcal{L}_{\tilde{T}}\otimes i^*s^*K).$$

It is also clear that the composition $p\dot{t}: \Xi \to {}'\mathbf{E_T} \times {}'\mathbf{E_W}$ factors through Ξ/Z . Hence the previous equality implies

$$'p_!\dot{t}_!(\dot{\zeta}_!(\dot{\zeta}^*\mathcal{L}_{\tilde{T}})\otimes i^*s^*K)='p_!\dot{t}_!(\mathcal{L}_{\tilde{T}}\otimes i^*s^*K).$$

We have $Ti\dot{\zeta} = \bar{T}\dot{p}\dot{q}$; hence $\dot{p}^*\dot{q}^*\mathcal{L}_{\bar{T}} = \dot{\zeta}^*i^*\mathcal{L}_T = \dot{\zeta}^*\mathcal{L}_{\bar{T}}$. Since \dot{q} is a surjective linear map with kernel of dimension

$$m = \sum_{h \in H_2} \dim \mathbf{T}_{h''} \dim \mathbf{W}_{h'},$$

we obtain $\dot{q}_!\dot{q}^*L = L[-2m]$ for all $L \in \mathcal{D}(\Psi)$. We have

$$\begin{split} \Phi(\operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}K) &= \bar{t}_{!}(\mathcal{L}_{T} \otimes \bar{s}^{*}p_{!}\iota^{*}K)[d_{\mathbf{T}} + d_{\mathbf{W}}] \\ &= \bar{t}_{!}(\mathcal{L}_{T} \otimes \dot{p}_{!}\dot{s}^{*}\iota^{*}K)[d_{\mathbf{T}} + d_{\mathbf{W}}] \\ &= \bar{t}_{!}(\mathcal{L}_{\bar{T}} \otimes \dot{p}_{!}\dot{q}_{!}\dot{q}^{*}\dot{s}^{*}\iota^{*}K[2m])[d_{\mathbf{T}} + d_{\mathbf{W}}] \\ &= \bar{t}_{!}\dot{p}_{!}\dot{q}_{!}(\dot{p}^{*}\dot{q}^{*}(\mathcal{L}_{\bar{T}}) \otimes \dot{q}^{*}\dot{s}^{*}\iota^{*}K)[2m + d_{\mathbf{T}} + d_{\mathbf{W}}] \\ &= 'p_{!}\dot{t}_{!}\dot{\zeta}_{!}(\dot{p}^{*}\dot{q}^{*}(\mathcal{L}_{\bar{T}}) \otimes \dot{\zeta}^{*}\dot{\iota}^{*}s^{*}K)[2m + d_{\mathbf{T}} + d_{\mathbf{W}}] \\ &= 'p_{!}\dot{t}_{!}(\dot{\zeta}_{!}(\dot{p}^{*}\dot{q}^{*}\mathcal{L}_{\bar{T}}) \otimes \dot{\iota}^{*}s^{*}K)[2m + d_{\mathbf{T}} + d_{\mathbf{W}}] \\ &= 'p_{!}\dot{t}_{!}(\dot{\zeta}_{!}(\dot{\zeta}^{*}\mathcal{L}_{\bar{T}}) \otimes \dot{\iota}^{*}s^{*}K)[2m + d_{\mathbf{T}} + d_{\mathbf{W}}] \\ &= 'p_{!}\dot{t}_{!}(\mathcal{L}_{\bar{T}} \otimes \dot{\iota}^{*}s^{*}K)[2m + d_{\mathbf{T}} + d_{\mathbf{W}}] \end{split}$$

and

$$\operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(\Phi(K))[\pi] = 'p_!'\iota^*t_!(\mathcal{L}_T \otimes s^*K)[\pi + d_{\mathbf{V}}]$$
$$= 'p_!\dot{t}_!\dot{\iota}^*(\mathcal{L}_T \otimes s^*K)[\pi + d_{\mathbf{V}}]$$
$$= 'p_!\dot{t}_!(\mathcal{L}_{\bar{T}} \otimes i^*s^*K)[\pi + d_{\mathbf{V}}].$$

It remains for us to observe that $\pi + d_{\mathbf{V}} = 2m + d_{\mathbf{T}} + d_{\mathbf{W}}$. The proposition is proved.

10.1.3. We can reformulate the previous proposition using $\operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}$ instead of $\widetilde{\operatorname{Res}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}$; the shift by π will then disappear:

$$\Phi(\operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}K) = \operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(\Phi(K)).$$

10.2. FOURIER-DELIGNE TRANSFORM AND INDUCTION

10.2.1. Let $\nu = (\nu^1, \nu^2, \dots, \nu^m) \in \mathcal{X}$ be such that dim $\mathbf{V_i} = \sum_l \nu_i^l$ for all i. Recall that we have a natural proper morphism $\pi_{\nu} : \tilde{\mathcal{F}}_{\nu} \to \mathbf{E_V}$. The same definition with the new orientation for our graph gives a proper morphism $\pi_{\nu} : \tilde{\mathcal{F}}_{\nu} \to \mathbf{E_V}$, where $\tilde{\mathcal{F}}_{\nu}$ is the variety of all pairs (x, f) such that $x \in \mathbf{E_V}$ and $f \in \mathcal{F}_{\nu}$ is x-stable; π_{ν} is the first projection.

Recall the definition $\tilde{L}_{\nu} = (\pi_{\nu})_! \mathbf{1} \in \mathcal{D}(\mathbf{E}_{\mathbf{V}})$. Similarly, we set $\tilde{L}_{\nu} = (\tilde{L}_{\nu})_! \mathbf{1} \in \mathcal{D}(\mathbf{E}_{\mathbf{V}})$.

Proposition 10.2.2. $\Phi(\tilde{L}_{\nu}) = {}'\tilde{L}_{\nu}[M]$ where

$$M = \sum_{h \in H_2: l > l'} (\nu_{h'}^l \nu_{h''}^{l'} - \nu_{h'}^{l'} \nu_{h''}^{l'}).$$

Consider the commutative diagram

$$\begin{array}{cccc}
\tilde{\mathcal{F}}_{\boldsymbol{\nu}} & \longrightarrow & \Xi & \stackrel{c}{\longrightarrow} & \bar{\Xi} \\
\pi_{\boldsymbol{\nu}} \Big\downarrow & & \rho \Big\downarrow & & \downarrow \\
\mathbf{E}_{\mathbf{V}} & \stackrel{s}{\longleftarrow} & \dot{\mathbf{E}}_{\mathbf{V}} & \stackrel{t}{\longrightarrow} & {}'\mathbf{E}_{\mathbf{V}}
\end{array}$$

where the following notation is used.

 Ξ is the set of all (x, y, f) where $x \in \mathbf{E}_{\mathbf{V}}$, f is an x-stable flag in \mathcal{F}_{ν} and $y \in {}'\mathbf{E}_{\mathbf{V}}$ is such that $y_h = x_h : \mathbf{V}_{h'} \to \mathbf{V}_{h''}$ for any $h \in H_1$.

 $\tilde{\Xi}$ is the set of all (y, f) where $y \in {}'\mathbf{E}_{\mathbf{V}}$ and $f = (\mathbf{V} = \mathbf{V}^0 \supset \mathbf{V}^1 \supset \cdots \supset \mathbf{V}^m = 0)$ is a flag in $\mathcal{F}_{\boldsymbol{\nu}}$ such that $y_h(\mathbf{V}_{h'}^l) \subset \mathbf{V}_{h''}^l$ for all l and all $h \in H_1$.

The lower horizontal maps are as in 10.1.1(a); the other maps are the obvious ones. The left square is cartesian. We have $s^*(\pi_{\nu})_! \mathbf{1} = \rho_! \mathbf{1}$. Hence

$$\Phi(\tilde{L}_{\boldsymbol{\nu}}) = t_!(\mathcal{L}_T \otimes \rho_! \mathbf{1})[d_{\mathbf{V}}] = \tilde{t}_!(\mathcal{L}_{\tilde{T}})[d_{\mathbf{V}}]$$

where $T: \dot{\mathbf{E}}_{\mathbf{V}} \to k$ is as in 10.1.1, $\tilde{T}: \Xi \to k$ is given by $\tilde{T} = T\rho$ and $\tilde{t} = t\rho: \Xi \to {}'\mathbf{E}_{\mathbf{V}}$.

The fibres of c are affine spaces of dimension $N = \sum_{h \in H_2; l < l'} \nu_{h'}^l \nu_{h''}^{l'}$. (In the formula for N we have $\nu_{h'}^l \nu_{h''}^{l'} = 0$ for l = l', since ν^l is discrete.)

We have a partition $\Xi = \Xi_0 \cup \Xi_1$ where Ξ_0 is the closed subset of Ξ consisting of those (x,y,f) such that f is y-stable. It can be verified that the restriction of \tilde{T} to the fibre of c at c(x,y,f) is an affine-linear function and that this function is constant if and only if $(x,y,f) \in \Xi_0$. Note that Ξ_0 is a union of fibres of c.

Using 8.1.13, it follows that $(c_1)_!(\mathcal{L}_{\tilde{T}}|_{\Xi_1}) = 0$, where $c': \Xi_1 \to \bar{\Xi}$ is the restriction of c. Hence, if $j: \Xi_0 \to \Xi$ is the inclusion, we have $c_!\dot{j}_!(\dot{j}^*\mathcal{L}_{\tilde{T}}) = \dot{c}_!\mathcal{L}_{\tilde{T}}$. From the commutative diagram above, it then follows that

$$(t\rho)_!(\mathcal{L}_{\tilde{T}}=(t_0)_!(\mathcal{L}_{\tilde{T}}|_{\Xi_0})$$

where $t_0: \Xi_0 \to {}'\mathbf{E}_{\mathbf{V}}$ is the restriction of $t\rho$.

Let $(x, y, f) \in \Xi_0$ with f as above. We have

$$\tilde{T}(x,y,f) = T(x,y) = \sum_{h \in H_2} \operatorname{tr} (y_h x_h : \mathbf{V}_{h'} \to \mathbf{V}_{h'}).$$

Since f is stable under both x and y, we have

$$\mathrm{tr}\ (y_h x_h : \mathbf{V}_{h'} \to \mathbf{V}_{h'}) = \sum_l \ \mathrm{tr}\ (y_h x_h : \mathbf{V}_{h'}^{l-1}/\mathbf{V}_{h'}^l \to \mathbf{V}_{h''}^{l-1}/\mathbf{V}_{h''}^l).$$

For any l, at least one of the vector spaces $\mathbf{V}_{h'}^{l-1}/\mathbf{V}_{h'}^{l}$, $\mathbf{V}_{h''}^{l-1}/\mathbf{V}_{h''}^{l}$ is zero, since ν^{l} is discrete. Thus, tr $(y_{h}x_{h}:\mathbf{V}_{h'}\to\mathbf{V}_{h'})=0$ for each $h\in H_{2}$, so that $\tilde{T}(x,y,f)=0$. Since \tilde{T} is identically zero on Ξ_{0} , we have $\mathcal{L}_{\tilde{T}}|_{\Xi_{0}}=1$ and we see that

$$(t
ho)_!(\mathcal{L}_{\tilde{T}}=(t_0)_!\mathbf{1}.$$

Now t_0 can be factored as a composition $\Xi_0 \to {'\tilde{\mathcal{F}}_{\boldsymbol{\nu}}} \xrightarrow{'\pi_{\boldsymbol{\nu}}} {'\mathbf{E}_{\mathbf{V}}}$, where the first map (restriction of c) is a vector bundle of dimension N. Hence

$$(t_0)_! \mathbf{1} = ('\pi_{\nu})_! \mathbf{1}[-2N] = 'L_{\nu}[-2N].$$

It follows that $(t\rho)_!(\mathcal{L}_{\tilde{T}} = (t_0)_!\mathbf{1} = 'L_{\nu}[-2N]$. It remains for us to observe that $d_{\mathbf{V}} - 2N = M$. The proposition is proved.

10.2.3. Using the proposition and the general properties of the Fourier-Deligne transform (see 8.1.11) we see that $\Phi: \mathcal{D}(\mathbf{E}_{\mathbf{V}}) \to \mathcal{D}('\mathbf{E}_{\mathbf{V}})$ defines an equivalence of categories $\mathcal{Q}_{\mathbf{V}} \to '\mathcal{Q}_{\mathbf{V}}$ and $\mathcal{P}_{\mathbf{V}} \to '\mathcal{P}_{\mathbf{V}}$, where $'\mathcal{Q}_{\mathbf{V}},'\mathcal{P}_{\mathbf{V}}$ are defined as $\mathcal{Q}_{\mathbf{V}}, \mathcal{P}_{\mathbf{V}}$ but using the new orientation of our graph. Hence Φ induces a bijection between the set of simple objects in $\mathcal{P}_{\mathbf{V}}$ and that in $'\mathcal{P}_{\mathbf{V}}$.

10.2.4. We have a natural action of $(k^*)^H$ on $\mathbf{E}_{\mathbf{V}}$ (resp. on $\tilde{\mathcal{F}}_{\boldsymbol{\nu}}$) given by $(\zeta_h):(x_h)\mapsto (\zeta_hx_h)$ (resp. $(\zeta_h):((x_h),f)\mapsto ((\zeta_hx_h),f)$. The map $\pi_{\boldsymbol{\nu}}$ is compatible with these actions. It follows that $H^nL_{\boldsymbol{\nu}}$ is $(k^*)^H$ -equivariant for any n. Hence any $K\in\mathcal{P}_{\mathbf{V}}$ is $(k^*)^H$ -equivariant. In particular, we have $j^*K=K$, where $j:\mathbf{E}_{\mathbf{V}}\to\mathbf{E}_{\mathbf{V}}$ is the involution which acts as -1 on the summands $\mathrm{Hom}(\mathbf{V}_{h'},\mathbf{V}_{h''})$ for $h\in H_2$ and as 1 on the other summands. Hence for $K\in\mathcal{P}_{\mathbf{V}}$, the Fourier inversion formula (see 8.1.11) simplifies to $\Phi(\Phi(K))=K$.

10.2.5. Let $A \in \mathcal{Q}_{\mathbf{V}}$ and let $A' \in {}'\mathcal{Q}_{\mathbf{V}}$. For any $j \in \mathbf{Z}$, we have a canonical isomorphism

$$\mathbf{D}_{j}(\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; A, \Phi(A')) = \mathbf{D}_{j}('\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; \Phi(A), A').$$

This follows by applying 8.1.12 to the diagram

$$G_{\mathbf{V}} \setminus (\Gamma \times \mathbf{E}_{\mathbf{V}}) \leftarrow G_{\mathbf{V}} \setminus (\Gamma \times \dot{\mathbf{E}}_{\mathbf{V}}) \rightarrow G_{\mathbf{V}} \setminus (\Gamma \times '\mathbf{E}_{\mathbf{V}})$$

obtained from 10.1.1(a), where Γ is a suitable smooth variety with a free $G_{\mathbf{V}}$ -action.

Proposition 10.2.6. With the notations of Proposition 10.1.2, let $L \in \mathcal{Q}_{\mathbf{T},\mathbf{W}}$. There exists an isomorphism in $\mathcal{Q}_{\mathbf{V}}$:

$$\Phi(\operatorname{Ind}_{\mathbf{T}\mathbf{W}}^{\mathbf{V}}L) \cong \operatorname{Ind}_{\mathbf{T}\mathbf{W}}^{\mathbf{V}}(\Phi L).$$

Since ${}'\mathcal{P}_{\mathbf{V}}$ is stable under Verdier duality, we see from 9.1.6 that it suffices to check that

(a)

$$\dim \mathbf{D}_{j}('\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; \Phi(\operatorname{Ind}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}} L), \Phi K) = \dim \mathbf{D}_{j}('\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; \operatorname{Ind}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}}(\Phi L), \Phi K)$$

for any $K \in \mathcal{P}_{\mathbf{V}}$ and any $j \in \mathbf{Z}$.

By 10.2.5, the left hand side of (a) is equal to

$$\dim \mathbf{D}_j(\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; \mathrm{Ind}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}} L, K)$$

and by 9.2.9, this is equal to

$$\dim \mathbf{D}_{j}(\mathbf{E}_{\mathbf{T}} \times \mathbf{E}_{\mathbf{W}}, G_{\mathbf{T}} \times G_{\mathbf{W}}; L, \operatorname{Res}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}} K).$$

By 9.2.9, the right hand side of (a) is equal to

$$\dim \mathbf{D}_{j}('\mathbf{E_{T}} \times '\mathbf{E_{W}}, G_{\mathbf{T}} \times G_{\mathbf{W}}; \Phi L, \operatorname{Res}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}}(\Phi K))$$

and by 10.2.5, this is equal to

$$\dim \mathbf{D}_j(\mathbf{E}_{\mathbf{T}} \times \mathbf{E}_{\mathbf{W}}, G_{\mathbf{T}} \times G_{\mathbf{W}}; L, \Phi(\operatorname{Res}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}}(\Phi K))).$$

Hence (a) is equivalent to

$$\dim \mathbf{D}_{j}(\mathbf{E}_{\mathbf{T}} \times \mathbf{E}_{\mathbf{W}}, G_{\mathbf{T}} \times G_{\mathbf{W}}; L, \operatorname{Res}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}} K)$$

$$= \dim \mathbf{D}_{j}(\mathbf{E}_{\mathbf{T}} \times \mathbf{E}_{\mathbf{W}}, G_{\mathbf{T}} \times G_{\mathbf{W}}; L, \Phi(\operatorname{Res}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}}(\Phi K))).$$

But this follows from $\operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}K = \Phi(\operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(\Phi K))$ (see 10.1.3). The proposition is proved.

10.3. A KEY INDUCTIVE STEP

Lemma 10.3.1. Let \mathbf{I}', γ be as in 9.3.1. The Fourier-Deligne transform $\Phi: \mathcal{P}_{\mathbf{V}} \to {'\mathcal{P}_{\mathbf{V}}}$ defines an equivalence of categories between $\mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}$ and the analogous category ${'\mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}}$ defined as $\mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}$ with respect to the new orientation.

This follows immediately from the definitions since the Fourier-Deligne transform commutes with Ind.

Proposition 10.3.2. Let $\mathbf{I'}, \gamma$ be as in 9.3.1. Let \mathbf{W} be a graded subspace of \mathbf{V} such that $\mathbf{T} = \mathbf{V/W}$ satisfies $\dim \mathbf{T_i} = \gamma_i$ for all $i \in \mathbf{I'}$ and $\mathbf{T_{i'}} = 0$ for all $i' \in \mathbf{I} - \mathbf{I'}$.

(a) Let B be a simple object of $\mathcal{P}_{\mathbf{V}:\mathbf{I}':\gamma}$. We have

$$Res_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}B\cong A\oplus (\oplus_{i}L_{i}[j])$$

where A is a simple object of $\mathcal{P}_{\mathbf{W};\mathbf{I}';0}$ and $L_j \in \mathcal{P}_{\mathbf{W};\mathbf{I}';>0}$ for all j.

(b) Let A be a simple object of $\mathcal{P}_{\mathbf{W}:\mathbf{I}':0}$. We have

$$Ind_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A\cong B\oplus (\oplus_{j}C_{j}[j])$$

where B is a simple object of $\mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}$ and

$$C_j \in \mathcal{P}_{\mathbf{V};\mathbf{I}';>\gamma}$$

for all j.

(c) The maps $B \mapsto A$ in (a) and $A \mapsto B$ in (b) are inverse bijections between the set of isomorphism classes of simple objects in $\mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}$ and the analogous set for $\mathcal{P}_{\mathbf{W};\mathbf{I}';0}$.

This statement is independent of the orientation of our graph: we use the previous lemma and the fact that the Fourier-Deligne transform commutes with Ind and Res. Hence it is enough to prove the proposition under the additional assumption that $h' \notin \mathbf{I}'$ for any $h \in H$. We can achieve this by a change of orientation.

Let A be as in (b). By Lemma 9.3.5, the support of A meets $\mathbf{E}_{\mathbf{W};0}$. Hence Proposition 9.3.3 is applicable to A, \mathbf{I}' ; it shows that $\mathrm{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A \cong B \oplus (\oplus_j C_j[j])$ where B is a simple object of $\mathcal{P}_{\mathbf{V}}$ such that the support of B is contained in $\mathbf{E}_{\mathbf{V};\geq\gamma}$ and meets $\mathbf{E}_{\mathbf{V};\gamma}$; $C_j \in \mathcal{P}_{\mathbf{V}}$ has support contained in $\mathbf{E}_{\mathbf{V};\geq\gamma}$ and is disjoint from $\mathbf{E}_{\mathbf{V};\gamma}$ for any j. By Lemma 9.3.5, we then have $B \in \mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}$ and $C_j \in \mathcal{P}_{\mathbf{V};\mathbf{I}';>\gamma}$.

Conversely, let B be as in (a). By Lemma 9.3.5, we have that the support of B is contained in $\mathbf{E}_{\mathbf{V};\geq\gamma}$ and meets $\mathbf{E}_{\mathbf{V};\gamma}$. Hence Proposition 9.3.3 is applicable to B and \mathbf{I}' . It shows that $\mathrm{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}B\cong A\oplus (\oplus_{j}L_{j}[j])$ where A is a simple object of $\mathcal{P}_{\mathbf{W}}$ such that the support of A meets $\mathbf{E}_{\mathbf{W};0}$ and $L_{j}\in\mathcal{P}_{\mathbf{W}}$ has support disjoint from $\mathbf{E}_{\mathbf{W};0}$ for any j. By Lemma 9.3.5 we then have $A\in\mathcal{P}_{\mathbf{W};\mathbf{I}';0}$ and $L_{j}\in\mathcal{P}_{\mathbf{W};\mathbf{I}';>0}$. This proves (a), (b). Statement (c) follows from the last assertion of Proposition 9.3.3.

10.3.3. Remark. The previous proof shows that, given I' as above and a simple object B in $\mathcal{P}_{\mathbf{V}}$, there is a unique $\gamma \in \mathbf{N}[\mathbf{I}]$ with support contained in I' such that $B \in \mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}$.

The existence of γ is obvious. To prove uniqueness, we may assume that the orientation has been chosen as in the previous proof; but then γ is such that the support of B is contained in $\mathbf{E}_{\mathbf{V};\geq\gamma}$ and meets $\mathbf{E}_{\mathbf{V};\gamma}$ and these conditions determine γ uniquely since the support of B is irreducible.

10.3.4. Passage to the opposite orientation. Let $V \in \mathcal{V}$. For each $i \in I$, let V_i^* be the dual space of V_i and let $V^* = \bigoplus_i V_i^* \in \mathcal{V}$. Assume now that the new orientation (see 10.1.1) of our graph is the opposite of the old one, that is, h = h'' and h = h' for all $h \in H$. We have an isomorphism $\rho : \mathbf{E}_{\mathbf{V}} \cong \mathbf{E}_{\mathbf{V}^*}$ given by $\rho(x) = x'$ where $x'_h : V_{h''}^* \to V_{h'}^*$ is the transpose of $x_h : V_{h'} \to V_{h''}$. This induces an equivalence of categories $\rho_! : \mathcal{D}(\mathbf{E}_{\mathbf{V}}) \cong \mathcal{D}(\mathbf{E}_{\mathbf{V}^*})$ with inverse ρ^* .

Let $\boldsymbol{\nu}=(\nu^1,\nu^2,\ldots,\nu^m)\in\mathcal{X}$ be such that $\dim\mathbf{V_i}=\sum_l \nu_i^l$ for all $\mathbf{i}\in\mathbf{I}$. Let $\boldsymbol{\nu}'=(\nu^m,\nu^{m-1},\ldots,\nu^1)\in\mathcal{X}$. It follows immediately from definitions that $\rho_!L_{\boldsymbol{\nu}}=L_{\boldsymbol{\nu}'}\in\mathcal{D}(\mathbf{E_{V^*}})$. From this we deduce that $\rho_!$ defines equivalences of categories $\mathcal{P}_{\mathbf{V}}\to{}'\mathcal{P}_{\mathbf{V^*}}$ and $\mathcal{Q}_{\mathbf{V}}\to{}'\mathcal{Q}_{\mathbf{V^*}}$.