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Let C = (i : j) be a (positive definite) Cartan matrix of simply

laced type (7,7 run through 7). For any field k,

Chevalley (1950’s) associated to C' a (simply connected)

group Gi. We often assume k& = C and write G = G¢.

The definition of GG includes a torus T' C G,

the Borel subgroups B™, B~, their “unipotent radicals” U™, U~



and injective (root) homomorphisms z; : C - U™, y; : C — U~

(with ¢ € I). Let W be the Weyl group of G, {s;;7 € I} the

simple reflections, [ : W — N the length function, w, the longest

element of WW. Let B be the variety of Borel subgroups of GG. For

B, B" in B the relative position pos(B, B') € W is well defined.



A semafield is a set with two operations, 4+, X, which is an

abelian group with respect to X, an abelian semigroup with

respect to + and with (a + b)c = ac + be for all a, b, c. Thus

addition, multiplication, division (but no substraction) are

defined.



Examples of semifields:

(i) K = R+p; sum and product are induced from C;

(i) K = Z; new sum (a, b) — min(a, b),

new product (a,b) — a + b;

(i) K ={1} with 1+1=1,1x1=1.



The main theme of this talk is that G and various related
objects can also be defined when the field k is replaced by

a semifield K. For evidence of this, assume G = SL,,.

Then there is a classical submonoid of GG, the “totally positive”
(TP) part G'* of G introduced by Schoenberg (1930),
Gantmacher-Krein (1935). It consists of all matrices in G all of

whose s X s minors are in R>g for s =1,2,...,n — 1.



We can view G'* as being obtained from G by replacing C
by the semifield R~(. Return to the general case. Assume
K =R-¢. In [L1994| T defined

-the TP-part Gi of G as the submonoid of G generated by
{z;(a),y;(a);i € I,a € K} and by {x(a); x € Hom(C*,T),a € K}.
(When G = SL, this is the same as GI* by results of Whitney,

Loewner in the 1950’s.)



-the TP-part U of U™ as the submonoid generated by
{zi(a);1 € 1,a € K}
-the TP-part U, of U™ as the submonoid generated by

{y;(a);1 € I,a € K}.

G is closed in G. (The proof uses the theory of

canonical bases [1.1990].)



The theory in [L1994]| was a starting point for

-the theory of cluster algebras: Fomin, Zelevinsky 2002;

-higher Teichmuller theory: Goncharov, Fock 2006;

-the use of the TP grassmannian in physics: Postnikov 2007,

Arkani-Hamed, Trnka 2014.
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For any semifield K, we define U} (or U~ (K)) as the monoid
(with 1) with generators ¢* with ¢ € I, a € K and relations
(similar to those of a Coxeter group):

1% =T fori €I, a,bin K:

i¢50i¢ = jbe/late)jatejabflate) for 4 5 € [ withi:j = —1, a,b,cin K
127 = 5% for i, € I withi: =0, a,bin K.

When K = R.(y we recover U[% defined earlier.



(This definition makes sense even if C' is not positive definite.)

In the case where K = Z, relations of the type considered above

involve piecewise-linear functions; they first appeared in [L1990)]

in connection with the parametrization of the canonical basis.



Example: U{il} is the monoid with generators ¢! with ¢ € I and
relations

il =4 fori € I;

ilglit = glityl for i,y € I with i : §j = —1;

itgl = jlil for i, € I withi: j = 0.

We can identify U{il} = W as a set (not as a monoid)

by it...1l > s; ...s; whenever I(s; ...s; )=m.



We consider besides I, two other copies —I = {—i;1 € I},
I ={i;i € I} of I, in obvious bijection with I. For e = +1,
el wewriteet=1i1fe=1, et = —1if e = —1.

For any semifield K, we define G as

the monoid (with 1) with generators %, (—2)%,1

with 2 € I,a € K and the relations below.
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(€i)%(€i)’ = (€i)*** fori € I, e = £1, a,b in K;
(€1)2(e7) ()¢ = (e5)P/ 00 (e3)rte(e5)ab/ (a+e)

for 2,7 in [ with7: 9= -1, e = %1, a,b,cin K;
(€i)*(€f)" = ()" (ed)"

for 2,7 in I with¢:9=0, e = %1, a,b in K;
(€1)%(—ei)b = (—ei)b/(+ab)j(1Fab)(¢j)a/(1+ab)

fortel, e==1,a,bin K;



%" =% M =1foriel, abin K:

" = j%" for i, j in I, a,b in K;
jo(ei)? = (i) j for i, j in I, e = +1, a,b in K;
(€i)*(—€j) = (—€j)’(ei)* for i # jin I, e = £1, a,b in K.

When K = R.y we recover GG defined earlier.

(This definition makes sense even if C' is not positive definite.)
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We have Gy = W x W (as sets, not as monoids).

Tits has said that ¥ ought to be regarded as the Chevalley

group G, where k is the (non-existent) field with one element.

But Gy is defined for the semifield {1}. The bijection

W x W — Gyy almost realizes the wish of Tits.



For any semifield K the obvious map K — {1} is compatible

with the semifield structure. It induces homomorphisms of

monoids Uz — U{ji} = W (with fibre Uz:(w) over w),
Gg — Gy =W X W. Assume K = R. In each case
X =G,U", U™, the fibres of Xx — Xy are cells (&£ K™

for some m); they give a canonical cell decomposition of Xk and

Xy can be viewed as the set of cells.
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This pattern extends to other basic objects of Lie theory.

Let U be the set of unipotent elements in G. Assume K = Ry.
The TP-part of U is by definition Uy =U N Gk. For w € W, let
supp(w) = {t € I;s; appears in a reduced expression of w}. By

1,1994],

Z/[K — |—|(w,w’)€VV><VV;Supp(w)ﬂsupp(w’):(Z)Z/[K(ij ”LU/) C GK

where U (w, w") = U (w)Ur (w') = Ug(w')Uz(w) C Gg are cells.



The same formula can be used to define Uk for any semifield K.

For example Uy = {(w,w’) € W x W; supp(w) N supp(w’) = 0}.

From now on assume K = R.q. In [L1994] I defined the TP-part

B of B as the closure in B of the set

{uBtut;u € Ug(wo)} = {u'B v 14" € Uf(wp)}.

When G = SLs, Bi is a closed half circle.
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Following [L1994] we give a second definition of B-.

Let V' be the irreducible G-module over C with highest weight

p (which takes value 1 at any simple coroot). Let B be the

canonical basis [L1990] of V. Let V; =), s R>0b C V.

Let X be the set of lines L in V such that L contains some

vector in the G-orbit of a highest weight vector of V. Let

X ={L e X;LN(V, —{0}) £0.



We can identifty X = B, X = Bx by L — stabilizer of L in G.

This second definition of Bx makes sense even if (' is not

positive definite. (The first one doesn’t.)

Example: G = SLj3. The canonical basis of V' can be denoted by

X_ 12, X_1, X _9,11,1t9, X1, Xo, X1o.
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The set X consists of all a_190 X _19+a_1X_1+ a_92X_9+ c1t1+

+coto + a1 X1 + asXo + a9 X1o €V

with a_19,a_1,a_9,¢1, 9, a1, as, ajs in R>q (not all 0) such that

a2d_19 = C2G-1,010-12 = C1G—2,A_1A12 = C142,

a_2a12 = C2a1,a12(C1 + ¢2) = ajag, a_12(c1 + c2) = a_ja_s,

C1C2 = A12G_12,¢1(C1 + ¢2) = ara_1, ca(c1 + ¢2) = asa_o,

modulo the homothety action of K = R+y.



In [L1994] T described a decomposition of By into pieces

Br.o<h = {B € Bg;pos(B",B) = b,pos(B~, B) = wpa}

indexed by pairs (a,b) € W x W such that a < b (< is the
standard partial order on W) and conjectured that

Br.a<y = K"~ (In the example of SLj there

are 19 pieces.) The conjecture was proved by Rietsch [1998 MIT

Ph.D.thesis|. Hence By = {(a,b) € W x W;a < b} is defined.
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The natural action of G on B induces an action of the monoid
Gk on Bg. This induces an action of the monoid Gy, =W x W
on Byyy. It can be described as follows (here i € I):

(si,1) : (a,b) — (a, s;b) if ;0 >b

(si,1) : (a,b) — (a,b) if s;b < b

(1,s;) : (a,b) — (s;a,b) if s;a < a

(1,s;) : (a,b) — (a,b) if s;a > a.



Let G be the De Concini-Procesi compactification of G. We can
define the TP-part G of G as the closure of Gk in G.

In the early 2000’s I conjectured an explicit cell decomposition
for G extending the cell decomposition of Bx X Bx C Gk

this was established by Xuhua He [2005 MIT Ph.D.Thesis].
Hence Gypy is defined (in terms of 1) as the

indexing set of the set of cells.
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Let u € G be a unipotent element. The Springer fibre

B, ={B € B;u € B} is a much studied variety. (See

for example Spaltenstein’s 1982 book, which is an extension

of his Warwick 1977 Ph.D. thesis). It plays a key role in

many questions of representation theory, such as character

formulas of complex representations of finite reductive

groups.



In 1985/86 (while I was on sabbatical in Rome) I was involved

in a joint work with De Concini and Procesi where we showed

that B, has something very close to a cell decomposition

and that its homology is generated by algebraic cycles.
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Now assume that u € Gg is unipotent. We define the

TP-part of the Springer fibre 15, to be

B.x =1{B € Bx;u € B} = B, N Bx.

One can show that B, x # (). Surprisingly, B, x has a canonical
cell decomposition. Now wu is contained in a unique cell

Uk (z,2) = UZ(2)Ux(2) = Ug(2)UE(2) of Uy where

(2,2") € W x W and J = supp(z), J’ = supp(z’) are disjoint.



Let Zjp ={(v,w) e W x W,

v <w;siw <w,vLsw VieJ;v<svsivLw VjeJ}

Theorem: B, x = U(v’w)EZJ’J,BK;U,w.

Thus B, x has a canonical cell decomposition with each cell

being a part of the canonical cell decomposition of Bx. Hence

Bu,{l} — ZJ’J/ C B{l}.
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Let B = {(u,B) €U x B;u € B}. Let B{l} be the set of all
(2,2, v,w) € W* such that J = supp(z), J’ = supp(2’) are
disjoint and (v, w) € Z; . We define the TP-part of B to be
Bix = {(u, B) € Ux x Bx;u € B}.

We have a canonical cell decomposition By = Uzjz/,v,wBK,m/,v,w

where BK,Z,Z/,U,U) — {(ua B) S Z/{K(z7 Z/) X BKWMU}

is a cell of dimension I(z) + [(2") + l(w) — I(v).



Another example of a semifield is K’ = R(t)~q, the set

of f € R(t) of form f =t°fy/f1 for some

fo, f1 in R[t] with constant term in R~g,e € Z (¢ is an

indeterminate); sum and product are induced from R(t).

Remark: The map a : K" — Z, t°fy/ f1 — e is a semifield

homomorphism.
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Let B = {B € B;pos(B",B) = pos(B~, B) = wy} an open subset
of B. Define its TP-part as

Z%K = {uBTu hu e Ug(w)} = {uB v 14 € Uf(wy)}.

Now B makes sense over any field, in particular over C(t) and
then it contains

Z%K/ = {uBTu;u € Ug(wy)}y = {u/B v Yo' € Uk (wy)}

as a subset.



We have bijections Uy, (wy) = Bgr, uw — uBtu™! and

Ui (wy) = Bgr, ' — w' B~ '~ The composition of the first

bijection with the inverse of the second bijection is a bijection

U[}/ (U)Q) — U;(—'/ (’LU()) .
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One can show that there is a unique bijection U, (wgy) — U, (wy)

such that we have a commutative diagram

with vertical maps induced by o : K" — Z.



We define l%’z to be the set of pairs (£7,£7) € U, (wp) x U (wy)
such that £7, &~ correspond to each other under the bijection
U, (wy) — Uy (wg) above. Thus

(a) B, Bx:, By

are defined. Note that l%’z is some kind of flag

manifold over the semifield Z. One can show that Gx, Gk, Gy

acts naturally on (a).



