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Preface

According to Drinfeld, a quantum group is the same as a Hopf algebra. This
includes as special cases, the algebra of regular functions on an algebraic
group and the enveloping algebra of a semisimple Lie algebra. The quan-
tum groups discussed in this book are the quantized enveloping algebras
introduced by Drinfeld and Jimbo in 1985, or variations thereof.

Although such quantum groups appeared in connection with problems
in statistical mechanics and are closely related to conformal field theory
and knot theory, we will regard them purely as a new development in Lie
theory. Their place in Lie theory is as follows. Among Lie groups and
Lie algebras (whose theory was initiated by Lie more than a hundred years
ago) the most important and interesting ones are the semisimple ones.
They were classified by E. Cartan and Killing around 1890 and are quite
central in today’s mathematics. The work of Chevalley in the 1950s showed
that semisimple groups can be defined over arbitrary fields (including finite
onés) and even over integers.

Although semisimple Lie algebras cannot be deformed in a non-trivial
way, the work of Drinfeld and Jimbo showed that their enveloping (Hopf)
algebras admit a rather interesting deformation depending on a parameter
v. These are the quantized enveloping algebras of Drinfeld and Jimbo. The
classical enveloping algebras could be obtained from them for v — 1.

Subsequent work showed that the algebras of Drinfeld and Jimbo have a
natural form over Z[v, v™!]; this specializes for v = 1 to the Kostant Z-form
of the classical enveloping algebras. On the other hand, it can be specialized
to v equal to a root of 1, giving some new objects which include quantum
versions of the semisimple groups over fields of positive characteristic.

In addition to extending the range of the theory of semisimple groups
from Z to Z[v,v™!], the theory of quantum groups has led to a new, ex-
tremely rigid structure, in which the objects of the theory are provided
with canonical bases with rather remarkable properties; in particular, in
the simply laced case, the structure constants with respect to the canoni-
cal bases are not only in Z[v,v~1], but in N[v,v~!]. These specialize, for
v = 1, to canonical bases for the objects in the classical theory, in which
the structure constants are not only in Z, but in N. (As we will see, the
non-simply laced case can be regarded as merely a twisted version of the
simply laced case; thus, the simply laced case is the really fundamental
one.)



xii Preface

The theory of semisimple Lie algebras also includes nowadays an exten-
sion to the case of affine Lie algebras. These Lie algebras, which appeared
in the works of physicists, can be treated simultaneously with the usual
semisimple algebras in the framework of Kac-Moody Lie algebras. The al-
gebras of Drinfeld and Jimbo are also defined in this more general context.

This book contains an exposition of the topics above with emphasis
on canonical bases. We will develop the theory without assuming any
knowledge of semisimple Lie algebras or Kac-Moody Lie algebras (except
towards the end). On the other hand, to construct canonical bases, we will
make use of the theory of perverse sheaves, which will be reviewed but not
explained.

The readers who are not comfortable with the theory of perverse sheaves
are advised to skip Chapters 8-13, and accept the theorems in Chapter 14
without proof (the statement of those theorems do not involve perverse
sheaves, only their proofs do).

The book is divided into six parts. Part I contains an elementary treat-
ment of the algebras of Drinfeld and Jimbo. Part IT contains the construc-
tion of canonical bases using perverse sheaves. Part III deals with results of
Kashiwara and their applications. Part IV is concerned with the canonical
basis of (a modified form of) the quantized enveloping algebra. Part V is
concerned mainly with phenomena at roots of 1. Part VI is concerned with
the action of the braid group.

References to the literature are given at the end of each Part.

Newton, Massachusetts, February 26, 1998
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thor enjoyed the hospitality of the Institut des Hautes Etudes Scientifiques
in Bures sur Yvette.
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book for printing. I also wish to thank Henning H. Andersen and Toshiyuki
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Part I

THE DRINFELD-JIMBO ALGEBRA U

Chapters 1 and 3 contain a treatment of the Drinfeld-Jimbo algebras U over
Q(v). We use a definition somewhat different from the original ones, which
were in terms of quantum Serre relations. (Drinfeld worked in a topological
setting, over power series, while Jimbo worked over Q(v).) Drinfeld intro-
duced a non-degenerate pairing between the upper triangular part and the
lower triangular part of U (in his setting). This can be also viewed as a
non-degenerate pairing on the lower triangular part. We use such a pairing
to give a definition of the lower triangular part in which the quantum Serre
relations are not imposed but are automatically satisfied. The identifica-
tion with the definition in terms of quantum Serre relations will be given
in Part V.

The universal R-matrix was introduced originally by Drinfeld as an in-
tertwiner between the comultiplication of U and its transpose. We found
it useful to look for an intertwiner between the bomultiplication of U and
the new comultiplication obtained by conjugating with a certain antilinear
involution ~ : U — U.

This leads to what we call the “quasi-R-matrix”. It has a simpler char-
acterization than Drinfeld’s R-matrix (see Chapter 4) and is equal to it
except for the diagonal part.

In Chapter 5, we introduce some symmetries of an integrable module
of U; in Part VI, it will be seen that these symmetries define braid group
actions.

Chapter 6 contains a proof of the quantum analogue of the Weyl-Kac
complete reducibility theorem.

The higher order quantum Serre relations are introduced in Chapter 7;
they will be used in the discussion of the quantum Frobenius homomor-
phism in Part V and of the braid group actions in Part VL.



CHAPTER 1

The Algebra f

1.1. CARTAN DATUM

1.1.1. A Cartan datum is a pair (I,-) consisting of a finite set I and a
symmetric bilinear form v,2’ — v - v/ on the free abelian group Z[I], with
values in Z. It is assumed that:

(a)i-i€{2,4,6,...} forany i€ I;

(b) 252 € {0,—1,-2,...} for any i # j in I.

Two Cartan data (/,-) and (I, o) are said to be proportional if there exist
integers a,b > 1 such that aioj=bi-j foralli,7 € I.

1.1.2. We assume that a Cartan datum (I,-) is given. Let v be an inde-
terminate.

For any i € I, we set v; = v*'*/2. This notation will be extended in two
different ways:

(a) for any rational function P € Q(v) we shall write P; for the rational
function obtained from P by substituting v by v;;

(b) for any v = ), v;i € Z[I], we shall write v, = [, v{* (if v = 4, then
v, §/v; in the earlier sense).

We shall use the notation

() trv=>,r,eZforv=>3, v € Z[.

1.2. THE ALGEBRAS 'f AND f

1.2.1. We denote by 'f the free associative Q(v)-algebra with 1 with gen-
erators 6; (i € I).

Let N[I] be the submonoid of Z[I] consisting of all linear combinations
of elements of I with coefficients in N. For any v = 3", v;i € N[I], we de-
note by 'f, the Q(v)-subspace of ’f spanned by the monomials 6;,6;, - - - ;.
such that for any ¢ € I, the number of occurrences of i in the sequence
i1,12,...,% is equal to v;. Then each 'f, is a finite dimensional Q(v)-
vector space and we have a direct sum decomposition 'f = @,’f, where
v runs over N[I|]. We have 'f,'f,, C 'f,,,/, 1 € 'f; and 6; € 'f;; these
properties provide an alternative definition of ’f,,.
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An element z of 'f is said to be homogeneous if it belongs to ’f, for some
v. We then set |z| = v. In particular, we have |0| = v for any v.

1.2.2. The tensor product 'f ® 'f can be regarded as a Q(v)-algebra with
multiplication

(x1 ® 22)(z) ® 5) = v"”""m“zlx’l ® T275

where z,,z2, ], 25 € 'f are homogeneous; this algebra is associative since
v -V is bilinear. Similarly, 'f ® 'f ® 'f is an associative Q(v)-algebra with
multiplication

(21 ® T2 ® z3) (2] ® 5 ® 73)
= lezl'lﬂt’xI+IacaI-II'2I+I13I~Iav’1|:lcll.'1 ® Tozh ® T3TY,
for homogeneous 1, z2, T3, ], T4, T5.

The following statement is easily verified: if r : 'f — 'f ® 'f is an algebra
homomorphism, then (r ® 1)r and (1 ® r)r are algebra homomorphisms
FofRfe'f.

We apply this statement to the unique algebra homomorphism r : 'f —
'f ® 'f such that 7(6;) = 6; ® 1 + 1 ® 6; for all i. For this r, the algebra
homomorphisms (r ® 1)r and (1 ® r)r take the same value on any algebra
generator 0;, namely 8,®101+186;®1+1®1®86;; hence these two algebra

"'yhomom('-)'rphisms coincide. Thus, we have the co-associativity property

(rel)r=01rr:'f->"fR'fx'f.

Proposition 1.2.3. There is a unique bilinear inner product (,) on'f with
values in Q(v) such that (1,1) =1 and

(a) (8:,05) = 6;;(1 — v~ for alli,j € I;

(b) (z,y'y") = (r(2),y' ®Y") for all z,y',y" €f;

(c) (zz,y") = (@2, r(y")) for all z,2',y" € 'f.

(The bilinear form ('f®'f) x 'f®'f) — Q(v) given by z,@z3, x| @) —
(z1,x))(z2, x4) is denoted again by (,).)
The bilinear form (,) on 'f is symmetric.

The linear maps ‘f,,,» — 'f, ® 'f,+ defined by r give, by passage to dual
spaces, linear maps 'f; ® 'f}, — ‘f;, ;. These define the structure of an
associative algebra with 1 on &,'f}. For any i, let & € 'f} be the linear
form given by &(8;) = (1 —v; %)~
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Let ¢ : 'f — @,/f} be the unique algebra homomorphism preserving 1,
such that ¢(6;) = ¢; for all . For z,y € 'f, we set (z,y) = ¢(y)(z). Then
(b) holds, since ¢ is an algebra homomorphism. Clearly,

(d) (z,y) = 0if z,y are homogeneous, with |z| # |y|.

We now show that (c) holds. Assume that (c) is known for 3 replaced
by y or by 3’ (both homogeneous) and for any z,z’. We prove then that (c)
holds for y” = yy’ and any x,z’. We can assume that z, 2’ are homogeneous.
We write

r(z) =) 21 Qx2, 7(z') =3 2| @),

) =2n®y, )=y O,
all factors being homogeneous. Then

r(za’) = Y ol @ zaz,  r(yy) = S ol ¢t @ yoyh.
We have

(@z',yy") = d(yy')(z2') = ($(y)$(¥"))(z2") = (6(y) ® B())(r(zz’))
= > vl 2l y) (@anh, o)
= ooz, @ 2, r(y)) (22 ® 25, r(y)
(e)
= > ol (@, 1) (@), o) (2, 1) (), 9h)-
‘On the other hand,
(e, r(yy)) =D vWil(z @2, y13] @ yayh)
= v, 1)) (@ ye) = D o Wi (r(2), 10 @ 1) (r(2'), 32 @ )

(f)
=Y olelil(z) y) (@), ye) (22, 1) (2h, ).

By (d), we may assume that |z}| = |ya|, |y;| = |z2| in the last sum in
(e) and (f); hence in (e) we have |z2| - |z}| = |z2| - |y2| and in (f) we have
ly2| - [y1] = lyal - |z2| = |x2| - ly2| (by the symmetry of the form -). Hence
the two sums are equal and our assertion follows.

We now see that it suffices to verify (c) in the special case where y” is
one of the generators #; of 'f. In that case, we may assume that either
r=0;and 2’ = 1, or z = 1 and 2’ = 6;; in either case, (c) follows from our
definition of &;. Property (a) is clear from the definition. The existence of
(,) is thus proved. The uniqueness of (,) is immediate. The fact that ()
is symmetric follows from uniqueness.
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1.2.4. The ideal Z. Let T be the radical of the form (,). We show that
T is a two-sided ideal of ‘f.

Let z € 7 and y € 'f. Let 2z € 'f; we write r(2) = ) 2’ ® 2””. We have
(zy,2) = (z ®y,7(2)) = X(2,2')(y,2") = 0 and (yz,2) = (y ® 2,7(2)) =
S(y,2')(x,2") = 0. This shows that zy € T and yz € Z; our assertion
follows.

1.2.5. The algebra f. Let f = 'f/Z be the quotient algebra of 'f by the
ideal Z. Since 7 is compatible with the decomposition &®,'f,, we have a
direct sum decomposition f = &,f, where f, is the image of ’'f, under the
natural map 'f — f. Each subspace f, is finite dimensional since 'f, is
finite dimensional. The form (,) on 'f defines a symmetric bilinear form on
f denoted again by (,); this form is non-degenerate on each summand f, .

We denote again by 6; the image of 6; in f. If z € f,, we say that z is
homogeneous and we write |z| = v.

1.2.6. The homomorphism r : f - f®f. If z € 7 and y,z € 'f,
then (r(z),y ® z) = (z,yz) = 0. Thus, r(z) is contained in the radical
of the pairing on 'f ® 'f defined by (,). This radical is clearly equal to
ITR'fT+'f®Z. Thus r(T) C I ®'f+'f ®Z. It follows that r induces an
algebra homomorphism f — f ® f, which is denoted again by 7. We regard
f ® f as an algebra by the same rule (1.2.2) as the one defining 'f ® 'f.
The coassociativity property of 1.2.2 continues of course to hold for this

T,

1.2.7. Let o : 'f — 'f°PP be the homomorphism of algebras with 1 which
takes each 8; to ;. Let 'r : 'f — 'f ® 'f be the composition of r with the
linear map r ® y — y ® z of 'f ® 'f into itself.

Lemma 1.2.8. (a) We have r(0(z)) = (0 ® 0)'r(z) for all x € 'f.

(b) We have (o(z),0(z')) = (z,2') for all z,z" € 'f.

Assume that the equality in (a) holds for x = z’ and z = z” (both
homogeneous); we show that it holds for z = z’z". Write r(z’) = 3 2} ®x3
and r(z”) = Y =} ® 2, all factors being homogeneous. By our hypothesis,
we have r(o(z')) = 3 o(zh) ® o(z}) and r(o(z")) = 3 o(zy) ® o(x]). We
have

r(o(2’z")) = r(o(”)r(o(a) = Y vl (25)o(2h) @ o (2] )o(2))

and
(0 ®0)'r(@'s") = 3 o1 (0 @ o) (aaf @ ayaf);
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our assertion follows. It is now enough to verify (a) in the case where
is one of the algebra generators 6;; this is obvious. Now (b) follows easily
from (a) and the definition of (,).

1.2.9. From 1.2.8(b) we see that ¢ : 'f — 'f maps Z into itself; hence it
induces an isomorphism f 2 f°PP with square 1, denoted again by o. The
identities in 1.2.8(a),(b) continue to hold in f.

1.2.10. Let ~ : Q(v) — Q(v) be the unique Q-algebra involution such that
v™® = v~ for all n. Let = : 'f — ’f be the unique Q-algebra involution such
that pd; = p6; for all p € Q(v) and i € I. Let 'f&'f be the Q(v)-vector
space 'f ® 'f with the associative Q(v)-algebra structure given by

(21 ® z2) () ® xh) = v~ =2 =g 2 @yl
where 1,2, z],z5 € 'f are homogeneous. Let = : 'f ® 'f — 'f&'F be the
1, T2

Q-algebra isomorphism = ® ~. Let 7 : 'f — f&'f be the Q(v)-algebra,
homomorphism defined as the composition

TS SR S IR
Thus 7(z) = r(Z). The coassociativity property of r implies the coassocia-

tivity property (7 ® 1)7 = (1 ® 7)F for 7.
Let {,}:'f x'f — Q(v) be the symmetric bilinear form defined by

{a:,y} = (i',g)

From the definitions we deduce {1,1} =1,
(a) {6:,0;} = 6;;(1 —v?)~! and
(b) {z,y'y"} = {F(z), ¥ ®y"} for all z,y,y" € 'f.

Lemma 1.2.11. (a) Let z € 'f be homogeneous; write r(z) = Y, ® x5
with 1,2 homogeneous. We have #(z) = S v~ 1*1l22lg, @ 7,.
(b) Let z,y € 'f be homogeneous. We have

{IL', y} = (_1) b Izlv_lzl.lyl/zv—lxl(myU(y))'

Assume that (a) holds for z = 2’ and for z = z” (both homogeneous).
We show that it also holds for z = z’z”. Write r(z') = Y.z} ® z} and
r(z") = 3" z{ ® =4, all factors being homogeneous. By our hypothesis, we
have 7(z') = Y vl=1l%217), @ 7, and r(z”) = Sol=lM=lzy @ 57
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We have r(z) = ¥ vI®2l1e3lg) 2} ® zha} and
r(z) =r(@)r(z") = Zv“xl-lwzlﬂxl M=z =3 1= g0 27 @ 7 2.

- |zhzy| — || - |z5]. Hence

The exponent of v is equal to |z} ]
’ ”
.'L') E v —jzizy) Izzzzl EAREN Il' 1'2 ® x,lm,l,

and our assertion follows. It remains to show that (a) holds when z is
one of the algebra generators 6; of 'f. This follows immediately from the
definitions.

We now prove (b). Assume that (b) holds for y = 3’ and any = = =’ and
also for y = y” and any = = z” (all homogeneous). We show that it holds
for y = y'y” and any homogeneous z. Write r(z) = }_z’ ® " with 2, 2"
homogeneous. We have

(:E 17) — (r(:f) ?7/ ® ﬂ”) — Z’UIZ”I'II,'(II—IH ® f)’,:l]’ ® 37”)
_ Zv|m”| -z’ |($// ")(j’ -//

— (_1) tr |z’|+ tr |z”|

" ’ " . ’ ! . "
X Zv|z |1z’ |+ 12" )1y 1/ 2+’ | |y '/2v|$f|v|,,u|($”,a(y’))(x’,a(y”))

and
(=)t lelylel 2y (o (y)) = (=1) * FllH 20 (r(2), o (y") © 0 (y))
= Z(_l) tr levlzl.lyl/zvh[(ﬂ?',0'(?/"))(-’1:", a(y')).
* We may assume that |z/| = |y”| and |z”| = |y’|. Hence the exponents
|z|-|y|/2 and |z”|-1z'| +|z"|-|y'| /2 + |x'| - || /2 are equal and our assertion
follows. Thus, to verify (b), we may assume that y is a generator of our

algebra. Similarly, we may assume that z is also a generator of our algebra.
In this case, (b) is obvious.

1.2.12. By 1.2.11(b), the involution ~ : 'f — f carries Z onto itself; hence
it induces an involution of f denoted again by ~. Again by 1.2.11(b), the
form {, } has a radical equal to Z; hence it induces a symmetric bilinear form
on f, denoted again by {, }, which is non-degenerate on each homogeneous
component.

Let f&f be the Q(v)-vector space f ®f with the associative Q(v)-algebra
structure given by the same rule as for ’f in 1.2.10.

Then 7 : 'f — 'f&'f induces an algebra homomorphism 7 : f — f&f.
The identities in 1.2.11(a),(b) continue to hold for f. We have o(Z) = o(z)
for all z € f. Indeed, it suffices to check this on the generators §;, where it
is obvious.
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1.2.13. The maps r; and ;r. Let i € I. Clearly, there is a unique Q(v)-
linear map ;v : 'f — 'f such that ;7(1) = 0, ir(0;) = 6;; for all j and
ir(zy) = ir(z)y + v/=liz;r(y) for all homogeneous z,y. If = € 'f,, we have
ir(x) € 'fu—; if »; > 1 and yr(x) = 0 if »; = 0; moreover, r(z) = §; ® ;r(z)
plus terms of other bi-homogeneities.

Similarly, there is a unique Q(v)-linear map r; : 'f — ’f such that
ri(1) = 0, r;(6;) = &;; for all j and ri(zy) = v¥ir;(z)y + zri(y) for all
homogeneous z,y. If z € 'f, we have r;(x) € 'f,_; if ; > 1 and ri(z) =0
if v; = 0; moreover, r(z) = r;(z) ® 6; plus terms of other bi-homogeneities.

From the definition we see that

. (a) (01"!/7 J:) = (01;, 0{)(3/, ,'1'(.’1,')), (ygiy .’L') = (9i, oi)(yy Ti (33))
for all z,y, and
(b) or; = 4ro.

For any i € I, the linear maps ;r,7; : 'f — 'f leave Z stable (by (a));
hence they induce linear maps ;r,r; : f — f. The identities above continue
to hold in f.

'Lemma 1.2.14. For any homogeneous x € f, we have

(a) ri(z) = o=l (7).

If z = 1, then both sides of (a) are 0; if z = §;, then both sides of (a) are
6;,j. Clearly, if (a) holds for x,z’ homogeneous of the same degree, then it
holds; for any linear combination of z, z’.

Assume that (a) holds for z and 2’ (homogeneous); we show that it also
holds for zz’. We have

Ulzz,l'i_i'iﬂ"(ﬁ) — ,Ula:z’|-i—i-i(ir(:z.)j/ + U_le'ii‘i’r'(:i’))
_ v|z’|-iv|z|-i—i-imx/ I e =)}
= ol#lir, (2)2’ + zri(z') = ri(zz’).
The lemma follows.
Lemma 1.2.15. Let x € f,, where v € N[I] is different from 0.

(a) If ri(z) = 0 for all i, then z = 0.
(b) If ir(z) = 0 for all i, then x = 0.

If z is as in (a) then, by 1.2.13(a), we have (yf;,z) = 0 for all y € f.
By our assumption on v, we have f, C 3", f8;. It follows that (f,,z) = 0.
Hence, by the non-degeneracy of (,), we have z = 0. This proves (a). The
proof of (b) is entirely similar.
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1.3. PRELIMINARIES ON GAUSSIAN BINOMIAL COEFFICIENTS

1.3.1. Let A= Z[v,v"}]. Fora€ Z and t € N, we set

(] - B <o
We have
ST o)
(b) m:o if0<a<t

a—1
(c) H 1+0v%2) Evt(“ 1)[ ]zt ifa>0.
7=0

Here z is another indeterminate. From (c), (a), it follows that

@ [‘t‘] €A

If a’,a” are integers and t € N, then
a +a” o ' "
@ -z ]l
. vt =t

Assume first that a’,a” are > 0. Then (e) follows from (c) by the compu-
tation:

al+all al + a,’ al+all_1
5 wersern [ ] = [I e+
t=0 3=0
a’'-1 a'’ -1
= H (14 v%2) H (1 +v2h (w2 2))
J=0 h=0

al a, all a/
_ th (a'-1) [t,]zt Z ot @ =1 [t,]vza s
t’'=0 t''=0
For fixed t, we may regard (e) as an identity involving rational functions
in three variables: v, v"’, v®". Since this identity is already known to hold
for alla’ > 0,a” > 0, it must hold as a formal identity in the three variables;
hence it holds as an identity in v, for arbitrary a’,a”.
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1.3.2. We have ['] = (-1)! for any ¢ > 0. This follows from 1.3.1(a).
1.3.3. We shall use the notation

n vt — oy
[n]=l:l]=’u——v_l fornEZ,

n
[n]' = H[s] for n € N.
s=1
With this notation we have

[‘ZJ gl [[ = —qp er0stsa

1.3.4. If a > 1, we have

(a) za:(-ntut(l-a) [‘t‘] =0.

t=0

This follows from 1.3.1(c) by setting z = —1.

1.3.5. If z,y are two elements in a Q(v)-algebra such that zy = v?yz,
then, for any a > 0, we have the quantum binomial formula:

m+y)“—Zv‘(° i)[ ]

The proof is by induction on a.

1.4. QUANTUM SERRE RELATIONS

1.4.1. For any p € Z, let 8% (in 'f or f) be defined as 67/[p]} if p > 0 and
as 0 if p < 0. (The notation [p]} is in accordance with 1.1.2.)

Lemma 1.4.2. For any p € Z we have

(a) rO) = Y oo @6;
t+t'=p

(b) M) = Y o6 o).
t+t'=p

(a) (resp. (b)) follows from the quantum binomial formula 1.3.5, applied
to the elements §; ® 1 and 1 ® 6; of f @ f (resp. £&f).
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Proposition 1.4.3. The generators 0; of f satisfy the identities
ZP+P’=1—2i-j/(i'i)(_l)plgz(p)ojoz(p Y= 0 for anyi#j in I.

(The identities above are called the quantum Serre relations.) The proof
will be given in 1.4.6.

Lemma 1.4.4. For any p > 0 we have
(a) o(P) 0(?)) _ H(l —2s ,U?(P+1)/2(,Ui _ ,vi—l)—p([p]i)—l.

Note that (a) holds for p = 0 or 1, by definition. Assume that (a) holds
for p and for p’. We show that it holds for p + p’, using 1.4.2:

-1
(9(P+P') 9§P+P')) [p + p] (r (0(P+P )) 9(1’) ® 9(1’ ))
1 L ) p i

-1
’ p+p’ / ’
= ’Uzpp [ ] . (ofp)’ 05?))(0517 )701@ ))

fp+217' ¢ . 26\~
=7pr [p pp:|. H(l_vi 23) IH(l_Ui 23) 1
g s=1

—_ H (l _ vi_28)_1'

The lemma is proved.

Lemma 1.4.5. Let n € N and let p,p’,q,¢' € N be such that p+p' =
g+q =n. Leti# j. We have

(696,69, 600,0")
(a)
LI 1/2+d (' =1)/2 p- 8 D-E(@' =), (¢ +8)(i-j+(n—1)ii/2)
— 1 (3

RN TGN,

where the sum is taken over allt,t',s, s’ in N such thatt+s=q,t' +s' =
q,t+t =p,s+s =p'. The left hand side is an inner product of elements
of £.
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We have
(60 0,0)
= ( > vf’0f"®0§”) G;e1+106)| > o6 oo
t+s=q t'4s'=q

— Z v:s+t's'+23t'vsi-jggt)ajegt') ® 91(3)01(3’)
+ 3 gttt g0 @ (s)p (o),

Hence the left hand side of (a) is equal to

00,00, r60,0)
_ Zv§s+t's'+2st’vsi'j(0(1’)9]_ 0@)0],9@'))(9(3)0(3') 9(1"))
1 ) L) 1 2 7 LI 4

where the sum is as in the lemma. We have

(676;,6(6;6")) = (r(6)r(6;),679; @ 61)
= o o"*3(600;,610;)(6{", 6("7)
=060, 60)(0;,6,) (6, 6%").
Inﬁrdducing this in our earlier computation we see that the left hand side
of (a) is equal to
D wpeHt ey (1953 (6, 1) (6, 610) (619,60 (65, 6,) (61", 6¢)
ts+t’s’+2st’+tt'+ss'+s(s+l)/2+s'(s'+l)/2+t(t+1)/2+t'(t'+1)/2v(t’+3),’.j

-2 (v — o7 )™ (v; — o7 ) [l 1 [t

The lemma follows.

1.4.6. Proof of Proposition 1.4.3. Let ¢ # j be elements of I.
Set « = —2i-j/(i-i) € N. It suffices to show that the element
D ptpi=14 0‘(—1)‘“'01(”)6’1'6’5" ) e fis orthogonal under (,) to 92(")9]-95'?,) for
any q,q’ such that ¢+ ¢’ = 1+ a. (These elements span fir(+a)i-)

Using Lemma 1.4.5, we see that it is enough to verify the identity

3 (=1yet ey @D (gl ) s 5T " = 0
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where the sum is taken over all t,t', s, s’ in N such that t+s = q,t'+s' = ¢'.
The left hand side is a product

( Z (_l)spi_S(q—l)([t]i['s]z)_l) Z (_l)s’vi—t'(q'—l)([tlli[s/]i)—l

t4s=q t'+s'=q’

If ¢ > 0, the first sum is zero, while if ¢’ > 0, the second sum is zero using
1.3.4(a). Note that ¢,q’ cannot both be zero, since their sum is & + 1 > 0.
The proposition is proved.

1.4.7. The algebra 4f. Let 4f be the .A-subalgebra of f generated by
the elements 6°) for various i € I and s € Z. Since the generators 6{)
are homogeneous, we have 4f = ®,(af,) where v runs over N[I] and
Af, = AfN1,.



CHAPTER 2

Weyl Group, Root Datum

2.1. THE WEYL GROUP

2.1.1. Assume that a Cartan datum (7,-) is given. For any i # j in I such
that (z )G -g) - (G- -j)? > 0 we define an integer h(i,j) € {2,3,4,...} by

cos? W = z—f-}—]— We have h(i,j) = h(j,i) = 2,3,4 or 6 accordmg to

whether 27'11—1-% is0,1,2 or 3.

For any ¢ # j in I such that (i-4)(j-5) — (i-5)% < 0, we set h(i, ) =

The braid group is the group defined by the generators s; (i € I) and
the following relations (one for each i # j in I such that h(i,j) < oo):

(a) sisjs;--- =8;8;8;--- (both products have h(i, j) factors).

We define W to be the group defined by the generators s; (i € I) and
. the relations (a) together with the relations s? = 1 for all 5. Thus W is
a Cozeter group of a special type, called the Weyl group. It is naturally a
quotient group of the braid group.

2.1.2. Let w € W. The length of w is the smallest integer p > 0 such that
there exist 41,142,...,%, in I with w = s;,8;, - -+ 8;,. We then set I(w) =
and we say that s;,8;, - - - Si, is a reduced ezpression of w. Note that [(1) =
0, I(s;) =1 and l(ww’) < l(w) + l(w’) for w,w’ € W.

The following theorem will be used many times.

There is a unigue map w — W from W into the braid group such that
i=15 =s; and ww' = Wi’ whenever w,w' € W satisfy l(ww') =
l(w) + l(w').

The uniqueness is trivial; the theorem asserts that, if s;, s;, -8, and
8i 8 +++ Si7 are two reduced expressions of w € W, then the equality
= 8i1 Sif + - Sy holds in the braid group.

iy Sip " Sy,

2.1.3. A Cartan datum (Z,-) is said to be symmetricif i-i = 2 for all i € I.
A Cartan datum (/,-) is said to be simply laced if it is symmetric and
i-j€{0,—1} for all ¢ # j.
A Cartan datum (I, -) is said to be irreducible if I is non-empty and for
any i # j in I there exists a sequence ¢ = iy,13,... ,4, = j in I such that
ip-ipt1 <O0forp=1,2,...,n—1.
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A Cartan datum (7, -) is said to be without odd cycles if we cannot find a
sequence iy, 12, .. ., ip,ip41 = ¢ in I such that p > 3is odd, and 7,-9541 < O
for s =1,2,...,p or, equivalently, if there exists a function 7 — a; from I
to {0,1} such that a; + a; = 1 whenever ¢ - j < 0.

A Cartan datum (7,-) is said to be of finite type if the symmetric
matrix (i - j) indexed by I x I is positive definite. This is equivalent to
the requirement that W is a finite group. In this case, W has a unique
element of maximal length; we denote it by wp. We have wg = 1. A
Cartan datum that is not of finite type is said to be of infinite type.

A Cartan datum (7,-) is said to be of affine type if it is irreducible and
the symmetric matrix (i - j) indexed by I x I is positive semi-definite, but
not positive definite.

2.2. RooTr DATUM

2.2.1. A root datum of type (I,-) consists, by definition, of

(a) two finitely generated free abelian groups Y, X and a perfect bilinear

pairing (,) : Y x X — Z;
“(b) an imbedding I C X (i — i’) and an imbedding I C Y (i — 1)

such that

(c) (i,5") = 2% for all 4,5 € I.

In particular, we have

(d) {4,4) = 2 for all §;

(e) (3,5') € {0,-1,—2,...} for all i # j.
Thus ((i,7’)) is a symmetrizable generalized Cartan matrix.

The imbeddings (b) induce homomorphisms Z[I] — Y, Z[I] — X; we
shall often denote, again by v, the image of v € Z[I]| by either of these
homomorphisms.

2.2.2. A root datum as above is said to be X-regular (resp. Y -regular) if
the image of the imbedding I C X is linearly independent in X (resp. the
image of the imbedding I C Y is linearly independent in Y).

For example, we can take Y = Z[I] with the obvious imbedding I —
Y; X = Hom(Y,Z) with the obvious bilinear pairing (,) : ¥ x X — Z
(evaluation) and with the imbedding I — X defined by the condition (c)
above. This root datum is Y-regular. We say that it is the simply connected
root datum.

As another example, we can take X = Z[I] with the obvious imbedding
I — X; Y = Hom(X, Z) with the obvious bilinear pairing {,): Y x X — Z
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(evaluation) and with the imbedding I — Y defined by the condition (c)
above. This root datum is X-regular. We say that it is the adjoint root
datum.

A morphism from (Y, X, (,),...) to (Y, X’,(,),...) (two root data of
type (I,-)) is, by definition, a pair of group homomorphisms f : ¥ —
Y',9: X’ — X such that (f(u),\) = (u,g(XN)) for all p € Y, N € X’ and
f(@) = i,9(i') = ¢ for all i € I. Thus the root data of type (I,-) form a
category.

Given a root datum (Y, X, (,),...) of type (Z,-), there is a unique mor-
phism from the simply connected root datum of type (I,-) to (Y, X, (,),...)
and a unique morphism from (Y, X, (,),...) to the adjoint root datum of
type (I,-).

(Y, X,(),...)and (Y',X',(,),...) are two root data of type (I, -), we
can define a third root datum (Y ®Y’, X ® X', (,)”,...) where {,)" = (,)®
(,)', the imbedding I — Y @ Y” has as components the given imbeddings
I - Y,I - Y’ and the imbedding I — X & X’ has as first component the
given imbedding I — X and as second component zero.

Clearly,

(a) if (Y, X', (,)',...) is Y-regular, then (Y ® Y', X & X', (,)",...) is
Y -regular;

(b) if (Y, X,(,),...) is X-regular, then (Y ® Y, X & X', (,)",...) is
X-regular.

‘Taking (Y, X, (,),...) to be adjoint and (Y’,X’,(,),...) to be simply
connected, we see that (Y ®Y', X ® X’,(,)”,...) is both X-regular and Y-
regular. Thus there exist root data of type (I,-) which are both Y-regular
and X-regular.

2.2.3. In the case where the root datum is X-regular, we define a partial
order on X as follows: A < X if and only if X' — A € 3, Ni’. Without our
assumption on the root datum, this would be only a preorder.

2.2.4. Given a Cartan datum (I,-) and an integer | > 1, we define a new
Cartan datum (I, o) with the same I and with
ioj = (i-j)ll;

where, for any i € I, I; denotes the smallest integer > 1 such that ;(i-i/2) €
lZ.
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We show that this is indeed a Cartan datum. It is obvious that ioi €
{2,4,6,...} for any i € I. Now let ¢ # j in I. It is clear that

. L
e
ioi i-1

.

a=2

)
-

is a rational number < 0 and that l;a € Z. To prove that a is an integer, it is
enough to show, by the definition of /;, that l;a(i-i/2) € IZ, or equivalently,
that [;(i-j) € IZ. But l;(i-j) is the product of the integer 2i-j/(j - j) with
the integer I;(j - 7/2) which is in [Z by the definition of [;. We have thus
proved that (I,o) is a Cartan datum. Note that !; divides [.

2.2.5. Given a root datum (Y, X, ...) of type (I,-) and an integer [ > 1, we
define a new root datum (Y*, X*,...) of type (I,0) (see 2.2.4) as follows.

By definition, X* = {( € X|(i,{) € L;Zforalli € I} and Y* =
Hom(X*,Z). The pairing Y* x X* — Z is the obvious one. The map
I - X*isgiven by i +— i’* = [;3’ € X. The map I — Y™* associatestoi € I
the element i* € Y* whose value at any ( € X* is given by (i,{)/l;. The
value of i* at j'* is, from the definition, the integer (4, 3/l = 2i0j/(i01).

We have an obvious imbedding g : X* — X; this induces by duality a
homomorphism f : Y — Y™*. Note that (f, g) is not a morphism of root data
since the two root data, in general, correspond to different Cartan data.
.Clearly, if (Y, X,...) is Y-regular (resp. X-regular), then (Y*, X*,...) is
Y-regular (resp. X-regular).

2.2.6. Let s; : Y — Y be the homomorphism given by s;(1) = p — (u, #')i.
Note that s? = 1. Similarly, the homomorphism s; : X — X given by
8i(A) = X — (i, A7’ satisfies s2 = 1. We have (s;(u), A) = (i, s;(\)) for all
i, A. It is easily checked that these formulas define homomorphisms

W — Aut (Y),W — Aut (X).

Hence W acts naturally on Y and X and we have (w(u), ) = (g, w™1()\))
for all u, A\, w.

2.2.7. Let s;,8i, -+ 8;, be a reduced expression in W where n > 1. Then
$i,Si,_, " Sip(11) €Y (resp. si si,_,---8i,(}) € X) is a linear combina-
tion of elements i € Y (resp. i’ € X) with coefficients in N.
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2.2.8. In the case where (I,-) is of finite type, there is a unique permuta-
tion ¢ — 4 of I such that wg(i') = —7' for all i. Its square is 1. This implies
the following property: if A’, \” € X, then we have A’ < X" if and only if
wo(A”) < wp(N).

2.3. CoOrRoOTS

2.3.1. Assume that (I,-) is of finite type. Let R be the set of all p € Y’
such that u = w(i) for some w € W, or equivalently, the set of coroots. R is
a finite set. Let R* be the set of all € R such that a € 3, Ni C Y. We
have a partition R = R* U (—R*). Let 2p € Y be the sum of all coroots
in R*. This is not necessarily two times an element of Y, but it has the
following well-known evenness property:

(a) (2p,i') = 2 for all i € I. In particular, (2p,\) € 2Z if A € Z[I] C X.

If 4,5 € I are such that j = w(i) for some w € I, then it is known that
i-1=j-j; hence for any a € R we can define o - a € 2N to be i - i where
i € I is such that a = w(%) for some ¢ € I and w € W. This is independent
of the choices made.

Let n: X — Z be the homomorphism given by

n(}) = Y (a- a/2){a, ) (sum over all « € Rt).
We have

(b) n(—wp(A)) = n(A) for all X € X;;
(e)n()=i-iforalliel.

2.3.2. For any i € I, we define an element u(i) € Y as follows: we choose a
sequence (41,142, ... ,in) in [ such that s;,s;, - - - 5;,, is a reduced expression
of wy € W and we set

(i) = Z SinSin_1 - Sippn (ip)

where the sum is taken over all p € [1, N] such that i, = i. One checks
that (i) is independent of the choice of reduced expression.
The verification of the following identity is left to the reader:

(@) 224 5er (@), AV p(5), )i 5 = Fie  ((3), A) (6, A)i - i for any X € X.



CHAPTER 3

The Algebra U

3.1. THE ALGEBRAS 'U AND U

3.1.1. Assume that a root datum (Y, X, (,),...) of type (I,-) is given. We
consider the associative Q(v)-algebra ‘U (with 1) defined by the generators
B (€D, F (iel), K. (ueY)

and the relations (a)—(d) below.

(a) Ko=1, K,K, =K, foral u,u' €Y.

(b) K, E =vW ) EK,forallie I,peY.

(c) K,,F‘,-:v‘("’i')F',-K,, forallie I,ueY.
o -

(d) EF; - F;B; = §;;———.

T [

(For any element v = Y .1 € Z[lI], we set K, = IL KGij2yvi- In
particular, Kyi= K (i.i/2)i-)

We also consider the associative Q(v)-algebra U (with 1) defined by the
generators

E; (iel), F; (iel), K, (peY)
and the relations (a)—(d) above, together with the following relations:
(e)
for any f(6;) € T C 'f (see 1.2.4) we have f(FE;) =0 and f(F;) =0in U.

From (e), we see that there are well-defined algebra homomorphisms
f— U (z+ zt) (with image denoted U*) and f —» U (z — z7) (with
image denoted U~) which respect 1 and are such that E; = 6], F, = 6;
for all i € I. Clearly, there are well defined algebra homomorphisms 'f —
"U (x ~ zt) with image denoted ‘Ut and 'f —» 'U (x — z7) with
image denoted "U~ which respect 1 and are such that E; = 0f F, = 6;
for alli e I.

For any p € Z we set E® = (6%)*+ (in 'U* or U*) and FP) = (6)-
(in U~ or U7).
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3.1.2. If we are given a morphism (f, g) of root data of type (I,-) from
(Y, X,(,),...) to (Y',X’,(,)’,...), then there is a natural algebra homo-
morphism from U, defined in terms of the first root datum, to U, defined
in terms of the second one: it is given by E; — E;, F; — F;, K, — Kiyy-

3.1.3. Clearly, there is a unique algebra automorphism (with square 1)
w : U — U such that w(E;) = F;,w(F;) = E;,w(K,) = K_, for i € I,
p €Y. We have w(zt) = 2z~ and w(z~) = z% for all z € f. (The same
formulas define an algebra automorphism w : ‘U — ‘U with square 1.)

There is a unique isomorphism of Q(v)-vector spaces o : U — U such
that o(E;) = E;,0(F;) = Fi,o(K,) = K_, fori€ I, p € Y and o(uv') =
o(u')o(u) for u,u’ € U. We have o(z*) = o(z)t and o(z~) = o(z) for
all z € f.

Lemma 3.1.4 (Comultiplication). There is a unique algebra homomor-
phism A :'U - 'U®'U (resp. A: U - U U) where 'U®'U (resp.
U®U ) is regarded as an algebra in the standard way, which takes the gen-
erators E;, F;, K, respectively to the elements A(E;), A(F;), A(K,) given
by
A(E)=E®1+K,®FE; (iel),
A(F)=F;K_;+1®F, (iel),
AK,)=K,®K, (peY).

We must show that the elements A(E;), A(F;), A(K,) of 'U® 'U sat-
isfy the defining relations of ‘U. The relations 3.1.1(a), (b),(c) are easily
checked. The relation 3.1.1(d) follows from the equality K; F; @ E; K_ j=
F;K; ® K_,E; which, in turn, follows from the relations 3.1. l(b) (c) of 'U.
This proves the assertion of the lemma concerning 'U. It remains to verify
the relations 3.1.1(e) in the case of U.

Using the definition, we see that the Q(v)-linear map

"fe'f i Ue'U,

given by z® y — ztK jy] ® yt for z,y homogeneous, is an algebra ho-

momorphism. Similarly, the Q(v)-linear map 'f&'f 2 U ® ‘U given by

rQy—z- QK —|2)y~ for z,y homogeneous, is an algebra homomorphism.

The compositions jtr:’f - ’'U®’'Uand j77:'f - 'U® U are then al-

gebra homomorphisms, and we have from the definitions, j+7(0;) = A(E;),
~7(6;) = A(F).
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Now j*tr factors through an algebra homomorphism f — U @ U (see
1.2.6). It follows that the elements A(E;) € U ® U satisfy the relations
3.1.1(e). Similarly, j~7 factors through an algebra homomorphism f —
U ® U, hence the elements A(F;) € U ® U satisfy the relations 3.1.1(e).
The lemma is proved.

3.1.5. The previous proof shows that, for any z € 'f, we have
jTr(z) = Ae*) and j77(z) = Az7),
or equivalently,
A(zt) = Zx—l'-‘kll'ﬂ ®z$ and A(z™) = Zz; ® k_|13|x;

where r(z) = Y ) ® z2 and 7(z) = }_ 23 ® x4 with z;, x5, z3, 24 homo-
geneous. In particular, using 1.4.2, we have

A(Efp)) — Z ‘Uf’p“Ei(p/)Kg’N ® Ei(pu),

p’'+p"'=p
A(Fi(p)) _ Z Ui—p'p”Fi(p') ® Rg’iﬂ(p")_
p'+p"=p

Prbposition 3.1.6. Forx €'f and i€ I, we have (in 'U)
Ti($)+l~{i — R_i(i’l”(.’l‘)—i-) .

(a) =t F, - Fat = 1

Vi —Y;
: ~ _ 'I',;(.’L')_k—i - Ki(ir(‘r)_)
(b) z"E; - Ex = -1 .

Assume that (a) is known for 2’ and for z”; we prove it for = z'z".

We have

$+Fi _E$+ — :L‘/+:12”+Fi — F,-x'+z”+

— $/+Fi:1)”+ + .’II’+ ri(x,,)+Ki - K:i(i"'(zﬂ)-'-) _ Fiz'+x”+

_ Tl TR - Koilr(@)Y) e ri@) K - KoaGr(a”)Y)
v; — vi_l v — vi_1

_ ri(z'z")tK; — R_i(ir(x’x")+)

= — .

Vi —v;

We are thus reduced to proving (a) in the case where z is either 1 or 0;;
in both cases, (a) follows from the definitions. Now (b) follows from (a) by
applying the involution w.
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The following result gives a generalization of the identity (a) above.
Proposition 3.1.7. Let z,y € 'f be homogeneous. Write
T2)(z) = (re r(z) = Zml R®r2 Q3
with zi € 'f homogeneous and
FoW)=FRNFY) =) 1 ®pdys

with yx, € 'f homogeneous. The following equality holds in 'U:
(a) ) )
gty =Y (—1) v Iim im0, 1) K ey 92 23 {23, Y3} K o).

Assume that this is known for y = ¢’ and any z and also for y = 3" and
any z; we prove it for y = ¥'y” and any z. Write

Fo(¥') =D v ® v @i,
FoW") = 1 ® v ® s,
Ty (z2) = szl ® x22 ® T23.
We have
aty' "y’
= Z(—l) trlzal=trlzaly et (@1, YD) K oy v~ 23 {23, Y3} K ag )y~

_ _1) tr lza|— tr Jzs|+ tr jza |- tr |zl —lzal-|y"]
= (-1 v V_|ay | +|z3|~oa1 |+ 223

/ 1A 7, ! — I "—_+ " AR 7, %
X (1, Y1) (%21, Y1 ) K121 1¥2 " K0 1¥2 ~ T22{%23, Y3 HZ3, Y3} K201 Kg-
Hence
4o — -
Ty y
— E (-1) tr x| = tr |23+ tr jzar|— tr fzas| g, —les|-(vy 1+ 1vZ 1 +1Y5 D —lz21 ] |yz]

X Uy |+ les |~ a1 [+ |22 (T15 1) (T21, 97 )
(b)

> 1 —, -+ ” 1\ 1o
X K_ |z, |~z Y2 Y2 $22{$23,y3}{333,1/3}le23|+|13|-

Note that ’F(z)(y) = Zv—ly;I"y;’|"ly:’Sl"yill_ly:lsl'lyg'ylly;, ® yéyg ® yéyé’;
hence the right hand side of (a) for y = ¢'y" is

— 2 : _1) trlzal= tr |eal, —|v5 19y 1= lys ) 1yy 1= lval-lvg ! o0
P = ( 1) v P 3bisr 3 2|U—|::1|+|a:3|(z1ay1y1)

X K _|z, 92" Y5 23 {23, Y393 } Kjay-
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We write r(z1) = > 211 ® 212 and r(z3) = 3. 3; ® T32; then

= —|zay |-
T(:L‘s) = E v |z31] |x32|$32®$31.

We have

(xlvy;ylll) = (r(z1), yi ® ylll
= Z(-’Eu,yi)(l’lz,yi’)

and

{z3,y3y5} = {F(z3),y3 ® y3}
= vty i Has, v}

Introducing this in the previous expression for P, we see that

P =

E (_1) tr |Jzi1|+ tr |zi2|— tr |za1|— tr |a:32I,U—lygl-|y1’|—|y§|~ly'{|—|y:’,|v|y;’|—|a:31|~|a:32|

x v—|3711|—|1‘12|+|131I+|132|(x11’yi)(wmy y;,)
(c)

I 1 — - _+ " I\ I
X K_|gy)-le1al¥2” Y2~ 2 {731, Y3 HZ32, Y3} Klogy | 432

By the coassociativity of r, the sum )z ® 221 ® T22 ® Z23 ® 73 in (b) is
equal to the sum ) 13 ® 12 ® T2 ® 31 ® Z32 in (c). Hence in (b) we may
replace x1, T21, Z22, T23, T3 by Z11,Z12, T2, 231, T32, respectively. Moreover,
we may assume both in the sum in (b) and in (c) that |zq1| = |y}, |z12| =
[y) ], [z31] = |y, |zs2] = |ys]- We see that (b) is equal to (c).

We are thus reduced to proving (a) in the case where y is either 1 (when
(a) is trivial) or 6; (when (a) follows from 3.1.6). The proposition is proved.

Applying w to the identity 3.1.7(a), we obtain the following result.
Corollary 3.1.8. With notations as in Proposition 3.1.7, we have
z"yt

= Z(_l) tr |z |- tr Ixslv—|11|+|13|(xl9yl)kkz:lly;z'z_{x% y3}k—|z3|'
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Corollary 3.1.9. For any N,M > 0 we have in U or'U,

Ei(N)Fi(M)
t 2t N—-M-s+1 —2t+N+M+s—-1 -
= 3= gy [ e R T o,
v — v
t>0 i i
Fi(N)E-(M)
o 2A—N-M-s+1f —2t+N+M+s—1 7
= eI g,
v -
t>0 1 1

EMFM = FMEMN i 4 ;.

This can be deduced from 3.1.7, 3.1.8, or alternatively, it can be proved
directly by induction.

3.1.10. Coassociativity. The two compositions

A®1

UL UueU- 2 U®U®U USUeU28LUUeU

coincide. Indeed, both are algebra homomorphisms; hence it suffices to
check that they coincide on the algebra generators of U. But they both
take E;, F;, K, respectively to

E;®1®1+K,QE Q1+ K, 9K,;QE;,
F;eK ;@K _;+1Q0F,®K_;+1®1QF,
K,®K,®K,.

3.1.11. Counit. There is a unique algebra homomorphism, called counit,
e: U — Q(v) such that e(E;) = 0,e(F;) = 0,e(K,) = 1.

(The verification of the relations 3.1.1(a)—(d) is immediate; to verify the
relations 3.1.1(e) we use the fact that ZN'fy = 0.)

Both compositions

UAvugu-ls
UAU®U—°£‘9—1»U

are equal to the identity (by checking on generators).
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3.1.12. The involution ~. There is a unique homomorphism of Q-
algebras ~ : U — U such that

E;=E,F;=F;,K,=K_, and fz = fZ for all f € Q(v),z € U.

Indeed, it is easy to verify that ~ respects the relations 3.1.1(a)—(d) of U.
To check that it respects the relations 3.1.1(e), it suffices to use the fact that
the maps f — U given by = +— (Z)* (resp. z + (Z)~) are homomorphisms
of Q-algebras. By a verification on generators, we see that ~ : U — U has
square 1.

3.1.13. The algebra 4U. Let 4U* be the A-subalgebra of U* corre-
sponding to 4f C f under the isomorphism f — U* given by z +— z*. In
the case where the root datum is simply connected, we define 4U to be the
A-subalgebra of U generated by the elements Ei(t), Fi(t) for various ¢ € I
and t € Z and by the elements K, for 4 € Y. This algebra will not be used
in the sequel.

3.2. TRIANGULAR DECOMPOSITION FOR 'U AND U

3.2.1. If M’, M are two '"U-modules, then M’ ® M is naturally a ‘U ® 'U-
module; hence by restriction to ‘U under A, it is a ‘U-module.

Lemma 3.2.2. Let A € X. There is a unique 'U-module structure on the
Q(v)-vector space 'f such that for any homogeneous z € 'f, any p € Y and
any i € I we have K, (z) = v+ ~1#0 2 Fi(2) = 6,2 and E;(1) = 0.

The uniqueness is immediate. To prove existence, we define F; : 'f —

IOV (B A=zl +i") . . .
'f by Ej(z) = —uirs(@te ir(2) A straightforward verification,
y Vi—Y;

using the definition of r;, ;7, shows that we have a 'U-module structure on
f.

3.2.3. We denote this 'U-module by M. Similarly, to an element \ € X,
we associate a unique "U-module structure on ’f such that for any homo-
geneous z € 'f, any u € Y and any ¢ € I, we have K,,(2) = p{m=X+zl) 5
Ei(z) = 6;z and F;(1) = 0. We denote this ‘U-module by M’. We form
the "U-module M’ ® M; we denote the unit element of 'f = M by 1 and
that of 'f = M’ by 1’. Thus, we have a canonical element 1’®1 € M’ ® M.

Proposition 3.2.4. Let U° be the associative Q(v)-algebra with 1 defined
by the generators K, (pn € Y) and the relations 3.1.1(a). (This is the
group algebra of Y over Q(v).)



26 3. The Algebra U

(a) The Q(v)-linear map 'f ® U @ 'f — 'U given by u ® K, @ w >
m
u~ K, w* is an isomorphism.
e v)-linear map 'f ® ®"tT — gwen by u ® Q@ w —
b) The Q(v)-l TU®'f — 'U gi b K,
utK,w™ is an isomorphism.

Note that (b) follows from (a) using the involution w. We prove (a).
As a Q(v)-vector space, ‘U is spanned by words in E;, F;, K,,. By using
repeatedly the relations 3.1.1(b),(c),(d) we see that any word in E;, F;, K,
is a linear combination of words in which all F;’s precede all K,’s and all
K,’s precede all E;’s. This shows that the map in (a) is surjective.

We now prove injectivity. Let A\, N’ € X; we attach to them a "U-module
M' @ M ='f ®'f with a distinguished vector 1’ ® 1 as in 3.2.3. We define
a Q(v)-linear map ¢:'U - M’ ® M by ¢(u) =u(l' ® 1).

Let B be a Q(v)-basis of 'f consisting of homogeneous elements and
containing 1. Assume that in "U we have arelation }-,, , ; cv b0’ Kbt =
0 where &', 1, b run over B,Y, B respectively, and ¢y .5 € Q(v) are zero
except for finitely many indices. We must prove that the coefficients cy ,, 5
are all zero.

Assume that this is not so. Then we may consider the largest integer N
such that there exist b, 1, b with ¢y, 5 # 0 and tr [¥/| = N.

We have ¢(3_; , b ,u,60' " K,b%) = 0. In other words, we have

(c) 3 v upAW KLY ®1) =0.
) b b

Now

Ab*) =) (b b1, ba)b} Kjpy ® b5,
b1,b2
AWBT) =D o' (b, b, by)b ™ @ K_juy by
b} ,bs
(equalities in "U®'U) where by, b, b}, b} are in B and g(b, b1, b2), ¢'(V', b}, b%)
are certain elements of Q(v). Hence (c) can be rewritten as follows:
(d)
Z Cbr,“,bg(b, b1, bg)gl(bl, b’l, blz)b’l_K”b'l"Kwﬂ(ll) ® K_|b'l|b'2_K,‘b;(l) =0.

We have b} (1) = 0 unless b, = 1; the corresponding g(b,b;,1) is zero
unless b; = b in which case it is 1. Hence (d) simplifies to

© D cwusg (b, 0p)0 Kbt (1) ® Koy by~ Ku(1) = 0.
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We may assume that the sum is restricted to those indices for which ¢y, #
0,9’ (v, b},b5) #0.

We identify M ='f in such a way that  ~(1) corresponds to b’ for any
b’ € B. The equation (e) becomes

(f) D corupg’ (8, 05, Bp)u AN DY ~ bt (1) @ K _jyy by = 0

(equality in M’ ® 'f) where the sum is restricted as above. We project the
equation (f) onto the summand M’ ® 'f,, in M’ ® 'f where tr v/ = N.
Thus we may further restrict the sum in (f) to those ¥, pu,b, b}, b, such
that |b5| = v/ and we still get zero. For such an index we have |b5| < |V/|
(coefficient by coefficient); hence N = tr |[b3] < tr |b/|. By the definition
of N, we have tr [b/| < N. It follows that |b5| = |b'|. This implies that
by = 1,0, = b and ¢'(¥',1,b’) = 1. Hence we obtain the equation

> e pp AN g b = 0

in 'f ® 'f. Now the elements b ® b’ form a basis of 'f ® 'f; hence the last
equation implies: >u co s #A=AHD = 0 for all b, b’ such that tr [b/| =
N.) Since in the last equation A— )’ is an arbitrary element of X, we deduce
that ¢y, p = O for all b/, u, b such that tr |b'| = N. This contradicts the
definition of N. The proposition is proved.

Corollafy 3.2.5. (a) The Q(v)-linear map f @ U’ ® f — U given by
u® K, ®w— u” K,wt is an isomorphism.

(b) The Q(v)-linear map f@U°Rf — U given by u®K,Qw — vt K, w™
is an isomorphism.

Again, (b) follows from (a) using the involution w. We prove (a). Let
J4+ (resp. J_) be the two-sided ideal of ‘U generated by the subset Z+ =
{z*|z € I} (resp. by the subset T~ = {z~ |z € T}). From the definitions,
we see that U is the quotient algebra of ‘U by the two-sided ideal J, + J_.
From 3.1.7, we have

(c) (UH)YI- cZ-U°('U*) and

(d) I*+('U~) c ('U~)U°T+.

Using 'U = ('UT)U°('U~) = ('U7)U°("U") and the fact that Z~ is a
two-sided ideal in “U~, we see that (c) implies

'UZ-('U) = (UHU('UT)I~('UT)U°('UY) c (UT)Z-U°('UH)
c I-U°('Ut).
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Thus, J_ = Z-U°(U"). Similarly, we see that (d) implies
'UTH('U) = (U7)U('UHTH('UutH)U°('U~) c (UT)UTH('U)
c (UT)u°z+.
Thus, J4 = ('U~)U°Z*. Using 3.2.4, we may therefore identify

U=I-®U0®'U++'U-®U0®I+

=(U7/I7)® U’ (U*/TH)

and (a) follows. The corollary is proved.

Corollary 3.2.6. The map f — Ut (z — z%) is an isomorphism; the
map £ — U~ (z — z7) is an isomorphism; the algebra homomorphism
U° — U given by K, — K, for all i is an imbedding.

For any v € N[I] we shall denote by U} (resp. U;) the image of f,
under the isomorphism f — U™t (resp. f — U~) considered above.

Proposition 3.2.7. Let x € f, where v € N[I] is different from 0.

(a) If z¥F, = Fizt for alli € I, then z = 0.

(b) Ifz~E; = E;x~ forallie I, thenz =0.

If z is as in (a) then, using 3.1.6, we see that, for some integer n, we
have r;(z)*K; — v*(;r(z)*)K_; = 0 in U. Since K; and K_; are linearly
independent in U (see 3.2.6), we deduce, using triangular decomposition
(3.2:5) that r;(z) = ;r(z) = 0. This holds for any 4; hence by 1.2.15, we
have x = 0. This proves (a). The proof of (b) is entirely similar.

3.3. ANTIPODE

Lemma 3.3.1. Forv e N[I] we setc(v)=v -v/2 -3, vi-i/2 € Z.
(a) There is a unique homomorphism of Q(v)-algebras S : U — U°PP
such that

S(E;) = -K_;E;, S(F))=-FK;, S(Ku)=K_,

foralliel,ueY.

(b) For any z € f,, we have S(z*) = (=1) " “v*MWK_,o(z)* and
S(z7) = (=1) " Yo=Mg(z)"K,,.

(c) There is a unique homomorphism of Q(v)-algebras S’ : U — U°PP
such that

S'(E:)=-EK_;, S'(F)=-KF, S(K,=K_,
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foralliel,ueY.

(d) For any z € f,, we have S'(z~) = (-1) " “v*M K, o(x)" and
S’(:L‘+) ( 1) tr v —c(u)o.(x)+f{_y

(e) We have SS'=85'S =

(f) If z € £,, then S(x+) = v fS(zt) and S(z~) = v/ S (z7)
where f(v) =Y, v;i-i.

It is easy to verify that S, S’ respect the relations 3.1.1(a)—(d) of U. To
check that they respect the relations 3.1.1(e), it suffices to check that the
maps f — U°P given by z — S(z*) or £ — S(z~) and those given by
z — S'(z%) or z — S’(z) are algebra homomorphisms; this is checked
using the fact that o : f — f°P? is an algebra homomorphism. This proves
(a)—(d). The assertion (e) is proved by verification on generators. Finally,

(f) follows from (b),(d).

3.3.2. The map S (resp. S’) is called the antipode (resp. the skew-antipode)
of U.

3.3.3. Note that
S(EM) = (~1)ru" K BM and S(FM) = ()" MR K,
S'(EM) = (1) " EM Ky and §(F™) = (1) " Ky F,

3.3.4. S,S’ are related to A as follows. Let !A : U —» U ® U be the
composition U AvU ® U — U ® U, where the last map is the linear map
given by z ® y — y ® . Then

(S®5)(Ax)) ='A(S(x)), (5'®S)(Ax)) ="A(S(x)).
Each of the compositions

Uduguugumu Uvlueu3Bugu U

S'®1

ULugu®,ugu™u, UL uguS® ugu™uUu

(with m being the multiplication) is equal to the map = — e(x)1.

The identity m(1 ® S)A(z) = e(z)1 is checked as follows. First we note
that if this holds for z’ and z”, then it also holds for ’z”. Hence it suffices
to check it in the case where z is one of the algebra generators and that is
immediate. The other identities are checked in the same way.

Finally, we have
eS=eS =e.
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We see that the algebra U with the additional structure given by the
comultiplication A, the co-unit e, the antipode S and the skew-antipode
S’, is a Hopf algebra.

3.4. THE CATEGORY C

3.4.1. We define a category C as follows. An object of C is a U-module
M with a given direct sum decomposition M = @®rexM* (as a Q(v)-
vector space) such that, for any p € Y, € X and m € M*, we have
K,m = v N . (The subspaces M* are called the weight spaces of M;
they are uniquely determined by the U-module structure.) A morphism
in C is a U-linear map; it automatically respects the decompositions into
weight spaces.

For example, M = Q(v) may be regarded as an object of C with um =
e(u)m for u € U and m € M (e is the co-unit); we have M = MO.

3.4.2. Let M € C and let m € M*. The following formulas follow from
3.1.9.
(8) EOF®m = FOE®m if i # j;
(b) Ei(a) F,.(")m =50 [a—b-lt-(i,/\)]i Fi(b—t) Ei(a—t)m;
b - —{ a— b—
(c) Fi( )Ef“)m = Y0 [ a+bt (z,x)]iEi( t)Fi( .

3.4.3. Tensor product of U-modules. If M/, M"” € C, the ten-
sor product M’ ® M” (over Q(v)) is naturally a U ® U-module with
(W ®u”)(m' ® m") = u'm’ ® u’'m”. We restrict it to a U-module via
the algebra homomorphism A : U —» U®U. The resulting U-module with
the weight space decomposition (M’ @ M")* = @y areaM™ @ M"Y is
naturally an object of C. If m' € M’/ m” € M"*" i € I, we have

E;(m'@m")=Em' @om" + vi(i"\')m' ® E;m”, and
E(m, ® m//) =m ®Fim" + vi—-(i,)‘u)Fim, ®m".

More generally,

EOm emf)= Y o @ 6N g g ey
) T 1 1 ’
al+all=a
F'(a) (ml ® m//) _ Z vchz'a"—a'(i,,\")F‘(a’)m/ ® F'(a")m//
1 1 1 1 *
a’+a'=a
3.4.4. To any object M of C we associate a new object “M of C as fol-
lows. “M has the same underlying Q(v)-vector space as M. By definition,
(“M)* = M~ for any A € X. For any u € U, the operator u on YM
coincides with the operator w(u) on M. (See 3.1.3.)
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3.4.5. Verma modules. Let A € X. We show that there is a
unique U-module structure on the Q(v)-vector space f such that, for
any homogeneous y € f, any u € Y and any ¢ € I, we have K,(y) =
viA=ly Fi(y) = 6,y, and E;(1) = 0.

The uniqueness is immediate. We now prove existence. We consider the
left ideal J =3, UE; + 3., U(K, — v{#A)) of U. Then U/J is naturally
a U-module. Using triangular decomposition, we see easily that the Q(v)-
linear map f — U/J given by £ — z~ + J is an isomorphism. Via this
isomorphism, f becomes a U-module; it is easy to see that this has the
required properties.

The module constructed above is called a Verma module and is denoted
M,. It is an object of C: we have M/{\' = @,eNf;=2r—vfv; note that
in the last direct sum there may be more than one summand since the
natural map N[I] — X is not necessarily injective unless the root datum
is X-regular.

3.4.6. Let M be an object of C and let m € M?* be a vector such that
E;n = 0 for all i. We show that there is a unique morphism ¢ : My — M
(in C) such that (1) = m.

Let t : My, — M be the map defined by t(z~1) = z~m for all z € f.
Then t is automatically compatible with the decomposition into weight
spaces. For any z € f, we have {(E{®z"1) = Ei(")t(a:_l). We argue by
inductiont on tr v. In the case where v = 0 we use our assumption on m.
The induction step is obtained using the commutation formulas between
E,ga), Fi(b) in 3.4.2 which hold both on M) and M. Thus, ¢ is a morphism
as desired. The uniqueness of t is obvious.

3.4.7. The category C". Let C* be the full subcategory of C whose
objects are the M with the following property: for any m € M there exists
a number N > 0 such that ztm = 0 for all z € f, with tr v > N. Note
that the Verma module M), belongs to C**. The same holds for any quotient
module of M.

3.5. INTEGRABLE OBJECTS OF C

3.5.1. An object M € C is said to be integrable if for any m € M and any
i € I, there exists ng > 1 such that Ei(")m = Fi(")m =0 for all n > ny.

Let C' be the full subcategory of C whose objects are the integrable
U-modules.
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3.5.2. From the formulas in 3.4.3, we see that
(a) if M’', M" are integrable, then M’ ® M" is integrable.
Clearly,
(b) if M is integrable, then “M is integrable.

Lemma 3.5.3. Given (a;) € N’ (b;) € N! and A\ € X, let M be the
quotient of U by the left ideal generated by the elements Fi""“, Ef""“ with
i€l and (K, — v¥*N) with u € Y. Then M is an integrable U-module.

Let i # j in I and let & = —(4,j’). We show that for any N > a+ 1 we
have

(a') F'tN‘F} € Zp+p’=N;N—aSp’SN Q(U)EPFJFLPI

For N = a + 1, this follows from the quantum Serre relation 1.4.3.
Assume that (a) is known for some N > a + 1; we prove it for N + 1.

By our hypothesis, we have

FNY'F e 3 Q(v)FF*'FyFY'.
p+p'=N;N—a<p’<N
All terms in this sum are of the required type except possibly for the term
. corresponding to p’ = N — a. For that term we write (using again the
quantum Serre relation):
Ipia+lEiniN—a € Z Q(v)Fvirl;ij}r'+N—a
r+r'=a+1;1<r'<a+1

which is of the required type. Thus (a) is proved.

‘Next we note that for any N > 0 we have

(b) FNE; € E;FN + Q)FN ™! and FNK,, = vN ) K, FN.

We now consider a fixed element z € U of form z,z; - - - x,, where each
factor z, is either E; or F; or K,. We consider the product FNz =
FiN T1T2:+ Ty. We can move FiN across Ty, T2,... successively (from left
to right) using (a),(b) and we see that we finally get a linear combination
of terms of the form yF,-NI with N' > N —cwhereye Uandc>0is a
constant depending on z,x3 - - - Z,, but not on N. Hence, if N > a; +1+c¢,
we have that F}V acts as zero on the image of x in M. Thus F; acts locally
nilpotently on M. In an entirely similar way, we see that E; acts locally
nilpotently on M. The lemma is proved.

Proposition 3.5.4. Let u € U be an element such that u acts as zero on
any integrable U-module. Then u = 0.

By assumption, u belongs to the left ideal of the previous lemma for all
choices of (a;), (b;), A. But the intersection of all these left ideals is zero, as
one sees using the triangular decomposition. Thus, u = 0.
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3.5.5. In the remainder of this section, the root datum is assumed to be
Y-regular. We define X+ = {\ € X|(i,A\) € N Vi}. (This definition
could be given for a not necessarily Y-regular root datum, but it would be
useless.) We say that A\ € X is dominant if A € X*.

Proposition 3.5.6. Let A € X+,

(a) Let T be the left ideal of £ generated by the elements 9§i”\)+1 for
various i € I. Then T is a subobject of the Verma module M € C.

(b) Let Ax = M/T be the quotient object. Then Ay is integrable.

Clearly, T is the sum of its intersections with the weight spaces of My;
moreover, it is clearly stable under the operators F; : My, — M,. We
now show that it is stable under the operators F; : M)y — M,. Using the
commutation relation between E; and Fj, we see that it suffices to show
that EiFj(U"\)“)l = 0in My, for any j € I. If i # j, this is clear. If i = j,
we have, by 3.4.2:

1 0 i - - i
EFGN ] 2 3 H FNH1-050-01 _ g+ g _

t>0 ‘

This proves (a). We now prove (b). From the definition, we see that
A, is naturally a quotient of the U-module M defined in 3.5.3, with b; =
0,a; = (i, A), hence it is integrable by 3.5.3. The proposition is proved.

3.5.7. 'We will denote the image of 1 € f in Ay by 7, or simply by 7.

We now consider the U-module “A,. As a vector space, we have “Ay =
Ax. The vector 7y € Ay, regarded as a vector of “A, will be denoted by ¢
or {_». By 3.5.2(b), “A, is integrable.

Proposition 3.5.8. Let M be an object of C' and let m € M?> be a non-
zero vector such that E;m = 0 for alli. Then A € X and there is a unique
morphism (in C') t' : Ax — M which carries gy € Ay to m.

The uniqueness of ¢’ is clear. To prove existence, we consider the mor-
phism ¢t : My — M such that {(1) = m (see 3.4.6). It remains to show
that

(a) A€ X* and Fi(i”\Hlm =0 for all 1.

(This will imply that ¢ factors through A,.) Let i € I. We set a = (3, ).
We can find an integer b > 1 such that Fi(b_l)m # O,F,.(b)m = 0. Using
3.4.2, we have 0 = E,-Fi(b)m =[1-b+ a],-Fi(b“l)m; hence [1 —b+a]; =0
and a =b—1. Thus a > 0 and Fz-(a“)m = 0. The proposition is proved.



CHAPTER 4

The Quasi-R-Matrix

4.1. THE ELEMENT ©

4.1.1. Completions. Let (U ® UY be the completion of the vector space
U ® U with respect to the descending sequence of vector spaces

My =(UTUY( Y U;)eU+Ue(UU( S U}))

tr v>2N tr v >N

for N =1,2,.... Note that each Hy is a left ideal in U ® U; moreover, for
any u € U® U, we can find r > 0 such that Hy,,u C Hy for all N > 0.
It follows that the Q(v)-algebra structure on U ® U extends by continuity
., to a Q(v)-algebra structure on (U ® U). We have an obvious imbedding of
algebras U® U — (U ® U).

Let ~ : U®U — U®U be the Q-algebra automorphism given by ~® ~.
This extends by continuity to a Q-algebra automorphism ~ : (U ® Uy —
(U ® UY (with square 1).

Let A : U — U ® U be the Q(v)-algebra homomorphism given by
A(z) = A(z) for all z € U. We have in general A # A where A is as in
Lemma 3.1.4.

Theorem 4.1.2. (a) There is a unique family of elements 6, € U, @ U}
(with v € N[I]) such that 8o =1®1 and © = 3 6, € (U ® UY satisfies
A(u)® = BA(u) for allu € U (identity in (U @ UY).

(b) Let B be a Q(v)-basis of f such that B, = BNf, is a basis of f, for
any v. Let {b*|b € B,} be the basis of f, dual to B, under (,). We have

8, =(-1)""v, ) b~ @b+ eU; ®U;.
beB,

We consider an element © € (U ® UY of the form 8 = ) 6, where
e, = Eb,b'eB, Cbl,bb’~ ® b** and Cy b € Q(v)

The set of u € U such that A(u)© = ©A(u) is clearly a subalgebra of
U containing all K,,. Hence, in order for this set to be equal to U, it is
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necessary and sufficient that it contains F;, F; for all ¢, or in other words,
that

Z Chy b Eib1~ ® b5 + Z Cby b4 Kib3 ® Eib}t

b1,b2€B, b3,ba€B, _;
= § : cbx,bzbl_Ei ® b;+ + Z cbs,bab:;K—i ® bZ+Ei7
b1,b2€B, b3,b4a€B, _;

and

Z Ch o017 ® Fib;+ + Z Cba,b“Fibg ® I.{_.ibz"'

by,b2€8B, b3,b4€B, _;
= E Chy 01" @ D3V F; + Z Chy,bab3 Fi ® b3 T K
by,b2€B, b3,b4€B, _;

for any v,4, with the convention that B,_; is empty, if ; = 0. By the
non-degeneracy of (, ), these identitites are equivalent to the identities

> o (b3, 2)(Eiby ™ — by Ey)
blybzeBu

+ D cbyba((6ib], 2)Kiby — (b36:,2)b3 K_;) =0,
b3)b463u—i

and

Z Cbl,bz(bl,z)(}?ib;-}- - b;+F1)
b1,b2€B,

+ Z Cha,ba ((Bibs, 2) K_;ib3+ — (b3;, 2)b3 T K;) =0
b3,ba€B, _;

for any v,i and z € f,.

We substitute (6;b3, 2) = (6;,0;)(b}, i(2)) and (b30;, 2) = (6;,0;) (b3, r:(2))
in the first equation, and we make a similar substitution in the second equa-
tion; using 3.1.6, we see that our conditions turn into the two conditions

— ) eb b (83, 2)071(6:,0:)(ra(b1) " K s — Ki(ir(b1) 7))
blbeEBv

+ Z Cby,by (01:’ o‘l)((bZa ir(z))i{ib:; - (bZa Ti(z))bgk—i) = 0,
b3,ba€B, _;
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and
— ) Chuba(br, 2)071 (05, 0:)(ri(be) T Ky — K_i(ir(b2) )
by ,b2€B,,
+ ) Chpa(0:,0:)((bs, im(2)) K_ibl T — (bs, ri(2))b3V Ki) = 0,
b3,ba€B,

or equivalently, into the four conditions

(C) Z Cby,b; (b;’ z)vi_lri(bl) + Z Cbs by (b2> Ti (z))b3 =0,

blyb2€Bu b3,b4EBy_,;
(d) D s (5,20 (b)) + D b (B, i7(2))bs = 0,
by,b2€B, b3,bs€B, _;
(e) D (01,20 Nir(be) + D cugb, (b3, a(2))b] =0,
b1,b2€B, b3,ba€B, _;
() Do bbb, v b)) + Y cayun, (b3, i(2))b) = 0
b ,b2€B, ba,by€B, _;

for any v, and z € f,. These equations are clearly satisfied by taking for
all v, ey p = (—1) " Y, 6y for b,b’ € B,. This proves the existence part
of (a) and (b). To prove the uniqueness in (a), it is enough to show that,
given a solution (cy ) of the system of equations (c)—(f) such that c,p =0
for the unique element b € By, we necessarily have ¢y = 0 for all v and
all ¥',b € B,. We argue by induction on tr v > 0. In the case where
tr v = 0, there is nothing to prove. Assume now that tr v > 0. Using
the induction hypothesis, the second sum in equation (c) is zero. Hence
this equation becomes r;(3_, ,.cp. €5, b, (b3, 2)b1) = 0. Since this holds for
all i € I, we see from 1.2.15 that }-, , g cb,b,(b3,2)b1 = 0. (We have
used that v # 0.) Since b; are linearly independent, we can deduce that
2 bseB, Cbyba(b3,2) = 0 for any by € B, and any z € f,. Taking z = by, we
see that cp, 5, = 0 for any by, b, € B,. This completes the proof.

Corollary 4.1.3. We have 68 = 80 =1® 1 (equality in (U ® UY).

From the definition of ©, we see that O is an invertible element of the
ring (UQ® UY. Let &' =071,

From the identity A(@)8 = ©A(a), we deduce that ©'A(d) = A(7)®’
for all u € U. Applying ~, it follows that 6’A(u) = A(u)®’ for all u € U.
It is clear that 8’ = 6/, where 8/, € U; ® U} and 6, = 1® 1. Thus,
O’ satisfies the defining properties of ©. By the uniqueness of 6, we have
© = &'. The corollary follows.
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4.1.4. The element O defined in 4.1.2(a) is called the quasi-R-matriz. For
example, in the case where ] = {i} and X =Y =Z withi =1 € Y, =
2 € X, we have

6 = (-1)"y; "V n}, K™ @ EM,
n

with the notation {n}; = [],_,(v? — v;*) for n > 0.
4.2. SOME IDENTITIES FOR O

4.2.1. We now study the image of the elements 6, under the homo-
morphisms A ® 1,1 A : U® U - U® U® U. For an element
P =) z®y e UQ® U we shall denote the elements

Yrey®l, Y1®z0y, Y. z®1Qy of U® U® U by P12 p23 p13
Proposition 4.2.2. (a) (A®1)(8,)=3,.,,., 0B (10 K_,» ®1)0L3.
(b) (1®A)6,) =Ty, O (1O Kur ®1)6}1.
. Let B be as in 4.1.2(b). For any z € f, we have

r(z) = Zf(xy b1,b2)b1 ® by
and
F(z) = f'(x,b3,bs)bs ® ba
with by, b2,b3,b4 € B and f(ilt,bl,b2),f’(l‘, b3,b4) € Q(’U) Then (a), (b)
are equivalent to
f’(b, b3, b4)b:; ® R-—|b3|bz ® bt
b,b3,ba;lbs]+|ba|=|bl=v
= D b @b K pyobithy?

b3,ba;|b3|+|baj=v

and

> 5,51, ba)b™ ® b} Koy © b3
b,b1,b2;|by | +Ib2|=|b]=v
= Y b b Ky, @b,
b1,b2;|by|+|b2|=v

It is therefore enough to prove the following identities:
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(€) Db jpj=s (b, b3,b4)b* = v~ 1bslIbalpps for all bs, by such that lbs] +
|bs] = v and

(d) 3 p.jpj=s F(5*,b1,b2)b = b1b3 for all ba, by such that |by] + |by| = v.
By 1.2.11(a), we have f'(b,bs,bs) = v~I%llbal f(b by, bs); hence (c) is
equivalent to
() Db p1=v f (b, ba, b3)b* = bib3 for all by, by such that |bs| + |bg| = v.

Now (c’) is equivalent to (r(b),b; ® b%) = (b, b5b3) and (d) is equivalent
to (r(b*), b} ® b3) = (b}b3,b*); these equalities follow from the definition of
(,)- The proposition is proved.

Proposition 4.2.3. (A®1)(8,)=%,.,,._, 0318 K, ®1)623.

From 68 = 1 we deduce that

(a) 2u1+u2=u 6,,1 é,,2 = 5,,’01 ® 1.
Applying (A ® 1) to both sides of this identity gives

> (A®1)8,,(A®1)8,,=6,010181.

v tvo=v

We multiply both sides on the left by 3, 4=y BB1®K_, ®1)823,
we substitute (A®1)(8,,) = EU I 923(1 QK_ vy ®1)91,,, (see 4.2.2)
and sum over v, v3 subject to v + V3 = vy, We obtaln for any vy:

> 1K _, ® 1)87e%(1eK_,y®1)8(A®1)8,,
u{+u{’+ug+u’+u”—u4
= Z e (]. ® K._.y' ® 1)9,,,,

vi4vi=vy

Using again (a) (twice), this becomes

(A1), = > BP1eK_,1)6%.

Vit =y,

We apply ~ ® ~ ® ~ to both sides and obtain

(A ® 1)9,,4 = Z (l ® K ® 1)9,,//

vi4v' =,

The proposition is proved.
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Proposition 4.2.4. For any v we have
(a') Zu’+u”=u(A ® 1)(911')93/’2' = Zu'+u”=u(1 ® A)(evr)eﬁz?,

Using the defining property of © (see 4.1.2(a)), we can write the left
hand side of (a) as Y,/ ,», O (A ® 1)(6,/). By 4.2.3, this equals
>ty 0L OB(1 ® K, ® 1)6%. This is equal to the right hand
side of (a), by 4.2.2(b).

4.2.5. Specializing the identities A(u)© = ©A(u), we deduce

(a) (E:®1)8, + (Ki®E;)B,_i =6,(E;®1) +6,_i(K_; ® E)),

(b)) (1®F)6,+(FeK_)6,.i=06,(18F)+6,_i(F.®K;)

(identities in U ® U, with the convention that ©,_; = 0 if v; = 0).
From this we deduce that, with the notation 8¢, = 3, ¢, ,<, v, We
have for all p > 0
(E:®1+ Ki® E;)O<p — O<,(E:i ® 1 + K_i ® Ey)
(c) = 5 (Ki®E)®, - )Y 6,(K-i®E),

v: tr v=p v: tr v=p

(1 F, + F; ®K_i)65p -0, (10 F; + F; ®I~(i)
(d) = Z (F;® K_;)8, — Z 8. (F; ® K).

v: tr v=p v: tr v=p



CHAPTER 5

The Symmetries T;.,T;.
of an Integrable U-Module

5.1. THE CATEGORY C

5.1.1. In this chapter we fix 7 € I.

Let C; be the category whose objects are Z-graded Q(v)-vector spaces
M = @®nczM™ provided with two locally nilpotent Q(v)-linear maps
E;, F; : M — M such that

(a) E;(M™) ¢ M™*? and F;(M™) c M™2 for all n;

(b) E;F; — F;E; : M™ — M™ is multiplication by [n]; for all n;
the morphisms in the category are Q(v)-linear maps preserving the Z-
grading and commuting with E;, F;.

. This is the same as the category C’ of integrable U-modules in the case

where I = {i} and X =Y =Z withi =1 € Y,7 = 2 € X. On the other
hand, in the general case, any object M in C’ may be regarded, for any i,
as an object of C; with the Z-grading M™ = @xex;i,n)=nM*. (We forget
the action of Ej, F; for j # i.)

For M € C, and p € Z, the operators E) F{P) : M — M are given by
E?/p), F?/[p]} if p > 0, and by 0 if p < 0.

5.1.2. For M € C], let ¢c: M — M be the Q(v)-linear map given by

n—1 —n+1 n+1 —-n—1

v, + v, -2 v, 7+ -2
c(z) = E;F;(z) + = t r=F,FE;(z)+ =2 L T
() @) (v; —v7h)2 (=) (v; — v 1)2

for z € M™. 1t is easy to check that c is a morphism in C..

n+1l —n-1 n—1 —n+1
. -2 ’ L -2
Z, w == =
For n € Z, we set s, T and s;, T2

Proposition 5.1.3. Let n € Z and m € N.

(a) The subspace M™(m) = {z € M"|Ei(m):r = 0} is c-stable and c
satisfies the identity (c — sp)(c — Spt2) -+ - (€ — Sny2m) = 0 on M™(m).

(b) The subspace M™m] = {z € M"|Fi(m):z: = 0} is c-stable and c
satisfies the identity (c — s;,)(c — sj,_3) - (¢ — $}_om) = 0 on M™[m)].
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(c) ¢: M™ — M™ is a locally finite, semisimple linear map.

(d) If n > 0, the eigenvalues of ¢ : M™ — M™ are contained in
{3n, Sn+2, Sn+4, -+ }; if n < 0, the eigenvalues of c : M™ — M™ are con-
tained in {S—_n,S—n+2,S—n+t4,--- }-

Since ¢ commutes with E;, it leaves M™(m) stable. We prove (a) by
induction on m. Assume first that m = 0. If z € M™(0), then by definition,
(c—sn)x = 0. Assume now that m > 0 and that the result is already known
for m — 1. If z € M™(m), then E;x € M™*2(m — 1). By the induction
hypothesis, we have (¢ — sp42)(c — 8p44) -+ (¢ — Spy2m)Eiz = 0. Since
cE; = E;c, it follows that E;(c — sn4+2)(c — Sp44) - (¢ — Spy2m)z = 0.
Applying F;, we get F;E;(c—3n+2)(c—Sn+4) - - - (c—8Sn+2m)z = 0. Hence, by
the definition of ¢, we have (c—s,)(¢c—8n42)(c—Sn+t4) - - - (¢— Spt2m)z = 0.
This proves (a). The proof of (b) is entirely similar.

We prove (c). Assume first that n > 0. Since sg, 31, 82, ... are distinct
elements of Q(v), we see from (a) that ¢ : M™*(m) — M™(m) is locally
finite, semisimple (note that M™ = Uy, >oM™(m)).

Assume next that n < 0. Since sp,s”,,s",,... are distinct elements of
Q{v), we see from (b) that ¢ : M™[m] — M™[m] is locally finite, semisimple.
It follows that ¢ : M™ — M™ is locally finite, semisimple (note that M™ =
Um>0M™[m]). This proves (c). Now (d) follows from the earlier points and
the identity s/, = s_,. The proposition is proved.

.5.1.4.- By taking the eigenspaces of ¢ : M — M we obtain a canonical
direct sum decomposition of M (as an object in C]) into subobjects with
the property that c acts on each subobject as scalar multiplication by s,
for some m € N.

Proposition 5.1.5. Let M € C] be such that ¢ = s, on M for some
m € N.

(a) If M™ #0, thenn € {-m,-m+2,-m+4,...,m}.

(b) If n and n + 2 belong to {—m,—m + 2,—m +4,...,m}, then both
F,E; : M™ — M™ and E;F; : M™% — M™*2 are given by multiplication by
1+ m/2 4+ n/2i[m/2 —n/2]; # 0. Hence E; : M™ — M™*2 and F; :
M™t2  M™ are isomorphisms.

(c) Let € M™ where n € {~m,~m +2,—m +4,...,m}. There are

unique elements z € M™™ and 2’ € M™ such that x = Fi(m/ /Dy =

Ei(m/2+n/2)z_

(d) In the setup of (c), we have Fi(1+m/2_"/2)z’ = Ei(_l+m/2+"/2)z and
(=14m/2-n/2) 1 _ p(l+m/2+n/2)
F; 2 = E; zZ.
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1

(d) In the setup of (c), we have F(T™/27/D)y1 = p(Z14m/240/2) 4y

F‘(—1+m/2—n/2) Ei(l+m/2+n/2)z.

L
T z =

(a) follows immediately from 5.1.3(d). If x € M™, we have F;E;(z) =
(c = 8a)x = (sm — sn)z; if y € M™*2, we have E;Fi(y) = (c — s,,,,)(y) =
(sm - 3:,.,.2)?/ = (sm - 3—n—2)y = (3m - sn)y- We have s, — s, =
(14m/2+n/2);[m/2 — n/2); and (b) follows.

Now (c),(d) clearly follow from (b).

Lemma 5.1.6. Let M € C; and let y € M™ — {0} be such that E;y = 0.
Then

(@) n >0 and F'y =0 and

(b) y ¢ EFFIM.

(a) is already contained in the proof of 3.5.8. We prove (b). By 5.1.4,
we may assume that M is as in 5.1.5. Assume that y = E{‘“y’ for some
Y’ € M. We may assume that y’ € M~"~2—{0}. By 5.1.5(b), we then have
that F**'EP*1y/ is a non-zero multiple of ¥/; in particular, FrMtly £0, a

. contradiction.

5.2. FIRST PROPERTIES OF T/

i,e?

!
T

5.2.1. We fix e = £1. Let M € C]. We define two Q(v)-linear maps
ﬂl,é, T,",'e : M — M (called symmetries) by

Tie()= Y. (12 FOEPFO,,

a,b,c;a—b+c=n

Ti/,/e (z) = Z (_l)bvf(—ac+b)Ei(a) Fi(b)Ei(C)z

a,b,ci—a+b—c=n

for z € M™; the integers a, b, ¢ are restricted as shown; although the sums
are infinite, for any given z, all but finitely many terms of either sum are
zZero.

Proposition 5.2.2. Let m > 0 and let j, h € [0,m] be such that j+h = m.
(8) Ifn € M™ is such that Eyn = 0, then T} (FO'n) = (=1)iofUM ) gy
(b) If€ € M~™ is such that Fi§ = 0, then T!",(EZ)¢) = (—1)7vf0"*D g®e¢,
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We prove (a). Assume that a — b+ ¢ =m — 2j. Using 3.4.2, we have

F@E® pO o)y, [C':J] F@E® ey

_E[Cﬂ] [ —C+h] F@ pleti-o go-0,

t>0

Now E®™"p = 0if b # t; thus

F@ E® FO pOy = [c + J] [b —C¢Hh] gl pleri-o,
i

c b ],
c+j]l [b—c+h] [h (h)
= Fn.
[ J ]1[ b l[a]i i

It remains to show that

e(—actt) [c+ 7] [a+37] [R i e(j+1)h
S o[t [ 7~
* c |;1 b J;lal; t

a,b,c>0;a—b+c=h—j

fot any j,h > 0.

The term corresponding to a,b,c is zero unless ¢ < h, b < a4+ j and
¢ < h, hence the sum is finite. We replace [“';j]i = [z“c] and [C“] by
(—l)c[_jc_l]i. The sum becomes

h

;‘_ h—j—a t.a(a+hj+j) h 1.2(~ac+c—hj-h) —j—1 a+j
Sy 1) 3o =) ).

a>0 t c=0

We replace the sum over ¢ by [" 1] and we obtain

_1\h—i—a,ela+hi+s) hl [a—1
2 LH h ]

a>0

If a > h, we have [Z]z = 0; if 1 < a < h, we have [“;l]i = 0; thus, if
a > 0, we have [ﬁ]t ";1]i = 0. Hence only a = 0 contributes to the sum,

which becomes
(—l)h-jvf(hj"'j) [_hl] — (—l)jvf(thrj),
i

as required. This proves (a). The proof of (b) is entirely similar (it can
also be reduced to (a)).
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Proposition 5.2.3. We have
(a) T T/ . =T" T.=1:M-> M.

i,eti,—e i,—e

(b) T}z = (=1)*vg*T{ x for all z € M*.

€
Let m,j,h,n be as in 5.2.2(a). Let ¢ = F(™75. We have, using
5.2.2(a),(b)

T Tie(FO) = T (175" FP)

= (1T (BDe)

— (_l)j'l)f(jh-'_j)(—l)j’l)i_e(jh-'-j)Ei(h){ — F‘i(j)n'

Since the vector space M is generated by vectors of the form Fi(j )17 as

above, we have T{'_.T;, = 1. The identity T} T}’_, = 1 is proved in a

iy—e i)e ,—e
similar way (or it can be deduced from the previous identity). This proves

(a).

To prove (b), we may assume that z = Fi(j I = Ei(h)f. We have T/ .« =
(—l)hvf(hj+h)E,i(j)€ and ﬂ,ew - (—l)jvf(jh+j)Fi(h)77 - (—l)j’l)f(jh+j)Ei(j)€.

- It remains to note that h = j + ¢.

Proposition 5.2.4. For any z € M*? we have
(8) —v{ I (Fi2) = BT!_(2);
(b) —v7*T}_ (Eiz) = FT]_ (2);
() 07 T} (Fez) = BT}, (2);
()~ DT (Biz) = BT (2);
() T)_ze M™%

(f) T ,ze M.

(e),(f) are clear from the definition. To prove (a),(b), we may assume
that z = Fi(’)'q = Ei(h)ﬁ where m, j, h,7 are as in 5.2.2(a) and ¢ = F(™y;
then h = 7 +t. We have

Ty o(2) = (~1)"v; UMM EDE = (1)t O EPy,

If j = m, then both sides of (a) are zero. So it suffices to prove (a)
assuming j < m and h > 0. We have

V_e(Fiz) = [ + TY_(FI ) = [j + 1,T7_ (B V)
— [J + l]i(—l)h—lU,i_e(h_l)(j+2)Ei(j+l)§,
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and ET]  (2) = (—l)hvi_e(th)[j + l]iEt-(j'H)E; (a) follows. If h = m,
then both sides of (b) are zero. So it suffices to prove (b) assuming h < m
and j > 0. We have

T _ (Eiz) = [h+ 1:TY_(BMTVE) = (1)W1 [R + 10, s PHVIEI- D¢
and F;(T}

D _e?) = (—l)hvi_e(jh+h) [h+ l]iFi-(h“)n; (b) follows. The proof of
(c),(d) is entirely similar; alternatively, we can deduce (c),(d) from (a),(b)
using 5.2.3.

5.2.5. If M is an object of C’ (an integrable U-module), then we can
regard it as an object of C; as in 5.1.1; hence the symmetry operators
T, Ti'. : M — M are well-defined. All the previous results will hold for
these operators.

Lemma 5.2.6. Let M be an integrable U-module and let z € M. Let

weEY andlet p/ = p— (u,iYe €Y. Then
(a') T;’,,—e(KM'Z) = K#n!:—e(z)r.
(b) T; (K 2) = KT} ().

“We fnéy assume that z € M*. Then, from the definition, 7/__z and

i,—e
T/ .z belong to M A= Hence K u acts on either of these two vectors
as multiplication by (u, A) — (4, A)(p,7') = (u — (i, )i, A) = (4, A). The

lemma follows.

'/Proposi;tion 5.2.7. Let M be as in the previous lemma. For any )\ € X,

i’/

the operator T]'_, : M — M defines an isomorphism of the \-weight space

i,—e
of M onto the s;(\)-weight space of M. The inverse of this isomorphism
is the restriction of T} ,.

This follows immediately from the previous lemma.
5.3. THE OPERATORS L}, LY

5.3.1. Let M, N be two objects of C;. By 3.4.3 and 3.5.2(a), the tensor
product M ® N is again an object of C; if € M,y € N*, the degree of
z®yist+ s and

E(z®y)=ExzQy+vz®Ey, F(z®y)=z’Fy+v°Fz®y.

We define linear maps L), L;: M@ N - M ® N by

1

LIz ®y) = ¥, (-1)"0; "2 (0}, FMz @ EMy,
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1,e!?

Liz®y) = X, o " 2 () FV2 @ EMy,
where {n}; is as in 4.1.4. Although the sums are infinite, any vector in
M ® N is annihilated by all but finitely many terms in the sum; hence the

operators are well defined. These maps are a special case of the operators
defined by ©,6 of 4.1, in the case I = {i}. (See 4.1.4.)

Lemma 5.3.2. We have L.L} = L/L, = 1.

This follows immediately from the identity 1.3.4(a); alternatively, it can
be deduced from 4.1.3.

Lemma 5.3.3. Forx € M,y € N°, we have
FL{(z®y)=L!(zQ Fy+viFiz ®y).

This can be deduced from the defining identity for © (see 4.1.2) or it
can be checked directly.

Proposition 5.3.4. Let M, N be objects of C.. For any z € M ® N, we
. have
(a) T/ (L] (2)) = (T7) ® T{1) ().

(In the left hand side of (a) we have the action of T}"; on M ® N; in the
right hand side we have the action of 7}'; on M and on N.)

Assume that (a) holds for z = z ® y where z € M™,y € N™; we claim
that' (a) must also hold for 2/ = z ® Fyy + v{Fix ® y. Using 5.3.3, 5.2.4(a),
and our hypothesis, we have

T (L{(2) = T (FLY(2))
= —vj "2 ETY (LY (2))
=~ "2 E(T] @ TV (2).

On the other hand, again using 5.2.4(a), we have
(Tih ® T)(Z) = Tz @ T) (Fiy) + i T}’ 1(F$) ® T;hy
= —vf""T,-','lz ® BTy — vjv; *ETihe @ T/yy
=" E(T]) © "1)(2)
Our claim is proved.

For ¢ > 0, let Z; be the subspace of M ® N spanned by vectors of the
form z ® F@y where z,y are homogeneous and E;y = 0. 1t is clear that
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M®N =3}, Z, Hence to prove (a) it suffices to prove the statements
(b),(c) below.

(b) The identity (a) holds for any z € Zj.

(c) If (a) holds for all z € Z,, then it holds for all z € Z,4;.

We prove (c). Let z € M%y € M*® be such that E;y = 0. By the
assumption of (c), we have that (a) holds for z = z ® F(9y. By the earlier
part of the proof, it follows that (a) holds for z; = [¢ + 1};z ® F; (q“)y +

viTE; m®F(Q)y Again by the assumption of (c), we have that (a) holds for
29 =V 2qF‘,a:@Fi(Q)y. It follows that (a) holds for z3 = [¢+ 1],:z:®Fi(q+l) v;
since [gq + 1]; # 0, it also holds for z ® Fi(qﬂ)y. Thus (c) is proved.

It remains to prove (b). Let z € M™,y € N™ be such that E;y = 0.
From the definition, we have LY(z ® y) = £ ® y. We must prove that
T/ (z®y) = T{",(z) ® T}, (y). We may assume that n > 0. We have

Th@ey= Y, (D PEORY(Ezey)
a,b,c;—a+b—c=m+n
— Z (_1)b'-}—b”v‘i—a'C—a”c—f-b'+b"+b,b” b’n+a'a"+a"(m+2c—2b')
a’,a” b’ b ,c;—a’'—a’ +b'4b" —c=m+n
% Ei(al)FTi(b')Ei(C)z ® Ei("-”)l;vi(b”)y
Here we substitute E(* ' F* )y = ["”_"“Jr”]iFi(b"_a")y and we set b’ =

al(

a" + g. We have F9y = 0 unless g < n. We obtain
g-. i

} :(__1)b'+a,"+gv—a'c—a"c+b'+a”+g—b'a"+b’g—b’n+a'a"+a"(m+2c)
i
a’,a" b ,g,c;—a’+b'—c=m+n—g;g<n

N [na 9] E FY B @ FO)y
[

’ —n’ ’ o A — n—
— Z (_l)b +gvi a'c+b'+g+b'g-b'n Z(_l)a ’U? (14g9—n) [ i g] |
T

a’,b/,g,c;—a’+b'—c=m+n—g;g<n a’
X Ega’)Fi(bl)Ei(C)m ® F;(g)y
= Y VB R ER e (-1 My

a’,b’,c;—a’+b'—c=m

1(2) ® (~1)"PFMy = TV (z) ® T/, (v)-

The proposition is proved.



CHAPTER 6

Complete Reducibility Theorems

6.1. THE QUANTUM CASIMIR OPERATOR

6.1.1. In this chapter we assume that the root datum is both Y-regular
and X-regular.

Let B, B, be as in 4.1.2. Applying m(S ® 1) to the identities at the end
of 4.2.5, where m : U® U — U is multiplication, we obtain for any p > 0:

Do D (1) U (S(EbT)bT + S(Kib)Eib*t

v: tr v<pb€EB,
— SO E)b*t — S(b~K_)b*tE;)
= Y ) (-DPu(SEbT)EbT — ST K_)b*tEy),

v: tr v=p b€B,,

and

D ) (1) T, (SOT)Fb + S(FbT)K_btt

v: tr v<pbeB,
— S(b)b*F, — S(b™F)b*t K;)

= > 3 (1P (SED Kb - S(bTF)b ),
v: tr v=p beEB,

equivalently, setting Q<p, = 3", , <, Dpep, (—1) ¥ “0,8(b7)b**, we have

R—iEiQSp - i{iQSpEi
= Y ) (-1)Pu(S(E_ib7)Eb*t - S(b™K_i)b*t Ey),

v: tr v=pbeB,
and
— Qo Fi + FK Q< K;
= D D (-)Pu(S(FbT)K_bt — SR K,).

v: tr v=pbeB,
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6.1.2. If M € C", then for any m € M, we have that Q(m) =
Q<p(m) € M is independent of p for large enough p. We can write
Q(m) = 3, (—1) ¥ Ply S(b7)b*+m and we have

(a) R_,;Eiﬂ = R,'QE,;, QF,‘ = Fif{iﬂki, QK“ = KuQ

as operators on M. It follows that for m € M?*, we have QE;(m) =
v XM Bi(m) and QF;(m) = o2 F,Q(m).

6.1.3. Remark. Let us define an isomorphism of Q(v)-algebras S : U —
U°PP by 5(@) = S(u) (S is the antipode.) For any u € U, we have S(u)Q =
QS(u) : M — M. Indeed, it suffices to check this for the generators
E;, F;, K, where it follows from the formulas above.

6.1.4. Let C be a fixed coset of X with respect to the subgroup Z[I] C X.
Let G : C — Z be a function such that

(a) G -G\ —=14)=1i-i(i, A)
for all A € C and all ¢ € I. Clearly, such a function exists and is unique up
to addition of an arbitrary constant function C' — Z.

Lemma 6.1.5. Let M € CNX*. Assume that A > X and G(A) = G(X).
Then A = ).

We can write \' = A — i} — i, —--- — i, for some sequence iy,1z,...,i,
in I. Using 6.1.4(a) repeatedly, we see that

G =G =iy =iy = —in) =Y ipiplip ) = D ip-ig
p=1

1<p<g<n

Using our assumption, we have therefore that

(a) D ipiplipg N = Y ip-ig.
p=1

1<p<q<n

Since A € X, we have (i, A) € N for all ¢, hence
n
(b) Z ip * ip(ip, A) 2 0.
p=1
Similarly, since X' € X+, we have

n
Ziz’ ~1p(ip, /\I) 20,
p=1
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or equivalently,
n
c ip (g, A =3 —ih — - =3 > 0.
p ipllp 1% n
p=1
Adding (b),(c) term by term gives

n n
2) ipiplipg ) =2 Y dprig—2 ip-ip 20,
p=1 1<p<g<n p=1
Introducing here the equality (a), we obtain —2 ZZ=1 ip - ip 2> 0. Since
ip - ip > 0 for all p, it follows that n = 0; hence A = X as required.

6.1.6. Let M € C. For each Z[I]-coset C in X we define Mc = @rcc M.
It is clear that M = @®cMc as a vector space and that each M¢ is a
U-submodule. Hence M = @®cM¢ as an object in C.

Proposition 6.1.7. Let M € Ch.

(a) Assume that there ezists C as above such that M = M¢c. LetG : C —
Z be as in 6.1.4. We define a linear map = : M — M by Z(m) = vSMnm
for all A € C and all m € M*. Then the operator Q= : M — M is
in the commutant of the U-module M. Moreover, the Q(v)-linear map
Q=: M — M is locally finite.
“(b) Assume that M is a quotient of the Verma module My:. Then Q= :
M — M is equal to vC*) times identity.
(c) Let M be as in (a). Then the eigenvalues of Q= : M — M are of the
form v¢ for various integers c.

We prove (a). We have for A, m as above:

Q=FE;(m) = ,UG(/\-H')QEi (m) = UG(,\+i’)—i-i(z',,\+i’)Eiﬂ(m)
— vG(A+i')—G(A)—i-i(i,A+i')EiQE(m) = EQ=(m)
and
QEF;(m) = vCA~IQF,(m) = vGO-+iN po(m)

= vCO-)=CN+i6N ROZ(m) = F,QE(m).

Moreover, 2= maps each weight space of M into itself. This proves the
first assertion of (a). To prove the second assertion, it suffices to show that
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the restriction of Q= to any weight space is locally finite. Let m € M?*.
Let M’ be the Ut-submodule of M generated by m. Let M” be the
U-submodule of M generated by m. We have M” = U~ M’. We have
dim M’ < oo since M € C*. It follows easily that all weight spaces of
M?"" are finite dimensional. In particular, the A-weight space of M" is finite
dimensional. This weight space is stable under 2= and it contains m. Thus,
Q=: M — M is locally finite.

We prove (b). From the definition, Q= acts on the A-weight space
of M as multiplication by vG() times identity. Since this weight space
generates M as a U-module, we see that (b) follows from (a). (Note that
(a) is applicable to M.)

We prove (c). Let M be the sum of the generalized eigenspaces of QZ :
M — M corresponding to eigenvalues of form v for various integers c.
We must show that M = M. By the argument in the proof of (a) we
may assume that, for any A € C, we have dy(A) = EA,»‘ dim MY < oo.
We will prove that, for any A € C, we have M* C M, by induction on
d = dpr(N). If d = 0, there is nothing to prove. Assume now that d > 1.
Let A\; € C be maximal such that A\; > X and M* # 0. Let m; be a
ndh-zero vector in M*t. Let M; be the U-submodule of M generated by

. Clearly, das/u, () < dm()). Hence, by the induction hypothesis, we
have (M/M)* C (M/M,]. On the other hand, by (b), we have M; C M.
It follows that M* C M. The proposition is proved.

The operator Q= : M — M is called the quantum Casimir operator.

6.2. COMPLETE REDUCIBILITY IN C* NC’

Lemma 6.2.1. Let M € C. Assume that M is a non-zero quotient of the
Verma module My and that M is integrable. Then

(a) A€ Xt and

(b) M is simple.

(a) follows from 3.5.8 applied to a non-zero vector m € M A

We prove (b). Assume that M’ is a subobject of M distinct from M
and 0. Then clearly, M’*» = 0. We can find A’ € X maximal with the
property that M’ # 0. Then X' < A. Let m’ be a non-zero vector in
M’ . By the maximality of X/, we have E;m’ = 0 for all i. By 3.4.6,
there exists a morphism of U-modules from the Verma module M) into
M’ whose image contains m’. Let M” be the image of this homomorphism.
Clearly M” is integrable (since M is integrable). Applying (a) to M" we
see that \' € X+.
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Applying 6.1.7(b) to M and to M"” and to the Z[I]-coset of A (or \') in
X, we see that Q=(m) = v¢Mm for all m € M and Q=(m) = vSXN)m for
allm € M". (G asin 6.1.4.) It follows that G(A\) = G()\'). This contradicts
6.1.5 since A’ < A\. The lemma is proved.

Theorem 6.2.2. Let M be an integrable U-module in C*. Then M is a
sum of simple U-submodules.

We may assume that M # 0. By 6.1.6, we may also assume that M =
Mc for some Z[I]-coset C' in X. We choose a function G : C — Z as in
6.1.4 and we define Q= : M — M (in the commutant of M) as in 6.1.7.

By writing M as a direct sum of the generalized eigenspaces of Q= :
M — M (see 6.1.7), we may further assume that there exists ¢ € Z such
that (QZ — v°) : M — M is locally nilpotent.

Let P = {m € M|E;m =0 Vi}. We have P = ®cc P> where P> =
PN M>* For any non-zero element m € P the U-submodule of M
generated by m is of the type considered in 6.2.1; hence it is a simple
subobject of M. Thus the U-submodule M’ of M generated by P is a sum
of simple U-submodules. Let M” = M/M’'.

Assume that M” # 0. Then we can find \; € C maximal such that
M"*1 £ 0. Let m; be a non-zero vector of M"*'. We have E;m; = 0 for
alli. Applying 6.2.1 and 6.1.7 to the U-submodule of M" generated by m;,
we see that A\; € X+ and QE(m,) = v¥PIm,. Since (ME—-v°): M - M
is locally nilpotent we see that (QZ — v°) : M” — M" is locally nilpotent.
Hence we must have ¢ = G(\;).

Let m; € M be a representative for m;. As in the proof of 6.1.7, the
Ut-submodule M; of M generated by 7, is a finite dimensional Q(v)-
vector space which is the sum of its intersections with the weight spaces of
M. Hence we can find Az € C maximal such that M; N M*2 #£ 0. Let m,
be a non-zero vector in M; N M*2. We have E;m, = 0 for all . Applying
6.2.1 and 6.1.7 to the U-submodule of M generated by m,, we see that
Az € Xt and QE(my) = v(*2)my,. From the definition of ¢, we have that
G(X2) = c. Hence G(A1) = G(A2). Note that A\; € X+ Ay € X+; from the
definitions, we see that A > A;. Using 6.1.5, we deduce that A1 = A Tt
follows that M, is the one dimensional subspace spanned by 77, ; hence we
must have E;(7n,) = 0 for all ¢, or equivalently, 72, € P. This implies that
my = 0, a contradiction.

We have proved that M” = 0. Hence M = M’ and therefore M is a sum
of simple U-submodules. The theorem is proved.

Corollary 6.2.3. (a) For any A € X, the U-module Ay is a simple object
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of C'.

(b) If \, N € X, the U-modules Ay, Ay are isomorphic if and only if
A= N,

(c) Any integrable module in C* is a direct sum of simple modules of the
form Ay for various A € X+,

(a) follows from 6.2.1 since A is integrable. To prove (b), it suffices to
note the following property which follows from the definitions: given the
U-module M = Ay where A € X7, there is a unique element A\; € X such
that M*t # 0 and )\, is maximal with this property; we have A\; = ).

We prove (c). From Theorem 6.2.2, it follows that any integrable module
in CM is a direct sum of simple objects of C** which are necessarily inte-
grable. Let M’ be one of these simple summands. Let A € X be maximal
such that M’* # 0. Let m be a non-zero vector in M’*». Then E;m = 0
for all <. Using 3.5.8, we can find a non-zero morphism Ay — M’ (in C’).
Since both A and M’ are simple, this must be an isomorphism.

6.3. AFFINE OR FINITE CARTAN DATA

6.3.1. In this section we assume that (I,-) has the following positivity
property: zi’ji - jzizj > 0 for all (z;) € N7. This certainly holds if (I,-)
is of affine or finite type. We first prove an irreducibility result for certain
Verma modules.

Proposition 6.3.2. Let A € X be such that (i,\) < —1 for all i. Then
M X 18 sz'rﬁple.

Assume that M has a non-zero U-submodule M’ distinct from M. Let
) € X be maximal with the property that M’ # 0. Let m’ be a non-zero
vector in M’*". Then E;m’ = 0 for all i. Hence there is a homomorphism
of U-modules My, — M’ whose image contains m’. Using 6.1.7 for M) and
My, we see that QE(m’) = vV m’ and QE(m’) = v ). It follows that
G(X) = G()'). We have )’ < A hence we can write N = A—i} —i5—---—i/,
for some sequence i;,1%3,...,i, in I with n > 1. As in 6.1.5, from G()) =
G(X), we deduce

(a) Z:=1 ip - ip(ip, A) = Zp<q€[1,n] ip g

Hence (Z;=1 ip) - (Z:=1 ig) = 2;:1 ip + ip(2(ip, A) +1). By our as-
sumption, the left hand side is > 0 and the right hand side is < 0. This
contradiction proves the proposition.

6.3.3. In the remainder of this section, we assume that (I,-) is of finite
type. In this case.the root datum is automatically Y-regular and X -regular.
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Proposition 6.3.4. (a) For any A € X*, we have dim A < oo.

(b) Let M € C be such that dim M < oco. Then M is integrable and M €
Ch, hence (by 6.2.2), it is a direct sum of simple U-modules isomorphic to
Ay for various A € X+,

Let X' € X be such that Aj\\' # 0. Using 5.2.7 several times, we see that
we also have A:’('\l) # 0 for any w € W. In particular, we have A’f"(’\') # 0.
It follows that M < A and wp()’) < A. The last inequality implies, in
view of 2.2.8, that wo(A) < A. Thus, we have wo(A) < X < A. These
inequalities are satisfied by only finitely many ). Since each weight space
of A, is finite dimensional, we see that (a) holds. Now (b) is immediate
since the root datum is X-regular. The proposition follows.

6.3.5. The following result is a variant of the complete reducibility theorem
6.2.2: we assume (see 6.3.3) that the Cartan matrix is of finite type but we
do not need the condition that our module is in C*¢.

Proposition 6.3.6. Let M be an integrable U-module. Then M is a sum
of simple U-modules of form Ay for various A € X+.

Let m € M¢S and let M’ be the Ut-submodule of M generated by m.
Since M is integrable, there exist a; € N such that E,.(G‘J'l)m =0foriel
Hence there exists ' € Xt such that Ei((i"\')ﬂ)m = 0 for all i. It follows
that u — um gives a surjective linear map Ut/(}"; U+Ei(<i”\')+l)) — M.
Using 3.5.6, we see that Ut /(3", U+Ei((i"\l)+1)) is isomorphic as a vector
space to Ay, hence it is finite dimensional, by 6.3.4. Thus, dim M’ < oo.
Let M"” be the U-submodule generated by M’. Since M’ is stable under
Ut and U°, M"” is equal to the U~-submodule generated by M’. By the
argument above, the U~ -submodule generated by a vector in M is finite
dimensional. Since M’ is finite dimensional, the U~ -submodule generated
by M’ is finite dimensional. Thus, dim M” < oco. We have shown that m
is contained in a finite dimensional U-submodule of M. Thus, M is a sum
of finite dimensional U-submodules. By 6.3.4(b), each of these is a sum of
simple U-modules of form A for various A € X*. The proposition follows.



CHAPTER 7

Higher Order Quantum Serre Relations

7.1.1. In this chapter we assume that we are given i # j in I and e = +1.
Given n,m € Z, we set

Frmme = 32 (1o CEIInmmagngng0 ¢ g
r+s=m

To simplify notation we shall write fy, ;.. instead of f; j;nm;e when con-
venient, and we shall set a = —(i,5') € N, o/ = —(j,%') € N.

Lemma 7.1.2. We have (in U)
(@) TS e Be = [+ S
( ) anme+f7-z‘-me [an—'m+1] K—etfnm lie’

We prove (a). The left hand side of (a) is

Z ) (?_1),-...1(vier(an—m+1)+e(an—2m) [T‘ + lliEi(r-'-l)E]('n)Ei(S)

r+s=m

_ vfr(an—m+1)[s + l]iEZ(r)E}n)Ei(s-i‘l))

- Z (_1)r(v:r(an—m+l)—m—l) [r]i + v;:r(an—m-i—l) [3];)EST)EJ(TL)E,L(8)
r+s=m+1

It remains to observe that

v:r(an—m+l)—e(m+l)) [T]'i + v:r(cm—m+1)[s]i — Ufr(an—m) [m + l]i

ifr+s=m+1.
We prove (b). Using the identity

—N+1p5
REM — EMp, _ Y '(If—vl

'K
EN-Y,
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we see that the left hand side of (b) is

> (e B RE Y

r+s=m

— ’Ui_r—HK' rl lK—l E(" I)E(")E(s))
v —Y;

S e B B,

r+s=m

'—3+l R 8— IK
Z (_l)r+1vfr(an—m+l)(_Elgr)E;n) v; K v; i —i E(s 1)

v —Y;
r+s=m
-+l r—1gr
o K; "ﬁ,l K_; Ei(r—-l)EJ(.n)Ei(s))
Vi — 'U-

—s+1-2r+an s-—l+2r—cxn I
r er 1 'v K K_,‘ r n §—
= 3 (-1yrpfrlenTmiD <X E{VEMEF™Y

r4+s=m Vi — v

—r+1 r—1 g
r er(an—-m+1) V; " K; - Uy K_; (r—1) px(n) (s)
+ > (-1)7y —— E{VEVE

r+s=m

- m+1)V; —8— 2r+anK s+2r—a'nk_‘
_ Z ( l)r er(an—m+1) g =X in(r)E-gn)Ei(s)
r4+s=m-—1

bY (cayhgtrens mi1) v Ki — vK—z EOEM B

’U—’U

r+s—m 1

and (b) follows.

From Lemma 7.1.2 we deduce by induction on p > 0 the following result.

Lemma 7.1.3. We have
(a) E(p)f'r—t'-m .= EP' 0(_1);;’ e(2pm—apn+pp’—p’) [m+p] + E(P—P ).

’

P n,m+p’;e""i
(b) F(P)f+m L= pr—o( 1)7'v; —e(pp’—p') [om= m+p] R_epif o EF(p—p )
Lemma 7.1.4. We have
e(n 1) ‘U_e(n 1)
ij'r-t'-,m;e _fr-:-,m eF K—BJT,U—.—e :—l,m;—e _Kejv—e — f —1,m;e*

.7 J J J
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We have

ijv-:-,m;e - f:,m;eFji

+1KJ_ _ vr_‘t—lK—j

v; "
_ _ Z (_1)rv§r(an-—m+1)Ei(r) 7 31 E](-n_l)Ei(s)
r+s=m Vi — Y
v.—n+l+a'rl’{z. _ vr}—l—a'rl’"{_ )
- _ Z (_l)rv:r(an—m+l) j J _]1 J Egr)E_gn_l)Efs)'
r4+s=m Uj - U.‘i

We now use the identity v;-” = v{¥; the lemma follows.

Proposition 7.1.5. (a) If n <0 or m <0, then fn m.e = 0.
(b) If m > an, then fpm.e =0.

(a) is obvious. In particular (b) holds for n < 0. Hence, to prove (b),
we may assume that n > 0 and that (b) holds with n replaced by n — 1.
For such fixed n, we see from 7.1.2(b) that f} ... commutes with F; and
from 7.1.4 and the induction hypothesis, that fn+, an+1;c commutes with Fj.
(We have an+1 > a(n—1) hence the induction hypothesis is applicable to
fa—1,ant1;+1.) It is trivial that f,tan“;e commutes with F}, for any h # 1, j.
Thus, f,j', an+1;c commutes with Fj, for any h € I. Using 3.2.7(a), it follows
that f, an+1;e is a scalar multiple of 1. On the other hand, it belongs to
fan+1)i+nj and (an + 1)i + nj # 0. It follows that fn ant1.e = 0.

We now show, for our fixed n, that f, m.. = 0 whenever m > an. We
argue by induction on m. If m = an + 1, this has been just proved. Hence
we may assume that m > an+1. Using the induction hypothesis we see that
the left hand side of the identity —v2*" ™2 g, Shmtie + [ 1B =
[m]i ff ;e (see 7.1.2) is zero. Hence we have [m]if}, . = 0. We have
m # 0, hence ff, . = 0. It follows that f, m; = 0 and the induction is
completed. The proposition is proved.

7.1.6. The identities fome = 0 (m > an;n > 1) in f are called the
higher order quantum Serre relations. For n = 1 and m = a + 1, they
reduce to the usual quantum Serre relations.

Corollary 7.1.7. For any n,m > 0 such that m > an + 1, we have

6£m)9§n) — Z ,Yslol(r)aj(_n)ez(s )

r+s'=mim—an<s’'<m

where vy = E;n:—oan—l(_1)3'+1+q,vi—3’(an—m+l+q)+q [:']i (identity in f).
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From 7.1.5 we see that f, m—g.1 =0 for 0 < ¢ < m — an — 1; hence

m—an-—1

9= Z ("l)qvi_m“qfn,m—q;lez(q)
q=0

is zero. On the other hand, using the definitions, we have

m—an—1
g= Z E (_l)r(_l)qv:(an—m-kq-*—1)vi—mQ+49§7‘)f;;’n)bL\ ‘05‘1)

g=0 r+s=m—g

— z Cr,s,glgr)e.gn)egs')

r+s8’'=m

—an—1 - 1)— '
where ¢ o = Z;n:Ocm (_1)r+qvir(an m+q+1)—mq+q [.;]i.

If 0 < 8 < m—an — 1, we may replace the range of summa-
tion above to 0 < ¢ < s and the sum will not change, since for

0 < §’ < q, the binomial coefficient [‘:]i is zero. Hence for such s’ we
—m+1 ! 1-5") 18’

have ¢y = (—1)rpflan-—m )Ezzo(—l)qvf( s)[f]]i. By 1.3.4, the last

sum is zero unless s’ = 0. Thus, for 0 < s’ < m — an — 1, we have

Crsr = 60,sr(—1)mv;n(a"_m+l). The corollary follows.



Notes on Part 1

10.

11.

- The formulas for the operators T} ,,T7

. The Hopf algebra U has been defined in the simplest case (quantum analogue

of SLz) by Kulish and Reshetikhin [10] and Sklyanin [14] and, in the general
case, by Drinfeld [2] and Jimbo [5], [6]. The definition given here is different
from the original one; the two definitions will be reconciled in Part V.

. The bilinear form ( , ) in 1.2.3 turns out eventually to be the same as that of

Drinfeld [3].

. The idea of defining the A-form 4f and 4U of fand U (see 1.4.7, 3.1.13) in

terms of v-analogues of divided powers appeared in [12]. (In the classical case,
the Z-forms of enveloping algebras were defined in terms of divided powers
with ordinary factorials by Chevalley and Kostant [9], for finite types, and by
Tits, for infinite types.)

. The theorem in 2.1.2 is due to Iwahori, for finite types, and to Matsumoto

and Tits [1], in the general case. The statement in 2.2.7 can be deduced from
a theorem of Tits on Coxeter groups, see (1], ch. 4, p.93, statement P,,.

The notion of Cartan datum (resp. root datum), see 1.1.1 (resp. 2.2.1), is
closely related to (but not the same as) that of a generalized Cartan matrix
(lresp. a realization of it) in [7]. In fact, an irreducible generalized Cartan
matrix is the same as an irreducible Cartan datum up to proportionality (see
1.1.1).

. The commutation formulas in 3.1.7, 3.1.8, are closely connected with Drinfeld’s

description [3] of U (in the formal setting) as a quantum double. Their con-
sequence, Corollary 3.1.9, is the quantum analogue of an identity of Kostant
[9] (it was shown to me by V. Kac).

The definition 3.5.1 of integrable U-modules is the quantum analogue of Kac’s
definition (7] of integrable modules of a Kac-Moody Lie algebra.

. The definition of universal R-matrices is due to Drinfeld [3]. The characteri-

zation of a modified form of the R-matrix given in 4.1.2, as well as in 4.1.3,
appeared in [13]. Propositions 4.2.2 and 4.2.4 are due to Drinfeld [3].

i.e (in 5.2.1) are new (they are classical
for v =1). An identity like 5.3.4(a) (with a different definition of T7,) is stated
in [8] and [11].

The definition of the quantum Casimir operator (see 6.1) is due to Drinfeld
[4]. The proof of the complete reducibility theorem 6.2.2 is inspired by the
proof of the analogous result in the non-quantum case (Kac [7)).

A number of statements of Drinfeld in [3] were given without proof; some of
the proofs were supplied by Tanisaki [15].
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Part 11

GEOMETRIC REALIZATION OF f

The algebra f has a canonical basis B with very remarkable properties.
This gives an extremely rigid structure for f and also (in the Y-regular
case) for each Ay. Part II will introduce the canonical basis of f. At the
same time, f will be constructed in a purely geometric way, in terms of
perverse sheaves on the moduli space of representations of a quiver.

Chapter 8 contains a review of the theory of perverse sheaves over an
algebraic variety in positive characteristic. As far as definitions are con-
cerned, it would have been possible to stay in characteristic zero and use
D-modules instead of perverse sheaves. This would certainly have been
more elementary, but would have deprived us of the possibility of using the
Weil conjecture and its consequences which are available in the framework
of perverse sheaves on varieties in positive characteristic.

In Chapter 9 we introduce a class of perverse sheaves attached to a
quiver and the operations of induction and restriction for perverse sheaves
in this class. In Chapter 10, we study the Fourier-Deligne transform of
_perverse;sheaves in our class. This is necessary for understanding the effect
of changing the orientation of the quiver. In Chapter 11 we study linear
categories with a given periodic functor (a functor which has some power
equal to identity). These are needed to handle the case where the Cartan
datum is not symmetric. (The geometry associated to a non-symmetric
Cartan datum is very closely related to that associated to a symmetric
Cartan datum, together with an action of a finite cyclic group.)

In Chapter 12 we study quivers with a cyclic group action. The geometric
construction of f and of its canonical basis (up to signs) is given in Chapter
13.

In Chapter 14, we discuss various properties of the canonical basis.
For example, the property expressed in Theorem 14.3.2 is responsible for
the existence of a canonical basis in the simple integrable U-modules (see
Theorem 14.4.11). Perhaps the deepest property of the canonical basis is
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expressed by the positivity theorem 14.4.13, which states (for symmetric
Cartan data) that the structure constants of f are given by polynomials
with positive integer coefficients.

Theorem 14.4.9 gives a natural bijection between the canonical basis of
f for a non-symmetric Cartan datum and the fixed point set of a cyclic
group action on the canonical basis of the analogous algebra corresponding
to a symmetric Cartan datum.



CHAPTER 8

Review of the Theory of Perverse Sheaves

8.1.1. Let p be a fixed prime number. All algebraic varieties will be over
an algebraic closure k of the finite field F}, with p elements.

Let X be an algebraic variety. We denote by D(X) = D4(X) the
bounded derived category of Q-(constructible) sheaves on X (see [I,
2.2.18)); here, [ denotes a fixed prime number distinct from p and Q; is an
algebraic closure of the field of l-adic numbers. Objects of D(X) are referred
to as complezes. For a complex K € D(X), we denote by H"K the n-th
cohomology sheaf of K (a Q;-sheaf on X). We denote by D(K) € D(X)
the Verdier dual of K. The constant sheaf Q; on X will be denoted by 1.

For any integer j, let K — K|[j] be the shift functor D(X) — D(X); it
satisfies H*(K[j]) = H""/K. Let f : X — Y be a morphism of algebraic
varieties. There are induced functors f* : D(Y) — D(X), f. : D(X) —
D(Y), fi : D(X) — D(Y). If f is proper, we have f, = fi and fi(DK) =
D(fiK) for K € D(X).

8.1.2. Let M(X) be the full subcategory of D(X) whose objects are those
K in D(X) such that, for any integer n, the supports of both H"K and
‘H™D(K) have dimension < —n. In particular, H" K and H"D(K) are zero
for n > 0. The objects of M(X) are called perverse sheaves on X.

M(X) is an abelian category (1, 2.14, 1.3.6] in which all objects have fi-
nite length. The simple objects of M(X) are given by the Deligne-Goresky-
MacPherson intersection cohomology complexes corresponding to various
smooth irreducible subvarieties of X and to irreducible local systems on
them.

Foranyn € Z, let 7<,, : D(X) - D(X) and H" : D(X) — M(X) be the
functors of truncation and perverse cohomology, which in [1] are denoted
by Pr<, and PH™.

There are natural morphisms

T<n—1K —>T<nK P, (H"K)[—n]

for any K € D(X) and any n. For fixed K, we have 7<, K = K for n > 0,
T<nK =0 for n € 0 and H™K = 0 for all but finitely many values of n.
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For any n € Z, let M(X)[n] be the full subcategory of D(X) whose
objects are of the form K/[n] for some K € M(X).

8.1.3. A complex K € D(X) is said to be semisimple if for each n,
(a) there exists v, : (H"K)[—n] — 7<pK such that (a,,~,) define an
isomorphism 7<,_1 K ® (H"K)[-n] = 7<, K and

(b) H™K is a semisimple object of M(X).
It follows that K is isomorphic to &, (H™K)[-n] in D(X).

8.1.4. Let f : X — Y be a smooth morphism with connected fibres of
dimension d. We have D(f*K) = f*(D(K))[2d] for K € D(Y). (We
will ignore the Tate twist.) If K € M(Y), then f*K € M(X)[—d] (see
(1, 4.24]) and K — f*K defines a fully faithful functor from M(Y) to
M(X)[—d] (see [1, 4.2.5]).

8.1.5. Let f : X — Y be a proper morphism with Y smooth. Then
fil € D(Y') is a semisimple complex. (See [1, 5.4.5, 5.3.8].)

) 8.1.6. More generally, let f : X — Y be a morphism. Assume that we are
given a partition X = XoUX)U---UX,, such that X<; = XoUX U---UXj is
closed for j = 0,1,...,m. (We define X<; = 0 for j < 0.) Assume that, for

each j, we are given morphisms X =, Z; —fi> Y such that Z; is smooth,
f}" is a vector bundle, f; is proper and f]f!’ = f; where f; : X; - Y is the
restriction of f”. Then f;1 € D(Y) is a semisimple complex. Moreover, for
any n and j, there is a canonical exact sequence (in M(Y)):

(a) 0 — H™(fih1 — H"(f<;)1 = H"(f<j-1 )1 — 0

where f<; : X<;j — Y is the restriction of f. The proof is essentially the
same as that in [5, 3.7}; it is based on the theory of weights in [1].

8.1.7. G-equivariant complexes. Let m : G x X — X be the action of
a connected algebraic group G on X; let 7 : G x X — X be the second
projection. A perverse sheaf K on X is said to be G-equivariant if the
perverse sheaves 7*K[dim G] and m* K[dim G] are isomorphic. More gen-
erally, a complex K € M(X)[n] is said to be G-equivariant if the perverse
sheaf K[—n] is G-equivariant.

We denote by Mg (X) the full subcategory of M(X) whose objects are
the G-equivariant perverse sheaves on X. More generally, we denote by
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Mg (X)[n] the full subcategory of M(X)[n] whose objects are of the form
K([n] where K € Mg(X).

Here are some properties of G-equivariant complexes.

(a) If A € Mg(X), and B € M(X) is a subquotient of A, then B €
Mea(X).

(b) Assume that G acts on two varieties X', X and that f : X’ —
X is a morphism compatible with the G-actions. If K € Mg(X), then
H™(f*K) € Mg(X") forall n. If K’ € Mg(X'), then H*(fiK") € Mc(X)
for all n.

(c) Assume that f : X — Y is a locally trivial principal G-bundle (in
particular G acts freely on X and trivially on Y). Let d = dimG. If
K € M(X)[n], then we have K € Mg(X)[n] if and only if K is isomor-
phic to f*K’ for some K’ € M(Y)[n + d]. The functor M(Y)[n +d] —
Mg(X)[n] (K’ — f*K’) and the functor Mg(X)[r] — M(Y)[n + d]
(K — fyK :== (H"%f,K)[n + d]) define an equivalence of the categories
Mg (X)[n], M(Y)[n +d].

8.1.8. A semisimple complex K on a variety X with a G-action is said to
beG-equivariant if for any n € Z, H™"K is a G-equivariant perverse sheaf
on X.

Let f: X — Y be as in 8.1.7(c). If K’ is a semisimple complex on Y,
then f*K’ is a G-equivariant semisimple complex on X. Conversely, if K
is a semisimple G-equivariant complex on X, then K is isomorphic to f*K’
“for some semisimple complex K’ on Y, which is unique up to isomorphism.
In fact, we have K’ 2 f, K where, by definition, f,K = @&, f,(H"K)[-n])
and f,((H"K)[-n]) € M(Y)[-n+d] is as in 8.1.7(c).

8.1.9. Let A, B be two G-equivariant semisimple complexes on a variety X
with G-action; let j be an integer. We choose a smooth irreducible algebraic
variety I" with a free action of G such that the Q;-cohomology of I is zero
in degrees 1,2,...,m where m is a large integer (compared to |j]).

Let us consider the diagram

XETxX LG\ xX)

where the maps s, are the obvious ones. Then s*A, s*B are semisimple
G-equivariant complexes; since ¢ is a principal G-bundle, the semisimple
complexes tys* A, t,s* B on G\(I' x X ) are well-defined. Let u : G\(T'x X) —
{point} be the obvious map. Consider the Q;-vector space

HI+2 dim(G\T) (u!(tbs*A ® tbS*B))~
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By a standard argument (see [6, 1.1, 1.2]), we can show that this vector
space is canonically attached to A, B, j: it is independent of the choice of
m and T provided that m is sufficiently large. We denote this vector space
by D;(X,G; A, B).

8.1.10. We give some properties of D;(X,G; A4, B).

(a) Dj(X, G, A, B) = DJ'(X, G, B, A)

(b) D;(X,G; A[n], Blm]) = Dj4n+m(X,G; A, B) for all n,m € Z.

(c) D;j(X,G;A® Ay, B) =D;(X,G; A, B) ® D;(X,G; Ay, B).

(d) If A, B are perverse sheaves, then D;(X,G; A, B) = 0 for j > 0; if,
in addition, A, B are simple, then Do(X,G;A,B) = Q,, if B = DA and
Do(X,G; A, B) = 0, otherwise.

(e) There exists jo € Z such that D;(X,G; A, B) = 0 for j > jo.

(f) If A", B’ (resp. A”,B") are G’-equivariant (resp. G”-equivariant)
semisimple complexes on a variety X’ (resp. X”') with a G’-action (resp. G”'-
action) where G’,G” are connected algebraic groups, then A’ ® A” and

. B'® B" are G’ x G""-equivariant semisimple complexes on X’ x X” and we
have a canonical isomorphism

D](XI X X”,GI X G”;AI ®A”,B,®B”)

= Y Djy(X',G;A,B)®D;/(X",G"; A", B").
J'+5"=i

The sum is finite by (e).
Properties (a),(b),(c) are obvious; (d) follows from [5, 7.4]; (e) follows
from (d); (f) follows from the Kiinneth formula.

8.1.11. Fourier-Deligne transform. We fix a non-trivial character
F, — Q}. The Artin-Schreier covering k¥ — k given by £ — 2P — z has
F, as a group of covering transformations. Hence our character F, — Q;
gives rise to a Q;-local system of rank 1 on k; its inverse image under any
morphism T : X’ — k of algebraic varieties is a local system L7 of rank 1
on X'.

Let E — X and E' — X be two vector bundles of constant fibre di-
mension d over the variety X. Assume that we are given a bilinear map
T : E xx E' — k which defines a duality between the two vector bun-
dles. We have a diagram E < E xx E' 5 E’ where s,t are the obvious
projections.
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The Fourier-Deligne transform is the functor ® : D(E) — D(E’) defined
by ®(K) = t)(s*(K)®Lr)[d]. Interchanging the roles of E, E’ (and keeping
the same T') we have a Fourier-Deligne transform ® : D(E’') — D(E); it
is known that the Fourier inversion formula ®(®(K)) = j*K holds for
K € D(E), where j : E — FE is multiplication by —1 on each fibre of E.

® restricts to an equivalence of categories M(E) — M(E’); hence it
defines a bijection between the set of isomorphism classes of simple objects
in M(E) and the analogous set for M(E’). It also commutes with the
functors K — H"K.

8.1.12. Let A (resp. A’) be an object of D(E) (resp. D(E’)). Let u,u',u
be the obvious maps of E,E', E xx E’ to the point. We have

w(A® ®(A4")) = u(P(A) ® A').

Indeed, from the definitions, we see that both sides may be identified with
w(s*Axt*A’ @ Lr[d]).

8.1.13. Let T : k™ — k be a non-constant affine-linear function. Let
u : k™ — {point} be the obvious map. We have ui(Lr) = 0. The proof is
left to the reader.



CHAPTER 9

Quivers and Perverse Sheaves

9.1. THE COMPLEXES L,

9.1.1. By definition, a (finite) graph is a pair consisting of two finite sets
I (vertices) and H (edges) and a map which to each h € H associates a
two-element subset [h] of L.

We say that h is an edge joining the two vertices in [h]. We assume given
a finite graph (I, H, h — [h]). An orientation of our graph consists of two
maps H — I denoted h — h’ and h — h” such that for any h € H, the two
elements of [h] are precisely h’, h”. We assume given an orientation of our
graph. Thus we have an oriented graph (=quiver). Note that

(a) for any h € H, we have h’ # h".

9.1.2. Let V be the category of finite dimensional I-graded k-vector spaces
V = @jic1Vi; the morphisms in V are isomorphisms of vector spaces com-
patible with the grading.

For each v = Y, 1i € N[I] we denote by V, the full subcategory of V
whose objects are those V such that dim V; = v; for all i € I. Then each
object of V belongs to V, for a unique v € N[I] and any two objects of V,
are isomorphic to each other. Moreover, V, is non-empty for any v € N[IJ.

Given V € V, we define Gy = {g € GL(V)|g(Vi) = V;foralli € I}
and

Ev = EBheHHom(Vh', Vh/r).

Then G is an algebraic group (isomorphic to [[; GL(V;)) acting naturally
on the vector space Ev by

(9,%) — gz = &’ where z}, = gpzhg;, for all h € H.

9.1.3. Flags. A subset I’ of I is said to be discrete if there isno h € H
such that [h] C I'.

If v € N[I], we define the support of v as {i € I|i; # 0}. We say that v
is discrete if its support is a discrete subset of I.
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Let X be the set of all sequences v = (v!,2%,...,v™) in N{I| such
that v} is discrete for all I. Now let V € V and let v € X be such that
dimV; = 5, for alli € I. A flag of type v in V is by definition a
sequence

(a) F=(V=V°>5Vis...o0V™=0)

of I-graded subspaces of V such that, for [ = 1,2,...,m, the graded vector
space V!=1/V! belongs to V,i. If £ € Ey, we say that f is z-stable if
(VL) c Vi, foralll=0,1,...,m and all h.

Let F, be the variety of all flags of type v in V. Let F,, be the variety
of all pairs (z, f) such that x € Ev and f € F, is z-stable. Note that
Gv acts (transitively) on F, by g : f — gf where f is as in (a) and
gf =(V=gV?>gV! > ... D gV™ = 0). Hence Gy acts on F, by
g9:(z, f) — (g2, 9f)

Let m, : F,, — Ev be the first projection. We note the following prop-
erties which are easily checked.

(b) F, is a smooth, irreducible, projective variety of dimension

Ul
E Y Vi

i<t

the second projection F,, — F, is a vector bundle of dimension

’
E l/;l: U;zu .

hil'<l

(c) %, is a smooth, irreducible variety of dimension

fw)= 3 vivke + D oot
il <l i<t/

(d) m, is a proper Gv-equivariant morphism.

Let L, = (m,)11 € D(Ev). By (c),(d) and by 8.1.5, L, is a semisimple
complex on Evy. Let L, = L,[f(v)]. Since D(1[f(v)]) = 1[f(v)] on F,
(see (c)) we have D(L,) = L,,.

We denote by Py the full subcategory of M(Evy) consisting of perverse
sheaves which are direct sums of simple perverse sheaves L that have the
following property: L[d] appears as a direct summand of L,, for somed € Z
and some v € X such that dimV; = 3,4 foralli€ L

We denote by Qv the full subcategory of D(Ey) whose objects are the
complexes that are isomorphic to finite direct sums of complexes of the
form L[d'] for various simple perverse sheaves L € Py and various d’ € Z.
Any complex in Qv is semisimple and Gy-equivariant. From 8.1.4, we see
that Py and Qv are stable under Verdier duality.
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9.1.4. Let v = (V! V™) € X. Assume that for some j we
write v/ = ] + z/g here V{,V’ € N[I] have disjoint support. Let
vVi= (2. I,V{,V%,V-H_ ...,¥™) € X. It is clear that L, = L,
and f(v) = f(v'). Hence L, = L. Thus, in the definition of Py, we may
restrict ourselves to sequences v = (v!,12,...,™) € X such that each 17
is of the form ni for some i € I and some n > 0. Since there are only
finitely many such v (subject to dim V; = 3°, 4} for all i € I) we see that
Py has only finitely many simple objects, up to isomorphism.

9.1.5. In the special case where V is such that 3", dim V;i is discrete, we
have Ev = 0 and Py has exactly one simple object up to isomorphism,
namely 1

9.1.6. Let K, K’ € Qv. The following two conditions are equivalent:

(a) K = K

(b) dimD;(Evy,Gv; K,DB) = dim D;(Ev, Gv; K’, DB) for all simple
objects B € Py and all j € Z.

It is clear that (a) implies (b). Assume now that K, K’ are not isomor-

» phic. Now K is a direct sum of complexes L[n] where L runs over the

isomorphism classes of simple objects L of Py and n € Z; let m(L,n) € N
be the number of times that L[n] appears in this direct sum. We define
similarly m’(L,n) by replacing K by K’. Since K, K’ are not isomor-
phic, we can find Lo, ng such that m(Lo,ng) # m’(Lg,ne) and such that
m(L,n) = m/(L,n) for all L and all n < ny. By (b), we have

> m(L,n)dim D;yn(Ev,Gv; L, DB)

Ln

=Y m'(L,n)dimDj4n(Ev,Gv; L, DB)
L,n

for all simple objects B € Py and all j € Z.
Using 8.1.10(d), we rewrite this as follows:

m(B,—j)+ Y > m(L,n)dimD,n(Ev,Gv;L, DB)

L nn<—j
() =m'(B,—j)+)_ > m'(L,n)dimD,.(Ey,Gv;L,DB).
L nn<—j
We apply this to B = Ly and j = —no. Since by our assumption,

m(L,n) = m'(L,n) for n < no, we see that (c) implies m(Lo,ng) =
m’(Lo,no). This is a contradiction. Thus the equivalence of (a),(b) is
proved.
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9.2. THE FUNCTORS IND AND RES

9.2.1. Let T, W be two objects of V. We can form Er,Ew and their
product Et x Ew. This has an action of Gt x Gw (product of actions as
in 9.1.2).

We define a full subcategory Pr w of M(Er x Ew) and a full subcate-
gory Qr,w of D(Et x Ew), as a special case of the definitions of Py, Qv
in 9.1.3; indeed, T x W and ET x Ew are special cases of V and Ev where
the oriented graph in 9.1.1 has been replaced by the disjoint union of two
copies of that oriented graph.

From the definitions it is clear that any simple object B € Py w is
the external tensor product B’ ® B” of two simple objects B’ € Py and
B” € Pw (and conversely). Note that any complex in Q1 w is semisimple
and Gt X Gw-equivariant.

9.2.2. We assume that we are given V, T, W in V, that W is a subspace
of V and that T = V/W. We also assume that the obvious maps W — V
and V — T preserve the I-grading. Let Q be the stabilizer of W in Gv (a
patrabolic subgroup of Gv). We denote by U the unipotent radical of Q.
We have canonically Q/U = Gt x Gw.

Let F be the closed subvariety of Ev consisting of all x € Ey such that
Zh(Wh) C Wyn for all h € H. We denote by ¢ : F — Ey the inclusion.
Note that Q acts on F (restriction of the Gy-action on Ev).

If £ € F, then z induces elements z' € Et and z” € Ew; the map
z — (z',2") is a vector bundle k : F — Ex xEw. Now Q acts on Er x Ew
through its quotient Q/U = Gt X Gw. The map « is compatible with the
QQ-actions.

Weset Gv = G,Q/U = G, Ey = E, Ex xEw = E. We have a diagram

E&EFLE
Let E” =G xp F,E' = G xy F. We have a diagram
EXE B E BE

where pi1(g, f) = £(f); p2(9, f) = (9, f); p3(g, f) = g(e(f)). Note that p, is
smooth with connected fibres, ps is a G-principal bundle and p3 is proper.

Let A be a complex in Qp w and let B be a complex in Qv. We can
form ki(¢*B) € D(E). Now p}A is a G-equivariant semisimple complex
on E’; hence (p2),p}A is a well-defined semisimple complex on E” (see
8.1.7(c)). We can form (p3)i(p2)yp;A € D(V).
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Lemma 9.2.3. (p3)i(p2)ypiA € Qv.

The general case can be immediately reduced to the case where A is a
simple perverse sheaf in Pr w and this is immediately reduced to the case
where A = L, ® L,~. (Note that a direct summand of a complex in Qv
belongs to Qv.) Thus, it sufﬁces to prove that (p3) (P2 )y} (Lo ® L) €
Qv, where v/ = (1/1,1/2, w) € X and v’ = (W, vy,...,V0,) € X
satisfy dim T} = 3, { dlmW =Yyt forallieL

Let v’v” be the sequence of elements in N[I] formed by the elements of
the sequence v’ followed by the elements of the sequence v”. Recall that
Fyn consists of pairs (z, f) where z € Ey and f is a flag of type v'v" in
V which is z-stable. Now the subspace with index m’ in f = (V =V? >
V1> ...)is in the G-orbit of W. The pairs (z, f) for which this subspace
is equal to W form a closed subvariety %, o of Fyry; for such (z, f) we
have z € F, hence (z, f) — z defines a (proper) morphism F,,~ o — F.
This morphism is Q-equivariant (for the natural actions of Q). Hence it
induces a proper morphism u : G xg Forur 0 — G xg F = FE". Since
G xq Forpr .0 is smooth, the complex L = w1 € D(E" ) is semisimple.
.. (See 8.1.5.) It is clear from the definitions that p3L = p}(L, ® Ly~) and
(p2)vpi (Lu’ ® LV”) =

It remains to show that (p3):L € Qv, or equivalently, that (psu)l € Qv.
We may identify in a natural way G XQ}'., V10 = =F, rper; then pgu = mwyrpn.
It follows that (psu)il = L,/,» which is in Qv by definition. The lemma
is proved.

Lemma 9.2.4. x(.*B) € Qrw-

We may assume that B is a simple perverse sheaf in Py . Since a direct
summand of a complex in Qr w belongs to Ot w we see that it suffices to
prove that rcg(L*f},,) € Qr,w, where v € X satisfies dimV; =}, Vi' for all
iel

Let ' C .7:'., be the inverse image of F C E under 7,. Let # : F — F be
the restriction of m,,. We have ¢*L, = 71; hence

Kg(L*I/,,) = K,!ﬁ'gl = (nif‘)!]..
Let v = (v1,v2%,...,v™). For any T,w € X of the form
2

r=(47%. . ™), w= (Whw?, ..., w™)

such that 7! +w! = 1! for all I, we define a subvariety F(r, w) of F as the set
of all pairs (z, f) wherex € Fand f=(V=V? >Vl >...5V™m=0)¢
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F, is z-stable and is such that the graded vector space (V!"!NW)/(VINW)
belongs to V,: for 1 =1,2,...,m

If (z, f) is as above, then there are induced elements (z’, f') € F and
(", f") € F.; here z” is deduced from z by restriction to W and z’
is deduced from z by passage to quotient; f’ is given by the images of
the subspaces in f under the projection V. — T and f” is given by the
intersections of the subspaces in f with W. Thus we have a morphism
a: F‘(‘r,w) — F, x F.,. We have a commutative diagram

f‘(‘r,w) _

F
| |
FrxF, —— E.
where the upper horizontal arrow is the obvious inclusion and the lower

horizontal arrow is m, X m,,.

It is not difficult to verify (as in [9, 4.4]) that « is a (locally trivial)
vector bundle of dimension M(7,w) =3, T,‘l',wh,, + X ia<r Wl

It is clear that the locally closed subvarieties F(7,w) form a partition of
F Let F be the union of all subvarieties F(-r w) of fixed dimension j. Let
Z; be the disjoint union of the varieties F» X F, (union over those (T,w)
such that F(7,w) C F‘J) The maps a above can be assembled together
to form a vector bundle F; — Z;. The maps 7, X 7,, can be assembled
_together to form a (proper) morphism Z; — E. We have a commutative
diagram/

KT

— :.ljl

o — "

Zj—>

We may therefore use 8.1.6 to conclude that (k7)1 is a semisimple com-
plex and that, for any i and j, there is a canonical exact sequence (in

M(E)):
(a) 0 — H™(f;)1 — H"(f<;)11 — H*(f<j-1 )1 — 0

where f; : F; — E and f<; : Ujr.jo<jFj» — E are the restrictions of x.
The earlier arguments show that

(b) (fj)!l = @(I:‘r ® i/w)[_2M(T’w)]

where the direct sum is taken over all (7,w) such that F(r,w) C Fj.
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From (a),(b) we see by induction on j that all composition factors of
H™(f<j)11 are in Py. Taking j large enough we see that all composition
factors of H™(k7 )1 are in Py. Since (k)11 is semisimple, it follows that
(k)11 € Q1 w. The lemma is proved.

9.2.5. By Lemmas 9.2.3, 9.2.4, we have well-defined functors

Iﬁd;{,w 1 Qrw — Qv (A (p3)i(p2)yp1A)

and v
Respw: Qv — Qrw (B~ k(B)).

~ .V . . . .
Since Indy v is defined using a direct image under a proper map and inverse
images under smooth morphisms with connected fibres, it commutes with
Verdier duality up to shift (see 8.1.1, 8.1.4); more precisely,

D(Indy,w(A)) = Indy,w(D(A))[2d; — 2d,]

.. where d; is the dimension of the fibres of p; and d; is the dimension of the
fibres of p,. We have

dy —dy = Z dim T} dim W + Z dim T; dim W;.
h i
We set v
IndY w = Indp wldi — da).

Then
D(Indy w(A)) = IndY. w(D(A)).

The functor Ind‘{.yw is called induction.

9.2.6. From the proof of 9.2.3 and of 9.2.4, we see that

-V - - -
(a) IndT,W(LV' X LV") = LuIVII
-V = - -
(b) Resp wly = &(Lr ® L,)[~-2M (7, w)]
where the sum is taken over all 7 = (71,72,...,7™),w = (w!,w?,...,w™)

such that dimT; = Y, 7, dimW; = 3w} for all i and 7% + ! = !
for all 1.
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9.2.7. We have f(1'v") = f(v) + f(') + dy — d; hence from 9.2.6(a) we
deduce that
Ind¥,W(LV’ ® Lu“) = Lulull.

9.2.8. Let I" be a smooth irreducible variety with a free action of G. Let
[ = U\I'. Then T is a smooth irreducible variety with a free action of G
induced by that of G. Consider the diagram

EETxELG\(TxE)
with the obvious maps s,t. As in 8.1.9, s*A is a semisimple G-equivariant

complex on I' x E and, since ¢ is a principal G-bundle, the semisimple
complex t,s*B € D(G\(I' x E)) is well-defined. In particular, we can

replace B by IﬁdT,wA and we obtain the semisimple complex
NP 4
Replacing E,T,G by E,T,G, we obtain a similar diagram

x E L G\(T x E)

(&)
Te
=

and we can consider the semisimple complex ,5*A € D(G\(T x E)). In

~ particular, we can replace A by R~es¥,wB and we obtain the semisimple
complex
- ~ V - - =

Let u: G\(T' x E) — {point} and @ : G\(T' x E) — {point} be the obvious
maps.

Lemma 9.2.9 (Adjunction). We have a natural isomorphism
-~V - - ~ vV
H™ui(tys* (Indp,wA) ® tys*(B)) = H (15" (A) ® 1,5 (Resy wB))
forn € Z. Hence, for any j € Z, we have
-~V _ .V
(a) D;/(E,G; Indy wA, B) = D;(E, G; A, Resp w B)

where 7' = j + 2dim G/Q.

The proof (which uses 8.1.6) is given in [2]; we will not repeat it here. The
shift from j to j comes from the formula dim(G\I') = dim(G\TI)—dim G/Q.
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9.2.10. In order to eliminate the shift from j to j’ in the previous lemma,

we define v
Resy. w(B) = Resy w(d1 — d2 — 2dim G/Q),

where d;,ds are as in 9.2.5. We can now rewrite the conclusion of the
previous lemma as follows:

(a) D;(E, G;IndY wA, B) = D;(E, G; A, Res¥. w B).
Note that dim G/Q = }_; dim T; dim Wj; hence

dy —dp —2dimG/Q = ) _ dim Ty dim W — Y _ dim T; dim W
h i
The functor Res¥,w is called restriction.

9.2.11. We can rewrite 9.2.6(b) as follows:

ResY. wlv = &(Ly ® Lu)[M'(T,w)]

- where the sum is taken over all 7 = (11, 7'2, cHn ™) w = (Wl w™)

such that dimT; = Y, 7{,dim W; = Y, w! for all i and 7! + o' = z/l for all
l; we have

2

M'(1,w) =dy —dy —2dimG/Q + f(v) — f(T) — f(w) — 2M(T,w).

‘We show that the last expression is independent of the orientation of our
graph. From the definitions we have

M (1,w) Z dim Ty, dim Wy, — Z dim T; dim W; + Z Wk,

hil’<l
§ Ul § 4 l
+ wh/Thu + Z 'T w + w T - 2 2 Thlwh// - 2 Z T .
hil'<l ijl<l/ IHAd hil’<l i<t

It follows that

M,(T,(J)) = — Z (T]{l’thu + T’{//WL/)
hil' <l

+ Z(dim T} dim Wy + dim Ty dim W)

_ 27— wh + ZT w; —ZdlmT dim W;,

i<l Li>lU

which is clearly independent of orientation.
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9.3. THE CATEGORIES Pv.1/;>y AND Pv;r;y

9.3.1. Let I’ be a discrete subset of I (see 9.1.3). Let v = >, 1i € N[I]
be such that v; = 0 for all i € I-T'. Let Py,r;> be the full subcategory of
Py consisting of perverse sheaves which are direct sums of simple perverse
sheaves L that have the following property: there exists a graded subspace
W C V and an object A € Qr w such that T = V/W satisfies dim T; > v
ifiel, and Ty = 0 for i’ ¢ I'; moreover, L is a direct summand of
Indey, wA-

Clearly,

(a) Pvir;>y O Pviri>y if 7' € NII] has support contained in I’ and
7 < 7 for all i € I'. Any object of Py is in Py;1;>0. Moreover, Pvir,>~
is empty if v; > dim V; for some i € I'.

Let Py, >~ be the full subcategory of Py consisting of the objects which
are in Py,i,> for some v' € N[I] with support contained in I’ such that
/(i) > (i) for all i € I’ and +/(i) > ~(i) for some i € I'.

Let Py, be the full subcategory of Pvi;> consisting of those objects
of, Py ;> which are not in Pvii;>. If K is a simple object of Py and
V # 0, then K is a direct summand of some shift of L, where v starts
with ! = v which may be assumed to be of form ni for some i € I and
some n > 0 (see 9.1.4); we see then that K € Py,(i};>ni- Thus:

(b) if K is a simple object of Py and V # 0, then there exists i € I such

-that K € Pv,{i};>i-

9.3.2. We now assume that W C V and T = V/W are such that for
any h € H we have Tp: = 0 (hence Wjr = V). It follows that Ex = 0.
Moreover, we have a natural imbedding ¢ : Ew — Ev; if z = (z») € Ew,
then the h-component of ¢(x) = z’ is the composition Vi = Wy, v,
Wy C Vie. (In our case we have k : F = Ew and the imbedding ¢
above may be identified with the imbedding F — Ev, see 9.2.2.) From
our assumption it follows that the set {i € I|T; # 0} is discrete; let I’ be a
discrete subset of I containing {i € I|T; # 0}.

We consider the locally closed subset © of Ey consisting of all z €
Ev such that dimVi/(3,cyni=iTh(Vr)) = dimT; for al'i e I,
and the open subset = of Ew consisting of all z € Ew such that
Y hernr—i Th(Wh) = Wi forallie I'.

Let p : G Xxg Ew — Ey be the unique G-equivariant map such that
(1,z) — i(z) for all z € Ew; let po : G xg E — © be the restriction of
p. Note that pp is an isomorphism. The inverse map can be described as
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follows. Let z € ©. The I-graded subspace

Gier( Y a(Vw)) ® (Bicr-rVi)
heH:h'" =i

of V has the same dimension in each degree as W; hence it is equal to
g(W) for some g € G. The element gz is equal to +(z’) for a well-defined
«’ € Ew. Then p;'(z) = (g,2'). In particular, 6,G xq E,G xg Ew are
irreducible of the same dimension.

Since p is a proper map, its image p(G x g Ew) is a closed subset of Ey,
containing ©. Hence dim G xg Ew > dimp(G xg Ew) > dim 6. It follows
that these inequalities are equalities; hence © is open dense in P(GxoEw).

We have a commutative diagram

Po o

GXQE

| T

G xgEw —2— Ey «—— Ew

“ where to, j, jo,m denote the inclusions. Both squares in the diagram are
cartesian.

Let PY, be the full subcategory of Pw whose objects are those perverse
sheaves A such that any simple constituent of A has support which meets
Z. Let Py be the full subcategory of Py whose ob jects are those perverse
sheaves A such that the support of A is contained in Ew-=

Let PY be the full subcategory of Py whose objects are those perverse
sheaves B such that any simple constituent of B has support which meets
© and is contained in the closure of 8. Let P}, be the full subcategory of
Pv whose objects are those perverse sheaves B such that the support of B
is disjoint from © and is contained in the closure of ©. Clearly, any object
A € Pw has a canonical decomposition A = A® @ A! where A° € PY, and
A! € P},. Moreover, any object B € Py with support contained in the
closure of © has a canonical decomposition B = B® @ B* where B? € P,
and B! € P},

Proposition 9.3.3. (a) Let A € P,. If n # 0, we have H"Ind,r wAa €
PL. Ifn=0, then H "Ind.r wA € Py has support contained in the closure
of ©; hence £(A) = (HI™ G/QIndT A)° € PY is defined.

(b) Let B € PY. Ifn # 0, we have H"ResTwB € Piw- Ifn =0,
then H™ResY. B € Pw hence p(B) = (H™ d‘"‘G/QResT wB)? € P, is
defined.
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(c) The functors & : Py — PY and p: Py — P, establish equivalences
of categories inverse to each other.

Note that j*B is a perverse sheaf on 8, since the support of B is con-
tained in the closure of © and © is open in its closure. Moreover, j*B
is a G-equivariant perverse sheaf. Since 8 = G xg E, it follows that
15(5*B)[— dim G/Q) is a perverse sheaf on E. But m*.*B = ({j* B, hence
m** B[—dim G/Q)] is a perverse sheaf on =. Since m is an open imbed-
ding, we have m*(H™.*B) = H™(m*.*B) for any n, and this is zero if
n # —dimG/Q. Hence if n # —dim G/Q, the support of H™.*B is dis-
joint from E. We have R.es;WB = Resy wB[dim G/Q] = +*B and (b) is
proved.

Let A be the perverse sheaf on G xg Ew such that 4 = r{7* A[dim G/Q]

in the diagram Ew <~ G/U x Ew - G xq Ew. By definition,
Iﬂd};,wA = pirir*A = pA[- dim G/Q).

-~V
This shows that Indy w A has support contained in the image of p, hence
in the closure of 6. We have

PPN ' 1 . .t .

j*(Indy wA) = j*pA[-dim G/Q] = (po)1j A[— dim G/Q).
Since jo is an open imbedding, we see that ja‘fi is a perverse sheaf on
G x@QE. Since pp : G Xx@ E — O is an isomorphism, it follows that (pp):j5A
is a peryerse sheaf on ©. Thus j*(Iﬁd"r,‘wA)[dim G/Q)] is a perverse sheaf

" on 6.

Since Iﬁd;wA has support contained in the closure of O, it fol-
lows that H "Iﬁd"r,,wA has support contained in the closure of © and
J*(H "Iﬁd;wA) =H "(j*Iﬂd;wA). This is zero if n # dimG/Q. Hence
for n # dimG/Q, the support of H "Iﬁd;wA is disjoint from 6. This
proves (a), since Ind¥,WA = Iﬁd‘T,’wA[dim G/Q).

From the proof of (b), we have

m*(p(B)) = m*(H~ 4™ ¢/Q,”B)
=m*(*B[-dim G/Q))
= (5] B[— dim G/Q).
This implies that j34(B) = p{j*B. From the proof of (a), we have
7 (6(4)) = 5" (H™ 6/ ¥Lndy,  A)

= j*(Iﬁd}rl,wA[dim G/Q)) = (po)j3A.
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Hence
m* (p(§(A4)) = 155" (€(A))[- dim G/Q] = 1§ (po)1jg Al dim G/Q] = m* A

and
37 (€(p(B)) = (po)1joA(B) = (po)poi* B = ™ B.

Since A € Py, and B € PY, it follows that p(£(A)) = A and &(p(B)) = B.
The proposition is proved.

9.3.4. Assume that I’ is a subset of I such that A’ ¢ I’ for any h € H,
that is, i is a sink of our quiver, for any i € I'. Let V € V. For any
v = >_;7i € N[I] with support contained in I, let Ey., be the set of all
z € Ev such that

dmVi/( ) z(Vw)) =
heH:h'' =i

for any i € I'. The sets Ey,, form a partition of Ey with the following
* property: for any v as above, the union Ev;>, = Uy Ey.,/ (with 4/ running
over the elements of N[I] with support contained in I’ such that v/ >
for all i € I) is a closed subset of Ey. Hence for any simple object B of
Pv, there is a unique element v = 4B € N(I] with support contained in
I’ such that the support of B is contained in Ev;>, and meets Ey.,. We
have 4 < dimV; for all i € I.

Lemma 9.3.5. Assume that B € Py,y., where v’ € N[I] has support
contained in I'. Then vB =~'.

We write 7 instead of 2. Let W be a graded subspace of V such that
T = V/W satisfies dimT; = ~; foralli€ I’ and Ty =0 foralli’ e I-T'.
We may apply Proposition 9.3.3 to I’ and B. With notations there, let
A = p(B) € Pw; we have that some shift of B is a direct summand of
Iﬁd;wA. Hence B € Py;1/;>.

From the definition of induction we see that any perverse sheaf in
Pv.1/;>4 has support contained in Ev,>.. In particular, the support of B
is contained in Ev,>./. By definition, the support of B meets Ev.; hence
Ev,, meets Ev;>,/, so that 1 > { for allie I'.

Assume that ; >~ for some i € I. Since B € Pv,1;>-, it follows that
B € Pv;r;>y, which contradicts our assumption that B € Py,r;,-. Thus,
we must have v; = 4| for all i € I'. The lemma is proved.



CHAPTER 10

Fourier-Deligne Transform

10.1. FOURIER-DELIGNE TRANSFORM AND RESTRICTION

10.1.1. In addition to the orientation h — h’, h — h” in 9.1.1, we shall
consider a new orientation of our graph. Thus, we assume we are given two
new maps H — I denoted h — 'h and h — "h, such that for any h € H,
the subset [h] of I consists precisely of ‘h,”h. Let

Hy={h€ H'h="h and "h=h"}; Hy={h€ H'h=h"and "h=h'}.

Then H,, H, form a partition of H.
For V € V, we define 'Ev like Ev in 9.1.2, but using the new orientation:
"By = ®regHom(Viy, Viry). This has a natural Gy-action just like Ey.
We have

Ev = ®rey, Hom(Vy, Vi) @ (Bren, Hom(Vir, Vi),
- /By = ®nen, Hom(Vy/, Vi) @ (Brer,Hom(Vir, Vi),
Let Ey be the vector space
®her, Hom(Vy, Vi )& (@re i, Hom(Viy, Vi ))& (Dhe o, Hom(Virr, Vi),
We have the diagram
(a) Ey < Ev 5 'Ev

where s,t are the obvious projections.

Let T : Eyv — k be the map given by T(e) = Zh€H2 tr (Vo — Vo —
V) where the two unnamed maps are components of e. Let us consider
the Fourier-Deligne transform @ : D(Ey) — D('Ey) defined by ®(K) =
ti(s*(K) ® Lr)[dv] where dy = ),y dimVy dim Vye. (See 8.1.11.)
Now let T, W be as in 9.2.1. We may consider a diagram like (a) for T
and for W instead of V; taking direct products, we obtain the diagram

ETXEwiETXEw—EP/ETXIEw.
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On each of ET and Ew we have a linear form like T' above; the sum of
these gives a linear form T : Ex x Ew — k. The Fourier-Deligne transform
®: D(Et x Ew) — D(Et x 'Ew) is given by

©(K) = t(5*(K) ® L)[dr + dw].
The following result shows the relation between the Fourier-Deligne

transform and the restriction functor.

Proposition 10.1.2. For any K € Qv we have

B(Resywk) = Resy w(®(K))[r]

where
T = Z (dim Thn dim th — dim Th/ dim Whu).
heH;

We consider the commutative diagram of vector spaces and linear maps

ErxEw 2 F - Ev

S | 1

ErxBw «2— 9w 4% p_¢ ., = ‘ » By

o 4

’

'Et X 'Ew —2 !
where the following notation is used.

F is the set of all z € Ev such that z,(W4/) C Wy for all h € H; pis
the obvious surjective map and ¢ is the obvious imbedding.

'F is the set of all z € "Evy such that x,(W/,) C Wy, for all h € H;'p
is the obvious surjective map and ‘¢ is the obvious imbedding.

Fistheset ofall z € Ev such that sz € F and tz € 'F.

E is defined by the condition that (i,t,¢,’t) is a cartesian diagram.

¥ is defined by the condition that (3, p,p, 3) is a cartesian diagram.

q is such that sq and pq are the obvious surjective maps.

¢ is such that i¢ and i¢ are the obvious imbeddings.

We have E = 'F @ (®nen, Hom(Vy, V). Let Z be the subspace of =
consisting of the elements such that each component Vi — Vh: (h € Hy)
carries Wy~ to 0 and all other components are zero. Let ¢ : E — Z/Z be
the canonical map. Let T : £ — k be given by T(z) = T(«(z)). From
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definitions, it follows immediately that the restriction of T to a fibre (& Z)
of c: E — E/Z is an affine-linear function which is constant if and only if
that fibre is contained in the subspace ¢(F).

Let & = Z — ((F), and let (E/Z) = ¢(E'). We have Z C {(F); hence
all fibres of ¢’ : & — (E/Z)’ (restriction of ¢) are isomorphic to Z.

Let T' : &' — k be the restriction of 7. As we have seen above, the
restriction of 7" to any fibre of ¢’ : ' — (£/Z)’ is a non-constant affine-

=/

linear function. Hence the local system L7+ on E' satisfies ¢|(L7/) = 0
(see 8.1.13). Using the distinguished triangle associated to the partition
E = E' U ((F), we deduce that ai((*Ls) = als. It is clear that the
composition si : E — Evy factors through E/Z; hence {*s*K is in the
image of ¢* so that the previous equality implies
Cg(ég(é*ﬁf-) ®i*s*K) = C!(ET ®i*s*K).
It is also clear that the composition /pt : & — 'Ex x 'Ew factors through
E/Z. Hence the previous equality implies
"ot ($(( L) ®iTs*K) = "pity(L7 © i*s*K).

We have Ti¢ = Tpg; hence p*¢*Ls = (*i*Lr = (*L;. Since ¢ is a

surjective linear map with kernel of dimension

m= Z dim Thu dim Wh/,
heH,
we obtain ¢1¢*L = L{—2m)] for all L € D(¥). We have

®(Resy. wK) = h(Lr ® 5pu* K)ldr + dw]
=h(Lr @ pi§* L K)[dr + dw]
= H(Lr @ pgig* 8" K [2m])[dt + dw]
= tp@(p*4" (Lr) ® §*$"° K)[2m + dr + dw]
= 'pgt'gclg(]')*d*(ﬁrf) ® é*i*s*K)[2m +dt + dw]
="pby(G(p* ¢ L7) ® i*s* K)[2m + d + dw]
= ,pgt'!(c'!(é*[:j‘) ® i*s*K)[2m + dt + dw]
='ph(Ls ® i*s*K)[2m + dt + dw]
and
Res¥,w((1>(K))[7r] ='p/*ty (LT ® s*K)[m + dv]
= ’pgt‘!i*(ﬁT ® s*K)[r + dv]
='pt(Ls ® i*s*K)[m + dv].

It remains for us to observe that m+dv = 2m-+dr+dw. The proposition
is proved.
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10.1.3. We can reformulate the previous proposition using Res.}'yw instead

of R~es¥’w; the shift by = will then disappear:

®(Resy. wK) = Res¥. w (®(K)).

10.2. FOURIER-DELIGNE TRANSFORM AND INDUCTION

10.2.1. Let v = (v!,%,...,0™) € X be such that dim V; = ¥,/ for all i.
Recall that we have a natural proper morphism =, : 7, —» Ev. The same
definition with the new orientation for our graph gives a proper morphism
'my, : 'F, — 'Ev, where 'F, is the variety of all pairs (z, f) such that
z € 'Ev and f € F, is z-stable; 'm, is the first projection.

Recall the definition L, = (o)1 € D(Ey). Similarly, we set 'L, =
('m )1 € D(Evy).

Proposition 10.2.2. &(L,) = 'L, [M] where

’ ’ ’
M= E Wk —vhvts).
heHal>1

Consider the commutative diagram

o — 5 -
3 =

~| el |

Ev —— Ey —— 'Ey

«— [}

where the following notation is used.

E is the set of all (z,y, f) where z € Ev, f is an z-stable flag in F,, and
y € 'Ev is such that y, = x5, : Vi — Vi for any h € H;.

E is the set of all (y, f) wherey € 'Ey and f = (V=V°>Vl>... 5
V™ =0) is a flag in F,, such that y,(V},) C V., for all [ and all h € H;.

The lower horizontal maps are as in 10.1.1(a); the other maps are the
obvious ones. The left square is cartesian. We have s*(m, )11 = pr1. Hence

®(L,) = ti(Lr ® p1)[dv] = (L) [dv]

where T : Ey — k is as in 1011, T : E > k is given by T = Tp and
t=tp:= - 'Ey.
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The fibres of c are affine spaces of dimension N = 3, ., v, z/,';,,.
(In the formula for N we have v},v}, =0 for l = I’, since /! is discrete.)

We have a partition = = Zy U Z; where = is the closed subset of =
consisting of those (z,y, f) such that f is y-stable. It can be verified that
the restriction of T to the fibre of ¢ at c(z,y, f) is an affine-linear function
and that this function is constant if and only if (z,y, f) € Zp. Note that
Zo is a union of fibres of c.

Using 8.1.13, it follows that (c1)(L5|z,) = 0, where ¢’ : £; — Z is the
restriction of c. Hence, if j : £y — Z is the inclusion, we have ¢ (].'*ﬁq:) =
¢i1Ly. From the commutative diagram above, it then follows that

(o) (Ls = (to)(Lsl=,)

where tg : E9 — 'Ev is the restriction of tp.
Let (z,y, f) € Ep with f as above. We have

T(z,y,f) =T(z,9) = D> tr (Yazn: Viw = Vi),
heH,

Since f is stable under both x and y, we have

tr (ynzp : Vi — Vhr) = z tr (yhmh : VLTI/Vl ;= Vﬁ;,l/Vﬁl,,).
1
For any [, at least one of the vector spaces V;Jl /Vi,, V;;,l / V%, is zero,
since v/} is discrete. Thus, tr (ypzh : Vi — V1) = 0 for each h € Hy, so
" that T(x,y, f) = 0. Since T is identically zero on =, we have Lilzg =1
and we see that
(to0(Ls = (o)L

Now g can be factored as a composition Sy — 'F,, —% 'Ey, where the
first map (restriction of ¢) is a vector bundle of dimension N. Hence

(to)gl = (’71',,)!1[—2N] = ,Ly[—2N].

It follows that (tp)1(Ls = (to)11 = 'L,[—2N]. It remains for us to observe
that dyv — 2N = M. The proposition is proved.

10.2.3. Using the proposition and the general properties of the Fourier-
Deligne transform (see 8.1.11) we see that ® : D(Ey) — D('Ey) defines
an equivalence of categories Qv — 'Qy and Py — Py, where 'Qv, Py
are defined as Qv, Py but using the new orientation of our graph. Hence
® induces a bijection between the set of simple objects in Py and that in
"Py.
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10.2.4. We have a natural action of (k*)¥ on Ev (resp. on F, ) given by
(¢n) = (zn) = (Chzn) (resp. (Cu) @ ((zn), f) = ((Chzn), f). The map m, is
compatible with these actions. It follows that H"L, is (k*)¥-equivariant
for any n. Hence any K € Py is (k*)¥-equivariant. In particular, we have
j*K = K, where j : Eyv — Ev is the involution which acts as —1 on the
summands Hom(Vys, V) for h € Hz and as 1 on the other summands.
Hence for K € Py, the Fourier inversion formula (see 8.1.11) simplifies to

B(®(K)) = K.

10.2.5. Let A € Qv and let A’ € 'Qv.. For any j € Z, we have a canonical
isomorphism

Dj (EV’ GV; A’ ‘I)(A,)) = Dj (IEVa GV; Q(A)> A,)
This follows by applying 8.1.12 to the diagram
Gv\(T x Ey) — Gv\(T x Ev) - Gv\(T x 'Ey)

obtained from 10.1.1(a), where I is a suitable smooth variety with a free
Gvr-action.

Proposition 10.2.6. With the notations of Proposition 10.1.2, let L €
Ot ,w. There exists an isomorphism in'Qy:

O(Indy. wL) = Indy.  (SL).

Since 'Py is stable under Verdier duality, we see from 9.1.6 that it suffices
to check that
(a)
dimD;('Ev, Gv; ®(IndY wL),®K) = dimD;('Ev, Gv;Ind¥.  (®L), 2K)

for any K € Py and any j € Z.
By 10.2.5, the left hand side of (a) is equal to

dimD;(Ev, Gv;Ind¥ wL, K)
and by 9.2.9, this is equal to
dimD;(Et x Ew, Gt x Gw; L, Res¥ w K).
By 9.2.9, the right hand side of (a) is equal to

dimD;('Er x "Ew, Gt x Gw; ®L, ResY. w (2K))
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and by 10.2.5, this is equal to
dim D;(Er x Ew, Gt X Gw; L, ®(Resy. w (2K))).
Hence (a) is equivalent to

dim D;(Et x Ew,Gt X Gw; L, Res¥. w K)
= dim D;(ET x Ew, G x Gw; L, ®(Res¥. w (2K))).

But this follows from Resy wK = ®(Resy. w(®K)) (see 10.1.3). The
proposition is proved.

10.3. A KEy INDUCTIVE STEP

Lemma 10.3.1. Let I',~y be as in 9.3.1. The Fourier-Deligne transform
® : Pv — "Py defines an equivalence of categories between Py,1., and
the analogous category 'Pv.v;, defined as Py, with respect to the new
orientation.

{This follows immediately from the definitions since the Fourier-Deligne
transform commutes with Ind.

Proposition 10.3.2. Let ',y be as in 9.8.1. Let W be a graded subspace
of V such that T = V/W satisfies dimT; = ~; for alli€ I’ and Ty =0
foralli eI-T.

(a) Let B be a simple object of Py,r;v. We have
ResY wB = A® (&;L;[j])

where A is a simple object of Pw,y;0 and Lj € Pw,r;>0 for all j.
(b) Let A be a simple object of Pw.1;,0. We have

IndY wA = B & (®;C;lj])
where B is a simple object of Py,1;, and
Cj € Pviri>y

for all 5.

(c) The maps B — A in (a) and A — B in (b) are inverse bijections
between the set of isomorphism classes of simple objects in Py,r,y and the
analogous set for Pw.r 0.
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This statement is independent of the orientation of our graph: we use the
previous lemma and the fact that the Fourier-Deligne transform commutes
with Ind and Res. Hence it is enough to prove the proposition under the
additional assumption that h’ ¢ I’ for any h € H. We can achieve this by
a change of orientation.

Let A be as in (b). By Lemma 9.3.5 , the support of A meets Ew,.
Hence Proposition 9.3.3 is applicable to A,I’; it shows that Ind}”wA x
B & (®,C;[j]) where B is a simple object of Py such that the support of
B is contained in Ev;>, and meets Ev,; C; € Py has support contained
in Ev,>, and is disjoint from Ev,, for any j. By Lemma 9.3.5, we then
have B € Py.r;y and Cj € Py,1/;>.

Conversely, let B be as in (a). By Lemma 9.3.5, we have that the support
of B is contained in Ev,>, and meets Ev,,. Hence Proposition 9.3.3 is
applicable to B and I'. It shows that ResY wB = A @ (&;L,[j]) where
A is a simple object of Pw such that the support of A meets Ew., and
L; € Pw has support disjoint from Ew,o for any j. By Lemma 9.3.5 we
then have A € Pw,r;0 and L; € Pw,r;>0. This proves (a), (b). Statement
(c) follows from the last assertion of Proposition 9.3.3.

10.3.3. Remark. The previous proof shows that, given I’ as above and a
simple object B in Py, there is a unique v € N[I] with support contained
in I’ such that B € Py,r;y.

_The existence of v is obvious. To prove uniqueness, we may assume that
the ‘orientation has been chosen as in the previous proof; but then « is such
that the support of B is contained in Ev,>, and meets Ev,, and these
conditions determine <y uniquely since the support of B is irreducible.

10.3.4. Passage to the opposite orientation. Let V € V. For each
i € I, let V; be the dual space of V; and let V* = &; V] € V. Assume
now that the new orientation (see 10.1.1) of our graph is the opposite of
the old one, that is, ’h = h” and "h = k' for all h € H. We have an
isomorphism p : Ey = ‘Ey. given by p(z) = z’ where z}, : V};, — V}, is
the transpose of z, : Vi — V. This induces an equivalence of categories
pr : D(Ev) = D(Ey-) with inverse p*.

Let v = (v1,12,...,v™) € X be such that dim V; = 2 viforallieL
Let v/ = (v™,v™71,...,v!) € X. It follows immediately from definitions
that pL, = L,» € D(Ey.). From this we deduce that p, defines equiva-
lences of categories Py — Py« and Qv — 'Qy-.



CHAPTER 11

Periodic Functors

11.1.1. Let C be a category in which the space of morphisms between any
two objects has a given Q;-vector space structure such that composition of
morphisms is bilinear and such that finite direct sums exist. We say that
C is a linear category.

A functor from one linear category to another linear category is said to
be linear if it respects the Q;-vector space structures.

11.1.2. Assume that we are given an integer n > 1 and a linear functor
a* : C — C such that a*™ is the identity functor from C to C. We say that
a is a periodic functor.

We define a new category C as follows. The objects of C are pairs (A, )
where A is an object of C and ¢ : a*A — A is an isomorphism in C such
that the composition

e R e R L AT S I NN SR A

a*"A
" is the ide};ltity map of A. )

Let (A, ¢) and (A4’, ¢’) be two objects of C. There is a natural automor-
phism u : Hom(A, A’) — Hom(A, A’) given by u(f) = ¢'a*(f)¢~!. From
the definitions it follows that u™ = 1. By definition,

Homg ((4, ), (4',¢)) = {f € Homc (4, A)|u(f) = f}.

The composition of morphisms in C is induced by that in C. The direct
sum of two objects (A, $) and (A’,¢') of Cis (Ad A", ¢ @ ¢'). Thus, C is
in a natural way a linear category. Clearly, if (A, ¢) is an object of C, then
so is (A, (@) for any ¢ € Q; such that ¢™ = 1.
11.1.3. Assume that we are given three objects (A, ¢), (4", ¢'), (A”,¢") of
C and morphisms 7 : (A, ¢') = (A,8), P : (A,¢) — (A”,¢") in C such
that the following holds.

(a) There exist morphisms i’ : A” — A and p' : A — A’ in C such that

U Y/

P’ =14, p'i" =0,p" =0, p"i" =14, i'p' +1"p" = 14.
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We show that (4’,¢') ® (A”,¢") = (A,¢) in C. Recall that u™(:") =
i where u : Hom¢g(A”,A) — Homg(A”, A) is as in 11.1.2. Let ¢/ =
> w (i")/n: A" — A.~Then i" € Homg (A", A') and p"i" = 14n.

We set the o/ =p' — p/i"p”" : A — A’. Then

ﬁlil =1y, ﬁ/g// =0, pIIZ-I =0, ilﬁl +:lepll =14
It follows that (i,7”) define an isomorphism (4’, ¢') & (A”, ¢" ) — (A, 9)
(in C). Our assertion is proved.

11.1.4. An object (A, ¢) of C is said to be traceless if there exists an
object B of C, an integer t > 2 dividing n, such that ¢*!B = B, and an
isomorphism A 2 B®a*B® --- ® a**"V B under which ¢ corresponds
to an isomorphism a*B®a*?B®---®a**B~ B®a*B®---®a*¢t-VB
carrying the summand a*’ B onto the summand a*'B (for 1 < j <t — 1)
and the summand a*!B onto the summand B.

11.1.5. Let O be the subring of Q; consisting of all Z-linear combinations
of n-th roots of 1. We associate to C' and a* an O-module X(C). By
definition, X(C) is the O-module generated by symbols [B, ¢], one for each
isomorphism class of objects (B, ¢) of C, subject to the following relations:

(a) [B) ¢] + [BI: ¢/] = [B ®B.,¢0 ¢I];
- {b) [B, ] = 0 if (B, ¢) is traceless;
(c) [B,¢¢] = ([B, ¢] if ¢ € Q, satisfies (™ = 1.

This definition is similar to that of a Grothendieck group.

11.1.6. Now let C’ be another linear category with a given functor a* :
C’' — C' such that a*" is the identity functor from C’ to C’. Let b :
C — C’ be a linear functor. Assume that we are given an isomorphism of
functors ba* = a*b: C — C’. Then b induces a linear functor b : ¢ — ¢’
by b(A,¢) = (bA,¢’) where ¢’ : a*bA — bA is the composition a*bA =
bara 29, bA. It is clear that [A,¢] — [bA, ¢'] respects the relations of
K(C),K(C") and hence defines an O-linear map K(C) — K(C').

11.1.7. Assume now that C is, in addition, an abelian category in which
any object is a direct sum of finitely many simple objects. Let B be a
simple object of C. Let tp be the smallest integer > 1 such that (a*)!2 B
is isomorphic to B; let fg : (a*)®B — B be an isomorphism. We have
n = n’tg where n’ is an integer > 1.
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The composition

() B=(a")"""B —... 2 215, gratapg @PIn, jatapg I5,
is a non-zero scalar times identity (since B is simple); hence by changing
fB by a non-zero multiple of fg, we can assume that the composition (a)
is the identity.

Consider the isomorphism

¢p:a*(B®a*B®---(a")* 'B)=a*B®a*’*B&---(a*)'®B
—B®a'B®---(a*)'*"'B

which maps the summand a*/B onto the summand a*/B by the identity
map (for 1 < j < tp — 1) and maps the summand (a*)*2 B onto the sum-
mand B by fp. From the definitions we see that

(B®a*B®---(a*)'?"'B, ¢p)

is an object of C.

- Let S be a set of simple objects of C with the following property: any
simple object in C is isomorphic to a¢*/B for a unique B in S and some
j > 0. For each B in S we choose ¢p as above. It is easy to see that any
object of C is isomorphic to

® ®pes((B®a*B®---(a*)'*"'B) ® Ep, 65 ® ¥B)

where for each B, Ep is a finite dimensional Q;-vector space with a given
automorphism g : Eg — Ep such that ¥} = 1 and Eg = 0 for all but
finitely many B. Note that the summands corresponding to B such that
tp > 2 are traceless.

Let B be a simple object of C such that a*B = B. The isomorphisms
6 : a*B = B such that (B, ) € C, generate a free O-submodule of rank
1 of Hom¢(a* B, B); we denote this O-submodule by Op. It is easy to see
that Op depends only on the isomorphism class of B.

11.1.8. From 11.1.7 it follows easily that

(a) K(C) =508

as O-modules (the sum is taken over the isomorphism classes of simple
objects B such that a* B = B); to the element ¢ € Op such that (B,¢) € C
corresponds the element [B, ¢] € K(C).



CHAPTER 12

Quivers with Automorphisms

12.1. THE Groupr K(Qv)

12.1.1. An admissible automorphism of the graph (I, H, h — [h]) consists,
by definition, of a permutation a : I — I and a permutation a : H — H
such that for any h € H, we have [a(h)] = a[h] as subsets of I and such
that there is no edge joining two vertices in the same a-orbit.

In this chapter we assume that we are given an integer n > 1 and an
admissible automorphism a of the graph (I, H, h — [h]) in 9.1.1. We assume
that a™ = 1 both on I and on H. From the definition it follows that

(a) any a-orbit on I is a discrete subset of I, in the sense of 9.1.3.

An orientation h — h’,h — h” (see 9.1.1) of our graph is said to
' be compatible with a if, for any h € H, we have (a(h)) = a(h') and
(a(h))” = a(h”). From property (a) we can deduce that there is at least
one orientation of our graph which is compatible with a. This is seen as
follows. Choose a set of representatives Hy for the a-orbits on H. For
each h € Hy, choose one element h' of [h]; let h” be the other element
of [A]. Now let h € H. We can find n € Z such that h = a™hg where
ho € Hp is uniquely determined. We set h' = a™(hy) and h” = a™(h{j). We
must prove that k', h” are independent of the choice of n. We are reduced
to verifying the following statement: if m € Z satisfies a™hg = hg, then
we have a™(hy) = hg and a™(hg) = h{. If this is not the case, we have
a™(hg) = hg, which contradicts property (a).

12.1.2. Let V? be the category of finite dimensional I-graded k-vector
spaces V = ®jie1V; with a given linear map a : V — V such that a(V;) =
V) foralli € Iand a’|y, = 1y, foralli € Iand all j > 1 such that a7 (i) =
i. The morphisms in V* are isomorphisms of vector spaces compatible with
the grading and with a. Note that a : V — V automatically satisfies
a™ =1. Let

N[I* = {v € NO)|ss = voy VielI}.

For each v € N[I]?, we denote by V2 the full subcategory of V* whose
objects are those V such that dim V; = y; for all i € I. Then each object
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of V belongs to V¢ for a unique v € N[I]* and any two objects of V¢ are
isomorphic to each other. Moreover V¢ is non-empty for any v € N[I]®.

We choose an orientation of our graph, compatible with a. If V € V¢,
then we may regard V as an object of V (by forgetting a); in particular,
Gv and Ev are defined.

There is a natural automorphism a : Gy — Gy given by a(gz) =
a(g)(a(z)) for all g € Gv and z € V; moreover, there is a natural auto-
morphism a : Ey — Ey (z — a(z)), such that for any z = (z3) € Evy
and any h € H, the compositions

a(z)a(n)

Vhl Zh, th N Va(hu) and Vhr N Va(h’) Va(h”)
coincide. Both of these automorphisms satisfy a™ = 1. Note that a(gz) =
a(g)(a(z)) for all g € Gy and z € Ey. Taking the inverse image under
a : Ey — Evy gives us a functor a* : D(Ey) — D(Ey).

Let v = (v1,1%,...,v™) € X be such that dimV; = ", viforalliel;
here 1/’ € N[I] for each I. Let v/ = (v1,1'2,...,V/™) € X be defined

by = 'u"l() We have natural isomorphisms a : ¥, — F,, and a :
]-‘,,, — .7-',, given by a(f) = (V = a(V®) D a(V!) D --- D a(V™) = 0)
for f=(V=V >Vl >...>V™=0) and a(x,f) = (az,af). It

follows that a*L, = L,. From this we see that a* takes Qv into itself
and Py into itself. Applying the definitions in 11.1.2, 11.1.5 to the linear
_.categories Qv,’Pv and to the periodic functor a* on them, we obtain the
linear categories Qv, Py and the @-modules K(Qv), K(Pv).

12.1.3. We shall use the notation O’ = O[v,v~!] (v is an indeterminate).
Now K(Qv) is naturally an O’-module by v"*[B, ¢] = [B’, ¢'], where (B’, ¢')
is obtained from (B, ¢) by applying the shift [n].

We define (0’-linear maps

K(Qv) 2 O @0 K(Pv) £ K(Qv)

as follows: p’ sends a symbol [B, @] (where B € Py) to [B,¢|; p sends
a symbol [B, @] (where B € Qv) to >, v "[H"B,H"($)]. It is easy to
verify that p, p’ respect the defining relations; hence they are well-defined.
It is also clear that pp’ = 1.

If K € Qv and we are given an isomorphism ¢ : a*K — K, then ¢
induces isomorphisms ¢, : a*(H"K[—n]) = H"K|[—n] for each n; moreover
we have (K, ) = @,(H"K[-n],$,) as objects of Qv. This follows from
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8.1.3(a) by repeated applications of 11.1.3. This shows that p'p = 1. Thus,
P’ is an isomorphism

o’ R0 K('Pv) >~ ,C(Qv)
Using this and 11.1.8, we see that
(a) ®p0' ®0 Op = K(Qv)

where the sum is over a set of representatives B for the isomorphism classes
of simple perverse sheaves in Py such that a*B = B; Op is a free @-module
of rank 1 defined as in 11.1.7 (to ¢ € Op such that (B, ¢) € Py corresponds
[B’ ¢] € K(QV))

12.1.4. Now let T, W be two objects of V. We can form Et, Ew and
their product E1 x Ew. This has an action of Gt X Gw (product of actions
as in 9.1.2) and an automorphism a (product of the automorphisms a of
the factors) such that a™ = 1.

The functor a* : D(ET x Ew) — D(ET X Ew) takes the subcategories
Pr,w and Qr w into themselves. Applying the definitions in 11.1.2, 11.1.5
to these linear categories and to a*, we obtain linear categories 75T,w, QT,W
and O-modules K(Pr,w), K(Qr,w). These are special cases of the defini-
tions of Py, Qv and K(Py), K(Qv) in 12.1.2; indeed, Tx W and E1 x Ew
are special cases of V and Ey where our graph has been replaced by the dis-
joinit union of two copies of itself. Thus, X(Qr, w) is naturally a O’-module
and we have

0’ ®o K(Pr,w) = K(Q1,w)

and
®p0' Qo Op = K(Q1,w)

where the sum is over a set of representatives B for the isomorphism classes
of simple perverse sheaves in P w such that a*B = B; Op is a free O-
module of rank 1 defined as in 11.1.7 (to ¢ € Op such that (B, ¢) € Prw
corresponds [B, ¢] € K(Qr,w)).

From the definitions it is clear that any simple object B € Prw is
the external tensor product B’ ® B” of two simple objects B’ € Pr and
B" € Pw (and conversely); we have a*B = B if and only if a* B’ 2 B’ and
a*B"” = B” and then Hom(a*B, B) = Hom(a*B’, B') ® Hom(a*B", B")
and O = Op' ®o Op~. It follows that

K(Qrw) = K(Q1) ®0 K(Qw).
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12.1.5. Assume now that W is an I-graded, a-stable subspace of V and
that T = V/W with the induced grading and a-action. The functors
Ind¥,w : Qr,w — Qv and Res¥’w : Qv — Ot w are linear and compat-
ible with a*; hence by 11.1.6, we have induced linear functors

Orw — OQv, Qv — Ot w and O-linear maps

ind¥’w : K(Qr,w) — K(Qv) and res¥’w : K(Qv) = K(Q1,w)-

These last two maps are in fact O'-linear since Indy y, and Resy w
commute with shifts.

12.2. INNER ProODUCT

12.2.1. Let (B',¢'),(B”,¢”) be two objects of Qv. The vector space
D,(Ev,Gv;B’,B") (see 8.1.9) has a natural automorphism a such that
a™ = 1. This can be constructed as follows. Let V' be an I-graded k-vector
space such that for each i € I, dim V4 is finite but large.

Let T’ be the smooth, irreducible variety consisting of all injective linear
maps V — V which respect the I-grading. Then I' has an obvious free
Gv-action and its Q;-cohomology is zero in degrees 1,2,..., m where m is
a large integer.

By the definition of V*, we have an automorphism a : V — V. This
induces an automorphism a : I — I'. Taking the product with the automor-
phism a : Ev — Ev, we obtain an automorphism a : I' Xx Ev — I x Ey.
' This indfices an automorphism a of the orbit space Gv\(I' x Ev). The
isomorphisms ¢’ : a*B’ — B’ and ¢” : a*B” — B” induce isomorphisms
# :a*B’' — B’ and ¢" : a*B" — B" where B’ = t,s*B’, B"” = t,s* B" are
semisimple complexes in Gy \(I" x Ey) defined as in 8.1.9.

Now ¢’ ® ¢ : a*(B’' ® B") — (B’ ® B") induces an isomorphism of

Hj+2dim(G\l") (u!(B/ ® B//))
onto itself, or equivalently, an isomorphism of
D;(Ev,Gv;B',B")

onto itself, denoted again by a. Here u denotes the map of Gy \(I'xEy) into
the point. It is clear that a : D;(Ev,Gv; B, B”) — D;(Ev,Gv; B, B")
satisfies a™ = 1.

We define

{(B',¢),(B",¢")} =Y tr (a,D;(Ev,Gv; B, B"))v™ € O((v))
i
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The last inclusion follows from 8.1.10(e). (In general, given a ring R,
the ring of power series Enez a,v" with a,, € R such that a, = 0 for
n < 0 (resp. n < 0; or n>> 0; or n > 0) is denoted R((v)) (resp. R[[v]]; or
R((v™1)); or Rl[v=])).)

If (B’, ¢') is traceless, then we can write B = C®a*C®---®a*t-1C
(where t > 2) and ¢’ acts like a matrix without diagonal terms. We have a
corresponding decomposition

Dj(Ev, Gv; B/, B”) =
Dj(Ev, Gv; C, B”) (&) Dj(Ev, Gv; a*C, B”) &D---
® D;(Ey,Gv;a*t~YC, B")
Then a : D;(Ev,Gv; B’,B") — D;j(Ev,Gv; B, B”) acts with respect
to the above decomposition like a matrix without diagonal terms; hence it

has trace zero. Thus, {(B’,¢'),(B"”,¢")} = 0 if either (B’,¢’) or (B",¢")
is traceless. It follows immediately that

{[B,, ¢l], [B”,¢I’]} — {(B,,¢,), (B”,¢”)}

is a well-defined symmetric O’-bilinear pairing
K(Qv) x K(Qv)x — O((v)).

We can define in the same way a symmetric (O’-bilinear pairing

{,}: K(Qr,w) x K(Qx,w)x — O((v));
indeed, as we have seen, X(Qr w) is a special case of K(Qv) in the case
where our graph has been replaced by the disjoint union of two copies of
itself.

Using the definitions and 8.1.10(f), we see that

{41 ® A3, A2 ® Ag} = {A1, A2}{ A3, As}

for any A, A2 € K(Qr) and A3z, Ay € K(Qw). We then have

A ® A3, A ® Ay € K(Q1,w).

We have the following result.



12.3. Properties of L, 97

Lemma 12.2.2. Let a € K(Qr,w),[ € K(Qv). We have
{as res¥,w(ﬂ)} = {ind‘l{,W(a)v ﬂ}

Let (A, ¢) be an object of O w and let (B, ¢') be an object of Qy. We
take the trace of the automorphism a in both sides of 9.2.10(a); the lemma
follows.

12.3. PROPERTIES OF L,

12.3.1. Let X° be the set of all v = (v,1?,...,v™) € X such that
Ve N[I]“ for all I. Let v = (v1,v?,...,u™) € X* be such that dimV; =

for alli € I. We have natural automorphlsms a: F, — F, and
a: .7-',, — F,, defined as in 12.1.2. The obvious isomorphism a*1 22 1 on
F. induces an isomorphism

¢o : a* (Ml = (m)(a*1) = (m )11

in D(Ev).

It is easy to see that (L,,¢o) is an object of Ov. Applying to ¢p a
shift by f(v) (see 9.1.3(c)), we obtain an isomorphism a*L, = L, which is
denoted again by ¢o. Note that (L., ¢o) is an object of Ov.

Let W C Vand T =V/Wbeasin12.1.5. Let v/ = (V'},/2,...,V/™) €
Xe and v’ = (V'1,V"%,...,V"") € X°® be such that dimT; = }, v/}
dimW; =3, v} forallie L

‘Lemma 12.3.2. The following equality holds in K(Qv):
indy, w([Lv, $0] ® [Lu, dol) = [Lurwr, do].
This follows from 9.2.7.

Lemma 12.3.3. Let v = (v},v2,...,v™) € X® be such that dimV; =
>, v for alli € 1. The following equality holds in K(Qr,w):

res¥wlLu, do] = 3 v™ )L, ¢o] ® [Lw, do],

where the sum is taken over all T=(r},7%.. ‘r ™) w = (wl, w yeresw™)
in X° such that dimT; = Y, 7!, dim W; = Zt w! for alli and ! +w =t

for alll; M'(T,w) is as in 9.2. 11.

This follows from the decomposition 9.2.11. The terms in that decom-
position corresponding to 7,w with some coordinate not in N[I]* can be
grouped according to non-trivial a-orbits and contribute traceless objects,
hence they disappear from the final result.
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Lemma 12.3.4. Let ¢ be an a-orbit on I and let vy = ) ;i € N[I]. Let
V € V* be such that dimV; = n for all i € i and dimV; = 0 for all
i ¢ i. Let d be the number of elements of i. The following equality holds in

K(Qv):

n—1
(a') [I-"y,(n—l)'yy ¢0] = Z v_zsd[in'y, ¢0]

s=0

Using the definitions and the known structure of the cohomology of

a product of d copies of a projective (n — 1)-space, we see that the left
hand side of (a) is represented by (®1[—2s; — 282 — --- — 254), ¢), a sum
over all sequences (s1,82,...,54) with 0 < s; < n — 1; here ¢ maps the
summand corresponding to (s, S2,...,84) to the summand corresponding
to (s2,83,...,84,81). The summands corresponding to sequences whose
terms are not all equal to each other, form traceless objects. The remaining
terms give the right hand side of (a).

12.3.5. Remark. In the previous lemma we have [L, n_1),, %] =
i vid(r-1) [L7,(n—1)7’¢0] and [Ln7a¢0] = [Ln'yad’O]; hence

n—1

(a) [L‘y,(n—l)‘ya ¢0] = vd(n_l) Z v_23d[Ln‘7: (150]

=0
Lemma 12.3.6. We preserve the assumptions of Lemma 12.3.4, and we
taken = 1. We have

o0
(a) {[L~, bo), (L, $0]} = Zdes =(1- vd)_]'

3=0

Since i is discrete, we have Ey = 0 and L., = 1. Using the definitions

we see that the left hand side of (a) is computed as follows: we consider the
product of d copies of an infinite projective space with the automorphism
given by cyclically permuting the factors; we must find the trace of the
induced automorphism on each cohomology space. This is given by the
same computation as in the previous lemma.

Lemma 12.3.7. Let v = (v},02,...,v™) and v/ = (V'1,0'2,...,0'") be
two elements of X* such that dimV; = Y v} = 3,0/} forallie 1. We
have {[L., ¢o), [Lv, $o]} € Z((v)) N Q(v).

Using 9.1.4, we see that we may assume that each v* and each v is

of the form N}~ .1 for some a-orbit 7 in I. Using 12.3.5, we can further
assume that we always have N = 1.
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We argue by induction on m + n. The case where m or n is zero, is
trivial. The case where m = n = 1 follows from 12.3.6. Hence we may
assume that m or n is > 2. Assume first that n > 2. Let W be an I-graded
a-stable subspace of V such that T = V/W satisfies dimT; = v} for all
i€l Let v! = (v!),v2=(v2,13,...,v™). We have

{[Lv, #0], [Lo, $o]} = {indY, w([Ly1, b0] ® [Ly2, $0]), [Lu, do]}
= {[Ly1, ¢0] ® [L,2, ¢o], res¥. w(Lu, do]}

and this is in Z((v)) N Q(v), by 12.3.3 and the induction hypothesis. We
can treat similarly the case where m > 2. The lemma is proved.

12.4. VERDIER DUALITY

12.4.1. Let V € V°. Let (B, $) be an object of Qv. Recall that ¢ :
a*B = B. Applying Verdier duality, we obtain D(¢) : D(B) = D(a*B) =
a*(D(B)). The inverse of this isomorphism is an isomorphism D(¢)~! :
a*(D(B)) = D(B). It is clear that (D(B), D(¢)"!) is an object of Qv.
It“is easy to see that we have a well-defined homomorphism of abelian
groups D : K(Qv) — K(Qv) given by D[B,¢| = [D(B),D(¢)~']. This
homomorphism has square equal to 1. Moreover, from the definitions, we
see that it is semi-linear with respect to the involution = : O’ — O’ given
by v™ +— v~™ and { — ¢! for ¢ such that (™ = 1.

12.4.2. Let W C V and T = V/W be as in 12.1.5. We have a homomor-
phism of abelian groups D : K(Qr w) — K(Qrt,w) defined in the same
way as D : K(Qv) — K(Qv) (and in fact is a special case of it). From the
definition we see that the following diagram is commutative:

K(Qr) ® K(Qw) 2225 K(Qr) ® K(Qw)

! !

K(Qr,w) -2 K(Qrw)

where the tensor products are over (' and the vertical maps are the iso-

morphisms in 12.1.4.

Lemma 12.4.3. For any a € K(Qrw), we have D(indy (a)) =
indy. w(Da) in K(Qv).
This follows from 9.2.5.
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12.5. SELF-DUAL ELEMENTS

Lemma 12.5.1. Let B € Py be a simple object such that a*B = B.

(@) Ifi € I and n € N are such that B € Py {i};ni, then B € Pyiiiny
where i is the a-orbit of i and vy =), ., i’ € N[I].

(b) Assume that B € Pvy,i;» where i is as in (a) and v’ € NI has
support contained in i. Then v’ = nvy for some n > 0, where v is as in (a).

(c) If V # 0, then there exists an a-orbit i in I such that B € Pyn,
where 7 is as in (a), for somen > 1.

We prove (a). Our statement is independent of the orientation, as in
the proof of 10.3.2. Hence we may assume that the orientation is such that
h' ¢ i for any h € H. Such an orientation exists since i is discrete. By our
assumption and by Lemma 9.3.5 we have

dimV;/( Z zh(Vh')) Z n
heH:h'"=i

~ for all = in the support of B and
dim V;/( Z (Vi) =n

heH:h'"=i

for some z in the support of B.

Since the support of B is a-invariant, it follows that the same holds
when i is replaced by any i’ in 7. Using Lemma 9.3.5 again, we see that the
conclusion of (a) holds.

We prove (b). Let i € i. We can find n € N such that B € Py {i};ni. By
(a), we have B € Py;i;nqy. By 9.3.5, the inclusions B € Py,iny, B € Py.i,y
imply v/ = nv and (b) follows.

(c) follows immediately from (a) and 9.3.1(b).

Proposition 12.5.2. Let B be a simple object of Py such that a*B is
isomorphic to B.

(a) There ezists an isomorphism ¢ : a*B = B such that (B,¢) € Py
and such that (D(B), D(¢)~') is isomorphic to (B, ¢) as objects of Py.
Moreover, ¢ is unigue, if n is odd, and unique up to multiplication by +1,

if n is even.
(b) We have D(B) = B as objects of Pv.

(b) clearly follows from (a). We prove the existence of ¢ in (a). This is
trivial when V = 0. Hence we may assume that V # 0. By 12.5.1, there
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exists an a-orbit ¢ on I and an integer n > 1 such that B € Py,;.ny where
v = Ziei i. Hence it is enough to prove the following statement for any
fixed a-orbit ¢ in I.

For any n > 1, and any simple object B € Py,i;ny such that a*B =
B, there exists ¢ : a*B = B such that (B,¢) € Py and such that
(D(B), D(¢)~!) is isomorphic to (B, ).

We argue by descending induction on n. (We have n < dimVj, for
any i € i). Let S be the set of all simple objects C' € Py.i.5ny (up to
isomorphism) such that a*C’ = C’; for each such C’, we denote by fcr
some isomorphism a*C’ = C’ such that (C’, fcr) € Py. By 12.5.1(b), for
each C’' € S, we have C’ € Py.;.n/y for some n’ > n, hence the induction
hypothesis (on n) is applicable. Hence we may assume that for is such that
(D(C"), D(fcr)™?) is isomorphic to (C’, fcr) for each C’ € S.

Let W be an I-graded a-stable subspace of V such that T = V/W
satisfies dimT; = nforalli € iand Ty = 0foralli € I —i. Such W
exists since 7 is an a-orbit. By Proposition 10.3.2 (for I’ = ¢) we can find
a simple object A of Pw:i such that Indy wA = B & (®;C;[j]) where
Cj € Pvii;>ny for all j. Since Indy y commutes with a* and a*B = B, we
have also IndY. yya*A = B® (6;a*C;[j]). By the uniqueness of A in 10.3.2,
we must then have a*A = A. By the induction hypothesis (on dim V) we
can find an isomorphism ¢’ : a*A = A such that (4,¢') € Pw and such
that (D(A), D(¢')~!) is isomorphic to (4, ¢).

Applying to [A, ¢] the homomorphism

indy w : K(Qw) = K(Qr,w) — K(Qv),

we necessarily obtain an element of the form [B, ¢] + > cics Por[C, fc'l
where ¢ : a*B = B is some isomorphism such that (B,¢) € Py. The
coefficients P are in (.

Since D[A, ¢] = [A,¢'], we have D(indY. \yA) = indY A (see 12.4.3).
Hence we have

D[B,¢]+ ) Pe:DIC', fo'] = [B,¢] + D _ Pe[C, fe']
(Por as in 12.4.1). Substituting here D[C’, for] = [C', fc'], we obtain

D[B,¢] = [B,4] + Y _(Pcr — Por)[C', for).
S

Now the elements [B,¢| and [C’, f¢'] form a subset of a basis of the
(’-module K(Qv) and D[B, ] is a scalar multiple of some element in that
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basis. Hence the previous equality forces D[B, ¢] to be equal to [B, ¢|. This
proves the existence of ¢.

Assume that (¢ has the same property as ¢, where { satisfies (™ = 1.
We have

C[Bv¢] = [B,C¢] = D[B7C¢] = D(C[B’¢]) = C—ID[Bv(b] = C_I[Ba¢];

hence ¢ = ¢! and ¢ = £1. If n is odd, it follows that ( = 1. The
proposition is proved.

Lemma 12.5.3. Let (B, ), (B’,¢') be objects of Py such that B, B’ are
simple objects of Py .

(a) If B, B’ are not isomorphic, then {[B, ], [B’, ¢']} € vO[[v]].
(b) If (B, ¢') = (D(B), D(¢)™"), then {|B, 4], [B’,¢']} € 1+ vO[[v]}.
(c) If (B, ¢) is as in 12.5.2, then {[B, ¢}, [B, ¢]} € 1 + vO[[v]].

(a) and (b) follow from 8.1.10(d) and the definitions, using the fact that
D(B) = B (see 12.5.2(b)). (c) follows from (b).

12.6. L, AS ADDITIVE GENERATORS

12.6.1. Let V € V. Let My be the A-submodule of K(Qv) generated
by the elements [L,, ¢o] for various v = (v1,22,...,v™) € X® such that
dimV; = ,ui' foralliel

Lemma 12.6.2. For any a,o’ € My we have {a,a’} € Z((v)) N Q(v).

This follows immediately from 12.3.7.

Proposition 12.6.3. The following two A-submodules of K(Qv) coincide:

(a) Mv;

(b) the A-submodule generated by the elements [B, ¢] where (B, ¢) is as
in 12.5.2.

We show by induction on dim 'V that

(c) if (B, ¢) is as in 12.5.2, then [B, ¢] € My.

This is trivial when V = 0. Hence we may assume that V # 0. By 12.5.1,
there exists an a-orbit i on I and an integer n > 1 such that B € Py,
where v = ) ;;i. Hence it is enough to prove the following statement for

any fixed a-orbit ¢ in I. For any n > 1, and any (B, ¢) as in 12.5.2 such
that B € Pv,i;ny, we have [B, ¢] € My.
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We argue by descending induction on n. We have n < dim Vj, for any
i € i. Let W be an I-graded a-stable subspace of V such that T = V/W
satisfies dimT; = n for alli € i and T; = 0 for alli € I—4. (Such W exists
since i is an a-orbit.)

As in the proof of 12.5.2, we can find a self-dual element (A,¢') €
Pw such that A € Pwi;o and such that (with the notation there)
indY w[A, #'] = [B, 1]+ X crcs Pcr[C, for] where ¢1 = +¢. By 12.5.1(b),
for each C' € S, we have C’' € Py ;' for some n’ > n; hence

(d) [C, fc'] € My,

by the induction hypothesis. Replacing, if necessary ¢’ by —¢’, we can
assume that ¢; = ¢. We now show that,
(e) for any integer r < 0, the coefficient of v” in P¢» is an integer, for any
C'eS.

Assume that this is not so. Then we can find an integer » < 0 which is
as small as possible with the following property: there exists C’ € S such
that the coefficient ¢(C’) of v" in Pcr is in O — Z. For such C’, we have

{indY w(4, ¢, [C", fcr]} = {[B, 4], [C", fcr}
(f) + Z PC"{[C”, fC”]’[C,’ fC']}'

c'es

By the induction hypothesis, we have [A,¢'] € Mw and by 12.3.2,
ind.‘lf’W carries Mw into My; hence, ind¥,w[A, ¢'] € My. Using now
12.6.2 and (d), we see that the left hand side of (f) is in Z((v)). In partic-
ular, the coefficient of v” in the left hand side of (f) is an integer.

By 12.5.3(a), we have {[B,¢], [C’, fc']} € vO[[v]] since B,C’ are not
isomorphic. This implies that the coefficient of v" in {[B, 4], [C’, fc']}
is zero since r < 0. If C” € S is not C’ then, by 12.5.3(a) and
12.6.2, we have {[C”, fc~],[C, fc']} € vO[[v]] N Z((v)) = vZ[[v]], hence
Pe{[C”, fcr], [C, fer]} € PervZ[v]]. Using the minimality of 7, we see
from this that the coefficient of v in Pc {[C”, fcr],[C’, fc]} is an integer.

Similarly, using 12.5.3(c) and 12.6.2, we have

{[C", ol [C', forl} € (14 0O[[v]]) N Z((v)) = 1+ vZ[[v]);

hence Pc/{[C’, fc],[C’, fc']} € Per(1 + vZ[[v]]). Using the minimality of
r, we see from this that the coefficient of v" in P {[C’, fc'],[C, fc']} is
¢(C’) plus an integer.
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Combining these results, we see that the coefficient of v" in the right
hand side of (f) is ¢(C”) plus an integer; on the other hand, we have seen
that the coefficient of v™ in the left hand side of (f) is an integer. It follows
that ¢(C") is an integer; this is a contradiction. Thus, (e) holds.

Next we note that D[A,¢'] = [A,¢']. Using 12.4.3, we deduce that
D(indy wlA, ¢]) = indY w[A, ¢']. Hence

D(B,#]+ 3 PorlC”, forl) = [B.dl + 3 PorlC”, for]

cresS Cc’eS

or equivalently,

[B’¢]+ Z -PC"[C,I,fC"]Z[B’¢]+ Z PC"[C”afC”]

Cc”eS c"eS

where Por is as in 12.4.1. Comparing coefficients on the two sides, we
obtain Pg» = Pcn for all C”.

Thus, the coefficients of v™ and of v~" in P~ coincide. Since either r or
—r is < 0, we see from (e) that the coefficient of v" in Pc~ is an integer, for
"~ any r and any C” € S. In other words, we have Pc» € A. In the identity

indY. w(4,4'] = [B,¢]+ D> Pcr[C”, fcr,
Cﬁes

all terms except [B, ¢] are in My, as we have seen. It follows that so is
[B; ¢] Thus (c) is proved.

The remainder of the proof will be similar to that of (c). Consider the set
T of all simple objects C € Py (up to isomorphism) such that a*C = C;
for each such C we select fc : a*C = C such that (C, fc) € Py and
D[C, fc] = [C, fc]. Let & € My. Using 12.1.3 and 12.5.2, we can write
uniquely o = Yo7 pclC, fc] with pc € O'.

To complete the proof, it remains to show that pc € A for all C. Assume
that this is not so. Then we can find an integer 79 which is as small as
possible with the following property: there exists Cy € 7 such that the
coefficient b(Cp) of v™ in pc, is in O — Z. For such Cy we have

(g) {O’, [CoafCO]} = Z pC{[C’ fC]’ [COa fCo]}'

CeT

Using (c), 12.5.3, and the definition of ry, we see that the coefficient of
v™ in the right hand side of (g) is equal to b(Cp) plus an integer. Using (c)
and 12.6.2, we see that the coefficient of v™ in the left hand side of (g) is
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an integer. It follows that 5(Cp) is an integer. This is a contradiction. The
proposition is proved.

12.6.4. Let M be a module over a ring R. A subset B of M is said to be a
signed basis of M if there exists a basis B’ of M such that B = B' U (-B').
Let By be the subset of K(Qv) consisting of all elements [B, ¢] with (B, ¢)
as in 12.5.2 (if n is even) and of all elements +[B, ¢] with (B, ¢) as in 12.5.2
(if n is odd). From 12.1.3 and 12.5.2 we see that

(a) By is a signed basis of the O'-module K(Qv),
and from 12.6.3 we see that
(b) By is a signed basis of the A-module M.



CHAPTER 13

The Algebras -k and k

13.1. THE ALGEBRA o'k

13.1.1. We preserve the setup of the previous chapter. Given v € N[I]?,
we may regard V +— K(Qy) as a functor on the category V2 with values
in the category of @’-modules. An isomorphism V 2 V' in V2 induces
an isomorphism Ev, 2 Evy compatible with the a-actions; this induces an
isomorphism Qv = Qv which induces an isomorphism K(Qvy) = K(Qv/)
that is actually independent of the choice of the isomorphism V 2 V' by
the equivariance properties of the complexes considered. Hence we may
take the direct limit li_r)nv K(Qv) over the category V2. This direct limit is
denoted by ¢rk,. By the previous discussion, the natural homomorphism
. K(Qv) — o'k, is an isomorphism for any V € V2.

" The signed basis By of K(Qv) (see 12.6.4) (where V € V2) can be
regarded as a signed basis of the @’-module ¢-k,,, independent of V; we
denote it by B,. It is a finite set.

13.1.2. Let ok = ®,(0'k,) (v runs over N[I]*). Let B = U, B,, a signed
basis of the @’-module o-k. An element z € ok is said to be homogeneous
if it belongs to o'k, for some v; we then write |z| = v.

The homomorphisms ind‘.r”W can be regarded as O’-linear maps o'k, ®or
(o'kw) — o'k, defined whenever 7,w,v € N[I]* satisfy 7 + w = v.
They define a multiplication operation, hence they define a structure of
O'-algebra on ork. For any v = (v!,...,v™) € X%, we may regard L, as
an element in ok, where y; =3, Vil for all i.

Lemma 12.3.3 can be now restated as follows:

(a) Lul Luu = LV'V"'

Since the elements L, generate ok as a O’-module (see 12.6.3), it follows
that the algebra structure on ¢k is associative. One can also see this more
directly.

13.1.3. The homomorphisms resy. y can be regarded as O'-linear maps
o'k, = ok, ®0 (0rky), defined whenever 7, w, v € N[I]® satisfy 74w = v.
By taking direct sums, we obtain an O’-linear map 7 : -k — o0-k®o (0k).
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13.1.4. We have a symmetric bilinear pairing Z[I] x Z[I] — Z given by
v/ =2 E vy, — Z(Uh'u,'l" + Uprig).
i h

This bilinear form is independent of orientation. Let o'k®¢ (o k) be the
@’-module o'k ®0+ (o-k) with the O’-algebra structure given by

(®y)(z' ®y) = v e @ yy
for z,2’,y,y’ homogeneous.

Lemma 13.1.5. 7 : ook — ok®o(o/k) is a homomorphism of O'-
algebras.

We must check that 7(zy) = 7(z)7(y) for any =,y € o-k. Since the
elements L, generate the ’-module -k (see 12.6.3), we may assume that

& = Ly,y = Lyn, where v/ = (V'1,...,0'™) and v" = (V"1,...,V"™) are
elements of A*. We have

(a) F(Ly) = Z,vM'('r',w')LT, ® Lo

where the sum is taken over all 7/ = (7'1,...,7/™) and o’ = (u',...,w'™)

in-X2 such that 7! + W' = /! for 1 < I < m; M'(7',w’) is as in 9.2.11.
Similarly, we have

’F(Lvu) = Z’UM,(T”’“’")LT/I ® qu

where the sum is taken over all 7" = (7/(m+1) 7/(m4n)) and w” =
(WA (M) in X% such that 7 +w" ="M form+1 <1 <
m + n. Hence

f(Lu’)F(Lu") = Z'UM'("",w')+M'(‘r",w")+|Lw:|-|L.,n|L.,,,_,.,, ® Loy

where the sum is taken over all 7/ = (71,...,7'™), &' = (W'1,...,0'™),
o= (D ptmaAn)y = (WD W (mEn)) in X such
that 7' +w'!' =V for1<l<mand 7'+ =" form+1<1<
m + n.

We have

'F(LV'LVH) = F(LVIVII) = ZUM,("'»”)LT ® Lw

where the sum is taken over all 7 = (71,...,7"*") and w = (w!,...,w™t")
in X% such that 7' + w! = V! for 1 <1 < m and 7 + ! = V''"™ for
m+1<l<m+n.
It remains to show that
|Lw,| . |L1_,,| — M'(T’T",wlw”) _ M'('r’,w') _ M’(T",w”).

This follows by a straightforward computation. The lemma is proved.
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13.1.6. The pairing {,} on K(Qv) (see 12.1.2) (where V € V2) can be
regarded as an O’-bilinear pairing {,} : o'k, x ok, — O((v)), which is
independent of V. This extends to an (’-bilinear pairing {, } : ook x o'k —
O((v)) such that for homogeneous z,y, {z,y} is given by the previous
pairing if |z| = |y|, and is zero if |z| # |y|.

13.1.7. We define a O'-bilinear pairing {, } on o'k ®o (0 k) by
{x/ ® x//, yl ® yll} — {zl,y/}{xll, yll}.
The identity

{iL‘, yly”} = {7_‘(:1")1 y, ® y"}

for all z,v',y"” € ok, follows immediately from 12.2.2.

13.1.8. The homomorphism D : K(Qv) — K(Qv) (where V € V¢) can
be regarded as a group homomorphism D : ok, — o-k, that has square
1 and is semi-linear with respect to the ring involution = : @’ — @’ given
by v +— v™" and { — (71 for ( € O,¢(™ = 1. By taking direct sums we
obtain D : ork — ¢-k which, by 12.4.3, is a ring homomorphism.

13.1.9. We shall regard o'k ®¢ (0 k) as an O’'-algebra with

(@®y)(z' ®y) = v Wz’ @ yy/
for z,2’,y, 7y’ homogeneous. This should be distinguished from the algebra
o'k®o:(o'k). Let D : 0-k®eo (0'k) — o'k ®o (0-k) be the ring isomor-
phism given by D(z ® y) = D(z) ® D(y) for all z,y.

Let 7 : ok — o'k ®o- (0-k) be the (’-algebra homomorphism defined
as the composition

O’k 2} Olk —F-) OIk@OI(OIk) 2) O'k ®OI (O'k).
13.1.10. Let (,) : ok x ook — O((v™!)) be the O'-bilinear pairing
given by (z,y) = {D(z),D(y)}. Here, = : O((v)) — O((v71!)) is given

by 3, anv" — ) 8,07 (an € O).
From 13.1.7, we deduce the identity

(a) (z,3'y") = (r(z),y ®y")

for all z,y',y" € ok
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13.1.11. From the definition we have
(a) D(b) = b for all b € B.
We have
(b) {b,b'} € vZ[[v]] N Q(v) for any b,b’ € B such that b’ # +b.

Indeed, {b,b'} is in vO[[v]] by 12.5.3 and in Z((v)) by 12.6.2 and 12.6.3,
and hence in vZ[[v]].
We have

(c) {b,b} € 1 +vZ[[v]] N Q(v) for all b € B.

Indeed, {b,b} is in 1 + vO[[v]] by 12.5.3 and in Z((v)) by 12.6.2 and
12.6.3, and hence in 1 + vZ[[v]].
From (a),(b),(c) we deduce:

(") (b,%') € v 1Z[[v71]] N Q(v) for any b, b’ € B such that b’ # +b.
(c') (b,0) € 1 +v~1Z[[v~ 1)) N Q(v) for all b € B.

13.1.12. Let i be an a-orbit on I and let vy = ), i. For any n > 0, o/ky
has a distinguished element denoted 1,;; it corresponds to [1,1] € K(Qv)
where V € V.. This element forms a basis of the O’-module o-k,,. When
n = 0, this is independent of ¢ and is denoted simply by 1 € o-kp. Note
that

(a) 1 is the unit element of the algebra k.

(b) The elements L, € o-k are precisely the elements of o-k which are
products of elements of form 1,; for various 7,n. Hence the elements 1,;
generate ok as an O’-algebra.

(c) We have 1;1(,_1); = vd("_l)(Z::Ol v~ 4)1,,; (for n > 1), where d is
the number of elements in the orbit . (See 12.3.4.)

From 12.3.6, we have
(d) {1;,1;} = (1 — v??)~! (where d is as above)
or equivalently, since D(1;) = 1;:

(d) (15, 15) = 1 — w7271
From (b) and (c) we see that

(&) F(L) =r(1)=1,,®1+111,.
This is obvious from the definitions. It is clear that

() (1,1) = {1,1} = 1.
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13.1.13. From 10.3.4, it follows easily that there is a unique O’-linear map
o : ok — ok such that o(L,) = L, for any v = (v1,12,...,v™) € X9,
where v/ = (v™,v™"1,...,v!) € X% moreover, we have o(B) = B. It
follows that o is the unique isomorphism of -k onto the algebra opposed
to o-k such that ¢(1,;) =1,; foralli € I and n > 0.

13.2. THE ALGEBRA k

13.2.1. Let 4k be the A-submodule of ¢ -k spanned by B, or equivalently
(see 12.6.3), by the elements L, for various v € X*. Thus, on the one
hand, sk is the A-subalgebra of o-k generated by the elements 1,; as in
13.1.12(b), and on the other hand, B is a signed basis for the .A-module
k. We have gk = &, (4k,) where 4k, is the .A-submodule generated by
B,.

13.2.2. From 13.1.5(a), we see that 7 restricts to an .A-linear map 4k —
4k ® 4 (4k), denoted again by 7; this is an A-algebra homomorphism if
.. Ak ®4 (4k) (which is naturally imbedded in o k®o(0k)) is given the
~ induced A-algebra structure (see 13.1.5).

13.2.3. By 13.1.11(a), the ring homomorphism D : o-k — ok restricts to
a ring homomorphism D : gk — 4k which has square 1 and is semi-linear
with respect to the ring involution = : A — A.

13.2.4. From 13.2.3 and 13.2.2, it follows that the (’-algebra homomor-
phism 7 : ork — ok ®0’ (0-k) (see 13.1.9) restricts to an A-algebra homo-
morphism g2k — 42k ® 4 (4k), denoted again by r. This is an .A-algebra ho-
momorphism if 4k® 4 (4k) (which is naturally imbedded in ok ®¢ (0-k))
is given the induced .A-algebra structure (see 13.1.9).

13.2.5. The pairing (,) : ork X ok — O((v™!)) (see 13.1.10) restricts to an
A-bilinear pairing (,) : ak x 4k — Z((v71)) N Q(v) (see 13.1.11(b"),(c’)).
The equation analogous to 13.1.10(a) continues of course to hold over .A.

13.2.6. Let k be the Q(v)-algebra Q(v) ® 4 (4k). Note that B is a signed
basis of the Q(v)-vector space k. We have a direct sum decomposition
k = &,k, where k, is the subspace spanned by B, .

From 13.2.1 and 13.1.12(c), we see by induction on n that k is generated
as a Q(v)-algebra by the elements 1; for the various a-orbits on 1.
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13.2.7. The homomorphism r in 13.2.4 extends to a Q(v)-algebra homo-
morphism k — k®q(y) k (denoted again by r) where k ®q(.) k is regarded
as a Q(v)-algebra by the same rule as in 13.1.9.

13.2.8. The pairing (,) on 4k extends to a Q(v)-bilinear pairing (,) :
k x k — Q(v). From 13.1.11(b’),(c’), we see that the restriction of this
pairing to k, is non-degenerate, for any v. (Its determinant with respect
to a basis contained in B, belongs to 1+ v~'Z[[v=!]] N Q(v) and hence is
non-zero. )

13.2.9. Let I be the set of a-orbits on I. We identify Z[I] with the subgroup
ZM° = {v € Z[QJus = vozy Viel}

of Z[I] by associating to each v € Z[I] the element of Z[I] (denoted again
v), in which the coefficient of i is v; where 7 is the a-orbit of i.

For v, € Z[I] we define v - ' € Z by regarding v, v’ as elements of Z|[]]
as above and then computing v- v according to 13.1.4. (This is a symmetric
bilinear form). According to this rule, we have, for 7,5 € I: i -j = minus
the number of h € H such that [h] consists of a point in ¢ and a point in j,
if i # j and i - ¢ = twice the number of elements in the orbit i. Note that,
if i # j then —2%! € N; indeed, this is the number of h € H such that [h]
consists of a given point in ¢ and some point in 7. Hence we have obtained
a Cartan datum (7, ).

13.2.10. Let f be the Q(v)-algebra, defined as in 1.2.5, in terms of the
Cartan datum (I, -) just described. Recall that f = 'f/Z where 'f is the free
associative Q(v)-algebra on the generators 8;(¢ € I) and 7 is a two-sided
ideal defined as the radical of a certain symmetric bilinear form (,) on ‘f.
Let x : 'f — k be the unique homomorphism of Q(v)-algebras with 1 such
that x(0;) =1, foreach i € I.

Theorem 13.2.11. x induces an algebra isomorphism £ = 'f/T = k.

The homomorphism Y is surjective, since k is generated by the 1; as a
Q(v)-algebra (see 13.2.6.)

The homomorphism 7 : 'f — 'f ® 'f (see 1.2.2) and the homomorphism
r:k — k ®k (see 13.2.7) make the following diagram commutative:

 gu——— - Y

e

k —— k®k



112 18. The Algebra o'k and k

Indeed, first we note that x ® x is an algebra homomorphism, since v - v/
on Z[I] has been defined in terms of the pairing on Z[I]. Hence the two
possible compositions in the diagram are algebra homomorphisms; to check
that they are equal, it suffices to do this on the generators ;. But they
both take §; to 1, ® 1 + 1 ® 1; (see 13.1.12(e)).

For z,y € 'f, we set ((z,y)) = (x(z), x(y)) (the right hand side is as in
13.2.8). We have
(8) ((6:,69) = (1,1) = (1 = v=5¥%)1 (see 13.112(d)); ((6,6)) =
(1;,1;) =0, if ¢ # j (trivially);

((z,9'y")) = (x(@), x(¥")x(¥")) = (r(x(x)), x(¥') @ x(¥"))
(b) = (x @ x)(r(z), x(¥") ® x([¥")) = ((r(z), ¥ ®Y"));

we have used 13.1.10(a) and the commutativity of the diagram above. By
(b) and the symmetry of ((,)), we obtain

(c) ((zz’,y)) = (z ® 2, 7(1)))-

We have ((1,1)) = 1 (see 13.1.12(f)). Thus, ((z,y)) satisfies the defining
properties of (,) in 1.2.3; hence it coincides with (,). Since Z is defined as
the radical of (,) on ’f, we also get

(d) I ={z€'fl(x(x),x(y)) =0 Vye'f}.

Hence, if z € 'f satisfies x(z) = 0, then z € Z, so that Ker x C Z.
Conversely, assume that £ € Z. Let z € k. We have z = x(y) for some
y € 'f (recall that x is surjective). We have (x(z), z) = (x(z), x(v)) = 0 by
(d). Thus x(z) is in the radical of the form (,) on k. But this radical is
zero (see 13.2.8). Hence x(z) = 0. Thus we have proved that Ker x = Z.
The theorem follows.



CHAPTER 14

The Signed Basis of f

14.1. CARTAN DATA AND GRAPHS WITH AUTOMORPHISMS

14.1.1. There is a very close connection between Cartan data and graphs
with automorphisms. Given an admissible automorphism a of a finite graph
(I, H,h + [h]) (see 12.1.1), we define I to be the set of a-orbits on I. For
1,j € I, we define i - j € Z as follows: if ¢ # j in I, then 7 - j is —1 times
the number of edges which join some vertex in the a-orbit i to some vertex
in the a-orbit j; 7 -4 is 2 times the number of vertices in the a-orbit i. As
shown in 13.2.9, (I, ) is a Cartan datum. Conversely, we have the following
result. .

Proposition 14.1.2. Let (I,-) be a Cartan datum. There exists a finite
graph (I, H, h — [h]) and an admissible automorphism a of this graph such
that (I,-) is obtained from them by the construction in 14.1.1.

For each i € I, we consider a set D; of cardinal d; =i -i/2 and a cyclic
permutation a : D; — D;. Let I = U;e;D; and let a : I — I be the
permutation whose restriction to each D; is the permutation a : D; — D;
considered above.

For each unordered pair %, j of distinct elements of I, we choose an a-
orbit p of the permutation a x @ : D; x D; — D; x D;. Then p has
cardinality equal to the lowest common multiple I(d;,d;) of d; and dj,
which by the definition of a Cartan datum, divides —i - j. Hence we may
consider a set H; ; which is a disjoint union of —i - j/I(d;,d;) copies of p
with a permutation a : H; ; — H; ; whose restriction to each copy of p is
the permutation defined by a x a. We have a natural map H; ; — D; x D,
whose restriction to each copy of g is the imbedding p — D; x D);.

Let H = UH; ; (union over the unordered pairs i, j of distinct elements
in I). This has a permutation a : H — H (defined by the permutations
a:H;; — H;;)and amap H — UD; x D; (union over the unordered pairs
i,j of distinct elements in J) induced by H;; — D; x D;. This defines a
structure of a graph on I, H. This clearly has the required properties.
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14.1.3. Remark. In general, the graph with automorphism whose exis-
tence is asserted in the previous proposition is not uniquely determined by
(1,-). However, if the Cartan datum (Z,-) is symmetric, the construction in
the previous proposition attaches to (I,-) a graph (I, H, h — [h]), called the
graph of (I,-), which is unique up to isomorphism; in this case, I = I, H; ;
is a set with —% - j elements and a is the identity automorphism.

14.1.4. Classification of symmetric Cartan data of affine or finite
type. The symmetric Cartan data of affine type are completely described
by their graphs. We enumerate below the graphs that appear in this way.

A, (n > 1); a polygon with n + 1 vertices; for n = 1, this is the graph
with two vertices which are joined with two edges.

Dy (n > 4) (a graph with n + 1 vertices):
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According to McKay, these graphs are in 1-1 correspondence with the
various finite subgroups of SLs(C), up to isomorphism.

Certain vertices of these graphs are said to be special : namely, all
vertices for A,, the four end points for D,, the three end points for FEs,
the two end points furthest from the branch point for E;, the end point
furthest from the branch point for Es.

The group of automorphisms of any of the graphs above acts transitively
on the set of special vertices. Therefore, by removing a special vertex from
one of the graphs above, we obtain a graph which is independent of the
special vertex chosen. The resulting graphs are denoted A,, Dy, Fe, E7, Es.
We get in this way the various graphs corresponding to irreducible, simply
laced Cartan data of finite type.

14.1.5. Classification of non-symmetric Cartan data of affine
type. Let us consider one of the graphs An, ..., Fs, together with an ad-
missible automorphism a of order n > 1, which has at least one fixed vertex.
We enumerate the various possibilities (up to isomorphism).

(a) A, (n > 3, odd), n = 2 and a has 2 fixed vertices:

€ me e e >
<G —mmmm—>

(b) D, n =2 and a has n — 1 fixed vertices:

ST

(c) Dn, (n >5), n=2 and a has n — 3 fixed vertices.

——e >

-
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(d) Dy, (n even), n = 2 and a has 1 fixed vertex:

() Dy, (n even), n = 4 and a has 1 fixed vertex:

(f) D4, n = 3 and a has 2 fixed vertices:
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(g) Eg, n =2 and a has 3 fixed vertices:

117

In each case (a)—(i), we may define a Cartan datum as in 14.1.1. We
then obtain exactly the various affine non-symmetric Cartan data, up to
proportionality (see 1.1.1) which were classified by Kac, Macdonald, Moody

and Bruhat-Tits.

14.1.6. Classification of irreducible, non-symmetric Cartan data
of finite type. We consider one of the graphs A,,..., Es, together with

an admissible automorphism a of order n > 1.

We enumerate the various possibilities (up to isomorphism).

(a) A, (n >3, 0dd), n = 2.
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(b) Dpy,n=2.
(¢) D4y n=3.
(d) Ee, n=2

In each case (a)-(d), we may define a Cartan datum as in 14.1.1. We
then obtain exactly the irreducible non-symmetric Cartan data of finite
type, up to proportionality.

14.2. THE SIGNED Basis B

14.2.1. Let V be a Q(v)-vector space with a given basis B and a given
symmetric bilinear form (,) : V x V — Q(v). We say that B is almost
orthonormal for (,) if

(a) (b,d') € bppr + v 1Z[[v7 ]| N Q(v) for all b, € B.

Let A = Q[[v™1]] N Q(v). Let 4V be the A-submodule of V' generated
by B and let L(V) = {z € V|(z,z) € A}.

Lemma 14.2.2. In the setup above, the following hold.

(a) L(V) is an A-submodule of V and B is a basis of it.

(b) Let x € AV be such that (z,z) € 1+ v~ 'A. Then there exists b€ B
such that x = £b mod v~ !L(V).

(c) Let x € V be such that (z,z) € v"!A. Thenz € v 1L(V).

- Let z € V. Assume that = # 0. We can write uniquely x = ), p cob
with ¢, € Q(v). Since only finitely many ¢, are non-zero, we can find
uniquely ¢t € Z and p, € Z (zero for all but finitely many b, but non-zero
for some b) such that, for all b, we have v='c, — p, € v 1A,

We have (z,z) = (3, p2)v* mod v?*~1A. Note that 3, p is a rational
number > 0. Hence (z,z) € A if and only if ¢ < 0; this is equivalent to the
condition that ¢, € A for all b and (a) follows.

If (x,z) € v~!A, then we must have ¢ < 0; hence ¢, € v~ 1A for all b;
(c) follows. If x € 4V and (z,z) € 1+v~!A, then we must have t = 0 and
>, P2 =1 with py € Z; hence p, = £1 for some b and p, = 0 for all other
b; thus, (b) follows. The lemma is proved.

In the remainder of this chapter we fix a Cartan datum (I, -). Let f, 4f
be defined in terms of (7,-) as in 1.2.5, 1.4.7.

Theorem 14.2.3. Let B be the set of allz € f such that x € 4f, T =z
and (z,z) € 1 + v~ Z[[v™Y]]. (The last condition is equivalent to {z,z} €
1+ vZ[[v]] since Z ==z.)
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(a) B is a signed basis of the A-module 4f and of the Q(v)-vector space
f.

(b) If b,¥' € B and V' # 1b, then (b,b') € v~ Z[[v™Y]] and {b,¥'} €
vZ[[v]].

By 14.1.2, we can find a finite graph (I, H,h — [h]) and an admissible
automorphism a of this graph such that (I,-) is obtained from these data
by the construction in 14.1.1. Let n > 1 be such that a® = 1. Then, by
13.2.11, f has a natural isomorphism, say x, onto the corresponding algebra
k (see 13.2.6). Under x, the pairings (,) and (,) on k and f correspond
to each other. This has been seen in the proof of 13.2.11. Moreover, the
involutions D : k — k and ~ : f — f correspond to each other (they both
map the generators 1; and 6; to themselves).

Note that x carries 1,; € k to 95") for any ¢ € I and any n > 0 (this
follows from 13.1.12(c)); hence it carries the A-subalgebra 4k (which is
generated by the 1,; ) onto 4f (see 1.4.7). Moreover, x carries the signed
basis B of k (see 13.1.2) onto a signed basis of f, which we denote by the
same letter. By the already known properties of the signed basis of k, it
remains to prove the following statement: let x € 4f be such that z = z
and (z,r) € 1+ v !Z[[v™!]]; then € B. Let B be a basis of f such that
B = BU (—B). We can write uniquely z = }, c,b where b runs over B
and ¢, € A are zero except for finitely many b. Using 14.2.2(b), we see that
there is a unique b € B such that ¢, € +1+v~!Z[v"!] and ¢y € v~ Z[v]
~for b #b. From Z =z and ¥ = b’ for all ¥’ € B, it follows that &y = cy
for all ¥’ € B. It follows that ¢, = +1 and ¢y = 0 for all ¥’ # b. Thus,
z € BU (—B). The theorem is proved.

14.2.4. Definition. B is called the canonical signed basis of f.

Although the proof of the existence of B requires a choice of a graph
with automorphism, which is not unique in general, the resulting signed
basis is independent of any choice, hence the word canonical.

14.2.5. The following properties of B follow immediately from the defini-
tions.
(a) We have B = U, B, where B, = BNf,.
(b) We have 053) € B for any i € I and s > 0; in particular, 1 € B.
Using 1.2.8(b), we see that

(c) o(B) = B.
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Proposition 14.2.6. (a) r and 7 map af into the A-submodule Af® 4(af)
of fRf.

(b) For any z,y € af we have (z,y) € Z[[v7']] N Q(v) and {z,y} €
Z{[v]] N Qo).

This follows immediately from the analogous properties of gk (see 13.2.2,
13.2.4, 13.2.5) which are already known.

14.3. THE SUBSETS B;;, OF B

14.3.1. Giveni € I and n > 0, we set B;;>, = BNO}f and 7 B;;>,, = BNfo}.
Let Bi;n =Di>n — Bi;Zn-H and 7B;., = UB,';Zn - UB,';Z,,_H. Thus, we have
partitions Bi.>n = Un'>nBisns and B> = Un'>n?Binr. Since o(B) = B
and o(07f) = £07, we have “B;;>, = 0(B;;>n) and 7 B;;n = 0(Bi;n).

Theorem 14.3.2. (a) B;;>, is a signed basis of the Q(v)-vector space 67'f
and of the A-module 3, ..,./>,, Hgnl)Af.

(b) “Bi;>n is a signed basis of the Q(v)-vector space £f07 and of the
. A-module En,m,Zn(Afﬁ?gnl)).

(c) If b € B;,o, then there is a unique element b’ € By, such that 9§n)b =
b’ plus an A-linear combination of elements in By;>nt1. Moreover, b— b
is a bijection ; n : Bi;o — Bi;n.

(d) If b € ?B;o, then there is a unique element b € “Bin such that
bB,("a = b"” plus an A-linear combination of elements in “Bi;>n41. More-
over, b b" is a bijection °; n : “Bi;o — 7 Bisn.

For the proof we place ourselves in the setup considered in the proof of
Theorem 14.2.3. Thus ¢ is now regarded as an a-orbit in I. Let V € V7. For
any n > 0, let By, be the set of all £[B,¢] € By (see 12.6.4) such that
B € Py,iny where v = 3, .i. By 10.3.3 and 12.5.1, we have a partition
By = Up>0Bv;i;n- By our identification By = B,, this becomes a partition
Bu = UnzOBu;i;n-

Let B, = U,B,;n. We will show below that B; , just defined is the
same as B;, in 14.3.1; see (h) below. We then have a partition B =
Un>0B;p.

Translating the geometric properties of By.,;., expressed by 10.3.2(c) we
obtain the following property of B;.,.

(e) For any n > 0, there is a unique 1-1 correspondence b < b’ between

B, and B, such that Bgn)b = b’ plus an A-linear combination of elements
in U'n’>nB;;n/ .
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Let M, = Zn,m,zn 0,(",) Af and let M, be the A-submodule of f gener-
ated by Up/.s>nB,.,.,. We show that for fixed v,

in'*
(f) any b € B,;;;n is contained in M,.

We argue by descending induction on n; note that B,.;., is empty unless
n < y; for any i € i. By (e), we have

beb™Mat+ > AB,ia

n’in'>s

by the induction hypothesis, we have B,.;,» C M, and it follows that
b € My,. Thus (f) is proved. Thus we have B;, C M,. If n’ > n, we have
B}, C M, C My,. It follows that, for any n > 0, we have M/, C M,.

1

Next we show that

(g) for any b € B,, we have 6{™b € M.

We argue by induction on ¢(b) = > ;1. If b € B,,;;; where t > 0,
then as we have seen, we have b € M;; hence b is an A-linear combination
of glements 0§m)b1 with m > t and with b; € B such that the induction
hypothesis applies to b;. Then 91(")6 is an A-linear combination of elements
Gfm)f)gn)bl with b; as above. By the induction hypothesis, we have 95")b1 €
M. Hence 6(be ¥, 6™ M/, c M, as required.

Next we assume that b € B,;;0. Then 01.(")b € M] by (e). Thus, (g) is
proved. It follows that, for any n > 0, we have

My= Y 6M™kc S M, cM,

n'n'>n n:n'>n

We have proved that M, C M, C M,. Thus, M} = M,. It follows
that (a) holds and B;;>, = un,m,z,,B;m,. In particular, we have

() Bisn = Bip.

We now prove (c). The existence of ¥’ asserted in (c) follows immediately
from (e). We now prove uniqueness. Assume that b} € B;., has the same
property as that asserted for b’ in (c). Then b’ — b is on the one hand a
linear combination of elements in Un/5,B;.ns and on the other hand it is a
linear combination of elements in B;.,. It follows that ¥ = b} and (c) is
proved.

Now (b) and (d) follow from (a),(c) by applying ¢. The theorem is
proved.
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14.3.3. By 12.5.1(c), we have

B — {£1} = Uicr;n>0Bin-

14.4. THE CANONICAL BAsis B oF f

14.4.1. We would like to find in a natural way a basis of f contained in
its canonical signed basis. If (I,-) is symmetric, such a basis is given by
geometry. In this case, a is the identity automorphism of our graph and
we can take n = 1. Hence we have O’ = A and K(Qv) = 4K(Qv) (for
V € V) has not only a natural signed basis, but a natural basis consisting
of the elements [B, 1] where B is a simple object of Py and 1 is the identity
isomorphism 1: B = B.

14.4.2. In the general case, the descent from a signed basis to a basis will
be non-geometric. We lay the groundwork with some definitions.

For any v € NJ[I] we define a subset B, of B, by induction on
tr v as follows. If v = 0, we set B, = {1}, If trv > 0, we set
B, = Uiel,n>0:>nTin (Bu—m'. N Bi;O)-

Let B = U, B, C B. By 14.3.3, we have that B = BU (—B). We can
now state the following result.

Theorem 14.4.3. Let v € N[I]. Then
(a) B, N(-B,)=0;
(b) B, N (-o(B,)) =0;
(c) o(B,) =B,.

(d) B is a basis of the A-module Af and a basis of the Q(v)-vector space
f.

(e) For any v, B, is a basis of the A-module 4f, and a basis of the
Q(v)-vector space f,.

14.4.4. Proof of the theorem, assuming that (I,-) is symmetric. In
this case, as in the proof of Theorem 14.2.3, we have a natural choice for
the graph (with identity automorphism a), see Remark 14.1.3. Moreover
since a=1, the corresponding algebra k has a natural basis inside its natural
signed basis, defined as in 14.4.1. From the definitions, it is clear that this
basis (transferred to f) coincides with B and has all the required properties.
This completes the proof (in the symmetric case).
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14.4.5. The proof of Theorem 14.4.3 in the general case will be given in
19.2.3; in the remainder of this section we shall assume that the theorem
is known in general.

14.4.6. Definition. B is called the canonical basis of f.

We shall use the following notation: B;,, = B;.,, N B for any i € I and
n € N; note that m; , defines a bijection B;;0 = B;;,. Set “B;., = 0(Bi.0).
Then °m; 5, defines a bijection 7B;;p = 7B;;p.

14.4.7. We can regard B as the set of vertices of a graph colored by
I x {1,2,...} in which b,b' are joined by an edge of color (i,n) if b €
Bi,, b’ € B;,,, and b’ = m; ,(b). This is called the left graph on B.

Similarly, we can regard B as the set of vertices of a graph colored
by I x {1,2,...} in which b,b” are joined by an edge of color (i,n) if
b € 7B;;,b" € “B;;, and b’ = ?m; ,(b). This is called the right graph on
B.

14.4.8. Let us choose a finite graph (I, H,h — [h]) and an admissible
autpmorphism a of this graph such that (/,-) is obtained from them by
the construction in 14.1.1. We define a new (symmetric) Cartan datum
(I,-) associated to the same graph and to its identity automorphism, as in
14.1.3. More precisely, we have I=1i-i=2 and, for i # j € I, we have
that i- j is —1 times the number of edges joining i to j.
 Let f be the algebra defined like f, in terms of the Cartan datum I,
and let B c f be its canonical basis. Similarly, let m; ,, : Bl 0 — Bl ., and
Ty - B,‘o — B,,n be the bijections analogous to 7; , : B;;o — B,
and ‘7, : 7 Bio — 7By, in 14.4.6. Now a : I — I induces an algebra
automorphism a : f — f which restricts to a bijection a : B — B whose
fixed point set is denoted by Be.

The Ix {1,2,... }-colored left graph structure on B (as in 14.4.7) defines
aIx{1,2,...}-colored graph structure on the subset B® as follows. We say
that b,b’ € B® are joined by an edge of color (¢, n) if they can be joined in
the left graph on B by a sequence of edges of colors (i1, n), (i2,n), ..., (is,n)
where iy, i2,. .., 1, is an enumeration of the elements of 7 in some order. This
is called the left graph on B®. By replacing “left” by “right” we obtain a
Ix{1,2,...}-colored graph structure on B?, called the right graph on B®.

Theorem 14.4.9. There is a unique bijection x : B — Be compatible
with the structures of I x {1,2,...}-colored left (resp. right) graphs and
such that x(1) = 1. The two bijection corresponding to “left” and “right”
coincide.
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The inverse bijection is obtained geometrically by attaching to a pair
(B, ¢) where B is a simple object of a suitable Py and ¢ is an isomor-
phism a*B = B, the simple object B without specifying ¢. The fact that
this bijection is compatible with the colored graph structures is also clear
geometrically (using, in particular, 12.5.1(a)).

14.4.10. Remark. This theorem shows that to describe the left or right
graph structure on B it is enough to do the same in the case where the
Cartan datum is symmetric.

Theorem 14.4.11. Assume that the root datum is Y -regular. Let \ € Xt
and let Ay = £/ 3, f0N+1 be the U-module defined in 3.5.6. As in 3.5.7,
let 1 € Ay be the image of 1. Let B(A) = Nicr(Un;o<n<(i,n) " Bin)-

(a) The map b — b™n define a bijection of B()X) onto a basis B(Ay) of
Ax.

(b) Ifbe B —B()), then b"n = 0.

An equivalent statement is that

Ui nin>(i,0)+1° Bin
is a basis of 3, f§(»+1. This follows immediately from Theorem 14.3.2.
14.4.12. Definition. B(A,) is called the canonical basis of Aj.

Theorem 14.4.13 (Positivity). Assume that (I,-) is symmetric.
“(a) For any b,/ € B, we have
B = > cop v’
b €B;neZ
where cp i b n € N are zero except for finitely many b”,n.
(b) For any b € B we have
r(b) = Z dp b b7 0" @b
b.b’eB;nez
where dy p p'n € N are zero except for finitely many V', 4", n.
(c) For any b,b' € B we have
6,8) =" fopmv "
neN
where fb,b’,n € N.
The theorem asserts the positivity of certain integers; in our definition

in the framework of perverse sheaves, these integers are the dimensions of
certain Q;-vector spaces. The theorem follows.
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14.4.14. Remark. For non-symmetric (I,-), the integers in question are
not dimensions, but traces of automorphisms of finite order of certain Q;-
vector spaces and it is not clear whether they are positive or not.

14.4.15. In the case where (I, -) is symmetric, the set B, is (conjecturally)
in natural 1 — 1 correspondence with the set X, of irreducible components
of a certain Lagrangian variety naturally attached to (I,-) and to v (see
(9, 13.7]). The union U, X, has a natural colored graph structure (defined
as in [8]) and one can hope that the previous bijection respects the colored
graph structures.

14.5. EXAMPLES

14.5.1. Assume that (I,-) is a simply laced Cartan datum of finite type.
Let (I, H,...) be the graph of (I,-) (see 14.1.3); note that I = I. We choose
an orientation of this graph. Let V € V and let Gv,Ev be as in 9.1.2.

From the results in [9], it follows that there is a 1-1 correspondence
between the set of orbits of Gv on Ey (a finite set, by Gabriel’s theorem)
and the set of isomorphism classes of objects of Py (see 9.1.3): to an orbit
of Gv corresponds the Gy-equivariant simple perverse sheaf whose support
is the closure of that orbit. This is well-defined since the action of Gv has
connected isotropy groups.

14.5.2. Assume that (I,-)issuch that I = {i,j} andi-i =j-j=2,i-j =
j-i=—2. Then (I,-) is a symmetric Cartan datum of affine type.

Let (I,H,...) be the graph of (I,-) (see 14.1.3); note that I = I and
H has two elements. We orient this graph so that h’ = ¢ for both h € H.
Let V € V and let Gyv,Ev be as in 9.1.2. Note that Ev consists of all
pairs T, T’ of linear maps V; — V. Assume that both V; and V, are n-
dimensional and n > 2. Then Gv acts on Ey with infinitely many orbits.

Let v = (i,5,%,j,...) (2n terms). Then 7, : F, — Ey (see 9.1.3) is
a principal covering with group S, (the symmetric group) over an open
dense subset of Ey. This gives rise to irreducible local systems over an
open dense subset of Ey, and hence to simple perverse sheaves on Ev,
indexed by the irreducible representations of S,,. These simple perverse
sheaves belong to Py .

14.5.3. Assume that (7,-) is such that I = {i} and i-i = 2. The canonical
basis B of f consists of the elements 91(“) (a € N).
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14.5.4.  Assume that (I,-) is such that I = {i,j} and i-i = j-j =
2and i-j = j-i = —1. The canonical basis B of f consists of
the elements 0§a)0§b)9§c) (a,b,c € N,b > a + c) and of the elements
0§°)0§b)0§“) (a,b,c € N,b > a + ¢) with the identification 0§°)0§b)0§°) =
8766'*) for b=a +c.

14.5.5. Assume that (I,-) is as in 14.5.2. The elements of B;; are
0:0;,0;6;.
The elements of By;; are:

676\9,6\76,0,676:,0,69;,6.6,6,0; — 6.76$),6,6:0;6; — 6$62.

J 7

For further examples, see [11].
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1. The canonical basis of f has been introduced by the author in [7], assuming that
the Cartan datum is symmetric, of finite type. In fact, in [7] two definitions
for the canonical basis were given: an elementary algebraic one, involving
braid group actions, and a topological one, based on quivers and perverse
sheaves. (The elementary definition applies essentially without change to not
necessarily symmetric Cartan data of finite type.) The topological definition in
[7] was in terms of intersection cohomology of certain singular varieties arising
from quivers by a construction reminiscent of that in [4] of the new basis of a
Hecke algebra (which used the intersection cohomology of Schubert varieties).
One of the main observations of [7] was that the canonical basis of f gives rise
simultaneoulsy to a canonical basis in each U-module A, which had rather
favourable properties.

2. After [7] became available, Kashiwara announced an elementary algebraic def-

inition of the canonical basis which applied to an arbitrary Cartan datum.
Kashiwara’s paper [3] contains an inductive construction of the canonical ba-
sis, both of f and of Ay, which advances like a huge spiral. His construction
agrees with that in [7], as shown in [8].
On the other hand, the author [9] extended the topological definition 7] of
the canonical basis to arbitrary (symmetric) Cartan data. (The case of not
necessarily symmetric Cartan data was only sketched in [9].) The definition
of [9] resembles that of character sheaves [5]. While the method of [9] is not
elementary, it has the advantage of being more global and to yield positivity
results which cannot be obtained by the elementary approach. The agreement
of the definitions in (3], [9], was proved in [2].

3. The exposition in Part II essentially follows the treatment in [9], with two main
differences. First, in order to include not necessarily symmetric Cartan data in
our treatment, we have to take into account the action of a cyclic group, which
is a complicating factor, not present in [9], where only symmetric Cartan data
were treated. In addition, we make use of the geometric interpretation of the
inner product on f given in [2]; this simplifies somewhat the original proof in
[9] and provides the link with [3].

4. The basic reference for the theory of perverse sheaves on algebraic varieties is
the work of Beilinson, Bernstein, Deligne and Gabber [1].

5. The representation theory of quivers (which is implicit in the constructions in
Chapter 9) has a long history going back to Kronecker. In Ringel’s work [12],
the connection between the representations of a quiver of finite type over a
finite field Fy and the plus part of the corresponding Drinfeld-Jimbo algebra
at parameter \/(} was observed for the first time. This work of Ringel was an
important source of inspiration for the author’s work on the canonical basis.
In particular, the definition of the induction functor in 9.2 was inspired by
Ringel’s definition of the Hall algebra arising from quivers over F;. On the
other hand, the definition of the restriction functor in 9.2 was inspired by the
analogous concept for character sheaves [5).

6. The geometric definition of the inner product in 12.2 is taken from [2] where,
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10.
11.

12.

however, the cyclic group action was not present.

The idea that the canonical basis can be characterized by an almost orthonor-
mality property for the natural inner product, has originally appeared in
Kashiwara’s paper [3] and has been later used in [2]. This is analogous to
the orthogonality properties of character sheaves [5); it is a hallmark of inter-
section cohomology.

. The description of non-symmetric affine Cartan data given in 14.1.5 is different,

as far as I know, from the ones in the literature.

The ingredients for the definition of the colored graph in 14.4.7 were introduced
in [9]; it turns out that that graph contains the same information as the colored
graph defined by Kashiwara (but the two graphs are different).

The statement 14.4.13 appeared in [2].

The example in 14.5.2 is a special case of the results in [10] where the perverse
sheaves which constitute the canonical basis in the affine case are described
explicitly. (The results in [10] dealt with symmetric affine Cartan data; but
in view of Theorem 14.4.9, the same results can be applied in the case of
non-symmetric affine Cartan data.)

The geometric method used here to construct canonical bases can be applied,
more or less word by word, to quivers in which edges joining a vertex with itself
are allowed. (This includes, for example, the classical Hall algebra with its
canonical basis.) We have not included this more general case in our discussion
(but see [11)).
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Part III

KASHIWARA'’S OPERATORS
AND APPLICATIONS

In the author’s elementary algebraic definition [4] of the canonical basis of f,
there were three main ingredients: (a) the basis was assumed to be integral
in a suitable sense; (b) the basis was assumed fixed by the involution —;
(c) the basis was assumed to be in a specified Z[v~!]-lattice £ and had
prescribed image in £/v™!L.

Of these three ingredients, the last one is the most subtle; in [4], £ and
the basis of £L/v~1L were defined in terms of a braid group action. This
definition does not work for Cartan data of infinite type.

Kashiwara’s scheme [2] to define a basis of f involves again the ingredi-
ents (a),(b),(c) above, but he proposes a quite different way to construct
the lattice £ and the basis of £/v~'L, which makes sense for any Car-
tan datum. The main ingredients in his definition were certain operators
&,¢i : £ — f and some analogous operators E;, F; on any integrable U-
module. (The last operators were already introduced, in a dual form, in an
earlier paper [1].)
~ Part III gives an account of Kashiwara’s approach and its applications.
" (The results in Part IIT will be needed in Part IV.) Our exposition differs
from that of Kashiwara to some extent. In particular, we will make use of
the existence of canonical bases (up to sign) established in Part II, while
for Kashiwara, that existence was one of the goals.

The algebra 4 in Chapter 15 is defined in a different way than in [2],
but eventually, the two definitions agree. The operators ¢€;, &i,Ei,IT} are
defined in Chapter 16. Chapter 17 contains a proof of a crucial result of
Kashiwara on the behaviour of E;, F; in a tensor product. Chapters 18
and 19 are concerned with various properties of the canonical basis of Ay,
in particular with the fact that this basis is almost orthonormal for the
natural inner product. Chapter 20 deals with bases at oo (or crystal bases
in Kashiwara’s terminology). Chapter 21 deals with the special features
which hold in the case where the Cartan datum is of finite type. Chapter
22 contains some new positivity results.

In the remainder of this book we assume that, unless otherwise specified,
a Cartan datum (I,-) and a root datum (Y, X,...) of type (I,-) have been
fized. The notation £,U, etc. will refer to these fized data.



CHAPTER 15

The Algebra Al

Lemma 15.1.1. The algebra homomorphism x : 'f — U given by 8; —
E! = (v; —v;Y ) K_;E; (i € I) factors through an algebra homomorphism
f-U.

Let x’ : 'f — U be the algebra homomorphism given by 8; — E; (i €
I). A simple computation shows that, if f € ’f,, then

x(f) =N (i = vy ) K 15X (f)

1

where N depends only on v and not on f. Hence if f is a homogeneous
element in Z (so that x’'(f) = 0), then x(f) = 0. The lemma is proved.

15.1.2. Let Ut be the image of x. Using the previous lemma we see that
E; s E! defines an algebra isomorphism U+ = U*.

Let U° be the subalgebra of U generated by the elements K_; fori € I.
From the triangular decomposition of U, we can deduce that multiplication
defies injective maps U~ ®@U°@U* — U and Ut®@U°QU~ — U. These
maps have the same image, which is a subalgebra U of U; this follows from
the identity E/F; = v*IF;E! + 6; ;(1 — K2,) for all i,5. Note that the
elements K_; which are invertible in U are not invertible in U. The left
ideal generated by them in U coincides with the right ideal generated by
them in U. The quotient of U by this ideal will be denoted by {I. We have
obvious algebra homomorphisms U~ — 4 and U* — {l and it is clear that

(a) multiplication defines isomorphisms of vector spaces U~ @ Ut 2 g
and Ut U~

(b) the algebra il is defined by the generators €;,¢; (i € I) and the
relations €;¢; = v*"I¢;€;,+6; ; for all i, j, together with the relations f(e;) =
f(¢:) = 0 for any homogeneous f = f(6;) € Z. Here, €;, ¢; are the images
of E/, F; in 4.

15.1.3. There is a unique Q-algebra homomorphism w : Y — Y such that
w(e) =vigs, w($i) = —vie;, w(v)=v"1. We will not use it. Note that
w?=1.
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Lemma 15.1.4. For each i € I we define ¢; : f — £ to be left multiplica-
tion by 6; and ¢; : £ — £ to be the linear map ;v in 1.2.18.

(a) @i, €; make £ into a left U-module.
(b) € : £ — £ is locally nilpotent for any i € I.

The identity €;¢; = v*7¢;e;+6; ; (as maps f — f) follows from ;7(6,y) =
ir(0;)y+v70;(;r(y)). Let f = £(6;) be a homogeneous element of Z. From
the definition we have f(¢;) = 0 as a linear map f — f. We must show
that f(e;) = 0. Let f' = o(f) € Z. From the definition we have

(z,6()) = (1 - v7*)(diz,y)

for all z,y € f. It follows that (z, f(e:)(y)) = c(f(¢:)(z),y) where c €
Q(v). From f’(¢:)(z) = 0 we deduce that (z, f(e;)(y)) = 0. By the non-
degeneracy of (, ), this implies that f(e;) = 0 as a linear map f — f. Thus
the relations 15.1.2(b) of U are verified; (a) is proved.

Ifzef, thene(z) € f,_; if v; > 1 and ¢;(z) =0 if v; = 0. It follows
that ¢; : £ — f is locally nilpotent. The lemma is proved.

Lgmmé 15.1.5. There is a unique algebra homomorphism d : 4 — 1~1® U
such that d(¢;) = $:;®K_;+1®F; and d(€;) = ;K _;+(vi—v; ) 1K _,E;
forallieI.

The homomorphism A : U — U®U, satisfies A(F}) = F;Q K_;+1QF;,
A(E) =E/QK_;+(v;—v; )1QK_;E;, and A(K_;) = K_;® K_;. Hence
A restricts to an algebra homomorphism U — U ® U and this induces an
algebra homomorphism d : 4 — {{ ® U which has the required properties.



CHAPTER 16

Kashiwara’s Operators in Rank 1

16.1. DEFINITION OF THE OPERATORS ¢;,¢; AND F; E;

16.1.1. In this chapter we fix ¢ € I. Besides the category C; (see 5.1.1), we
shall consider another category D; which shares some of the properties of
C..

Let D; be the category whose objects are Q(v)-vector spaces P provided
with two Q(v)-linear maps €;,¢; : P — P such that ¢; is locally nilpotent
and

(a) €ipi = vidie: + 1;

the morphisms in the category are Q(v)-linear maps commuting with
€y ¢i-

For P € D; and s € Z, let ¢1(-3) : P — P be defined as ¢7/[s]} if s > 0
" and as 0, if s < 0. From (a) we deduce by induction on N:

(b) €™ = vV g{Ve; + vV 1NV for all N.

For any t > 0, we consider the operator

Ht — Z(_l)sv?(s—l)/2¢(3)f§+t P> P
2 ) i ‘ *

3 >0
This is well-defined, since ¢; is locally nilpotent. For N > 0, we define a
subspace P(N) of P by P(0) = {z € Ple;(z) = 0} and P(N) = ¢\ P(0).
Lemma 16.1.2. (a) We have ¢II, =0 for all t > 0.

(b) We have 3,5, v“(t'l)/zqﬁgt)ﬂt = 1. The sum is well-defined since,
for any x € P, we have I1;(z) = 0, for large t.

(c) We have a direct sum decomposition P = @&n>oP(N) as a vector
space. Moreover, for any N > 0, the map QSEN) restricts to an isomorphism
of vector spaces P(0) = P(N).

(d) ¢; : P — P is injective.

Using 16.1.1(b), we have

11, = Z(—l)svf(s_l)/z(U?3¢£S)Cf+t+l + vf“lqbgs_l)ef“)
8>0
— Z(_l)s¢(s)fg+t+1(v‘_s(s—l)/2+2s _ v._s(s+1)/2+s) -0
1 1 1 1
320
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and (a) is proved. Now (b) follows immediately from 1.3.4.

We prove (c). If z € P, we have by (b): z =55 ¢£-N):rN where zn =
vi_N(N_l)/ZHN(a:). By (a), we have zny € P(0). It remains to show the
uniqueness of the zy; it is enough to prove the following statement. If
0=>3nN>o ¢£N)xN, where zn € P(0) are zero for all N > Ny (for some
Ny > 0), then zn, = 0.

We argue by induction on Ny. For Ny = 0 there is nothing to prove.
Assume that Ny > 1. Applying ¢; and using 16.1.1(b), we obtain 0 =
Y N>0 vgN_1)¢£N_l)a:N. The induction hypothesis is applicable to this
equation and gives zx, = 0. This proves (c).

(d) follows immediately from (c).

16.1.3. We define linear maps ¢;,¢; : P — P by
88" y) = 6"y and &(sMy) = p{N Dy for all y € P(0).

Lemma 16.1.4. Let M € C and let z € M*.

(a) We can write uniquely £ =3, 50,1150 Fi(’)zs where z, € ker(E; :
Mt*2s —, M) and z, = 0 for large enough s; we can write uniquely z =
D aie>0ia 0 E®)z, where , € ker(F; : M*=2* — M) and =/, = 0 for large
enough s.

b) We h Fetz, = EC V. Wed

( ) € have 23;320;3+t20~i Ts = ZS;SZO;S—tZO i Ts- € ae
note either of these sums by Fi(x).

-1 +1

(C)’ We have 23;320;s+220~1::i(s )333 = Zs;sZO;s—tZO Ei(s ).'17; We de-
note either of these sums by E;(z).

This follows from 5.1.5 (we are reduced by 5.1.4 to the case considered

there.)
The operators 4~Si,€,- and F‘,—, E; in this and the previous subsection are
called Kashiwara’s operators.

16.1.5. Let M € C]. Consider the Q(v)-linear maps E,F,: M - M
defined in the previous lemma. We have

reM” = E,(IL’) (S Mn+2,F~‘¢(.’E) e M™ 2,

16.2. ADMISSIBLE FORMS

16.2.1. We fix P € D;,M € C;. We will study the properties of the
operators ¢; : P - Pj¢,: P > Pand F; - M - M,E; : M - M in
parallel.
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16.2.2. A symmetric bilinear form (,) : P x P — Q(v) is said to be
admissible if

(a) (z,€:(y)) = (1 — v 2)(¢iz,y) for all z,y € P.

A symmetric bilinear form (,) : M x M — Q(v) is said to be admissible
if

(a') (M™,M™) =0 for n # n’ and

(b') (Biz,y) = vP~ Yz, Fiy) for all z € M™2,y € M™.

16.2.3. Besides the subrings A = Z[v,v71] and A = Q[[v7!]] N Q(v)
of Q(v) we shall need the subrings A(Z) = Z[[v!]] N Q(v) and A =
Z((v™1)) N Q(v) of Q((v71)).

16.2.4. Let B be a basis of the Q(v)-vector space P (resp. M). We say
that B is integral if

(a) the A-submodule 4P of P generated by B is stable under ¢;, ¢l(-t) :
P — P for allt > 0 (resp. the A-submodule AM of M generated by B
- is stable under E,.(t),ﬂ.(t) :M — M for all t > 0); in the case of M, it is
further assumed that BN M™ is a basis of M™ for all n.

Assume that we are given an admissible form (,) and an integral basis
B for P (resp. M) which is almost orthonormal (see 14.2.1). Let

L(P) = {z € 4P|(z,z) € A}

and
L(M) = {z € ;M|(z,z) € A}.

Lemma 16.2.5. (a) L(P) is a Z[v~!]-submodule of 4P and B is a basis
of it.

(b) Let x € 4P be such that (x,z) € 1 +v~'A. Then there erists b€ B
such that z = £b mod v~1L(P).

(c) Let x € AP be such that that (z,z) € v='A. Then z € v 1L(P).
(d) £(M) is an A(Z)-submodule of ;M and B is a basis of it.

(e) Let x € 4M be such that (z,z) € 1+v~'A. Then there ezists bc B
such that £ = £b mod v=!L(M).

(f) Let z € 4M be such that that (z,z) € v-1A. Then z € v~ 1L(M).

This follows from Lemma 14.2.2.
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Lemma 16.2.6. Let y € 4P (resp. y € ;M N M* with t > 0) be such
that e,y = 0 (resp. E;y = 0); let n > 0 (resp. 0 < n < t). We have

(6, 6{7y) = ma(v,9) (resp. (F™y, FVy) = w,(y,y)) where m, € 1+
v71Z[[v7Y]] (resp. w, € 1+ v 1Z[[v7Y))).

It suffices to show that
(8" Dy, 9" Vy) = m(¢My, 9My)

(resp. (F"Vy, FVy) = o/ (F™My, FMy)) where 7 € 1 + v='Z[[v~"]]
(resp. 7' € 1+ v71Z[[v"!]]) and n > 0 (resp. 0 < n < t).
We have
@, 8 Vy) = (n+ 17 60y, 47 y)
= (1 -7 n + 10716y, e Vy)
= (1-v7) 7+ 10702 6y, 6V y).
Similarly,
(F"y, ) = ([ + 1) RFMy, FMy)
— vi—t+2n+1[n + llfl(ﬂ(n)MEiF}(nH)y)
=072 ot t)ifn 4+ 17N (FMy, FMy).

It remz;,iﬁs to observe that
[n+1)7 0 € 1+v71Z[p7 Y
for 0 < n and
o n i+ 107 € 14+ v 2]
for 0 < n < t. The lemma follows.

Lemma 16.2.7. (a) Letz € aoP; writex = } 5o YN where yny = d)EN)xN
and zn € P(0) are zero for large N (see 16.1.2(c)). Then xn € 4P for all
N.

(b) If z € L(P), then each xn and yn above is in L(P). If, in addition,
(z,z) € 1+ v~ 1A, then there exists No > 0 and b € B such that zn, = +b
mod v~!£L(P) and zy = 0 mod v=1L(P), yv = 0 mod v~ 1L(P) for all
N # No.
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(c) Letx € M*N ;M. We write z = zs;szo;s+t20 ys where y, = Fi(s)zS
and =, € ker(E; : M*+?® — M) are zero for large enough s; then z, € iM
for all s.

(d) If € M*N L(M), then each z, and y, above is in L(M). If,
in addition, (z,z) € 1 + v~ 1A, then there exists s > 0 and b € B
such that z,, = b mod v~ 1L(M) and z, = 0 mod v~ 1L(M), y, = 0
mod v~ 1L(M) for all s # sq.

We prove (a). We have zy = vi_N(N_l)ﬂHN(:c). Since 2P is stable

under ¢; and rj)gt) for all t, we see that 4P is stable under IIy : P — P.
Hence zn € 4P. This proves (a).

Next we show that the subspaces ¢(¥) P(0), $N") P(0) are orthogonal to
each other under (,), if N # N’. We argue by induction on N + N’. If
N > 1, we have for 2,2’ € P(0) that (d)SN)z, ¢§N’)z') is equal to a scalar
times (¢£N_l)z, e,-qb,(Nl)z’), hence to a scalar times (d)EN_l)z,qﬁgN/_l)z) S0
that it is zero by the induction hypothesis. We treat similarly the case
where N’ > 1. If N < 0 and N’ < 0, the result is trivial; our assertion
.. follows.

Now let z € 4P be non-zero. We have (z,z) = 3 5 (y~n,yn). We can
find t € Z such that v™*yy € L(P) for all N and v—**lyy ¢ L(P) for
some N. Then there exist integers ay > 0, not all equal to 0 such that
v™ 2 (yn,yn) —an € v 1A for all N. Hence

(&) v"#(z,z) — Y yan €v 1A and 3y an > 0.

If z € L(P), then (e) shows that t < 0; hence yy € L(P) for all N
and, using the previous lemma, we see that xn € L(P) for all N. If now
z € L(P) satisfies (z,z) € 1+ v™'A, then (e) shows that ¢t = 0 and
an, = 1 for some Ny and ay = 0 for all N # Ny. In other words, we
have (yn,,¥n,) € 1 + v A and (yn,yn) € v A for all N # Ny. Using
16.2.6, we deduce that (zn,,zn,) € 1+ v 'A and (zn,zN) € v 1A for all
N # Ny and the second assertion of (b) follows from 16.2.5.

We prove (c). If z; = 0O for all s, then there is nothing to prove. Hence we
may assume that z, # 0 for some s and we denote by N the largest index
such that zxy # 0. We have N > 0,N +¢ > 0. We argue by induction
on N. If N = 0, there is nothing to prove; hence we may assume that
N > 0. We have EMz = D ei>0i84£30 EMFOg, = [*% ]z~ Since
Ei(N)AM C 4M, we have [2’}{,'”]1.:1:1\; € ;M. We have [21}(,“];1 € A, hence

zNy € ;M. Then z’ = z — F,-(N)zN € 4M. The induction hypothesis is
applicable to z’ and (c) follows.
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Next we show that (F}(N)z,Fi(N')z’) = 0if N # N’ and 2,2’ are
homogeneous elements in the kernel of E;. We argue by induction on
N+ N'. If N > 1, we have that (ﬂ(N)z, Fi(N,)z') is equal to a scalar
times (Fi(N_l)z, EiFi(N')z’), hence to a scalar times (Fi(N_l)z, Fi(Nl_l)z)
so that it is zero, by the induction hypothesis. We treat similarly the case
where N’ > 1. If N < 0 and N’ < 0, the result is trivial; our assertion
follows. The remainder of the proof is entirely similar to that of (b).

Lemma 16.2.8. (a) ¢;,& : P — P map L(P) into itself.

(b) Fy, E; : M — M map L(M) into itself.

Let z € L(P). We must show that biz € L(P),&x € L(P). By 16.2.7,
we may assume that z = c/)z(N)a:N for some z as in that lemma. But then
#iz =N Vzy € £(P) and &z = ¢V Van € L(P), by 16.2.6. We argue
in the same way for M.

16.2.9. For any N > 0, we denote by Tn(P) the set of all x € 4P such
that z = ’¢£N)$, for some z’ € P(0) N 4P with (z’,2') =1 mod v~'A.
"For any s,t such that s > 0,s +¢ > 0, we denote by Ts,+(M) the set of
all z € 4 M such that r = Fi(s)a:' for some z’ € ker(E; : M**?* — M)n ;M
with (z/,2') =1 mod v'A.
From the definitions we see that
(a) $(Tn(P)) C Tn41(P);
(b) E.,(TN(P)) C TN_l(P) for N > 1, E,(To(P)) =0;
(c) if N > 0, then ¢; : Tn(P) — Tny1(P) and & : Tyy1(P) — Tn(P)
are inverse bijections;
(d) Fi(Ts:(M)) C Tog1,—2(M) if s > 0,5+t > 1, and Fi(T, (M)) =0
ifs>0,s+t=0;
(e) Ei(Ts,t(M)) C Ts—l,t+2(M) if s > 1,3 +t> 0, and E,;(Tsyt(M)) =0
if s=0,t>0;
(f) if s > 0,s +t > 1, then F Ts (M) — Tsy1,4—2(M) and E; :
Tsy1,0—2(M)) — T, (M) are inverse bijections.

Lemma 16.2.10. (a) Case of P. We have
1B+ v ' L(P) = Un>oTn(P) + v~ 1L(P).

Moreover, the sets By = BN(Tn(P)+v~1L(P)) (N > 0) form a partition
of B.
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(b) Case of M. We have
+B+v7IL(M) = Us t;0,s+¢20Ts ¢ (M) + v 1 L(M).

Moreover, the sets Byy = BN (Ts (M) + v 1L(M)) (s> 0,5+t > 0)
form a partition of B.

By 16.2.6 and 16.2.5, we have T (P) C B + v~1L(P). Conversely, let
z € £B. We have (z,z) € 1+ v~ 'A. Hence, by 16.2.7, we have z = ¢/ +y”
where y” € v™1L(P) and ¢ = ¢£N)x’ for some 2’ € P(0) N 4P such that
t’ € B + v~ 'L(P) and some N > 0. Thus z € Tn(P) + v— L(P) and
the first assertion of (a) follows. To prove the second assertion of (a), it is
enough to show that Tn, (P) N (Tn,(P) + v~ L(P)) is empty for Ny # Ns.
Assume that d),(.N‘):c] = ¢£N2)x2+v‘1z where z € L(P) and z1,z2 € P(0)N
(4P) satisfy (z1,z1) = 1 mod v~'A and (x2,72) = 1 mod v~!A. By
16.2.7, we can write z =Yy, d)EN)zN where zy € L(P)N P(0). We have
¢£N‘):z:1 = ¢£N2):r2 + v Y v rb,(-N)zN. This implies, by 16.1.2(c), that
_zy =0 for N # Ny,N,, v-lzy, = z, and v~ 12y, = —z2. From the last
 equality we deduce that (z3,z9) = v~2(2n,, 2n,) € v 2A, a contradiction.
Thus (a) is proved. The proof of (b) is entirely similar.

16.2.11. Using the previous lemma and the results in 16.2.9, we deduce
the following.

In the case of P we have:

(a) ¢i(£BN +v™L(P)) C £Bn41 + v L(P);

(b) &(£Bn + v 'L(P)) C £Bn_1+ v 1L(P) for N > 1, and & (B +
v 1L(P)) Cc v 1L(P);

(c) if N > 0, then ¢; : £By + v"1L(P) — +Bn4, + v~ 1L(P) and
& :+tBny1 + v 1L(P) — £ By + v 1L(P) are inverse bijections.

In the case of M we have:

(d) Fy(£Bss +vL(M)) C £Boy1 42 + v 1L(M)) if s > 0,5+ > 1,
and F;(£B,; + v 1L(M))=0if s > 0,5+t =0;

(€) Ei(£B,; + v 'L(M)) C By 400 + v L(M))if s> 1,54+t >0,
and Ei(:th’t + ’U—IL:(M)) =0ifs= O,t > 0;

(f)if s > 0,s+t > 1, then F; : +B,; + v 'L(M)) — +B,14_2 +
v1L(M)) and E; : *Byp14-2 + v IL(M)) — £B,; + v~ 1L(M)) are
inverse bijections.
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16.3. ADAPTED BASES

16.3.1. P, M, (,) are as in the previous section. We say that a basis B
of P is adapted if there exists a partition B = Un>0B(n) and bijections
my : B(0) — B(n) for all n > 0 such that

(a) for any N > 0, B(N)UB(N +1)UB(N +2)U... is a basis of 6" P;
(b) for any b € B(0) and any N > 0 we have ¢£N)b _n(b) € ¢£N+1)P.
We say that a basis B of M is adapted if there exists a partition

B = Us 1;5>0,s+t20B(s, 1)

and bijections
7o : B(0,25 +1) — B(s, 1)

for all s,t as above, such that
.(a) B(s,t) UB(s+1,t)UB(s + 2,£) U... is a basis of M* N F" M;
(b) for any b € B(0,2s +t), we have Fi(s)b — mse(b) € Fi(sH)M.

In this section it is assumed that B is integral, almost orthonormal (with
respect to (,)) and adapted.

Lemma 16.3.2. Letbe€ B.
(a) Case of P. We have b € By if and only if b ¢ ¢;(P).
(b) Case of M. We have b € Uy>By, if and only if b ¢ F; M.

We prove (a). Assume first that b € By with N > 0. Then b =
¢£N):1:’ + v~ !z where z € L(P) and z’ € P. Since B is adapted, we can
write ¢£N) "' =3 cpb’ where b runs over BN d),(-N)P and ¢y € Q(v). We
can also write z = Y, dyvb” where b” runs over B and dy» € Z[v™!]. If
b¢ ¢§N)P, then by comparing the coefficients of b, we obtain 1 = v~1d,,
a contradiction. Thus, we have b € d)gN)P. Since N > 0, we have b €
¢:P. Conversely, assume that b € ¢;P and b € By. Then b = =’ + v~12
where z € L(P),z’ € P(0), and b € Yy, #M) P(0); using the equation
(P(O),d)gN)P(O)) =0 for N > 0, we deduce that (z’,b) = 0, hence (b,b) =
v~1(2z,b) € v~1A, a contradiction. This proves (a). The proof of (b) is
entirely similar.
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Lemma 16.3.3. (a) Case of P. Letb € By, N > 0 and let b’ be the unique
element of +B such that ¢ (b) = b’ mod v=1L(P). Then b’ = myb.
(b) Case of M. Let b € By 412 where s > 0. If s+t > 0, then there

is a unique element b’ € +B such that Fs(b) = b mod v~1L(M) and
b =ms4b. If s+t <0, then F?(b) =0 mod v—1L(M).

We prove (a). We write b= z+v~1z where z € L(P) and = € P(0)N4P
satisfies (z,z) =1 mod v™'A. Using 16.2.7, we write 2 = Y, zn+ where
2y € L(P) N ¢ P(0) for all N’. Replacing z by  + v~12 and z by
z— zp, we see that we may assume that 2 satisfies in addition z € ¢; P. The
equalities ¢Vb = d)gN)m +v71¢Nz and ¢§N)b = ¢1(-N).’L‘ + v‘1¢>SN)z, together
with $¥z € L(P) and ¢V z € oD P, imply

Vb= ¢™b mod vIL(P) + VTV P,
By assumption we have ¢N (b) = ¥ mod v=1L(P). Hence
¥ =¢™b mod v 1L(P)+ ¢V VP.

Moreover, we have
¢™Mb=1b; mod stV P

where b, = mnb € B.

We must prove that & = b;. We have by + ¢; = b + ¢ where ¢; €
¢§N+1)P and ¢ € v"1L(P). We have b, ¢ qSEN“)P. (Otherwise, we would
have ¢,(-N)b € ¢,(-N+1)P; hence b € ¢; P, contradicting the previous lemma.)
Hence, if we express b; +¢; as a Q(v)-linear combination of elements of B,
the element b; € B will appear with coefficient 1. On the other hand, if
we express b’ + ¢ as a Q(v)-linear combination of elements of B, then all
coefficients are in v~!Z[v™1) except that of £¥'.

This forces by = b’ or by = —b'. If by = —V', then we have 2b; +¢; = ¢
and +b, appears in the left hand side with coefficient 2 and in the right
hand side with coefficient in v"! A, a contradiction. Hence we have b; = ¥’
and (a) is proved.

The proof of (b) is entirely similar.

16.3.4. The following result shows that the action of the operators ¢;, €;
(resp. Fj, E;) on the elements of B is described up to elements in v=1L(P)
(resp. v~1£(M)) in terms of the bijections 7, (resp. m, ;) in 16.3.1.
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Proposition 16.3.5.

(a) Case of P. Let b € B(N). Let by € B(0) be the unique element
such that mnbg = b. We have ¢~>,'(b) = n4+1bp mod v~ 1L(P). We have
&(b) = mn—1bp mod v L(P) if N > 1 and &(b) = 0 mod v IL(P) if
N = 0. In particular, we have By = B(N) for all N.

(b) Case of M. Let b € B(s,t). Let by € B(0,2s + t) be the unique
element such that 7, 4bo = b. We have I:‘,(b) = Ts41,6—2bp mod v~1L(M)
ifs+t>1and Fi(b) =0 mod v !L(M) if s+t = 0. We have E;(b) =
Ts—1,442bp mod v 1L(M) if s> 1 and E;(b) =0 mod v~1L(M) if s = 0.
In particular, we have Bs; = B(s,t) for all s,t.

This follows from 16.3.3.



CHAPTER 17

Applications

17.1. FIRST APPLICATION TO TENSOR PRODUCTS

17.1.1. In this chapter we shall give three applications of Proposition
16.3.5: two to tensor products, and one to f.

17.1.2. Let M, M € C.. Then M®M is an object in C} (see 5.3.1). Now let
P € D; and M € C,. We define Q(v)-linear maps ¢;,¢; : PO M - PO M
by

¢i(z®y) = 4i(2) ® K[ 'y + 2 ® Fi(y)

6(z®y) = 6(x) @ K7 \y+ (v; — vy )z ® K7 E;(y)
where K; : M — M is the linear map given by K;y = viyforye M™. Itis
© easy to check that (P® M, ¢, e,')~ is an object of D;. (This also follows from
15.1.5.) Hence the linear maps ¢;,¢é; : PQ M — P ® M are well-defined.

From the definitions we deduce (using the quantum binomial formula)
that ) 3 .
| ¢£t)(x®y) — Zvi—tt ¢Et )$®K1_t Fi(t )y

for all z € P,y € M and t > 0; the sum is taken over all ¢,t” € N such
that ¢/ +t" =1t.

Lemma 17.1.3. (a) If (,) : Px P — Qv) and (,) : M x M — Q(v)
are admissible symmetric bilinear forms in the sense of 16.2.2, then the
symmetric bilinear form on P Q@ M given by (z®y,2’ ®y') = (z,2')(y,v')
s admissible.

) If(,) : M x M — Q(v) and (,) : M x M — Q(v) are admissible
symmetric bilinear forms in the sense of 16.2.2, then the symmetric bilinear
form on M @ M given by (zQy,z’ ®y') = (z,2')(y,y’) is admissible.

We prove (a). Let 2,2’ € P,y € M™,y' € M™ . We have
(z®y,&(r' ®Y)) = (2®y,a(@) ®K 'y + (v — v )2’ @ K Ei(y))
= (2, &)W, K7'Y') + (v — o7 (2, 2") (v, KT Ei(y))
= bnw v (1= 07 ) iz, 2') (v, )
+ 62 0 (0~ o) (2, @) (Fi(W), ¥)-
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On the other hand, we have

(¢i(z®y), 2’ ®Y) = (¢:(z) ® K 'y + 2 ® Fi(y), 2’ ® y')
= n,n'vi_n(‘ﬁi(x)v Jt’)(y, yl) + 6n-2,n' (17, xl)(Fi(y)a yl)'

This proves (a). The proof of (b) is entirely similar.

17.1.4. We consider the following example. Let Py be the Q(v)-vector
space with basis 8y, 81, B2, . ... We define Q(v)-linear maps ¢;,¢; : Py — Py
by ¢i(Bs) = [s + 1]iBs+1 for s > 0 and €;(8s) = vf‘lﬁs_l for s > 0 (with
the convention 8_; = 0). It is easy to check that this makes P, into an
object of D;.

We have ¢£t)(ﬁ3) = [’:’t] Bsys for s > 0,t > 0, and € (Bs)
v{t(t+1)/2+’tﬁ3_t, for s > 0,t > 0, (with the convention f_; = B_s =

---=0). Let (,) be the symmetric bilinear form on Py given by

8
(Be Bar) = b0 [T (1 = 072) 7%
t=1
It-is easy to check that this bilinear form is admissible.

17.1.5. We fix an integer n > 0. Let M, be the Q(v)-vector space with
basis by, by, ..., b, with Z-grading such that b,, has degree n — 2m. It will
be convenient to define b,, = 0 for m > n and for m < 0.

Let E;, F; : M,, — M, be the linear maps given by FE;(bs) = [n — s +
1);bs—1 and F;(bs) = [s+1];bs41 for all s. It is easy to check that in this way
M, is an object of C]. Note that for t > 0, we have E,-(t)(ba) = ["_f“]ibs_t

and Fi(t)(bs) = [*F*] ,bs4+¢ for all 5. Let (,) be the bilinear form on M,, given

by (bs,bs) = 63,3/'01._3("_3) [';], for0<s<nand0<s <n. ltiseasy to
check that (,) is an admissible form on M,,.

17.1.6. Let P, be as in 17.1.4 and let M, be as in 17.1.5 (n > 0). Then,
as in 17.1.2, P = Py ® M,, is a well-defined object of D;. Note that P has
a basis {bs s = Bs ® bs'|s > 0,0 < s’ < n}.

For any ¢ > 0 we have

—t(n-2s'—t"y[t' + 8] [t + s
¢$t)bs’s' — Z ,Uz (n S ) [ t’ ] ' [ t// bs+t/,8/+t”
1

1

where the sum is taken over all ', € N such that t' +¢” =t, and

’ ’
Eibs,s' =; nt2sts lbs——l,s’ + v; nt2s Z(Ui —-v; 1)[” -5+ I]ibs,s'—l-



144 17. Applications

By convention, we set by »» = 0 if either s <0 or s’ < 0 or s’ > n.

For any m € Z, we define P™ to be the Q(v)-subspace of P spanned by
the vectors by s with s + s’ = m. We have P = @,,P™, ¢{) pm ¢ pm+t
and ¢, P™ C P™1,

By definition, the operator ¢; : P — P (resp. & : P — P) is an (infinite)
linear combination of operators ¢£t+1)55 (resp. ¢£t)ef+1); it follows that

(a) ¢:(P™) c P™*! and &(P™) Cc P™-1,

17.1.7. Let

’

- s+t
Cs,sr = Zv:t(n+t—s ! [ t ] bstt,s'—t
t=0

fors>0,8>0,s+s <mn,

8,

_ n+t—s

Cs,s' = E :'Ui t(3+t)[ t ] b3+t,s’—t
t=0

1

1

for s > 0,0 < s <n, s+ > n; the two definitions agree if s + s’ = n.
~Note that {, € P5t°.
For s + s’ > n, we have

sl
s g |[-1—n+5
(a') bs,s’ = Zvi tet [ ] Cs-H,’,s’—t’-

’
t'=0 ¢ 1

Indeed, the right hand side of this equality is, by definition,

s’ &=t

Z —t"(s+t'+t")—t's—t' [N+ =& +t] [-1—n+s

'Ui t” t’ bs+t’+t”,s’—t’—t” .
t/=0¢t"=0 i

1

The coefficient of bg44,s—; (Where 0 <t < §') is
—t"(s+t'+t")—t's—t' n + t— SI _1 —n+ SI
Z Y; t i t N
t 4t =t i i

We replace the exponent —t"(s +t' +t") —t's—t' by (n +t — s')t' —
(-1—n+s)t"+ f where f =t(—n—t— s+ s’ — 1) depends on t/,t" only
through their sum. Hence the coefficient of bsys ¢ —¢ is

f (ntt—s")t' —(—1—n+s')’ [N+t —58"] [-1—-n+§
v; z vy [ t t .
't =t i [

t—1
=Uf[ ¢ ]=vf5t,0=5t,0;
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(a) is proved.

From the definitions and from (a), we see that the subset B of P con-
sisting of the vectors (s s (with s > 0 and 0 < s’ < n) is a basis of P.

For m € Z, let L™ be the Z[v~!]-submodule of P generated by the
vectors b, o+ with s + 8 =m.

Lemma 17.1.8. (a) For any s > 0 and 0 < s’ < n, we have

’
Cs,s' — bs,s’ evlLete,

(b) Form > 0, L™ is the Z[v~!]-submodule of P generated by the vectors
Cs,r with s+ 5 =m.

Assume first that s + s’ < n. The coefficient of b4 s —¢ in (54 is in
vi_t("“_sl)"'”(l + v~ 1Z[v~1]). Here t > 0; hence —t(n +t — s') + st =
t(s + s’ — n) — t? < 0; the inequality becomes an equality only for ¢ = 0.

Assume next that s + s’ > n. The coefficient of bs4¢ s —¢ in (5,6 is in

v;—t(s+t)+t(n—s')(1 + ’U_IZ[’U_I])-

Here t > 0; hence —t(s+t)+t(n—s') = t(n—s—s’) —t2 < 0; the inequality
becomes an equality only for t = 0. This proves (a).

The previous proof also shows that the matrix expressing the vectors
. Ls,s in térms of the vectors b, o+ (with s+’ = m fixed) is upper triangular,
with diagonal entries equal to 1 and with off-diagonal entries in v—'Z[v™1].
This implies (b). The lemma is proved.

Lemma 17.1.9. The A-submodule 4P of P generated by B is stable under
€, d)gt) : P — P forallt > 0. (In other words, the basis B of P is integral.)

The formulas in 17.1.6 show that €;(b; ) € 4P and d),(-t)(bs,s/) € 4P for
all £ > 0. The lemma follows.

Lemma 17.1.10. Assume that 0 < s<mn andt > 0. We have
¢¢('t)bs,0 = Cs,t

ifs+t<nand

t+s—n
¢,(-t)bs,0 = 2 [ J Cs-}—u,t—u
€

u
wu20u>t—nu<ls+t—n
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ifs+t>n.
Assume first that s +t < n. We have

: ' t'+s

—t'(n—t+4t’

¢§t)bs,o = Yi (=) | Dsrer it = Cope
t/=0 t

1

Assume now that s + ¢t > n. We have

’

®) _ —t'(n~t+t') [t + 8

d’i bs,O = E v; 4 bs+t',t—z'
it/ >0t <t;t—t'<n

1

_tll tl _tll _tl _t tl
ot ()=t (k)

't ENE +t <tjt—t'<n

—1—-n+t-t] [t'+s
X t” - t’ ‘(3+tl+tll’t_tl_tll
1 i

= zt:( Z 'U._t”(‘9+tl)_t"_t,(n_t+tl)

u=0 ¢t/ t";t' +t" =u;t' >0;t" >0;t' >t—n

—1-n+t—-t [t'+s
X " ¥ Cs+u,t—u)-
i i

Since the index t’ satisfies t' > t—n and u > ¢/, the index u must satisfy u >
. —1—n+t—t'7 _ " rm—t+ t'+s] _ ' r—s—1
t—n. V‘,’? Su‘t,)sm;‘}lt‘f [ 1:," li= (_l)f [* % u],; P A Co Vil i P
and vi_t (s+t")—t"—t' (n—t+t") — vi—(n—t+u)t +(—s—-1)t )
~The condition on u implies n—t+u > 0; hence ""tf,*" "]1. is automatically
zerd unless n —t +u > t”, i.e., if t > t — n. Thus the condition ¢’ >t —n

can be omitted in the summation and we obtain

> 3 (i

0<u<t t’,t”zo
uzt_n t'+t"=u

n—t+u| |—-s—1
X " ] ¥ .Cs+u,t—u

1

= (e [” Tttuss- 1] Cotrupm

u
u;0<u<Lt;u>t—n d

—n+t+s
= Z [ u :l Cs+u,t—u-
u;0<u<tju>t—n i
(We have used 1.3.1(e), 1.3.1(a).) Recall that s +¢ > n. It follows that
[_"TLH’L = 0 unless u < t + s — n and then the condition u < ¢ is au-

: t+s—n
tomatic. Hence our sum becomes 3°,..50.u>¢ nu<sttion [F+e ]iC3+u,t—u-
The lemma is proved.



17.1. First Application to Tensor Products 147

Lemma 17.1.11. We consider the partition of B into the subsets
B(t) = {Cotls +t < n}U{C+2s-n,n—s|s +1 > n}
wheret=0,1,2,....

(a) For anyt > 0, the set B(t)UB(t+1)UB(t+2)U--- is a basis of
¢ P.

(b) The basis B of P is adapted.

From 17.1.10, we see that

Cot € P
ifs+t<nand
Cs,t € ¢£2t+s—n)P
if s +t > n. (The last inclusion is seen by induction on ¢.) It follows that

(c) Bt)UB(t+1)UB(t+2)u---c ¢ P.

Hence X (t) C qbgt)P where X (t) is the subspace of P spanned by B(t) U
B(t+1)UB(t+2)U-:-. We now prove the inclusion

(d) 66 X (2)
forany b € Bn P™, by induction on m > 0.

Note that B(0) = {(50]0 < s < n} = {bs0]0 < s < n}. If b € B(0),
then (d) follows from 17.1.10. If m = 0, then b = by € B(0), hence (d)
holds. Assume now that m > 1. If b € B(0), then (d) holds; hence we may
assume that b € B—B(0). Then b € X (1) and by (c) we have b = ¢;y where
-y € Pm=1, By the induction hypothesis we have ¢1(-t+1)y € X(t+1) C X(¢),
hence ¢§t)b € X (t). This proves (d). Thus (a) is proved.

From (a) we see that {b € B|b ¢ ¢; P} = B(0). Let m, : By — B; be the
bijection given by

(€) mCs0 = (ot if s+t < n and M50 = Ct425—nn—s if S+t 21
From 17.1.10, we see that qﬁgt)Cs,o — m(s,0 € X(t + 1), hence

(£) ${7¢s,0 = meCs,0 mod gV P.

The lemma is proved.

Lemma 17.1.12. Consider the admissible form (,) on P defined as in
17.1.8, in terms of the admissible forms 17.1.4, 17.1.5, on M, and P,.
Then B is almost orthonormal with respect to (,).

From the definition it is clear that the basis (bs s ) of P is almost or-
thonormal (actually different elements in this basis are orthogonal to each
other). Since B is related to this basis as described in 17.1.8, it follows that
B is also almost orthonormal.
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We now see that the hypotheses of 16.3.5 are verified in our case. Ap-
plying Proposition 16.3.5 to B, and taking into account 17.1.11(e),(f), we
obtain the following result.

Proposition 17.1.13. We have

Gi(Corsr) = Coory1 mod v™IL(P) if s+’ <,

i(Cs,57) = (41, mod vTIL(P) if s+ ' 2 m,

€i(Cs,s') =Cs,9—1 mod v IL(P) ifs+s' <mnands >1,

€i((s,s) = (s—1,»» mod v IL(P) if s+ s’ >n,

€i(¢s,0) =0 mod v~1L(P) if s < n.

Using Lemma 17.1.8, we can restate the proposition as follows.
Corollary 17.1.14. ¢;(bss') = by w41 mod v-1L(P)NP*+'+1 ifs + s’ < n,

bi(bs,s) = boy1,e mod v IL(P)N P+ ifs 45" >n,

€i(bs,s') = bs,er—1 mod v IL(P)N P+ =1 if s+ ' <n,

€i(bs,er) = bs—1,4 mod v IL(PYNP+ -1 ifs+ ¢ >n.

What we actually get are the statements of the corollary with £(P) N

~ Ps+s'E1 peplaced by L(P). But b,y € P*t%; hence from 17.1.6(a),
Gi(bs,or) € PoHe'+1 and &(bs ) € P*+'~1, The corollary follows.

Corollary 17.1.15. Let P € D;, M € C! and let (P ® M, ¢;,¢;) € D; be
defined as in 17.1.2. Let x € P and y € M™ be such that ¢;z = 0, E;y = 0.
(Then n > 0.) For any m > 0, let L., be the Z[v—']-submodule of P ® M
generated by the vectors ¢§s)z ® Fi(s )y withs+ s =m. Weset L_; =0.
We have
367z ® Fy) = 62 @ F' Yy mod v™'Lypyir if s+ < n;
&6z 0 Fy) = {2 @ F' ™y mod v='Loyy_y f s+ <n;
(8720 Fy) = ¢ V2@ Fy mod v Lovy—r f s+ >n.
We may identify Py ® M,, with the subspace of P ® M spanned by the
vectors ¢§s)x ® Fi(s )y with s > 0 and 0 < s’ < n. It is in fact a subobject
in D;. Therefore the result follows from the previous corollary.

17.2. SECOND APPLICATION TO TENSOR PRODUCTS

17.2.1. We consider two integers p > 0 and n > 0 and form the tensor
product M = M, ® M,,. This is again an object of C; hence the operators
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E‘i,f‘i : M, ® M, - M, ® M, are well-defined. Now M, has a basis
{bs|0 < s’ < n} as in 17.1.5; similarly, M), has a basis {b,|0 < s < p} as in
17.1.5; Then

{bs,s =bs ® by |0 < s < p,0 <8 <n}

is a basis of M. As in 17.1.7, we define

!

8
- —g)|s+t
Cs'sl = Zv«i t(n+t—s') [ :I bs+i,3'—t

t=0 t

1

for0<s<p s >0,s+5 <n,

3/

- n+t—s

(o, = E :Ui t(s-H)[ t ] btt,er—t
t=0

)

for 0 < s <p,0< s <n,s+s > n; the two definitions agree if s+ s’ = n.

The vectors (, ,» just described form a basis B of the vector space M,
which is related to the basis (b, ) by a matrix with entries in Z[v~!] whose
constant terms form the identity matrix. (This is seen as in 17.1.8 or can
be deduced from that lemma, using the natural surjective map P — M
which takes bs,s» to bs o if s < p and to zero if s > p; that map also takes
(s,s to (5,¢ if s < p and to zero if s > p.) Hence the A(Z)-submodule of
M, generated by the elements (b, ), coincides with the A(Z)-submodule
generated by the elements ((; s ); we denote it by L(M).

Asin 17.1.9, we see that the .A-submodule of M generated by B is stable
" under El.(h),Fi("); hence B is an integral basis. As in 17.1.12, we see that
- B is almost orthonormal with respect to the form (,) on M defined as in
17.1.3 in terms of the forms (,) on M,, M,, (see 17.1.5). As in 17.1.11, we
see that the basis B of M is adapted. (Again, this could be deduced from
the corresponding result for P.)

We now see that the hypotheses of 16.3.5 are verified in our case. Ap-
plying Proposition 16.3.5 to B, we obtain the following result, analogous
to 17.1.13.

Proposition 17.2.2. We have
Fi(Caw) = Cow+1 mod v IL(M) if s+ <n;
Fy(Cs,s) = Cs+1,6¢ mod v IL(M) if s <p and s+ s' > n;
Fy(¢pe) =0 mod v=1L(M) if s+ &' > n;
Ei(Cowr) = Coy—1 mod v™'L(M) if s+ <n and s’ > 1;
Ei(Cs,s) = Co—1,0 mod v 1L(M) if s+ 5 > n;
Ei(Cs0) =0 mod v~1L(M) if s < n.
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As in 17.1.4, we can restate the proposition as follows.

Corollary 17.2.3. Fi(b, o) = bs 41 mod v 1L(M) if s+ 8 < n;
f‘i(bs,sr) =bst1,¢ mod v IL(M) ifs<pands+s >n;
Fi(bps) =0 mod v 1L(M) if s+5 >n;
Ei(bs o) =bso—1 mod v 1L(M) ifs+s <nands >1;
E‘i(bs‘s:) =bs_1,# mod v IL(M) if s+ >n;
Ei(b,0) =0 mod v-1L(M) if s < n.
Corollary 17.2.4. Let M € C!, M € C. and let M ® M € C! be defined as

in 5.8.1. Let x € MP and y € M™ be such that Eiz = 0, E;y = 0.~(Then
p>0,n2>0.) For any m > 0, let L be the A(Z)-submodule of M @ M

generated by the vectors Fi(s)a: ® Fi(s,)y. We have
ﬁ}(Fi(s)m ® Fi(sl)y) = Fi(s)x ® F'i(8’+l)y mod v=1L if s+ &' < n;
F(FPz@ F*y) = F**Y2 @ F*)y mod v-!L if s+ >n;
E,-(Fi(s):v ® Fi(sl)y) = F,-(s)a: ® Fi(sl_l)y mod v™!L if s+ <n;
E(FPz@Fy) = F* V2@ F)y mod v1L if s+ > n.

We may identify M, ® M, with the subspace of M ® M spanned by
the vectors Fi(s)z ® Fi(s )y with0 < s<pand 0 < s’ <n. Itisin fact a
subobject in C;. Therefore the result follows from the previous corollary.

17.3. THE OPERATORS ¢;,&; : f — f

17.3.1. We shall regard f as a {{-module as in 15.1.4. Thus, for each ¢ € I,
¢; : £ — f acts as left multiplication by 8; and ¢; : f — f is the linear map
;v in 1.2.13. For any ¢ € I, f with the operators ¢;,¢; : f — f is then an
object of D;. (See 16.1.1.) Hence the operators ¢;,é; : f — f (see 16.1.3)
are well-defined.

Note that the form (,) on f is admissible in the sense of 16.2.2 for any 1.

17.3.2. For a fixed i € I, we define a Q(v)-basis B* of f as follows. By
definition, B* = L>0B(t) where Bi(0) is any subset of B such that
B;,o = B*(0) U (—B*(0)) and, for t > 0, Bi(t) is the image of B*(0) under
mit : Bio = By (see 14.3.2(c)). By definition, we have B = B*U(—B?) and
Bt is adapted (in the sense of 16.3.1) to f € D;.

By definition of B, we see that B' is almost orthonormal for (,) and the
A-module it generates is 4f.



17.8. The Operators Q&,e} f—f 151

17.3.3. Let L(f) = {z € af|(z,z) € A}. From Theorem 14.2.3 and
Lemma 14.2.2, it follows that £(f) is the Z[v~!]-submodule of f generated
by Bt
Lemma 17.3.4. (a) af is stable under the operators e,-,d)gt) :f — £, for
anyi € l.

(b) L(f) is stable under the operators bi, &£ —f, foranyieI.

The stability under qﬁgt) is clear from definitions. The stability under ¢;
follows from 13.2.4. This gives (a). Now (b) follows from Lemma 16.2.8(a)
applied to f, (,) and B*.

Applying Proposition 16.3.5 to our case, we see that the following holds.

Proposition 17.3.5. Letbe B’;(t). Let by € B*(0) be the unique element
such that m;1bp = b. We have ¢;(b) = m; 44100 mod v~'L(f). We have
&(b) = mit—1bp mod v IL(f) if t > 1 and &(b) = 0 mod v~ 1L(f) if
t=0.

17.3.6. The following result shows that the endomorphisms of the Z-
médule L£(f)/v~1L(f) induced by ¢;, & act, with respect to the signed basis
given by the image of B, in a very simple way, described in terms of the
bijections ; , in 14.3.2(c).

Corollary 17.3.7. Leti € I and let b € B;;;. Let by € B;;p be the unique
_ element such that m; bo = b. We have

(a) $i(b) = mi 4100 mod vTIL(F);

(b) &(b) = mis—1bo mod v L(f) if t > 1 and &(b) = 0 mod v~'L(f)
ift =0.

(c) Ifi € I and b € B, then we have ¢;(b) = b’ mod v~ L(f) for a
unique b’ € B. Moreover, &b’ = b mod v~ 1L(f).

(d) If i € I and b € B;,, for some n > 0, then we have &(b) = b’
mod v~ L(f) for a unique b € B. Moreover, ¢;b"” =b mod v~ L(f).

We apply 17.3.5 to b if b € B or to —b if —b € B;. This gives (a) and
(b).

Let ' = ;i nt+1bo € Bi;ny1. We have q—S,-(b) =b mod v~'L(f) by (a) and
& (') = b mod v~ L(f) by (b). This proves (c).

Assume now that b € B;,, with n > 0. Let b” = m; ,_1bp € Bi.n—1. We
have &(b) = b mod v~1L(f) by (b) and ¢;(b") = b mod v=1L(f) by (a).
This proves (d).



CHAPTER 18

Study of the Operators F, E, on A,

18.1. PRELIMINARIES

18.1.1. In this chapter we assume that the root datum is Y-regular. Let
A€ X*. Asin 3.5.6, we set Ay = £/ 3, f9°M*1, Since A will be fixed
in this chapter, we shall write A instead of A). As in 3.5.7, we denote the
image of 1 € f by 5 € A.

Recall that there is a unique U-module structure on A such that E;n =0
forallie I, K,n= vi#Nq for all p € Y, and F; acts by the map obtained
from left multiplication by 6; on f. From the triangular decomposition for
U, we see that A can be naturally identified with the U-module

(2) /(S UE:+ Y UK, — o) + 3 UFEN

V by the unique isomorphism which makes 7 correspond to the image of
1eU.

For any v € N[I], we denote by (A), the image of f, under the canonical
map f — A. We have a direct sum decomposition A = @, (A),. Note that
(A),, is contained in the (A — v)-weight space A*~” (the containment may
be strict if the root datum is not X-regular).

18.1.2. By Theorem 14.3.2(b), the subset U; n.n>¢i,2)+17Bi;n of B is a
signed basis of the Q(v)-subspace ), f01-<i’}‘> +
projection f — A maps this subset to zero and maps its complement B(\) =
Nier(Unjo<n<(i,n) " Bin) bijectively onto a signed basis of the Q(v)-vector
space A. Thus {b"n|b € B(\)} is a signed basis of A.

of f. Hence the natural

18.1.3. We shall regard f as an object of D;, for any 7 € I as in 17.3.1.
Since f is a 4-module (see 15.1.4), the tensor product f ® A is a Y-module
with
$i(z ®y) = ¢i(z) ® K; 'y + 2 ® Fi(y)
and
e(z®y) = €i(x) @ K7 'y + (vi — v )z © K Ei(y)

for all z € f and y € A. (See 15.1.5.) Hence for each i € I, we have
f®AeD;.
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Lemma 18.1.4. There is a unique Q(v)-linear map = : f — £ ® A such
that

(a) E() =1®mn;
(b) E(¢iz) = ¢i(E(z)) forallz € f and alli € I;
(c) E(eix) = €i(ZE(z)) for allz € f and all i € I.

By 3.1.4, there is a unique algebra homomorphism f — f ® U such that
9, — 6; ® K -i+1Q® F; for all i € I. Composing this with the linear map
f®U — f® A (identity on the first factor, the map u — un on the second
factor) we obtain a linear map = : f — f ® A which clearly satisfies (a)
and (b). We show that it satisfies (¢). For z = 1, (c) is trivial. Since the
algebra f is generated by the various 8;, it is enough to show that (c) holds
for x = 0;x’', assuming that it holds for z’. We have

E(E,‘:l:) = E(6i¢j$,) = E(vi'jqﬁjeix' + 5,',]'11/) = ’Ui'j¢j€i5($l) + 6,',1'5(:1?')

and
i €i(E(z)) = €:(2(¢52")) = €:;(E(2"));

hence (c) holds for z. This proves the existence of =. The uniqueness of =
(assuming only (a),(b)) is clear since f is generated by the ; as an algebra.

~18.1.5." Let L(f) be as in 17.3.3. We have L(f) = @,L(f), (sum over all
v € N[I]) where L(f), is the Z[v~!]-submodule of f generated by B,,.

Lemma 18.1.6. (a) Ifb € B is not equal to £1, then there existi € I and
b € B such that b— ¢;b” € v1L(f).

(b) If v € N[I] is non-zero, then

LE) = Y GilL(E)u-s)-

t;v; >0

We prove (a). According to 14.3.3, if b is as in (a), then there exist i € I
and n > 0 such that b € B;.,,. By 17.3.7, we then have (iib” —bev1L(f)
for some b” € B.

We prove (b). The sum -, ., $:i(L(f),_;) is a Z[v~!]-submodule of
L(f), (by 17.3.4) and the corresponding quotient module is annihilated by
v~! (by (a)). By Nakayama’s lemma, this quotient is zero; therefore (b)
holds. The lemma is proved.
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Proposition 18.1.7. Let v € N[I].

(a) L(f), coincides with the Z[v~!]-submodule of f generated by the el-
ements ¢, i, - -+ ¢i,1 for various sequences iy, ia,...,% in I in which i
appears exactly v; times for each i € I.

(b) The subset of L(£), /v L(f), consisting of the images of the el-
ements x¢;, ¢i, - - - @i, 1 for various iy,4,... ,%, as above, coincides with

the image of B, in L(f), /v 1L(f), .

This follows immediately from the previous lemma.

18.1.8. We will denote by L(A) the A-submodule of A generated by the
signed basis {b~7n|b € B(A)} of A. We have a direct sum decomposition
L(A) = &,L(A), (v runs over N[I]) where L(A), is the A-submodule of A
generated by the elements {b~7|b € B(A\) N B,}. We have L(A), C (A),.
Since A is integrable (see 3.5.6), A belongs to the category C. for any
i € I; hence the operators E F,:A— A (see 16.1.4) are well-defined. For
any v € N[I], we will denote by L’(A), the A-submodule of A generated by
the elements Filﬁ'i, ‘.- ﬁ‘iﬂl for various sequences i1, i2,...,%; in I in which

1 appears exactly v; times for each i € I.
Let L'(A) = Y, L'(A), € A. We have L'(A), C (A),.

18.2. A GENERAL HYPOTHESIS AND SOME CONSEQUENCES

Yntil the end of 18.3.6, we shall make the following
General hypothesis 18.2.1. N is a fized integer > 1 such that, for any
v € N[I] with trv < N, we have

(a) L(A), = L'(A);

(b) ifi is such that v; > 0, then Fy(z™n) = (¢:x)~n mod v~ 1L(A), for
allz € L(£)y—i;

(c) if i is such that v; > 0, then E‘i(b‘n)~= (€&:6)™n mod v~L(A), for
all b € B, such that b=n # 0; in particular, E;(L(A),) C L(A)y—;.

In this section and the next we will derive various consequences of the
general hypothesis; we will eventually show that this is not only a hypoth-
esis, but a theorem (see 18.3.8).

Lemma 18.2.2. Let v be such that trv < N, leti € I and let z € L'(A),.
Writex = 5_/% Fi(r)a:r where the z, € (A)y—_ri satisfy E;x, =0 for all r
and z, = 0 unless r + (i, A —v) > 0 (see 16.1.4). Then

(a) z, € L'(A)y—ri for all 7.
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(b) If, in addition, z = b™n mod v~ L(A) for some b € B, N B()\),
then there exist ro € [0,v;] and by € B,_,; N B(X) such that z,, = byn
mod v~ L(A),—ryi, and =, € v 1L/ (A)y_r; for all v # ro.

Let ¢t be an integer such that 0 < ¢ < y; and z,. = 0 for r > t. We prove
(a) by induction on ¢. If t = 0, then (a) is obvious. Assume now that ¢ > 1.
We have E;z = Zi;}) Fi(r)a:,H and z,4+1 = O unless r + (i, A — v +14') >
0. (If we had simultaneously z,41 # 0 and r + (i,A — v + 4’} < O then
r+ 1+ (i,A —v) < 0, a contradiction.) By the general hypothesis, we
have E;z € L(A),_;. By the induction hypothesis applied to E;z, we have
zy € L'(A),—p; for all r > 0. Hence Fi(r)xr = Frz, € L'(A), for all r > 0.
Since z € L'(A),, it follows that zo € L'(A),. This proves (a).

We prove (b) by induction on t as above. If ¢ = 0, then (b) is obvious.
Assume now that ¢ > 1. By the general hypothesis, we have E;z = (€)™ 7
mod v~1L(A). By 17.3.7, we have that &b is equal modulo v~!1L(f) to
either 0 or to b’ for some b’ € B, _;.

If the first alternative occurs, or if the second alternative occurs with
(¥)~n = 0, then E;(b~7n) € v=1L(A); applying (a) to vE;(b~7) we see that
z,“€ v"1L(A) for all r > 0. We then have 7o = b1 mod v~!L(A), as
required.

Hence we may assume that

(c) &b=1b" mod v~1L(f), where b’ € B,_; N B()\).

We have, by assumption,

(d) E;z = Ei(b~n) mod v 1E;L(f), .

By the general hypothesis, we have E;L(f), C L(f),_; and E;(b™n) =
(€:6)"n mod v~'L(A),_; (we have b—n # 0, by assumption). Introducing
this in (d), and using (c), we obtain

Eix=b"7n mod v 1L(f),_;.
By the induction hypothesis applied to E;z, we see that there exist

o € [1,v;] and by € By —riNB(A) such that z,, = bgn mod v L' (A)y_ryi,
and z, € v"1L/(A),_,; for all 7 such that r > 0 and r # ro. It follows that

Ex = 13‘{°_le mod v~ L(A).

0

By the general hypothesis, we have

FEiz = F,E;(b™n) = Fi((&b)™n) = (4:&:d) ™
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(equalities modulo v~'L(A).) Since &b = ¥ mod v 1Ll(f) we see from
17.3.7 that ¢;&b = b mod v=1L(f). It follows that F;E;z = b~ n =

(equalities modulo v~'L(A)). We deduce that « = F;(F/°'z,,) = FT °a:,0
(equalities modulo v~*L(A).) Since FTz, € v"'L(A) for all r > 0, 7 # 7
and ¢ = ), Frz,, we deduce that zo € v~ !L(A). This completes the

proof.

Lemma 18.2.3. Let i € I and let z € L(f). Writez = 3 5, d)l(.r)a:,
where x, € £ are 0 for all but finitely many r and ¢;x, = 0 for all r (see
16.1.2(c)). Then z, € L(f) for all r.

This is a special case of Lemma 16.2.7(b).

18.2.4. If H, H' are two subsets of f, A respectively, we denote by H ® H’
the subgroup of f ® A generated by the vectors h@ h' with h € H, k' € H'.

Lemma 18.2.5. Assume that trv < N and leti € I. Then
$:i(L(F) ® L'(A),) € L(f) © L'(A)

and
&(L(E) O L'(A),) c LE) O L'(A).

By Lemmas 18.2.2(a) and 18.2.3, the A-module £(f) ® L'(A), is gener-
ated by elements qb(“)x@F(a )2’ where € L(f) and 2’ € L'(A),_q; satisfy
€:(z) = 0 and E;(z') = 0. The image of such elements under ¢; or §; is
contained in £(f) ® L'(A) by Corollary 17.1.15. The lemma. follows.

Lemma 18.2.6. Let x € L'(A), where trv < N. Assume that there
exists b € B, N B(A) such that z = b~n mod v~ IL/(A). Assume also that
Fiz ¢ v 'L'(A). Then ¢;(1®z) = 1® Fx mod v~ 1L(f) ® L'(A).

By 18.2.2, we may assume that z = Fi(s):zz’ where ' € L'(A),_g; satisfies
E;z’ = 0. Since ' # 0 and E;z’ = 0, we have n = (i, A — v + s¢’) € N;
moreover, F("+l):c’ = 0. By Corollary 17.1.15, ¢;(1 ® F, (#) g z') is equal
modulo v~ !L(£)®L/(A) to 1®F(3+1) ' (if s < n)or to 6; ®F(s) " (if s > n).
If the second alternative occurs, then Fiz = F’+1 " = 0, contradicting our
assumptions. Thus the first alternative occurs and the lemma is proved.
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Lemma 18.2.7. For any v such that trv < N, we have E(L(f),) C
L(f)yo L'(A).

We argue by induction on tr v. If v = 0, the result is obvious. Assume
that v # 0 and that the result is known when v is replaced by v/ with
tr v/ < tr v. By 18.1.6(b), the Z[v—!]-module L(f), is spanned by vectors
é;x with i € I and = € L(f),_;, so it suffices to show that for such i, z, we
have Z(¢iz) € L(f)®L'(A). Since = is a morphism in D;, we have Z(¢;z) =
¢:(E(z)). By the induction hypothesis, we have Z(z) € L(f) ® L'(A).

From the definition of = we see immediately that

E(f) C > feU.n

vtr v’ < tr v/

Combining this with the previous inclusion, we see that

E@e Y, LEOL(A)

v tr v’ <N

Hence it is enough to show that
$:(L(£) © L'(A),r) € L(F) © L'(A)

whenever tr v’ < N.

Now the A-module £(f) ® L'(A),~ is spanned by vectors of the form
dWz® Fi(c)y where z € L(f),y € L'(A),_.; satisfy ¢,z = 0, E;y = 0 (see
- -Lemmas-18.2.2, 18.2.3). Hence it suffices to show that q~3i(¢£a):c ® F,-(c)y)
belongs to the Z[v—!]-submodule generated by the vectors ¢{* )z @ F{*)y
for various a’,¢’ > 0. But this follows from Corollary 17.1.15. The lemma
is proved.

18.2.8. Consider the linear form f — Q(v) which takes f, to zero for all
v # 0 and takes 1 to 1; tensoring it with the identity map of A, we obtain
a Q(v)-linear map pr: f ® A — A.

From the definitions, we see easily that

(a) pr(E(z)) =z nforall z € f.
Lemma 18.2.9. (a) We have pr(L(f) ® L'(A)) C L'(A).

(b) Let i € I. Lety € L(f) ® L'(A), where trv < N. We have
pr(i(y) = Fi(pr(y)) mod v='L'(A)y+.

Let z € L(f), and let 2’ € L'(A),,. If v # 0, we have pr(z ® =) = 0; if
v =0, we have z = f1 where f € Z[v™!] and pr(z ® ') = fz’. Thus (a)
holds.
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We prove (b). By Lemmas 18.2.2, 18.2.3, we may assume that y =
¢§°)z ® Fi(“ )2 where z € L(f) (homogeneous) and 2’ € L'(A), satisfy
€:(z) =0, E;(2') = 0 and a,a’ € N. We may assume that z’ # 0. Let n be
the smallest integer > 0 such that F**'z’ = 0. By Corollary 17.1.15, we
have that ¢;(y) is equal to

(c) ${* V2 ® F,-(al)z’ modulo v~ 1£L(f) ® L'(A), if a + a’ > n, and to

(d) qﬁga)z ® Fi(al“)z' modulo v~ !£(f) ® L'(A), if a + @’ < n.

If a > 0 or z ¢ fo, then y and both vectors (c),(d) are in the kernel of pr,

by the definition of pr; on the other hand, by (a), we have pr(v-1L(f) ®
L'(A)) c v=1L’(A). Hence in this case the lemma holds for y. Hence we

may assume that a = 0 and z = 1. We then have pr(y) = Fi(a’)z' ; moreover,
by the previous argument:

pr(¢:() = F**V() mod v™'L'(A)

if a’ < n and 3
pr(di(y) =0 mod v1L'(A)
if a' > n.
On the other hand, by the definition of F;, we have

Fi(pr(y)) = F(F™ () = F* ().
It remains to observe that Fi(a,“)(z' ) = 0 if a’ > n (by the definition of
n). The lemma is proved.
Lemma 18.2.10. Let z € L(f), with trv < N. We have (¢ix)™n =
F;(z™n) mod v~1L/(A).

Using 18.2.8(a) and the commutation of E with é;, we have
($iz)"n = pr(E(diz)) = pr($:(E(2)))-
Using again 18.2.8(a), we have
Fi(z™n) = Fi(pr(E(z))).
It remains to show that
pr($:(E(x))) = Fi(pr(E(2))) mod v™'L'(A).
This follows from Lemma 18.2.9(b) applied to y = Z(z). (We have ZE(z) €
L(f) © L'(A) by 18.2.7, and E(z) € }_ . 41 yrr< 1, £ ® U um; hence
E@e ), LEOL(A)w
v tr v'<N

so that Lemma 18.2.9(b) is applicable.) The lemma is proved.
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Lemma 18.2.11. If trv = N, we have L(A), C L'(A),.

By definition, L(A), consists of the vectors of form z~n where z € L(f),.
Since v # 0, the Z[v~!]-module L(f), is equal to }_;. >0 b:(L(£),—i ) (see
18.1.6). Hence it suffices to show that (¢;(z)) "5 € L’ (A),, for any 7 € I such
that v; > 0 and any z € L(f),_;. By 18.2.10, we have (¢;z)"n = Fi(z™n)
mod v~1L’(A),. Hence it suffices to show that F;(z™n) € L’(A),,.

By the definition of L(A),—;, we have z7n € L(A),_;. Using our general
hypothesis, we deduce that z7n € L/(A),_;. It remains to observe that
F;(L'(A),—;) € L'(A), (from the definitions). The lemma is proved.

Lemma 18.2.12. If trv= N, we have L'(A), C L(A), +v~*L'(A),.
We have

L)y = Y FELA)_i= Y FL(A),

1;0>0 v >0
= Y AFR(L(f),_m)
;>0

The first and third equalities are by definition; the second one follows from
our general hypothesis. Hence it suffices to show that

Fy(z™n) € L(A), +v71L'(A),

for all z € L(f),_; (where v; > 0).

By 18.2.10, we have Fi(z™7n) = (¢;z)"n mod v='L’(A),. On the other
hand, we have ¢;z € L(f), (see 17.3.4); hence we have (¢;z)"n € L(A),.
The lemma is proved.

Lemma 18.2.13. If trv = N, we have L(A), = L'(A),.

By 18.2.11, L(A), is an A-submodule of L’(A),. The corresponding
quotient module is annihilated by v~!, see Lemma 18.2.12. This quotient
is then zero by Nakayama’s lemma. The lemma is proved.

18.3. FURTHER CONSEQUENCES OF THE GENERAL HYPOTHESIS

Lemma 18.3.1. Lety—ﬁ‘ﬁ‘ . ,,nEAwherezlﬂ-zz-i- i =v
andt = trv < N. Letx = ¢5,¢i,- - $:,(1®1n) € f @ A. Assume that
y¢ v IL'(A). Thenz=1®y mod v 1L(f) ® L'(A).

We argue by induction on ¢. If ¢ = 0, there is nothing to prove. Assume
now that ¢ > 0 and that the result is known for £ — 1.



160 18. Study of the Operators FE-, E; on Ay

Lety = F,---FypeAandlet 2’ = ¢;,---¢;,(1®7) € f® A. Since
F; (v1L'(A)) € v"'L'(A), and y ¢ v='L/(A), we have ¢/ ¢ v 1L/(A).
By the induction hypothesis, we have ' = 1 ® ¥’ mod v=1L(f) ® L'(A).
Applying ¢;, and using 18.2.5, we deduce that z = q;ila:’ = ¢;,(1®7Y)
mod v~ 1L(f) ® L'(A).

By our general hypothesis, we have 3’ = (¢, - - - #;,1)"n mod v~1L(A);
hence, by 18.1.7(b), we have 3y’ = b~n mod v~ 'L(A),—;, for some b €
B,_;,. Since y' ¢ v~!L'(A),—;,, we have b € B()\). Applying Lemma
18.2.6, we see that ¢;,(1®¢') =1Q F;,y’ =1®y mod v~1L(f) ® L'(A).
(That lemma is applicable since F,y/ =y ¢ v"'L’(A).) Hence z = 1Qy
mod v~!£L(f) ® L'(A). The lemma is proved.

Lemma 18.3.2. If trv < N, then E;(L(A),) C L'(A).

We will prove, for any n > 0, that E;(L(A),) C v*L'(A), by descending
induction on n. This is obvious for n large since L(A), is a finitely generated
A-module. Hence it is enough to prove the following statement.

(a) Assume that n > 1 and E;(L(A),) € v™L/(A); then E;(L(A),) C
v 1L (A).

We first show that

(b) &(L(£)y © L(A)u) C v"L(f) © L'(A)
provided that v/ + v = v. In the case where tr v < N, this follows
from 18.2.5. Assume now that tr»” = N; then v/ = 0. It suffices to
show that &(1 ® ) € v"L(f) ® L'(A) for any x € L(A),. We write z =
2 >0 Fi(r):z;r where z, = 0 unless r + (i,A — v} > 0 and E;z, = 0. By
the assumption of (a), we have ¥ ., Fi(r_l)xr € v"L’'(A) and by 18.2.2,
we deduce that Fi(r—l):z:,. € v"L'(A) for 7 > 1, or equivalently, F7 "'z, €
v*L'(A) for > 1. Using the general hypothesis (r — 1) times, we have
ET"Y(Fr'z,) € v"L/(A); hence z, € v"L'(A) for all r > 1. We have
E(l®z) = 3,5, &1 ® FNz,) since €;(1 ® 7o) = 0. By 17.1.15, this
belongs to the Z[v~1]-submodule generated by the elements Ofrl) ® F(ra)g,
with 7 > 1 and r; + 72 = 7—1 and these elements belong to v L(f) ® L’(A).
Thus (b) is proved.

To prove (a), it suffices to show that E;(y) € v* 'L’(A) for all y of
the form y = F; F;, . ..ﬁ'it'r) where i1 +ig+---+ i, = v. If y € v IL/(A),
then our inductive assumption shows that E;(vy) € v™L’(A); hence E;(y) €
v"~1L/(A), as desired. Thus we may assume that y ¢ v~1L’(A). Using now
Lemma 18.3.1, we see that

(c) i, @i 6:,(10N) =(1Qy) +v7 12
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where z € L(f) ® L'(A). From the definition of the operators ¢; on f ® A
we see that we have necessarily

A Z C(f),,/ ® L’(A),,n.
vi+v''=v
Hence, by (b), we have
€(z) e v"L(f) ® L'(A).
Thus applying €; to (c), we obtain

(d) & di -+~ di,(1®n) = &(1®y) mod v 1L(f) © L'(A).

We have (using 18.2.7)

Eidi, iy - bi, (1@ ) = Ei, biy -+~ 63, (E(1)) = EEdhiy by -+~ 3, 1)
C E(L(f),) C L(F) © L'(A) c v™1L(f) © L'(A).
Hence from (d) we deduce that

(e) &(1®y) e v 1L(f) ® L'(A).

We write y = 3 - Fi(r)yr, where the y, € (A),_,; satisfy E;y, = 0 for all
r and y, = 0 unless 7 + (i, A —v) > 0.

By our inductive assumption, we have E;y = erl Fi(r_l)yr € v"L(A).
Using 18.2.2, we deduce that y, € v"L(A) for r > 1. We have (1 ®y) =
ZTZI Ei(1®Fi(r)y,.), since €;(1®yo) = 0. By 17.1.15, we have for any r > 1,
&E(1® Fi(r)y,.) =1® E(r_l)y, plus a linear combination with coefficients in
“v=1Z[v~1] of terms 6™ ® F{"™)y, where ry + 5 = r — 1. The last linear
~ combination is in v*1L(f) ® L'(A) since y, € v"L(A) for r > 1. Taking
sum over 7 > 1 we obtain

&(1®y)=1® Eyy mod v" 1L(f) ® L'(A).

Using this and (e), we deduce that 1 ® E;y € v*~1L(f) © L'(A). Applying
pr, we obtain

pr(1® Eyy) € v"'pr(L(f) © L'(A));
hence E;y € v*~1L’(A). The lemma is proved.

Lemma 18.3.3. Let v be such that trv < N, leti € I and letz € L'(A),.
Writex = Y 0%, Fi(r)zr where the . € (A),_p; satisfy E;xz. = 0 for all r
and x, =0 unless v+ (i, A\ — v) > 0 (see 16.1.4). Then z, € L'(A),_,; for
all r.

When tr v < N, this is just Lemma 18.2.2(a). In the case where tr v =
N, we can use the same proof since the inclusion €;(L(A),) C L’(A) is now
known for tr v = N by the previous lemma.
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Lemma 18.3.4. Let x € L'(A), where trv < N. We have
&(1®z)=1® E;xz mod v~ L(f) ® L'(A).

Using the previous lemma we can assume that z = Fi(r):c’ where 2’ €
L'(A)y—r; and E;z’ = 0. We can assume that z’ # 0. Then

n={(i,A—v+ri)eN;
we have F"*Vz/ = 0. By 17.1.15, &(1 ® F2') = 1 ® F
mod v~ L(f) ©® L’(A). The lemma follows.
Lemma 18.3.5. Assume that trv < N. Then
&(L(F) © L'(A),) C L(E) © L'(A).

When tr v < N this is shown in 18.2.5. When tr v < N, the same
proof applies since Lemma 18.3.3 is now available.

Lemma 18.3.6. Assume that trv = N. Let i be such that v; > 0. Then
E;(b=n) = (&b)™n mod v=L/(A), for all b € B, such that b=n # 0.

We can find y,12,... ,ix5 with 4y + 42 4+ --- + iy = v such that
b= i, bi, diy1 mod v 1L(£)
(see 18.1.7(b)). Then
y=F,F, - -Fyne L),

satisfies b~n =1y mod v~'L(A), (see Lemma 18.2.10) and y ¢ v~ 1L'(A).
By 18.3.1, we have ¢;,¢i, - - ¢in(1®7) =1®y =1Q® b~ 7 up to elements
inv™ 'Y, <y L(F)®L'(A),. From this we deduce using Lemma 18.3.5,
that -

&di,bi, - iy (1®7) =&(1®b7n) mod v~ L(F) © L'(A).
We have
Eidiy big -+~ i (1® M) = &y, i, -+~ Bip (E(1))
= E(&i, i - bin1)
= E(&(b))
modulo v~1L(f) ® L'(A) ~(using Lemma 18.2.7). Using Lemma 18.3.4, we
have &(1 ® b™n) = 1 ® E;(bn) mod v~'L(f) ® L'(A). We deduce that
Z(&(b)) = 1®E;(b~n) mod v~ L(f)®L’(A). Apply pr to this congruence

and use pr(Z(z)) = =~ for all z € f. We deduce that (&(b))~n = E;(b~n)
mod v~'L’(A). The lemma is proved.
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18.3.7. From the lemmas above, we see that, if we assume the general
hypothesis 18.2.1 for N, then the properties (a),(b),(c) in 18.2.1 also hold
when N is replaced by N + 1. Since they are obvious for N = 1, we see
that we have proved by induction the following result.

Theorem 18.3.8. Let v € N[I]. We have

(a) L(A)y = L'(A)y;

(b) for any i we have Fi(z™n) = (¢:x)~n mod v=1L(A), for all z €
E(f)u;

(c) if i is such that v; > 0, then E’i(b‘n):—- (&b)~n mod v~ L(A), for
all b € B, such that b= # 0; in particular, E;(L(A),) C L(A)y—;.

From now on, we shall not distinguish between L(A) and L'(A).



CHAPTER 19

Inner Product on A

19.1. FIRST PROPERTIES OF THE INNER PRODUCT

19.1.1. In this chapter, we preserve the setup of the previous chapter. In
particular, we write A = A, where A € X7 is fixed, except in subsections
19.2.3, 19.3.6 and 19.3.7.

Let p; : U — U be the algebra isomorphism given by

P (E:) = —viF;, po(Fi) = "'Ui_lEiy p1(Ky) = K_.

Let p : U — U°P be the algebra isomorphism given by the composition
. Spy where S : U — U°P? is the antipode. We have

P(Ei) = 'Uz'f(z'Fi, p(F;) = vif(_,-Ei, P(Ku) =K,.

It is clear that p? = 1.

Pfo’bosition 19.1.2. There is a unique bilinear form (,) : A x A — Q(v)
such that

(@) (mn)=1;
(b) (uz,y) = (z,p(u)y) for allz,y € A and u € U.

This bilinear form is symmetric. If € (A),,y € (A), withv # V', then
(z,y) =0.

For any u € U, we consider the linear map of the dual space A* =
Hom(A, Q(v)) into itself, given by & — u(£) where u(§)(z) = £(p(u)z) for
all z € A. This defines a U-module structure on A*, since p : U — UPP
is an algebra homomorphism. Let £, € A* be the unique linear form such
that &(n) = 1 and & is zero on (A), for v # 0. It is clear that E;£, = 0 for
all i € I and K, & = v#Ng for all u € Y. We show that F\"M g = 0.
It is enough to show that, for any z in a weight space of A, the vector
Efi"\)ﬂz cannot be a non-zero multiple of 7. This follows from Lemma
5.1.6, since E;n = 0 and Fi(i”\)“n = 0. From the description 18.1.1(a) of
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A, we now see that there is a unique homomorphism of U-modules A — A*
which takes 7 to &.

Now it is clear that there is a 1-1 correspondence between homomor-
phisms of U-modules A — A* which take 1 to & and bilinear forms (,)
on A which satisfy (a) and (b). The existence and uniqueness of the form
z,y +— (z,y) follow. The form z,y — (y, =) satisfies the defining properties
of the form z,y — (z,v), since p2 = 1. By the uniqueness, we see that
these two forms coincide; hence (,) is symmetric.

Proposition 19.1.3. Let v € N[I].
(a) We have (L(A),,L(A),) € A.

(b) Foranyie I such that v; >0, and any = € L(A)y_i,x’' € L(A), we
have (Fix,z') = (z, Eiz') modulo v™A.

When trv = 0, (a) and (b) are trivial. We may therefore assume
that tr v = N > 0 and that both (a),(b) are already known for v/ with
tr v/ < N. Since L(A), = ¥, 50 FiL(A)y—i, and E;(L(A),) C L(A),—;
whenever v; > 0, we see that (a) for v follows from the induction hypothesis.
(We use (a) and (b) for tr v/ =N —1.)

We now prove (b) for v. Let i,z,2’ be as in (b). By 18.2.2, we may
assume that r = Fi(s)y and ' = Fi(s’)y’ where y € L(A)y—i—si, ¥ €

‘LA)y_si,Ey=Ey’ =0and s > 0,8’ >0, s+ (i, A\ —v+i) > 0,8 +
(i, A — v) > 0. We must show that

(c) (FCy, Fyy = (F)y, F " Vy’) mod v'A.

For any 7,7’ we have from the definitions

r r 2 7 r r
(FMy, Fy) = (y,0f K_EXFy)

2

2 [r—r'+ (i,/\—u+s’i’)]

, ; (@ KwF ),
1
This is zero unless 7’ > r. By symmetry, it is also zero unless r > r’. Thus

(G, A —v+8'7)

(Fi(r)y, Flz‘(r,)y’) = 67-‘,-"():2 [ r

]i(y, K_.iy')

r?—r(i,\—nu+s'i’ ia A—v+si
(i +3'4") [( )] (y, yl)

1

= bp .



166 19. Inner Product on A
Hence (c) is equivalent to

- s t,A—v 23+1+1,A—V
s+1 i
(d)

— iL,A—v 2 1 ‘a A— -
= 05,617; s ))[ e+ t(z V>] '(yay,) mod v~ lA.

We may therefore assume that s + 1 = s’. Now g,y are contained in

L(A),—i—si and tr (v — i — si) < N; hence, by the induction hypothesis,
we have (y,y’) € A. We see that to prove (d) it suffices to prove

o= EFD(+D+EA-0) [2(s + 1) + (A — )
¢ s+1 i

(e) _ oA A [2(3 +1) 4; (i, A — V)] mod v~ 1Z[v~1].
i

From the inequality s +1+ (i, A — v) > 0, we deduce 2(s+1) + (i, A —v) >
~ 8+1and 2(s + 1) + (i, A — v) > s. Since v; ™ [”:q]i € 1+v712Z[v7] for
p > 0,q >0, it follows that we have

P (FDFD+EA-)) [2(8 + 1)3-:(12', A— V)] €142

i
and’

P S THEA=L) [2(3 +1) J;(” A= ">] €l+v'Z[v™]

)

and (e) follows. The proposition is proved.

Lemma 19.1.4. Let bt/ € B()).
(a) If b’ # +b then (b n,b'"n) € v 1A.
(b) We have (b~n,b™n) € 1 +v 1A,

We may assume that b,d’ € B, for some v. We argue by induction on
N = trv. The case where N = 0 is trivial. Assume now that N > 1.
We can find ¢ € I such that v; > 0 and b; € B,_; such that q?),-bl =b
and €b = b, (both equalities are modulo v='£(f)). By 18.3.8, we have
E;(b=n) = byn and F;(b]n) = b~n (both equalities are modulo v~1L(A)).
It follows that b7 # 0. (From by = 0 we could deduce by applying F;
that b=n € v=!L(A) which contradicts b € B()\).) Thus b, € B(\). Using
again 18.3.8, we have E;(b'~n) = (&)~ mod v=1L(A).
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Using the previous proposition, we have

(c) (b7n,b'~n) = (Fi(bym),b'~n) = (bym, E(b'™m)) = (by 7, (&)™)
equalities modulo v~!A. Assume first that b = b’. Then (&V) 1 = b7
mod v~!L(A) and (c) becomes (b~7n,b™n) = (byn,byn) mod v~1L(A);
by the induction hypothesis, we have (by7n,b7n) € 1+ v~!A so that
(b~n,b7n) € 1 + v~ A, as required.

Assume next that b’ # =+b. There are two cases: we have either
&b = by mod v—!L(f) for some b, € B or &b € v IL(f). If the sec-
ond alternative occurs, then (b7, (&b')™n) € v™!A by 19.1.3(a); hence
(b=n,b'"n) € v A, by (c). If the first alternative occurs, then by € B())
(by the same argument as the one showing that b; € B())) and we have
by # +by (if we had b; = +b;, then by applying é; we would deduce b’ = +b
mod v~ !L(f); hence b’ = +b).

From (c) we have (b=n,b'~n) = (b7 n,b51) mod v~'A and from the in-
duction hypothesis we have (b 7,b5 1) € v~ A. It follows that (b™n,b'~n) €
v~!A. The lemma is proved.

19.2. NORMALIZATION OF SIGNS

19.2.1. Let B, be as in 14.4.2. From 17.3.7 and 18.1.7, we see that the
following two conditions for an element = € f, are equivalent:

(a') m E Bu + 'U_IC(f)u

(b) = ¢i, iy - $i,1 mod v 1L(F),,
~ for some sequence %1,%2,... ,% in I such that iy + 2 +--- + 4 = v.

For the proof of Theorem 14.4.3, we shall need the following result. We
regard f ® A as an f-module with 6; acting as ¢; (see 18.1.3.)

Lemma 19.2.2. (a) Let b € B, and b’ € B,.. The vector (b V) is
equal modulo v L(f) ® L(A) to ¢:(b) ® ¥'"n or to b F;(V'™n).

(b) Let by € B,. The vector by(1 ® 1) is equal modulo v='L(f) © L(A)
to by ® by n for some by € B,,, by € B,, withv, +v; =v.

We prove (a). By 18.2.2, (which is now known to be valid uncon-
ditionally) there exists 7o > 0 such that v/ > ro and b~ = Fi(r")x'
mod v~!L(A) where 2’ € L(A)y—ryi, Bsiz’ =0, 2’ #0.

By 16.2.7(b), there exists r; > 0 such that v; > 7, and b = ¢,(-")z
mod v~ L(f) where z € L(f),—r,i, €.z =0,z # 0.

By 18.2.5 (which is now known to hold unconditionally), we have
$:i(b® b ) = $:(¢{x ® F{™x') mod v 1L(f) © L(A).



168 19. Inner Product on A

By 17.1.15, $i(¢{™z ® F{™)a') is equal modulo v~'L(f) ® L(A) to
qﬁr‘“z ® Fl°z’ or to ¢]'z ® FT°*'z’ or equivalently to ¢;(b) ® b'~n or
b® Fy(b ‘17) This proves (a).

We prove (b). From 19.2.1, it follows that

bo = ¢i i, -+ #;,1 mod vT1L(F),
for some sequence 11,12, ... ,%; in I such that 4; + i3+ -+ = v. We have

bo(1®n) = boZ(1) = E(bo) = =(s, by - -~ b3, 1)
= é;il&’iz ot (51': (E(l)) = &hq‘;i'z e &iz(l ® 77)

The third equality is modulo v~!L(f) ® L(A).

It remains to show that ¢,1¢,2 . ¢,t(1 ® n) is equal to b ® by
mod v~'L(f) ® L(A) for some b; € B,, and b, € B,, with v, + 1, = v.
We show that this holds for any sequence i,,1s,...,1;, by induction on t.
The case where t = 0 is trivial. We assume that ¢t > 1. Using the induction
hypothesis and (a), we have that ¢;, s, - - - ¢;, (1®7) is equal to ¢;, b ~n
-~ or to b® F;, (') modulo v~ £L(f) ® L(A), for some b € B,,, b’ € B,, such
that v; +1v5 = v—i,. We have d;,»lb =b; mod v~ 1L(f) for some b; € B,, 4,
and F;, (b'~n) = (#;,')"n = by mod v=1L(f) for some by € B,, s, ; (b)
follows.

19.2.3. Proof of Theorem 14.4.3. The theorem is obvious when v = 0.
Thus we may assume that tr v = N > 0 and that the result is true when
N is replaced by N’ € [0, N —1].

We first prove part (b) of the theorem. Recall that o(B,) = B,. (See
14.2.5(c).) Assume that b,d’ € B, satisfy o(b) = —b’. We will show that
this leads to a contradiction.

We can find i € I,n > 0 such that v; > n, and " € B, _,,;NB;o such that
b= mnb”. By 17.3.7, we have ¢Pb” = b mod v~'L(f). Since b” € By,
we can find B € L(f) such that ¢;(8) = 0 and b” = 8 mod v~ 'L(f). This
is a special case of the equality By = B(N) in 16.3.5(a). By definition,
we have ¢P = q’)l(")ﬁ. Since ¢7 preserves v~1L(f), we have ¢78 = ¢7b"
mod v=1L(f); hence b = ¢{™ 8 mod v—1L(F).

For any j € I, we define c; € N by b" € Bj,;. Thus, we have ¢; = 0.
Since the root datum is assumed to be Y-regular, we can find A € X such
that (i,A) = 0 and (j,A) > ¢; for all j € I — {i}. These inequalities show,
using the definition of the c;, that o(b”’)n # 0, where n € A = A, is as in
3.5.7.
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In the f-module f ® A, we have 0,(")(1 ®n) = 01(") ® n since F;n = 0
and K_;n = 0 (recalling that (i,A\) = 0). By definition of the f-module
structure on f ® A, we have

a0 (1 ®n) = o (8)(0™ ®n) = 6™ ® 7 (B)(n) + =

where z is in the kernel of the obvious projection pr, : f®A — £,;®A. Since
b =63 mod v=1L(f), we have —b' = o(b) = o(8)8™ mod v1L(f);
hence

(a) -b(1®n) = 0§n) ®o(B)(n) + z mod v IL(f) ® L(A).

We have used that z € L(f) = z(1®7n) € L(f) ® L(A); since z(1®7n) =
Z(x), this follows from Lemma 18.2.7, which is now known unconditionally.

By 19.2.2(b), we have (1 ®n) = b; ® b; 7 mod v~ L(f) ® L(A) where
b, € B,,, B; € B,, and v + v = v. Comparing with (a), we deduce that

6™ @ a(B)"(n) + by ® byn + z € v 1L(F) ® L(A).

Since B =b" mod v~ 1L(f), we have o(8) = ¢(b”) mod v—1L(f). By the
induction hypothesis, we have o(b”) € B,_,;. Recall also that o(b")n # 0.
Thus we have

0 @ o(b")n + by ® by + 2 € vT1L(F) ® L(A).
By the definition of z, this implies that
o) n+byn € v L(A)
if b € B,_p; and by # 0 and
o) n e v L(A)

if b ¢ B,_p; or byn=0.

Both alternatives are impossible, since, by the induction hypothesis,
a(¥")™n,b3n (in the first case) and o(b”)™n (in the second case) are a
part of an A-basis of L(A); by the induction hypothesis, we cannot have
o(b") + by = 0. This proves part (b) of the theorem.

We now prove part (a) of the theorem. Assume that b,b' € B, satisfy
b = —b. Since o(b) € B, = B, U (—B,), we have either o(b) = b; with
b, € B, or o(b) = —bz with by € B,. The second alternative cannot occur,
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by part (b). Thus the first alternative holds. But then b; = —o(b’) and
this again contradicts part (b). This proves part (a).

We prove part (c). Let b € B,. We have o(b) € B, U (—-B,) and
o(b) ¢ (—B,) by (b), hence o(b) € B,. This proves part (c). Clearly,
parts (d) and (e) follow from part (a) since B, is a signed basis of f,. The
theorem is proved.

19.3. FURTHER PROPERTIES OF THE INNER PRODUCT

19.3.1. We shall denote by 4A, the image of the canonical map 4f — Aj.
The canonical basis B(A)) of Ay (see 14.4.11) is clearly an A-basis of 4Aj.
For any v € N[I], let (4A). be the image of 4f, under the canonical map
f — A,. We have a direct sum decomposition 4Ax = @, (4A7)-
Proposition 19.3.2. 4A), is stable under the operators z—,x% : Ay — Ay,
for any z € 4f.

For z—, this is obvious. To prove the assertion about z*, we may assume
that = = 91(") for some i,n. Let y € (4Ax),. We show that E§")y € 4l
.. by induction on N = trv. If N = 0, the result is obvious. Assume
that N > 1. We may assume that y = Fj(t)y’ where 1 < t < v; and
Yy’ € (aAx)u—tj. By 3.4.2(b), the operator E,.(n)FJ(t) on Ay is an A-linear
combination of operators Fj(tl)Ei("l). By the induction hypothesis, we have
Ez("’)y’ € aAy; hence F}t’)Ei("’)y' € A, so that E,-(")y = Ei(")Fj(t)y’ €
A This completes the proof.

The following result is a strengthening of Lemma 19.1.4.

Proposition 19.3.3. Let b,b' € B(\).

(a) If b/ # £b then (b=n,b/~n) € v 1Z[v71].

(b) We have (b™n,b"n) € 1+ v 1Z[v7Y].

We shall prove by induction on tr v that

(c) (z,y) e A
for any z,y € (4Ar),. When tr v = 0, (c) is trivial. We may therefore
assume that trv = N > 0 and that (c) is already known for v/ with
tr ¥ < N. We may assume that z = Fi(r)a:’ where 0 < r < y; and
z' € (4Ax)y—ri- From the definitions we have

(d) (F"a',y) = (2,0 K_riB{"y).

By 19.3.2, we have f{_riEi(r)y € (aAx)u—ri; hence the right hand side of
(d) is in A, by the induction hypothesis. This proves (c). The proposition
follows by combining (c) with Lemma 19.1.4, since AN.A = Z[v™!].
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19.3.4. From the description 18.1.1(a) of Ay, we see that there is a unique
Q-linear isomorphism ~ : Ay — A, such that @7y = 4, for allu € U. It
has square equal to 1.

Theorem 19.3.5. Let b€ Ay. We have b € B(A)) if and only if
(1) b€ 4Ax, b=1b and

(2) there exists a sequence iy, ia, . . . ,ip in I such thatb= F; F;, - ﬁ’ipn,\
mod v~ 1L(A,).

We have b € £B(A)) if and only if b satisfies (1) and
(3) (b,b) =1 mod v~1Z[v™1].

If b € £B(A)), then b obviously satisfies (1); it satisfies (3) by 19.3.3.

Assume now that b satisfies (1) and (3). Since the canonical basis is
almost orthonormal, from Lemma 14.2.2 it follows that there exists b’ €
B(A,) such that b = £ mod v~!L(A,). Since b— (£V') = b — (£b'), it
follows that b — (£b') =0

Assume now that b € B(A)). We show that b satisfies (2). We have

= B~ n, for some f € B. We can find a sequence i,%2,...,%p in [

such that 8 = i, i, -+ - $i,1 mod v~1L(f). Using 18.3.8, it follows that
b=F, F, - Fpn,\ mod v~!L(A,), as required.

Finally, assume that b satisfies (1),(2). Let iy,12,...,4p in I be as in (2).
Using again 18.3.8, we see that b = (¢; &, -- ¢,p1) nx mod v~1L(A}).
. Let 3 be the unique element of B such that

B =di,di, - $:,1 mod v L(f).

We have b = B~n» mod v~ 'L(A,). Let b’ = B7nx. Then b — b € 4A,,
b—% =b—b and b— b € v"'L(A,). It follows that b — ¥ = 0. Thus,
b € B(Ay). The theorem is proved.

19.3.6. We will now investigate the relation between the inner product (,)
on f (see 1.2.5) and the inner product (,) on Ay, which we now denote by
(,)a since A € Xt will vary.

Proposition 19.3.7. Letz,y € f. When A € X tends to oo (in the sense
that (i, \) tends to oo for all i), then the inner product (x™nx, ¥~ MA)x €
Q(v) converges in Q((v71)) to (z,y).

We may assume that both = and y belong to f, for some v. We prove
the proposition by induction on N = tr v. When N = 0, the result is



172 19. Inner Product on A

trivial. Assume now that N > 1. We may assume that v; > 0 and z = 6,2’
for some ¢ and some z’ € f,_;. We have

@,y M) = (B’ ~ma, ") = (&, i Ko Eiy ™ m)a

Using the commutation formula 3.1.6(b) and the equality E;nx = 0 we see
that the last inner product is equal to

(vi — o7 )TN @ " K _i(—mi(y) Ko + Ki(ir()7))m)a

1y 21

=—(vi—v;")” ' 70, ri(y) TmA)A

+ (1= 2) ' o, i () T

Using the induction hypothesis, we see that in 1_;he last expression, the
first term converges to 0 for A — oo (note that v;” X converges to 0) and
the second term converges to (1 — v, 2)~!(z/,;r(y)) which by 1.2.13(a), is

equal to (z,y). The proposition is proved.



CHAPTER 20

Bases at oo

20.1. THE BASIS AT 00 OF A,

20.1.1. Let M be an object of C’. We define a basis at oo of M to be a
pair consisting of

(a) a free A-submodule L of M such that M = Q(v) ®a L = M and

(b) a basis b of the Q-vector space L/v~1L;
it is required that the properties (c)-(f) below are satisfied.

(c) L is stable under the operators E;, F; : M — M for all i; thus, E;, F;
act on L/v‘lL;

(d) F;(b) c bu {0} and E;(b) c bu {0} for all 4;

(e) we have L = @L* where L* = LN M* and b = Ub* where b* =
bN (L* v~ 1L*);

(f) given b,b’ € b and i € I, we have E;b =1V if and only if F;b' = b.

The definition given above of bases at co is due to Kashiwara who calls
* them crystal bases.

Lemma 20.1.2. Let x € LN M?* and let i € I. Let t = (i,\). Write
T =3, 550,420 Fz, where z, € ker(E; : MM*' — M) and z, = 0 for
large enough s. (See 16.1.4.)

(a) For all s > 0 we have z, € L.

(b) Ifz mod v—!L belongs to b, then there exists sy such that x, € v-1L
for s # sp, 5, mod v1L belongs to b and x = E(s°)x80 mod v~!L.

We prove (a) by induction on N > 0 such that z, = 0 for s > N. For

N = 0, the result is clear. Assume now that N > 1. We have E;z =
Zs;szl;sﬂzo Fi(s_l)a:s where z; = 0 for s > N. By definition, we have
Eiz € LN M>*, Hence if ¢/ = (i,A + ) = t + 2, we have E;z =
Za’;s'20;3’+t’21 Fi(s )m31+1 and zs41 = 0 for & > N. By the induction

hypothesis, we have z, € L for all s > 1. Since L is stable under F; and
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Fi(’)a:_, = F?x,, it follows that F,-(s)xs € L for all s > 1. Since z € L, we
deduce that zo € L. This proves (a).

We prove (b) by induction on N > 0 as above. If N = 0, there
is nothing to prove. Assume that N > 1. If E;z € v~lL, then
v Zs’;s'20;8'+t'21 Fi(s')a:slﬂ € L and by (a) we have vz, 4, € L for all s’ >
0. Hence z, € v~1L for all s > 1. As before we then have Fi(s)xs ev1L
for s > 1and £ = 9 mod v~ L. If E;z ¢ v L, then E;z mod v~1L
belongs to b. By the induction hypothesis, there exists sg > 1 such that
z, € v IL for s # sp and s > 1. Therefore we have E;z = Fz-(“"’_l)ass0
mod v~'L. Equivalently, we have E;z = F"i"’"la:s(, mod v~ !L. Applying
F; to this and using 20.1.1(f), we obtain ¢ = F,E;z = Ff"mso = Fi(s")a:s
mod v~!L. The lemma is proved.

20.1.3. In the next theorem we assume that the root datum is Y-regular.
Let A € X*. Let L be the A-submodule of Ay generated by the canonical
basis B(A,) and let b be the image of the canonical basis in L/v~1L.

Theorem 20.1.4. (L,b) is a basis at 0o of Ajy.

Property 20.1.1(c) follows from Theorem 18.3.8. We prove that property
20.1.1(d) is satisfied. Let b € b. There exists 8 € B such that b is S~
mod v~!L. From Theorem 18.3.8 we see that F}b is ¢;(8)"nx mod v‘lL
and E;b is &(8)"nx» mod v~1L or zero. By 17.3.7, we have ét(ﬁ)
mod v~ L(f) for some 8’ € B and this is necessarily in B. Then 6:(B)~ m =
B~ mod v~'L so that Fbis #/~ny mod v='L and #/~n, mod v™
is in bU {0}.

By 17.3.7, we have either €(8) = §” mod v~1L(f) for some 3" € B
(which is necessarily in B) or €(8) = 0 mod v=1L(f). Then &(B8) " n\ =
B"~nx mod v~ L or &(B) " nx» = 0 mod v~L so that E;b is 8" n,
mod v~!L or 0. Now 8”15 mod v~L is in bu{0}. This proves property
20.1.1(d).

Property 20.1.1(e) is clearly satisfied. We prove that property 20.1.1(f)
is satisfied. Let b,b’ € b. We have b = 875 mod v~!L and &' = 8’
mod v~ !L where 3,3’ € B.

By 18.3.8, we have E;b = V' if and only if (¢;8) " nx = /~nx mod v~!L.
This is equivalent to the condition that

(a) &B = B mod v=1L(f).

Similarly, the condition that F;b’ = b is equivalent to the condition that
(b) ¢:8' = 8 mod v~1L(Ff).

Now conditions (a) and (b) are equivalent by 17.3.7. The theorem is proved.
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20.2. BASIS AT o IN A TENSOR PRODUCT

20.2.1. Let M, M’ € C’. Assume that M and M’ have finite dimensional
weight spaces. Assume that (L, b) (resp. (L’,b’)) is a given basis at oo of
M (resp. M'). Consider the tensor product M @ M’ € C'.

Theorem 20.2.2. The free A-submodule L ®a L' of M ® M’ and the Q-
basisb®b’ of (L®a L')/v ™Y (L®a L') = (L/v"'L)®q (L' /v"'L’) define
a basis at 0o of M @ M.

Only properties (c),(d),(f) in the definition 20.1.1 need to be verified. In
verifying these properties, we shall fix ¢ € I and write Lt for the sum &L*
over all ) such that (i, \) = t. The notation L’* has a similar meaning.

Let G* be the set of all z € L* such that z mod v~ 'L belongs to b
and such that E;z = 0. Let G’t be the set of all 2 € L'* such that 2’
mod v~ 1L’ belongs to b’ and such that E;2’ = 0. From the definitions, all
elements of the form Fi(s)z (z € Gt,s € [0,t]) belong to b modulo v=!L
and according to 20.1.2, all elements of b are obtained in this way.

Similarly, all elements of the form Fi(s,)z’ (' € G'Y,s’ € [0,t]) belong
to.b’ modulo v~!L’ and all elements of b’ are obtained in this way.

Using Nakayama’s lemma, which is applicable since the weight spaces are
assumed to be finite dimensional, we deduce that the elements Fi(s)z (z €
Gt, s € [0,t]) generate the A-module L; similarly, the elements Fi(sl)z’ (' €
G't',s' € [0,t]) generate the A-module L'.

Let z€ Gt, 2’ € G'Y,s € [0,1],s' € [0,t']. According to 17.2.4, we have

F(F®z Fi(s')z') =F*2¢ Fi(s'H)z’ mod v~ (L ®a L')
ifs+d <t

Fi(Fi(s)Z ® F;-(SI)ZI) — Fi(s+l)z ® Fi(s’)z' mod v~} (L ®a L')
ifs+s >t

Ei(F® 2@ Fi(sl)z') =F":g Fi("_l)z' mod v~ (L ®a L)
ifs+s <t

E(FPz® Fi(s')z') =F Y20 Fi(s’)z' mod v~} (L ®a L')

ifs+s >t.

It follows that Ei, I:‘,- map a set of generators of the A-module L ® L’
into L®a L'; hence they map L ®a L’ into L®a L’. This verifies property
20.1.1(c) of a basis at co. Properties 20.1.1(e),(f) of a basis at oo are also
clear from the previous formulas. The theorem is proved.
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20.2.3. Assume that z € G*,2' € G'* and that s € [0,t],s' € [0,t'] are
such that t + ¢’ = 2(s + s’). By the formulas in 20.2.2, the condition that
E(Fi(")z ® Fi(sl)z’) € v (L ®a L') is that either s’ =’ and s+ s’ < #/, or
s =t and s+ s’ > t'. The first case cannot occur since s > 0. Hence the
condition is that s =t and s + s’ > ¢'. But if s =t then t’ = s + 2s’ hence
s+ 5" > s+ 2s' so that s/ = 0. Thus the conditionis s=t=1¢,s' = 0. We
can reformulate this as follows.

Proposition 20.2.4. Let (M,L,b),(M’,L',b’) be as above. Let b €
b, € b’. Assume that b € b* and ¥ € b and (i,)) + (i, ') = 0.
Then the following two conditions are equivalent:

(a) F;(b®@¥Y)=01in (L®A L) /v (L®a L');

(b) F;y(b) =0 in L/v~'L and E;(') =0 in L' /v~ 1L".



CHAPTER 21

Cartan Data of Finite Type

21.1.1. In this chapter we assume that the Cartan datum is of finite type;
then the root datum is automatically Y-regular and X-regular.

Let ' = —wp(A). Then X' € X* and we may consider the U-module
“Ax as in 3.5.7. Since “Ay, = Ay as a vector space, the canonical basis
B(Ax') of Ay may be regarded as a basis of “Ay-.

Proposition 21.1.2. There is a unique isomorphism of U-modules x :
Ay — YAy such that x maps B(Ay) onto B(Ay).

By 6.3.4, Ay is a finite dimensional simple object of C’. Hence “A
is a finite dimensional simple object of C’. By definition, its (—\')-weight
space is one dimensional and the (—\’ — ¢’)-weight space is zero for any
i. By Weyl group invariance (5.2.7), it follows that the A-weight space is
one dimensional and the (A + i’)-weight space is zero for any ¢ (we have
A = wp(—X)).

Let z be the unique element of B(Ay/) in this A-weight space. Then
" E;z = 0 for all i. By Lemma 3.5.8, there is a unique morphism (in C)
- x : Ay — “Ay which carries 5 to 2. Since x is a non-zero morphism
between simple objects, it is an isomorphism. We can regard x as an
isomorphism of vector spaces Ay = Ay such that x(uy) = w(u)x(y) for all
u € U and y € Ay and such that x(n) € B(Ax/).

We have

(a) X(AAA) C AAx.

Indeed, let y € 4Ax. Then y = g7 n for some g € Af; hence x(y) =
g¥ x(n). It remains to use the fact that 4A - is stable under g* (see 19.3.2).

We have

(b) x(z) = x(%) for all z € Ay.

Indeed, we can write z = un with u € U. We have

x(un) = w(u)x(n) = w(uw)x(n) = w(@)x(n) = x(an) = x(2),

as required.
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We have

(c) (z,2') = (x(n), x(m) ™  (x(x), x(z")) for z,2" € Ax.

Indeed, if we set ((z,z’)) = (x(n), x(7))~!(x(z), x(z')) we obtain a form
satisfying the defining properties of (z,z’), hence equal to it.

Let b € B(A)). Let ¥ = x(b). Using (a),(b), we see that b’ € 4Ax
and ¥ = b'. Using (c) and the fact that (b,b) and (x(n),x(n)) are in
1+ v~ 'Z[v™!], we see that (',b') € 1 + v~ 'A. Since b’ € 4A,, we have
also (¢',') € A; hence (b,b') € 1 + v~ 'Z[v™!]. Using Theorem 19.3.5, it
follows that +b' € B(A /). This argument also shows that, if (L, b), (L', b’)
are the bases at 0o of Ay, Ay defined in 20.1.4, then x(L) = L’.

We can find a sequence i3,4s,...,%; in I such that b = F‘ilﬁ',-, . --ﬁ‘,-tn
mod v~ L. From the definitions we have that xF; = E;x for all i. It follows
that ¥ = E;, E;, -+ E;,x(n) mod v~1L’, so that ¥’ mod v~!L’ belongs to
b’. Since b’ € B(Ay ), it follows that b’ € B(Ay/). The proposition is
proved.

21.1.3. We shall identify the U-modules Ay and “Ay/ via x. In particular,

.. the generator £ = £_x of YAy (see 3.5.7) is now regarded as a vector in

the wo(\)-weight space of Ay, which belongs to the canonical basis of Aj.



CHAPTER 22

Positivity of the Action of F, E;
in the Simply-Laced Case

22.1.1. In this chapter, the root datum is assumed to be Y-regular. We
fix A € X* and we set A = A,. The main result of this chapter is Theorem
22.1.7, which asserts, in the simply laced case, that the matrices of the
linear maps E; and F; of A into itself, with respect to the canonical basis
of A, have as entries polynomials with integer, > 0 coefficients.

Using Theorem 18.3.8, we see that Lemma 18.2.7 is true unconditionally.
We restate it here as follows.

Theorem 22.1.2. We have E(L(f)) C L(f) ® L(A).
22.1.3. In the following corollary we shall use the notation
vod=Y uili,\)(i-i/2)
i€l
for any v € Z[I),) € X.

Corollary 22.1.4. Let b € B. Write r(b) = )_ htp, 5,01 ® b2 and 7(b) =
Y Gbiby by 1 ® bo where hyp, b, € A and gpp, b, € A; here by, by Tun over B.
Thus, Gb;by by = hb;bl,bz'

If by € B()) and b,b; € B, we have

pTlbaleG=lbal g, o€ Z[vTY] and wlrleC-leDp, e Z[y].
It suffices to prove the statement about gp.p, b, -

By 3.1.5, we have A(b™) = Y gb;b, 0,07 ® K_5, b5 . By the definition of
=, we have

Z(6) = ) Guipr babs ® K_ppy by =y w71 CO0Dgpy 1 by @ by,

By the previous theorem, if b, € B()), the coefficient of b; b, 7 is in A.
This coefficient is clearly in 4; hence it is in Z[v~!]. The corollary follows.
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Corollary 22.1.5. Let i € I. Let b € B. Let us write ;v(b) =
2 binez b6, by nV"Y where b’ runs over B and dyp, b n are integers.

(a) Let b’ € B()) and let n € Z be such that dy g, p n # 0. Then
io(A=|V])+n>0.
(b) We have

io(A—|b'D4+n _  —io(A=|b/|)—n
- v v —
E(b™n) = ) droin = ¥n

bineZ Vi — Uy

where b’ runs over B()\).

We apply the previous corollary to hyp, b, With by = 6;; we obtain

Z,U'io()—-lb'p"'ndb,ghb”n € Z[’U]

for any ' € B()\); (a) follows. We now prove (b). By 3.1.6(b), we have
Ei(b7n) = (vi — v )7 (=ri(b) " K—in + o7 (0) " Ka)

since E;n = 0. By 1.2.14, we have r;(b) = v/?I*~%%,7(b), since b = b. Note
also;that Ky = vd:(1 A)

—|b|-i+i~i+nv_(i,/\> plbli—ii—n, —(H:2)
Ei(bn) = Zdbo,,b n —5 L b

i — Uy

Using now |b| = |b’| + ¢, we obtain (b).

22.1.6. Let b € B(A). Forany i € I, weseth—Eb, Soprin0™V  Eib=
2bn fb b,i,n V™Y where b’ runs over B(A) and n runs over Z; the coefficients

Fopin» fo.b,im are integers.

Theorem 22.1.7. Assume that the Cartan datum is simply laced. Then
foprim € N and foprin € N for any b,V ,i,n.

If 3,8’ € B are such that fn = b, 'n = ¥/, then with the notation of
Theorem 14.4.13, we have

Jobin = Co,.8,8'n
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and

> Jopimv™ = lio (A= |b]) + nldye, b
n n

(we have used Corollary 22.1.5(b) and the equality v; = v). By Theorem
14.4.13, the integers cy, g 5/, are > 0. Hence fy 4 ;n € N.

Again by Theorem 14.4.13, the integers dp g, »,n are > 0 and, by Corol-
lary 22.1.15(a), we have io(A—|b'])+n > O for any n such that dy g, b’ - # 0.
Since [N] is a sum of powers of v if N > 0, we deduce that fy 4 ;, € N.
The theorem is proved.



Notes on Part 111

1. Most results in Part III are due to Kashiwara [2]. An exception is Theorem
22.1.7, which is new.

2. Although Theorem 22.1.2 does not appear explicitly in Kashiwara’s papers,
it is close to results which do appear; the same applies to the results in 17.1.
The proofs in 17.2 are quite different from Kashiwara'’s.

3. The proof in 19.2.3 is an adaptation of arguments in [3].
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Part IV

CANONICAL BASIS OF U

The algebra U is a modified form of U in which U is replaced by the direct
sum of infinitely many one-dimensional algebras, one for each element of
the lattice X of weights. This is an algebra without unit; it has instead
many orthogonal idempotents by means of which one can approximate the
unit element. The U-modules in the category C can be regarded naturally
as modules for U; on the other hand, more exotic U-modules, like those
without weight decomposition, cannot be regarded as U-modules. Thus,
U is an algebra more appropriate than U for the study of objects of C.
One of its main virtues is that it has a canonical basis B with remarkable
properties.
“In Chapter 23, we define and study the algebra U and its A-form 4U.

In Chapter 24, we prove an integrality property for the quasi-R-matrix

and we use it to define a canonical basis in any tensor product “A, ® Ay,
which is fixed by an antilinear involution obtained by composing the obvious
involution ~ with the action of the quasi-R-matrix.
-~ In Chépter 25, we show that these bases have some rather nice stability
properties with respect to certain transition maps (see 25.1.5). The proof
is based on results in Part III. From this we deduce (Theorem 25.2.1) that
these bases can be “glued together to form a single basis B of U. In
Theorem 25.2.5, we show that B is simultaneously compatible with many
subspaces of U and in Proposition 25.2. 6, we show that B is a generalization
of B.

In Chapter 26 we show that B is characterized (up to signs) by an
almost orthonormality property with respect to an inner product. This
is in the same spirit as Kashiwara’s idea of characterizing B by an almost
orthonormality property (see Notes on Part II). As an application, we show
that B is stable (up to signs) under ¢ and w. The same should be true
without signs.
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In Chapter 27 we assume that the Cartan datum is of finite type; we
show that a tensor product of form Ay, ® Ay, - --®A,, has a canonical basis
and that this induces a canonical basis on the space of coinvariants. This
last basis has an invariance property with respect to cyclic permutations,
as shown in Chapter 28.

In Chapter 29 we prove a refinement of the Peter-Weyl theorem (in U
instead of the coordinate algebra) and we discuss an extension of the theory
of cells in Weyl groups to the case of U.

In Chapter 30 we define a canonical topological basis of (a completion of)
U~ ®U* (in finite type) and show that this basis gives rise simultaneously
to the canonical bases of the various tensor products Ay ® “Ay.



CHAPTER 23

The Algebra U

23.1. DEFINITION AND FIRST PROPERTIES OF U

23.1.1. The objects of C may be regarded as modules over a certain Q(v)-
algebra U, in general without 1, which is a modified form of U. We prepare
the ground for the definition of U.

If M, M € X, we set

(a) aUyr = U/(Z(KI‘ _ ’U(””\,))U-l- E U(Kll _ v(u’)‘u)))‘
uey HEY

v Let mar, a2 U — Uy be the canonical projection. Let
(b) U =@y arex(xUn).

Consider the direct sum decomposition U = &,U(v), where v runs
“through Z[I], defined by the conditions U(v')U(v") C U(V' + V"),K, €
U(0), E;'e U(3), F, € U(—i) for all /,v" € Z[I],i € I, p € Y. We have
- U} cU(@v),U,; CcU(-v).

There is a natural associative Q(v)-algebra structure on U inherited from
that of U. It is defined by the following requirement: for any A}, AY, A5, A\
and any ¢t € U(X] — AY), s € U(X; — A3), the product mx; xr(t)may Ay (s) is
equal to my; ay(ts) if A} = X5 and is zero otherwise.

The elements 1y = mx 2(1) () € X) of U satisfy

(c) a1y = 6,01,
We have
(d) A’UA” = ].A/I:]]_An,

The algebra U does not generally have 1, since the infinite sum Yorex In
does not belong to U (if X # 0); however the family (1x)xex is in some
sense a substitute for the unit element.
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23.1.2. A finer decomposition of U. We shall need a direct sum de-
composition of U which is slightly different from the one in 23.1.1(b).

The images of the summands U(v) under 7y x» form the direct sum
decomposition Uy = @, (x U (v)). We set U(r) = @ av (3 U (v)).
We then have direct sums decompositions

U=0,U() and U = @y, (1xU@)1s)

where X', A" run through X and v runs through Z[I]. Actually, the sum-
mand 1,\:U(u)1,\~ = x Uy (v) is zero, unless N’ — \’ = v in X.

23.1.3. U-bimodule structure. Note that U is naturally a U-bimodule
by the following rule: if ¢’ € U(v'),s € U,t"” € U(v"), we have by defini-
tion, t'7r,\/,,\u(s)t” = TN ! At (t'st") for all M, \' € X.

For all s € I and A € X, we have the following identities in U:

Eily =110 E;, Fl,=1\_yF;

(EiFj — F3E:)15 = 6; ((5, \)]ilx;

and more generally,
E® = Lo B, FO15 = Lot I
EPFP1L = FPEP1L i i+

a a+b— (i, A _ _
E1_F" =Z[ ( >] ‘Fi(b D1t arb-o BT

>0 t i

a+b-— (i, A _ _
Fi(b)]-AEi(a) — Z [ ( ):I 'Ei(a t)lA—(a+b—t)i’Fi(b t)

t>0 ¢ i

These identities follow from 3.1.9.

23.1.4. Unital modules. A U-module M is said to be unital if

(a) for any m € M we have 1ym = 0 for all but finitely many \ € X;

(b) for any m € M we have >,y 1am =m.

If M is a unital U-module, then we regard it as an object of C as follows.
The decomposition M = @M? is given by M* = 1, M; the action of u € U
is given by um = (uly)m for any A € X and any m € M?*. Here ul, is
regarded as an element of U as in 23.1.3. In this way, we see that to give
a unital U-module is the same as to give an object of C.
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23.1.5. The comultiplication of U induces a similar structure on U. More
precisely, for any A}, A5, A, Ay € X, there is a well-defined linear map

Axparagag g Uniaag = (g Uay) ® (5, Usyg)
such that
Ay (T 1 ap a2y (2)) = (mag ap ® may sy ) (A(2))

for all z € U. This collection of maps is called the comultiplication of U,
and may be regarded as a single linear map from U to the direct product

II (Uxp)®(Usyp).

MY A AP EX

23.1.6. The algebra automorphism w : U — U induces, for each A, \”,
a linear isomorphism »Ujyx» — _xU_y~. Taking direct sums, we obtain
an algebra automorphism w : U — U such that w(1,) = 1_y for all A and
w(um: v') = wu)w(z)w(z )w(v') for all u,u’ € U and z,2’ € U. It has
square 1.

The map o : U — U induces, for each X', )", a linear isomorphism
A:U s — _x»U_ys. Taking direct sums, we obtain a linear isomorphism

: U — U such that a(l,\) = 1_y for all A € X, and o(uzz’v') =

_a(u')a(m)a(z)a(u) for all u,u' € U and z,2’ € U.

The antipode S : U — U (resp. its inverse S’) induces, for each X', \”,
a linear isomorphism 5 Uy~ — _x»U_j.. Taking direct sums, we obtain a
linear isomorphism S : U — U (resp. &’ : U — U) such that S(15) = 1_,
(resp. S'(1x) = 1_,) for all A € X, and S(uzz'v’) = S(u')S(z')S(x)S(u)
(resp. §'(uzz'v’) = §'(v')S' (¢')S'(x)S' (u)) for all u,u’ € U and z, 2’ € U.

These maps are related to o as follows.

Lemma 23.1.7. Let z € 1, U(v)1xr. We have S(z) = (=1) ¥* “oPo(z)
and S'(z) = (1) ¥* Wv=Pg(z), where v € Z[I] is such that v =X — X" in
X andp=3Y,vi(i, N+ N')(i-i/4) - >, vi(i-i/2) € Z.

This follows easily from the definitions.

23.1.8. The Q-algebra homomorphism ~ : U — U induces, for any A\, X’ €
X, a Q-linear map ~ : \Uy — AUy Taking the direct sum of these maps,
we obtain a Q-linear map ~ : U — U with square 1, which respects the
multiplication of U, maps each 1, into itself and satisfies tst’ = #st’ for
tte€UandseU.
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23.2. TRIANGULAR DECOMPOSITION, .A-FORM FOR U

23.2.1. The U-bimodule structure on U gives us a f ® f°°P-module struc-
ture (z ® 2') : u — ztuz’~ on U. Similarly, the U-bimodule structure on
U gives us a f ® f°PP-module structure (z ® z') : v — - uz’* on U. From
the triangular decomposition for U, we see that U is a free f ® f°PP-module
with basis (1x)xex for either of the two f ® f°PP-module structures. In
other words,

(a) the elements b*1,b'~ (b,b’ € B,A € X) form a basis of the Q(v)-
vector space fJ;

(b) the elements b~ 1,0'" (b’ € B, € X) form a basis of the Q(v)-
vector space U.

This is called the triangular decomposition of U.

Lemma 23.2.2. (a) The A-submodule of U spanned by the elements
zt1 z'~ (with z,x’ € Af) coincides with the A-submodule of U spanned
by the elements x~1)z't (with z,z’ € 4f). We denote it by 4U.

(b) The elements in 23.2.1(a) form an A-basis of 4U. The elements in
23.2.1(b) form an A-basis of AU.

(c) AU is an A-subalgebra of U. This algebra is generated by the ele-
ments E™ 1y, F™1, for variousi€ I, n >0 and A € X.

‘(a) follows immediately from the commutation formulas 23.1.3. (b) fol-
lows from (a) and the fact that B is an A-basis of 4f. (c) follows from the
commutation formulas 23.1.3.

23.2.3. From the integrality properties of the maps r, 7, it follows easily
that the maps A)‘I“)‘fll,)‘rz,,\lzf LA Ulnygay — (1,\11U1,\411) ® (1)‘I2U1X2/)
restrict to A-linear maps

La, 425 (AU Ly gar = (1ag (A0)10y) @4 (1ay (4 U)1pg).

23.2.4. From the definitions we see that — : U — U leaves stable the
A-subalgebra 4U of U. The same holds for w and o.

23.2.5. Let (Y',X’,...) be the simply connected root datum of type
(I,-)andlet f: Y — Y,g: X — X' be the unique morphism of root
data. We have an induced algebra homomorphism ¢ : U’ — U between
the corresponding Drinfeld-Jimbo algebras (see 3.1.2). Assume that we are
given ( € X; let ¢’ = g(¢) € X'.
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Now ¢ maps the left ideal }° .y, U'(K, — v#¢) of U’ into the left
ideal ) .y U(K, — v{#€)) of U; hence it induces a linear map on the
quotients:

q‘b : U'lc' — Ulg.

From the triangular decomposition in U’ and U, it follows that the linear
map ¢ is an isomorphism. Using the definitions, we see that ¢ restricts to
an isomorphism of .A-modules

A(ﬁ : AU’].C/ =] AUIC-

23.3. U AND TENSOR PRODUCTS

23.3.1. Let A\, )’ € X. The U-module “My ® M, = f ® f belongs to C;
hence it is naturally a unital U-module.

From 23.2.1, we see that the elements b*b'~ 1y, with b4’ € B and
A" € X form a Q(v)-basis of U. Such an element (with A = X — ) acts
on1®1e€f®f as follows:

(8) BTV 1Iv_A)(1®1) =bT (1Y) =b®Y + 3 cb, p 01 @ Yy
where cp, p» € Q(v), and the sum is taken over elements b;,b) in B such
that tr |by| < tr |b], tr |b}| < tr |b'| and b} belongs to the U-submodule

of M. = f generated by b'.
" Similarly, the elements '~b*1,~ with b6’ € B and \” € X form a
~ Q(v)-basis of U. Such an element (with A = X — ) actson 1®1 € f®f
as follows:

(b) ("6 1n_n)(1®1) =" (b®1) =b®Y + 3¢, b1 ®Y)
where c{,hb,l € Q(v), and the sum is taken over elements b;, b} in B such
that tr |by] < tr |b], tr |b}] < tr |b'| and b; belongs to the U-submodule
of “ M = f generated by b.

Using either (a) or (b), we see that

(c) the Q(v)-linear map 7’ : Uly_y — “Mx® My given by u — u(1®1)
is an isomorphism.

23.3.2. For any A € X, we define a 4U-submodule AM,, of the Verma
module M) as follows. As an A-module, it is the A-submodule 4f of f =
M. This submodule is obviously stable under the action of the operators
Fi(")1¢ € U on My; using repeatedly the commutation formulas 23.1.3, we
see that it is also stable under the operators Eg")lg € U on M,; hence it is
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a AU-submodule of M. The same A-submodule is an 4U-submodule of
“M),, denoted % M. The argument used to prove 23.3.1(c) can be repeated
word for word for A instead of Q(v) and gives the following result.

(a) Given A\, ) € X, the map u +— u(1 ® 1) defines an A-linear isomor-
phism 7’ of 4U1,/_» onto the A-submodule YM\® 4 (4 M) of “M\Q@ M.

23.3.3. Let ( € X and let a = ), a;i € N[I],a’ = 3", aii € N[I] be such
that (i,{) = a} —a; foralli € I.

Let P({,a,a’) be the left ideal
U.

Let 4P((,a,a’) be the left ideal

of AU.

JUFM™M1,+ % UE™1, of

i,n>a; t,n>a;

 AUF1L 4 Y, oo AUE™1,

i,n>a; i,n>a;

23.3.4. Let (Y, X’,...) be the simply connected root datum of type (1, )
andlet f: Y’ —Y,9: X — X’ be the unique morphism of root data. Let
U’ be the algebra defined like U, in terms of (Y’,X’,...). Let ¢ € X, a,a’
be as in 23.3.3, and let ¢’ = g(¢).

The natural isomorphism U’l: — Ul (see 23.2.5) carries, for any i
and any n > 0, the subspace U’ Fi(")l,;/ isomorphically onto UF,.(")L; and
the subspace U’E{™ 1, isomorphically onto UE{™1,. Hence it carries the
left ideal P({’,a,a’) isomorphically onto the left ideal P((,a,a’).

The same argument shows that the isomorphism 4U’ 1o — AUIC (see
23.2:5) carries the left ideal 4P((’,a,a’) isomorphically onto the left ideal

AP(Cy a, (1,)-

23.3.5. In the remainder of this section we assume that the root datum
(Y,X,...) is Y-regular. Let A, N € X*t. We set (i, \) = a;, (i, \) = a] for
alliand (=X — A Leta=),a;i,a’ =5, aji.

Let 7 (resp. 7' ) be the kernel of the canonical homomorphism of U-
modules f =“My — “A, (resp. f = My — Ay/). By 14.4.11, T (resp. 7”)
is the subspace of f generated by a subset of the basis B, namely by D =
Ui,n;n>a.-aBi,n (resp. D' = Ui,'n;n>a;aBi,n)-

Taking tensor products, we obtain a surjective homomorphism of U-
modules, or U-modules

X:“My\@My —“A\® Ay

and we see that
(a) the kernel of x is the subspace T @ My + My @ T’ of f ® f.
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Using 23.2.1(a),(b), and the description of 77, T given above, we see that
7' (see 23.3.1) maps

(b) the subspace 3 ,cpep QUIVTY T1¢ =32, o0 vy UF™1,
of Ul onto the subspace Y beBpren QWY = My @ T’ of f ® f and

(c) the subspace ) ,cp.yep Q)Y ~bF 1 = i n> (i) I'JEi(")lc
of Ulc onto the subspace ) ,cp.yep QW) ®Y =T ® My of f QF.
_ Combining (a),(b),(c), we see that =’ maps the subspace P((,a,a’) of
Ul onto the kernel of x. This fact, together with 23.3.1(c), implies the
following result.

Proposition 23.3.6. In the setup above, the assignment u — u(€_®nx/)
defines a surjective linear map 7 : Ul; — “Ay ® Ay with kernel equal to
P(¢,a,d').

23.3.7. Assume that A € X*. As in 19.3.1, we denote by 4A) the A-
submodule of A, generated by its canonical basis. Using 19.3.2, we see
that 4Ay is an 4U-submodule of Ay. The same .A-submodule is an 4U-
submodule of “Ay, denoted by “Ax. From Theorem 14.3.2(b), we see that
the kernel of the the A-linear map 4f — 4A) given by z — 71, is the
left ideal 47T of 4f generated by the elements 05") for various 7 € I and
n > (i, \).

We can now repeat word for word the proof of Proposition 23.3.6 for A
- jnstead of Q(v) and we obtain the following result, where A\, \’ € X .

Proposition 23.3.8. The assignment u — u({-A®nx) defines a surjective
A-linear map w of A4U1¢ onto the A-submodule A ® a(aAx) of YArx®Ay,
with kernel equal to 4P ((,a,a’).

Corollary 23.3.9. 4Ax ®4 (4Ax) is an AU-submodule of the U-module
“Ax ® Ay

Proposition 23.3.10. Let M € C’ and let m € MS. There exist \,\' €
XY such that X' — X\ = ¢ and a morphism f : “Ax ® Ay — M in C' such
that f(€—x ® nv) = m.

Since M is integrable, we can find integers a;, a; € N such that E,ga)m =

0 for all 7 and all @ > a; and Fi(“’>m = 0 for all 7 and all @’ > a}. Since
the root datum is Y-regular, we can find A € X such that (i,\) > a; and
(3, A+ () > a; for all 5. Let A’ = A+ (. Then (i,\') > a! for all 7.

The existence of f follows now from 23.3.6.
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Canonical Bases in Certain Tensor Products

24.1. INTEGRALITY PROPERTIES OF THE QUASI-R-MATRIX

24.1.1. Let M, M’ € C be such that either “M € C" or M’ € C* (see
3.4.7). We regard M ® M’ naturally as a U ® U-module and we define
alinear map 8 : MM’ - M@ M' by OB(m@m') =Y 6,(mem')
(notation of 4.1.2.) This is well-defined since only finitely many terms of
the sum are non-zero.

Lemma 24.1.2. Let M, M’ be as above. We have
(a) A(w)®(m e m’) = O(A(u)(m @ m')).

(b) Assume that we are given Q-linear maps ~: M — M and ~ : M’ —
M’ such thatwm = @m and um/ = @@’ forallu € U,m € M,m’ € M'. Let
T="® MM — M®M'. Then A(u)B(m®m') = 6(A(1)(m ® m'))
foranyme M,m’ € M’ and any u € U.

,The set of u for which (a) holds is clearly a subalgebra of U containing
all K,,. Hence it suffices to check (a) in the special case where u is one of the
algebra generators E;, F;. Applying both sides of the equalities 4.2.5(c),(d)
(with large p) to m®m’ € M ® M’, we obtain

(BE:®1+ K, @ E;)0(mem')=6(E;®1+ K_; ® E;)(me®m')
(1®9F+F®K_;)0(mem')=01® F+ F,® K;)(mom').
This proves (a). Now (b) is a consequence of (a). The lemma follows.
24.1.3. The following property is just a reformulation of the property in
Lemma 24.1.2(b). Let M, M’ be as in that lemma. Then for any m €

M,m’' € M’',u € U we have

(a) u(m ®m') = 8(a(m @ m')).
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Proposition 24.1.4. Let \, N € X. Consider the Verma modules My, M.
Note that M =“ My € C and M' = My, € C*; hence

O MM - MM

is well-defined. Then © leaves stable the A-submodule 4 M) ® 4 (aMy).

Since the ambient space of M and M’ is f, we may regard ~ : f — f as
maps ~ : M — M, : M’ — M’. Using the definition of Verma modules,
we may identify M’ =U/3, UE; + 3, U(K, — v{#A)1) as a U-module
so that = : M’ — M’ is induced by ~ : U — U. It follows that um’ = @m’
for all u € U and m' € M’. Similarly, we have wm = @m for all u € U and
me M.

Asin Lemma 24.1.2, weset =" Q@ " : MM — M ® M’ and we
have

uB(m ® m’) = 8(u(m ® m’'))

for all u € U,m € M,m’ € M’. In particular, takingm=1=1,m' =1 =
1, we obtain
Ha) u(l®1) =6(a(1®1)) for all u € U,
sincel1=1,1=1,and 6(1®1) =1Q®1. Let € 4M) ® 4 (4Mx/). Then
z = I’ where ' € M) ®4 (4My), since the involution ~® = : f — f
leaves 4of ® 4 (4f) stable.
~ With the notation of 23.3.2(a), we have z' = #'(u’) for some v’ €

4Uly_x. Since 4U1ly_y is stable under the involution = : U — U,
- we have v’ = @ for some u € 4U1ly_,. Hence z = %’ = 4(1 ®1). Using
(a), we have O(z) = O(2(1 ® 1)) = u(1®1) = n’(u). Using again 23.3.2(a),
we have 7'(u) € 4 My ®4 (aMy); hence ©(z) € 4My ®4 (aMy). The
proposition is proved.
Corollary 24.1.5. Assume that the root datum is Y -regular. Let A\, \' €
Xt. The map © : “Ay ® Ay — YAy ® Ay leaves stable the A-submodule
“A ®a (4AN).

This follows immediately from the previous proposition since Ay ® 4

(4Ax) is the image of 4 M\® 4 (4 M) under the natural map “ M @My —
“Ar® Ay

Corollary 24.1.6. Assume that (I,-) is of finite type. Write

6= Z Z popb” @V (Do € Qv)).

v bbeB,
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For any v° and any b°,b'° € B,o, we have pyo po € A.

We can find A\, )’ € X* such that ° € B(—wp(})), b’® € B(—wp()')). By
24.1.5,0 : “Ax® Ay — “Ax ® Ay maps the A-submodule 4Ax ®4 (4Ax)
into itself. By 21.1.2, we may canonically identify as U-modules YA, with
A_uo(n) and Ay with “A_,, (x) respecting the canonical bases. It follows
that © : A_yy(\)®“A_we(n') = A_wo(2)®“A_yo(r) maps the A-submodule
AA o (2) ®4 (YA _wo(xy) into itself. In particular, this submodule contains
the vector O(n ® &) = 3°, 3", » Poprb™n ® Y. Here, ) = n_y,(n) and
€ = €uo(n); b runs over B, NB(—wp(A)) and b’ runs over B, NB(—wp(X)).
Since the elements b7 ® b'*¢ (for all indices (v, b,b’) as in the sum) are a
part of an A-basis of 4A_y,(x) ®4 (4A—we(r)), and (¢0,8°,8°) is an index
in the sum, it follows that pyo ;0 € A. The corollary is proved.

24.2. A LEMMA ON SYSTEMS OF SEMI-LINEAR EQUATIONS

Lemma 24.2.1. Let H be a set with a partial order < such that for any

. h < K in H, the set {h"|h < h"” < K’} is finite. Assume that for each

h < k' in H we are given an element rp p € A such that
(a) rhp =1 for all h;
(b) Eh";hsh“sh' Fh'h”rh"lh' - 6h’h’ fOT all h _<__ hl Zn H.

Then there is a unique family of elements pnp € Z[v™'| defined for all
h < k' in H such that

(¢) php =1 forallh € H;
(d) prw € v Z[v™Y] for all h < B’ in H;

(e) Dh,p = Zh";hﬁh"sh' ﬁh,h”'rh"7h' fOT all h S h’ in H.

For h < b’ in H, we denote by d(h, h’) the maximum length of a chain
h=ho <hy <hy <---<hp, ="~ in H. Note that d(h,h’) < co by our
assumption. For any n > 0, we consider the statement P, which is the
assertion of the lemma restricted to elements h < h’ such that d(h, k') < n.
Note that property (e) is meaningful for this statement. We prove P, by
induction on n. The case n = 0 is trivial. Assume now that n > 1. Let
h < h'. If d(h,h') < n, then pp p is defined by P,_;. If d(h,h’') = n, we
note that ¢ = >, <pircps Ph,hTho e is defined. We show that §+¢ = 0.
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Indeed, using P,_; and (a),(b), we have

Gg+q= E PhhTh p + E Ph,hyThy b
hll;hshll<hl hl§h5h1<h’
= E Ph,hyThy ' Tht b + E Dh,hyThy bt Thet b
h',hi;h<hy <h" <h' h' hy;h<hi<h''=h'

= E PhohyThy b TR B = E Dh,hyOny n =0,
h' hyih<hy <h"<h';hy<h' hi;h<hy<h’

as required. Since ¢ € A satisfies § + ¢ = 0, there is a unique element
¢’ € v™'Z[v™!] such that ¢ — § = q. We set pp »» = ¢. Then properties
(c),(d),(e) are clearly satisfied as far as P, is concerned. This proves the
existence in P,. The previous proof also shows uniqueness. The lemma is
proved.

24.3. THE CANONICAL BASIS OF YAy ® Ay

24.3.1. . In this section we assume that the root datum is Y-regular.

Let A\, )’ € X*. We shall consider the following partial order on the set
B x B: we say that (b, b]) < (bg,b3) if tr [by]| — tr |b)| = tr |b2| — tr |b)]
and if we have either

tr |by| < tr |bo] and tr |b)} < tr |b5],

or
b1 = b2 and bll = blz

This induces, for given A, \’ € X, a partial order on the set B(\) x B(\).

As in 19.3.4, let ~ : Ax» — Ay be the unique Q-linear involution such
that wmy = any for all u € U; similarly, let = : “Ay — “A, be the
unique Q-linear involution such that uf_ = @_, for all u € U. Let
T="0 7 :“Ayx®Ax — YAy ® Ax. The elements bY£_) ® b’ ny with
b e B()) and ¥ € B(\') form a Q(v)-basis of “A, ® Ay.. They generate a
Z[v~!]-submodule £ = £, » and an .A-submodule 4L.

24.3.2. Now O : YAy ® Ay — “Ay ® Ay is well-defined (see 24.1.1).
Let ¥ : “Ay ® Ay — “A) ® Ay be given by ¥(z) = O(Z). Since 6
and ~ : YAy ® Ay — “Ay ® Ay leave 4L stable (see 24.1.5), we have
U(4L) C 4L. From 24.1.2 and 4.1.3, it follows that ¥? = 1. We clearly
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have ¥(fzr) = f¥(z) for all f € A and all z. From the definition we have
for all b; € B(\),b] € B(\):

Y(bTE_r @by ") = Z Pby b4 ;b2 b, b3 €2 @ by
b2€B(N),b,€B(N)

where pp, p:5,,6, € A, and pp, b;:b,6, = 0 unless (by,by) > (bo, b3); hence
the last sum is finite.
Note also that Pby byby b, = 1 and

Pby b, ;b2 b, Pba byibs by = Oby b3 Ob; b4 5
b2€B(A),by€B(\)

for any by, b3 € B(\), b}, b5 € B(X); the last condition follows from ¥? = 1.
Applying Lemma 24.2.1 to the set H = B()) x B()\’), we see that there
is a unique family of elements m, 4, o,k € Z[v~!] defined for by,by €
B()), b}, b5 € B()\') such that

Tby,blb1,0; = L3

by b ;b2,b € v Z[vT 1] of (by, b)) # (b2, b3);

by by ;be,by = O unless (b, by) > (b, by);

by by iba,by = Dby bl Tba,blibs,bs Pba,bhiba,by fOT all (b1, 1) > (ba, b))

We have the following result.

Theorem 24. 3.3. (a) For any (b,b)) € B(\) x B(), there is a unique
element (by Qb)) x € L such that

‘I’((b]Ob ))‘ )\/) = (b1<>b' ))‘ » and (bIObI ))‘ N — b+f A ®b I\ € ’U_IE.

(b) The element (byOby)an in (a) is equal to bié_\ ® by~ na plus a
linear combination of elements b £_» ®by~nx with (bz, by) € B(A) x B(Y),
(b2, by) < (b1, b)) and with coefficients in v=1Z[v~1).

(c) The elements (byOby)a x with by, b) as above form a Q(v)-basis of
“Ax ® Ay, an A-basis of AL and a Z[v~!]-basis of L.

(d) The natural homomorphism LNY(L) — L/v=1L is an isomorphism.

The element (b10b1)ax = 32, b Moy by0,53,03 €2 ® by "1 (see 24.3.2)
satisfies the requirements of (a). This shows existence in (a). It is also
clear that the elements (b;)b})x » just defined satisfy the requirements of
(b),(c),(d). It remains to show the uniqueness in (a). It is enough to show
that an element z € v~!L, such that £ = z, is necessarily 0. But this
follows from (d).
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24.3.4. The basis (b1 Ob))a,n in 24.3.3(c) is called the canonical basis of
“YAr® Ay

24.3.5. Let A, A € X*. Let (Y',X’,...) be the simply connected root
datum and let f : Y’ — Y,g: X — X’ be the unique morphism of root
data. Let U’ be the algebra defined like U, in terms of (Y, X',...). Let
N, X € X't be defined by X = g(A), X = g()). Then “A) ® Ay, defined
in terms of U, has the same ambient space as “Ay ® A % » defined in terms
of U’. We have a priori two definitions of the canonical basis of this space,
one in terms of U, one in terms of U’. From the definitions, we easily see
that these two bases coincide.



CHAPTER 25

The Canonical Basis B of U

25.1. STABILITY PROPERTIES

25.1.1. In this section, the root datum is assumed to be Y-regular.

Proposition 25.1.2. Let A\, X be dominant elements of X. We write n =
M =1 = Mg

(a) There is a unique homomorphism of U-modules x : Axyar — Ax®Ay
such that x(n") =n®7 .

(b) Let b € B(A+X'). We have x(b™n") = 3=, 4, f(bibr,b2)by n®@ by 7/,
~ sum over by € B(\), b2 € B()), with f(b;b1,b2) € Z[v~1).

(c) Ifb=n' #0, then f(b;1,b) =1 and f(b;1,b3) = 0 for any by # b. If
b—n' =0, then f(b;1,b2) =0 for any b,.

The vector n @ 7' € Ay ® Ay satisfies Ei(n®7') = 0, K,(n®17') =
v@M+mA) | This implies (a) (by 3.5.8). By the definition of comultiplica-
tion in U, we can write x(b™1") = 3_,, 4, f(b;b1,b2)by 7 ® by 7', sum over
by € B(A\),by € B(X), with f(b;b1,b2) € Q(v) satisfying f(b;1,b2) = 1 if
b= by and f(b;1,b2) = 0 if b # by. This proves (c).

By 23.2.3, we have f(b;b1,b2) € A for all by, bs. Hence to prove (b), it
suffices to show that f(b;b1,b2) € A for all by, b;. We have a commutative
diagram

f L) f®AAI

l l

Anyy —%— Ay ® Ay

where = is as in 18.1.4, the left vertical map is given by x — z~n” and the
right vertical map is given by x ® y — (z77') ® y. The commutativity of
the diagram follows from the definitions. Now our assertion on f(b; by, bs)
follows from 22.1.2.
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Proposition 25.1.3. Let A\, ' be dominant elements of X. We write £ =
E-x & =&, 8" =& a-n.

(a) There is a unique homomorphism of U-modules x' : “Axyn —
“Ax ®“Ay such that X' (") =€ ®¢&.

(b) Let b€ B(A+X). We have X' (b*£") =3, 4, f(b;01,b2)b5 €' @b ¢,
sum over by € B()\),bz € B(X), with f(b;b1,b2) € Z[v™!]. IfbtT¢ # 0,
then f(b;1,b) = 1 and f(b;1,b2) = 0 for any by # b. If b1¢’ = 0, then
f(b;1,b2) =0 for any b,.

We have a commutative diagram

U-—2.ugU

wl w@wl
‘A
U—— U®U
(*A as in 3.3.4.) Indeed, both compositions in the diagram are algebra
homomorphisms; to check that they are equal, it suffices to check that
they agree on the generators E;, F;, K, and that is immediate. Using this

commutative diagram, we see lmmedlately that the proposition follows from
the previous proposition.

Proposition 25.1.4. Let n € Ay, € YAy be as above.

~ (a) There is a unique homomorphism of U-modules 6y : YAr® A\ —
‘Q(v), where Q(v) is a U-module via the co-unit U — Q(v), such that
r(§®n) =1.

(b) Let b,b' € B()\). Then §x(b*E @b 1) is equal to 1 if b=10b' =1 and
is in v 1Z[v™!] otherwise.

The following statement is equivalent to (a). There is a unique bilinear
pairing [,] : Ax X Ay — Q(v) such that

m,n] =1
and
[Efl?, y] = _[f{—ixy Eiy], [Il', F’Ly] = _[Eixak—iy]v [K—M:L"K#y] = ['Ta y]

for all z,y € A, all i € I and all u € Y. We then have §,(z ® y) = [z, y]
This is also equivalent to the following statement. There is a unique
bilinear pairing [,] : Ax x Ay — Q(v) such that

[n,m] =1
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and
[uz, y] = [z, 5(u)y]

for all z,y € A, and all u € U, where g : U — U°? is the algebra
isomorphism given by the composition Sw (S is the antipode).

This is proved exactly as in 19.1.2. It follows from the definition that
[z,y] =0if z € (A),,y € (A),r and v # /. Let (,) be as in 19.1.2. We
show by induction on tr v > 0, where v € N[}, that

() [z,9] = (=1) " Yoy (z,9)

for all z,y € (A),. This is obvious for v = 0. We assume that tr v > 1. We
can assume that z = F;z’ for some i such that v; > 0 and some z’ € (A), ;.
Then

[z,y] = [Fiz',y) = —[K_iz', Eiy) = —[z', K_iEy)
and

(z,y) = (Fiz,y) = vi(x,>k—iEiy)'

By the induction hypothesis, we have
—[&/, K_iEy) = (=1) " “v_j,_;(z', K_; Ezy);
hence [z,y] = (—1) * “v_,|(2,y), which completes the induction.
Now let b,b’ be as in (b). We must show that [b=7,b 7] is in v~ 1Z[v™1]

unless b = b’ = 1. We may assume that there exists v such that b=7,b' "¢

both belong to (A),. The result then follows from (c) since, by 19.3.3, we
have (b~7n,b'~n) € Z[v~1).

25.1.5. Let A\, ), )" be dominant elements of X. We define a homomor-
phism of U-modules

t:“Axtn @ Aypar — YAy @ Ayn
as the composition of
X ®x:“Axsn @ Axgar = “Ar® YAy @ Ay ® Ay,
where X/, x are as in 25.1.3, 25.1.2, with

1®@60 @1:“AyNQ@“Ay AN @ Ayr = YAy Ayr.
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Lemma 25.1.6.
(a) Let b€ B(A), b € B(\"'). We have

b E s ® U T magar) = bTELL @V Tar  mod vTIL a

(notation of 24.3.1).

(b) Let b € B(A+ X), b € B(XN + X'). Assume that either b ¢ B()),
or b" ¢ B(/\”). We have t(b+€_)‘_,\' ® b"—n)‘q.y/) =0 mod v_lﬁ)‘,)‘u.

(c) t is surjective.

In this proof we shall use the symbol = to denote congruences modulo
v~! times a Z[v~!]-submodule spanned by the natural basis.
Using 25.1.2, 25.1.3, 25.1.4, we see that if b,b” are as in (a), we have

t(bTEa-x @V Trgar) = (1@ 6 @ 1)(BTE_A @ E-x @ @ b ")
— b+§_)‘ ® b//-n)‘".
Using again 25.1.2, 25.1.3, 25.1.4, we see that if b,b” are as in (b), we
have
o t(b+§—,\—,\’ ® b”_n,\'_,.)‘n) =0.

Now (c) follows from the fact that £_y ® ny is in the image of ¢ and it
generates the U-module “A, ® Ay (see 23.3.6).

Using the definition 24.3.3 of the elements (b{b’) x/, we can reformulate
the previous lemma as follows.

Lemma 25.1.7. (a) Let b € B(\), b” € B(\"). We have
t(b()b”),\_;.)\f')‘r_'_)‘u = (bOb,,))‘V\H mod U_I[,,\,,\H.

(b) Let b € B(A+ X), b” € B(XN + X"). Assume that either b ¢ B()),
or b ¢ B(\N'). We have

t(bob”),\+)",)‘f+,\f/ =0 mod ’v_lﬁ)\,)w.
25.1.8. In the following result we show that the maps
v “)AA_’_AI ®AAI+AH — wAA_'_)‘/ ®AAI+AH

and
YA\ ®@Axr = “Ay® Ay,

defined as in 24.3.2, are compatible with ¢.
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Lemma 25.1.9. We have t¥ = Vt.

We write &, 7 instead of £_x_xs, Par4a7-
Since any element of “Ax;x @ Ax4a~ is of the form u(§ ® ) for some
u € U (see 23.3.6), it is enough to check that

t8(u(§ ®n)) = Bt(u({ ® 1))

for all u € U. Using the definition of © and its property 24.1.3(a), we have
tO(u(f ®n)) =tu(6({ ®n)) =ta(f ®n) = at(§ ®n) = U(-x ®Nav)

and

Bt(u(§ ®n)) = But( ®@n)) = TO({-x @ Nav) = U(E-x @ Mrv).

The lemma is proved.

Proposition 25.1.10. (a) Let b € B(\), b” € B(\”’). We have
t(bOV" ) agar arar = (OB )a a0

(b) Let b € B(A+ X), b” € B(X + X’). Assume that either b ¢ B(\),
or b’ ¢ B(\'). We have

t(bObII)A+A/,Al+)‘Il =0.

The difference of the two sides of the equality in (a) is in v=1Ly »~ (by
25.1.7) and is fixed by ¥ : “A) ® Ax» — YAy ® Ay, using the definitions
and Lemma 25.1.9; hence that difference is zero, by 24.3.3(d). Thus the
equality in (a) holds. Exactly the same proof shows (b).

25.2. DEFINITION OF THE Basis B oF U

Theorem 25.2.1. Assume that the root datum is Y -reqular. Let ( € X
and let b,b" € B.

a) There is a unique element u = bOcb” € 24Ul such that
¢ ¢

u(€oxr ®mar) = (OB )a

for any A, X" € Xt such that b € B()\),b” € B(\') and \" — X =(.
(b) If A, \" € Xt are such that \” — X\ = ( and either b ¢ B()\) or
b ¢ B(XN'), then u(é—x ®nav) =0 (u as in (a)).
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(c) The element u in (a) satisfies @ = u.

(d) The elements b¢b”, for various (,b,b” as above, form a Q(v)-basis
of U and an A-basis of 4U.

Since the root datum is Y-regular, we can find A\,\” € X+ such that
be B(\),b" € B(\')and M — A= (.

For any integers Nj, Ny, let P(N;, N2) be the .A-submodule of AU
spanned by the elements by b; 1, where by, b, run through the set of pairs of
elements of B such that tr |b;] < Ny, tr |ba| < Nz and |by|—|b2| = |b]—|b"|.

By arguments such as in 23.3.1 or 23.3.2, we see that any element of
YMy ® My, or “Ay ® Ay, of the form B+€_, ® B ~naw, with 8,3 € B, is
equal to u; (£-x®na~) for some u; € P( tr |B|, tr |'|); moreover, u; can be
taken to be equal to 8+ 3~ 1¢ plus an element in P( tr |8| —1, tr |8'| —1).
From this we deduce that

(€) (BOY")axr € “Ax ® Ay is of the form u(§_x ® na~) for some u €
P( tr |, tr |b”}); moreover, u can be taken to be equal to b*b”~ 1, plus an
element in P( tr |b] — 1, tr |b”| —1).

Assume that u is such an element and that u’ is another element with
thé same properties as u. Then (u — u’)(€—x ® na~) = 0; hence, by 23.3.8,
we have

u—u € Z _AUFi(")lc + Z AUE§n)l<.

i,n>(i,\") ,n>(i,\)

Since u — u’ € P(tr |b], tr |b”|) we deduce that, if (i, \) and (i, ") are
large enough (for all 7), then we must have u = u’. Thus, for such A, \” the
element u above is uniquely determined. We denote it by u .

Assume now that A\, \” € X satisfy b € B(\),b” € B(A\”) and A" — )\ =
¢. Let M € X* be such that (i, \') is large enough for all i, so that
u’ = uryx a4 is defined.

We show that u/(§-x ® nar) = (bOY”)aav. Indeed, if ¢ is as in 25.1.5,
we have

w'(E-a ®@man) = W (E(E-rx @ Mrrgar)) = (U (E—ax @ Margar))
= t((bOV" ) atar,ar4a7) = (O ) A n

where the last equality follows from 25.1.10. It follows that uj x~ is inde-
pendent of A, \”, provided that (i, A) and (i, \”) are large enough (for all
i); hence we can denote it as u, without specifying A, \”. It also follows
that u satisfies the requirements of (a). This proves the existence part of
(a). The previous proof shows also uniqueness. Thus (a) is proved.
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Now let A\, A" be as in (b). Let A € X* be such that (i, \) is large
enough for all ¢, so that uy4 s x4~ is defined (hence it is u). We have

u(lx @ mar) = u(t(€-r—x @ Mar4ar))
= t(u(€-r-x ® Nrr4ar))
= t((bOY" ) agarar4ar) =0,

where the last equality follows from 25.1.10. This proves (b).
We prove (c). Let u, A\, \” be as in (a). We have

U(€-x ® ) = UO(£-x @ Mav)
= Ou(£-x ® nav)
= O(bOV" ) A
= (5O )aan.

Thus u satisfies the defining property of u. By uniqueness, we have @ = u.
This proves (c).
We prove (d). From (e) we see that, for fixed ¢, we have

b = b0 1 mod P(tr [b] — 1, tr [b”] — 1).

Since the elements b*b" "1, form an A-basis of AU, we see that (d) follows.
The theorem is proved.

25.2.2. We now drop the assumption that the root datum (Y, X,...) is
Y-regular. Assume that we are given ( € X+. Let (Y',X’,...) be the
simply connected root datum of type (I,-) andlet f:Y' > Y,g: X — X'
be the unique morphism of root data. Let U’ be the algebra, defined like

U, in terms of (Y/,X’,...). Let ¢’ = g(¢). By 23.2.5, we have a natural
isomorphism

(a) U’IC' =~ Ul(,
defined by u*tu'~1¢ — utu'"1¢ for all u,u’ € f. For each b,b” € B, we

denote by bd¢b” the element of (Ilg corresponding under (a) to b b €
U’1¢s (which is defined by the previous theorem.)

Corollary 25.2.3. The elements b{¢b” for various b,b” € B and various
¢ € X form an A-basis of AU and a Q(v)-basis of U. They are all fized
by the involution ~ : U — U.
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25.2.4. Remark. The basis of U just defined is called the canonical basis
of U. We denote it by B. In the case where the root datum (Y, X,...)
is Y-regular, this canonical basis coincides with the one defined in 25.2.1.
This follows immediately from definitions, using 23.2.5 and 23.3.4.

From the proof we see that any element of B is contained in one of the
summands in the direct sum decomposition 23.1.2 of U.

Theorem 25.2.5. Let ( € X and let a,a’ be as in 23.3.8. Let P({,a,a’),
AP(¢,a,a’) be asin 23.8.8. Then BNP((,a,d’) is an A-basis of 4P(¢,a,a’)
and a Q(v)-basis of P((,a,a’).

Using the definitions and 23.3.4, we are reduced to the case where the

root datum is simply connected. In that case, the result follows immediately
from Theorem 25.2.1.

We now show that B is a generalization of B.
Proposition 25.2.6. Let b € B and let ( € X. Then b7 1; € B and
b+1( € B

.We can assume that the root datum is simply connected. Choose A\, X' €
X* such that ’—X = ¢ and such that b € B(X"). Wehave b~ 1.(§-A®nx) =
£_» ® b 7. Using the definitions, we see that £_ ® b~ ny satisfies the
defining properties of (1{b)x a/; hence it is equal to (1b)a . It follows
that b~ 1¢ = 1{¢b. A similar argument shows that b1, = bO¢1. The
_.proposition is proved.

25.3. EXAMPLE: RANK 1

25.3.1. In this section we assume that I = {i} and X =Y = Z with
i=1€Y,7 =2¢ X. Consider the following elements of U:

(a) E1_,F® (a,b,n € N,n>a+b)

(b) FP1,E (a,b,n € N,n>a+b).

Note that

(¢) E1_,F® = FP1,E® for n = a +b.
Proposition 25.3.2. The canonical basis of U consists of the elements
25.8.1(a) and (b), with the identification 25.3.1(c). More precisely, if n >

a + b, we have
EO1LLF® = 096,00

and
F;(b) lnE,‘(a) = 050) <>n—2a0,(b) .



206 25. The Canonical Basis B of U

We compute the image of the elements 25.3.1(a),(b) under the map U —
“Ap®A,, with p, g > 0, given by u +— u(£_,®1n,). The image of the element
25.3.1(a) is zero unless —n + 2b = ¢ — p, in which case it is

Ei(a)Fi(b) ((-p®ng) = Ega) (€-»® Fi(b)nq)
_ Z vglan_aupEgal)g_p ® Egau)Fi(b)nq
al+all=a

‘e —a’ ’ a" —b + q b— Q' —
= 3 T, [T )T OB,
a’+a’’=a t20 i

0 1 a” —b + q ’ b—a”
= Z R P[ o’ Ei(a )€—p®Fi( * )77q
a’+a’’=a i

= Z ’U;-g(a—_s_p) [s - 2 + q] E,(a—S)g—p ® Fi(b—S)nq.
82>0;8<a,s<d i
This element is fixed by the involution ¥ of “A, ® A4, since the element
25.3.1(a) is fixed by = : U — U. Using the definitions, we see that this
element is (05")0910’))?,(,. Hence the element 25.3.1(a) is 95“)0_n+259§b).
The image of the element 25.3.1(b) is zero unless n —2a = ¢—p, in which
case it is
b a b a
Fi( )Eg )(f—p ®ng) = Fi( )(Ez( )5—11 ® 7q)
’ II_ / b’ a b/’
= > AVIEDEPe 0 ',
b +b"=b
¥ —big[—a+b +p —t) (b —t b
= Z Zvi q[ ¢ ] Ei(a )Fi( )f—p®Fi( )774;
b +b'=b t>0 i
= 3 o B e, 0 R,

820;3<a,8<b t

1

As before, we see that this is equal to (9,(“)00?)),,&. The proposition
follows.

25.4. STRUCTURE CONSTANTS

25.4.1. For any triplet a,b,c € B, we define elements mS, € A by ab =
S, mS,c (ab is the product in U). We also define elements m2® € A by
the following requirement: for any \j, A, A5, A\ € X and any ¢ € BN
(x 423 Uay4ay) we have

_ ~ab .
Aoy (€) =) meta®b;

a,b
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in the last formula, Axi ay.ag,ay is as in 23.1.5; a runs over BN (a Uar);
b runs over BN (\Usy). Ifa e Bn (xUap),b € Bn (x,Uxy) and c €
BN (x;Uay), and either A3 # X} + A5 or A§ # A{ + A, then /M2 is defined
to be 0.

The elements mS,, ¢, are called the structure constants of U. They
satisfy the following identities, for all a,b,d,e € B and ) € X:

(8) Yo mapmey = 3o Mg Mig;

(b) 3o, mebimg? = 3, mecmb?;

. 'd’

(C) Ec mzbmgd = Ea’ b\ d' m a¥’ mg ma c'mb'd'

(d) m$® =1ifa=1x,b=1x,X + X =X and m$® = 0 otherwise.

In each sum, all but finitely many terms are zero. The identity (a)
expresses the associativity of multiplication in U; (b) is a consequence of
the coassociativity of comultiplication in U; (c¢),(d) are consequences of the

Yy

fact that the comultiplication A : U - U®U is an algebra homomorphism
preserving 1.

Conjecture 25.4.2. If the Cartan datum is symmetric, then the structure

constants mS,, M2 are in Nfv,v71].

This would generalize the positivity theorem 14.4.13. For the proof an
interpretation of (U, B) in terms of perverse sheaves, generalizing that of
(f, B) will be required.

M
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Inner Product on U

26.1. FIRST DEFINITION OF THE INNER PRODUCT

26.1.1. In the following theorem, p: U —» Uisasin19.1.1,and 5: U - U
is defined by p(u) = p(a).

Theorem 26.1.2. There ezists a unique Q(v)-bilinear pairing (,) : U x
U — Q(v) such that (a), (b), (c) below hold.

(a) (1x,z1a,, 1z 2 1y;) is zero for all z,2' € U, unless \; = X, and
Ag =

(b) (uz,y) = (z, p(u)y) for all z,y € U and u € U;

(c) (z71x,2'7 1)) = (z,2') for all z,2’' € f and all X (here (z,2’) is the
~ inner product as in 1.2.5).

(d) We have (z,y) = (y,z) for all z,y € U.

Let ¢ € X. If B is a basis of f consisting of homogeneous elements,
the elements p(b~ )b~ 1¢, with b,b’ € B, form a basis of Ul,. (We use the
triangular decomposition of U.) Hence there is a unique Q(v)-linear map
p: Ul; — Q(v) such that p(p(z~)z'~1¢) = (z,2’) for all z,2’ € f; here,
(z,7’) is as in 1.2.5. The properties of (z,z’) imply that for homogeneous
z,x’, we have p(p(z~)z’"1¢) = 0 unless x,z’ have the same homogeneity,
in which case p(z~ )z’ "1 = 1¢p(z~)z’~. Thus, for (' € X different from
¢, we have p(lCrUlc) = 0. It follows that, for any 1 € Y, we have p((Ky —
v{0)U1;) = 0. We now define a pamng fe : Ule x Ul — Q(v) by
fe(ule,u'le) = p(p(u)u'le) where u,u’ € U. To show independence of
u,u’, we must check that p(p(u)u’l;) = 0 if either u or «’ is in the left ideal
of U generated by (K, —v{*¢)) for some p € Y; in the case of u, this follows
from the previous sentence, while in the case of v/, this is obvious. Thus, f¢
is well-defined. We define the bilinear pairing (,) on U by (z,y) = fe(z,y)
if z,y € Ul¢ and by (z, y) =0if z € Ul and y € Ul with ¢ # ¢’ Tt is
clear that this pairing satisfies (a),(b),(c); the uniqueness is also clear from
the proof above.

The pairing z,y — (y, =) satisfies the defining properties of (z,y) (since
p? = 1), and hence coincides with it. This proves (d).
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Proposition 26.1.3. We have (zu,y) = (z,yp(u)) for all z,y € U and
ueU.

We may assume that u is one of the standard generators of U. Thus, we
must verify that

(xE,-,y) = (l‘, 'U'in‘ii'{—i), (xFi, y) = (m’viyEiki)y (xK—u’ y) = («’U,?/K—u)

forallz,yc Uandi€I,ueY.

We may assume that £ = u’1; where v’ € U and ¢ € X. Using 26.1.2(b),
and setting p(u’)y = y’, we see that the previous equalities are consequences
of

(1cEi,y) = (¢, vy FK_3), (1cFi o) = (1¢, vy E:K)
and
(AcK-_ ) = (¢, Y K-y)

forally e UandiecI,peY.
We can assume that y' = p(y; )yz 1¢» where y,,y2 € f are homogeneous.
Then the equalities to be proved can be rewritten as follows:

(8) (7 Bile—ir,y3 1¢r) = v " (47 1, yy Filgr)

(b) (U7 Filgyir, vz 1er) = v P ™ (i 1, vz Eilerir)

(C) (yl_lCK—lhyZ_]'C') = (y1—1C’y2— IC’K—[J)-

. Now (c) is obvious and (b) follows from (a), using 26.1.2(d). It remains
to prove (a). We may assume that ¢’ = ( — /. We substitute

ri(y1) " K_i — Ki(ir(y1)7)
v; —vi_1

yi_Ei]'C' = Ezyl_ 1(! + ]'C'

and note that
(Bayi 1¢, 93 1¢r) = (ui 1¢r, viKi Foyy 1¢0)
— (yl_ 1(" vi—1+(i,fl—|y2|>Fiy2— 1(')
—14(i,¢' —
= v‘i +( ¢ Iy2|)(y1)9iy2)>

ri(y1)"K_i — Ki(ir(1)7)
v; — v{l

(

1("y2—1C') =

)(7‘1'(’!/1),!/2) -
v; — vi—l

vi—(i»C Ul(iv(' —ly1|+1 )(

ir(Y1),¥2)

v«il_<i’c i )(yl_l("y?,—FilC’+i’) = vi—l—(i,C )(ylyy20‘i)’
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(see 26.1.2(b), (c)). We see that (a) is equivalent to:

) —(Z)C‘) 3 _
T

Ui(i’c e )(iT(yl),yz)

1
= ;75 (4, 18)).
But this follows from the known equalities

(ir(y1),y2)
1—- v{z

(T‘i(yl),yz)
1—-v72"

1

(y1,920:) = (11,0iy2) =

(see 1.2.13(a)). The proposition is proved.
Proposition 26.1.4. We have (o(z),0(y)) = (z,y) for all z,y € U.

We must show that the pairing z,y — (o(x),0(y)) on U satisfies the
defining properties of (,). Property 26.1.2(a) is obvious and property
26.1.2(c) follows from 1.2.8(b). Since op = po : U — U, we see that
26.1.2(b) for the pairing z,y — (o(z),0(y)) is equivalent to the identity in

the previous proposition. The proposition follows.

Lemma 26.1.5. (z*1),2'%1)) = (x,2’) for all x,2’ € f and all \; here
(z,2’) is as in 1.2.5.

We may assume that z,z’ are homogeneous; moreover, using 26.1.2(a),
we may assume that they both belong to f,. Using 26.1.2(b), we have

(z1a, 2" 1) = (1, p(z)z' T 1y).
Using the previous proposition, we see that the last expression equals
(0(1x),0(p(z*)z'* 1)) = (1-x, 1-ra(z' M) p(a(zt)))
= (1ox,0(z™*)p(o(z1))1-5).

Using 26.1.2(b) and the fact that p? = 1, we see that the last expression
equals

(p(o(z*))1-, Blo(zF))1-5).

Using the definitions, we see that there exists an integer N depending
only on v and X such that for any 2 € f, we have p(o(z1))1y = vVN2z"1,
and p(o(z%))1y = v™N2z71,. Hence the last inner product is equal to

(W' 1_5,vNz71o,) = ("1, 2710)) = (7, 2) = (z,2).

The lemma is proved.
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Proposition 26.1.6. We have (w(z),w(y)) = (z,y) for all z,y € U.

We must show that the pairing z,y — (w(z),w(y)) on U satisfies the
defining properties of (,). Property 26.1.2(a) is obvious and property
26.1.2(c) follows from the previous lemma. Since wp = pw : U — U,
we see that 26.1.2(b) for the pairing z,y — (w(z),w(y)) is equivalent to
the corresponding identity for (z,y). The proposition follows.

26.2. DEFINITION OF THE INNER PRODUCT AS A LIMIT

26.2.1 In this section we assume that the root datum is Y-regular. Let
¢ € X and let A\, ' € X* be such that X' =\ = (. We consider the bilinear
pairing (,)a,x on “Ax ® Ay, defined by (z Q@ 2',y ® y') = (z,y)a(z’, ¥ )x-
Here (, ) is the pairing on Ay defined in 19.1.2, and (, ) is the analogous
pairing on A, which has the same ambient space as “Ajy.

Lemma 26.2.2. Ifz1,z2 € “A) ® Ay and u € U, we have

(U931,$2)A,A' = (931,/’(“)372))\,«\’-

It is enough to check this in the case where u is one of the algebra
generators E;, F;, K, of U. The case where u = K|, is trivial. We now fix
i and regard the U-module “A) ® Ay as an object of C; (by restriction).
It is enough to show that the form (,) on this object is admissible in the

“sense 0f’16.2.2. Using 17.1.3(b), we see that this would follow if we knew
that the forms (,)x and (,)x on “Ay and Ay (regarded as objects of C;)
are admissible. For (, ) this follows from the definition. The same holds
for (,)x on Ay. One checks easily that applying w to an object of C; with
an admissible form gives a new object of C; for which the same form is
admissible. In particular, (, )’ is admissible for “A. The lemma is proved.

Proposition 26.2.3. Let z,y € Ulc. When the pair A\, ) tends to oo (in
the sense that (i,)) tends to oo for all i, or equivalently, (i, \') tends to oo
for all i, the difference N’ — A being fized and equal to (), the inner product

(@(6-x ® nx), Y(E-x ® Ma))ax € Q(v) converges in Q((v1)) to (z,y).
Assume first that z = z7 1¢,y = y; 1¢ where z1,7; € f. In this case we
have
T(f-A ®Mn) =E-r @ Ty NN

and
YE-a®na) = €A Yy Mn;
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hence
(Z(€=x ® N2 ), Y(E-x @ Mx))an = (T, Y7 Mar )

and, by 19.3.7, this converges to (z;,y1) when A — oco. Since (z1,11) =
(z11¢, 91 1¢), the proposition holds in this case.

Next, we prove the proposition in the case where z = 1¢ and y is arbi-
trary. We may assume that y = p(x7)y; 1¢ where z1,y, € f. Using the
previous lemma, we have

(1c(€=x ® M), y(E-r @ ma))an = (27 1c(E-x @ mar), w7 1 (E—x @ mar))an

and by the earlier part of the proof, this converges to (z7 1¢,y; 1¢) when
A — oo. Since (z} 1¢,y; 1¢) = (1¢,y), the proposition holds in this case.

We now consider the general case. We can write x = ul; where u € U.
Using the previous lemma, we have

(ule(€=x ® M), Y(€-r @ Ma)an = (L¢(§-x @ Mar), p(w)y(§—x ® Mar))axe

and by the case previously considered, this converges to (1¢, p(u)y) when
A — oo. Since (1¢, p(u)y) = (ul¢,y), the proposition is proved.

26.3. A CHARACTERIZATION OF B LI (—B)

In the following result there is no assumption on the root datum.

The,orem 26.3.1. (a’) Let b': bl, bla bl] € B and let C, C] c X. We have
(b0, 10, bY) = 66,6, 64 4, 6¢,c; mod vTA.

In particular, the canonical basis B of U is almost orthonormal for (,).

(b) Let B3 € U. We have 8 € B U (—B) if and only if B satisfies the
following three conditions: B € AU, B =3 and (5,8) € 1 + v 'A.

Note that (a) is trivial when ( # ¢;. Hence we may assume that ¢ =
¢1. In this case, using the definitions we are immediately reduced to the

case where the root datum is simply connected. Then 26.2.3 is applicable.
Hence, using the definition, we see that it is enough to prove that

() (OO )ans (brOV AN )A N = 865,84 p, mod v™1A
for any A, ' € Xt such that A — X\ = { and such that b € B(\),b’ € B(X).
Since

(bFEx ® b 7ma, by E-x @ By M) = (7, by ma)a (b T, By T )
€ (Bb,60 + 0 A)(6br,py + v TTA) = 6,60 4 + VA,
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we see that (c) follows from Theorem 24.3.3(b).

We prove (b). If 8 € +B then, by (a) and 25.2.1, it satisfies the three
conditions listed. Conversely, if 3 € U satisfies the three conditions in (b)
then, using (a) and Lemma 14.2.2(b), we see that there exists 8’ € B such
that 3 — (£43') is a linear combination of elements in B with coefficients in
v~ 1Z[v™1]. These coefficients are necessarily 0, since 3 — (') is fixed by
= : U — U. The theorem is proved.

Corollary 26.3.2. If 8 € B, then o(B) € +B and w(f8) € +B.

o and w commute with ~ : U — U, preserve the lattice Af) and preserve
the inner product (,) (see 26.1.4, 26.1.6). Hence the corollary follows from
Theorem 26.3.1(b).



CHAPTER 27

Based Modules

27.1. IsoTYPICAL COMPONENTS

27.1.1. In this chapter we assume that (I,-) is of finite type.

Let M € C. We assume that M is finite dimensional over Q(v). For any
A € X*, we denote by M|[)\] the sum of simple subobjects of M that are
isomorphic to Ay. Then M = ®,M|[)\]. We also define for any A € X*:

M[> A = @yex+nsaM[N]

and

M[> )] = @,\fex+;,\f>>‘M[)\’].
Clearly, M[> }] is a subobject of M[> A] and M[\] @ M[> A\] = M[> )]
as objects in C.

27.1.2. A based module is an object M of C, of finite dimension over Q(v)
with a given Q(v)-basis B such that
" (a) BN MS is a basis of M¢, for any ¢ € X;
(b) the A-submodule 4M generated by B is stable under AU;
(¢) the Q-linear involution = : M — M defined by fb = fb for all
f € Q(v) and all b € B is compatible with the U-module structure in the
sense that um = am for all u € U, m € M,

(d) the A-submodule L(M) generated by B, together with the image of
B in L(M)/v—'L(M), forms a basis at co for M (see 20.1.1).

We say that ~ : M — M in (c) is the associated involution of (M, B).
The direct sum of two based modules (M, B) and (M’, B) is again a based
module (M & M’, BU B’).

27.1.3. The based modules form the objects of a category C; a morphism
from the based module (M, B) to the based module (M’, B’) is by definition
a morphism f : M — M’ in C such that

(a) for any b € B we have f(b) € B’U {0} and
(b) B Nker f is a basis of ker f.
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27.1.4. Let (M, B) be a based module and let M’ be a U-submodule of
M such that M’ is spanned as a Q(v)-subspace of M by a subset B’ of
B. Then (M',B’) is a based module; moreover, M/M’ together with the
image of B — B’ is a based module.

For any A € X, A together with its canonical basis, is a based module.
(See 19.3.4, 23.3.7, 20.1.4.)

27.1.5. Let (M, B) be a based module with associated involution ~ and let
m € M be an element such that m = m,m € 4M and m € B+ v~!L(M)
(resp. m € v~!L(M)). Then we have m € B (resp. m = 0). Indeed, we can
write m = ), g cpb with ¢, € A. By our assumption, we have ¢, € A for
all b. Hence ¢, € Z[v™!] for all b. We have &, = ¢, for all b. Hence ¢, € Z
for all b. Moreover, by our assumption, we have c, € v~ ! A for all b, except
possibly for a single b for which we have ¢, = 0 or 1 mod v='A. It follows
that ¢, = 0 for all b, except possibly for a single b for which we have ¢, =0
or 1. Our assertion follows.

27.1.6. Let (M, B) be a based module. Assume that M # 0. Let Ay € X+
be‘such that M*t # 0 and such that A, is maximal with this property. Let
B; = BN M™. It is a non-empty set. Let M’ = @ven, Ar, b € C. Here
Ay, b is a copy of Ay, corresponding to b; we denote its canonical generator
M by 7.

For any b € B;, we have E;b = 0 for all ¢ € I by the maximality of A,.
" Hence there is a unique homomorphism ¢ : M’ — M of objects in C whose
restriction to any summand Ay, ; carries 7, to b. Let B’ be the basis of M’
given by the union of the canonical bases of the various summands Ay, 5.

Proposition 27.1.7. In the setup above, B N M[A1] is a basis of M[)\]
and ¢ defines an isomorphism M’ = M[\] carrying B’ onto BN M[\1].
Thus ¢ is an isomorphism of based modules (M', B') = (M[A1], BN M[\{]).

Let = : M’ — M’ be the Q-linear involution whose restriction to each
summand Ay, is the canonical involution = : Ay, 5 — Ax, 5. The invo-
lution ~— : M’ — M’ is compatible under ¢ with that of M. Indeed, both
involutions are the identity on B;. (We regard B; as a subset of M’ by
b ) B L _

Let ¥ € B’ N Ay, 5. We have b’ = V'; hence ¢p(V') = ¢(b') = ¢(b'). Thus
o(b') is fixed by — : M — M.

We know from 19.3.5 that there exists a sequence 1,42, ...,%p in I such
that ¥ is equal to F; F;, - F; .M plus a v~ ! A-linear combination of ele-
ments of the same kind. Now the action of F; on M’ is compatible with
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the action of F; on M. Hence ¢(b') is equal to Fj F;, ...ﬁ’ipb plus a lin-
ear combination with coefficients in v"!A of elements of the same kind.
By property 27.1.2(d) of B, we see that either ¢(b') € B + v"1L(M) or
é(b') € v IL(M).

On the other hand, by the definition of the canonical basis of M’, we
have that b’ belongs to the 4U-submodule of M’ generated by 7; hence
#(b') belongs to the 4U-submodule of M generated by b; by the property
27.1.2(b), we then have ¢(b’) € 4M. These properties of ¢(b’) imply that
@(b') € B or ¢(b') = 0 (see 27.1.5). The second alternative does not occur:
indeed, the restriction of ¢ to the summand A,  is injective since Ay, 3 is
simple. Thus we have ¢(b') € B. We see that ¢ defines a bijection of the
canonical basis of Ay, ; with a subset B(b) of B.

Next we consider an element b € B distinct from b. We show that B (b)
is disjoint from B(b). Indeed, assume that b; € B belongs to B(b) N B(b).
Then we have

by = F,, Fi, - F,,b mod v"'L(M)
and
b = Fjlﬁjz . 'qui) mod 'U_IL(M)

for some sequences i;,iy,...,i, and ji,ja,. .. ,Jg¢ in I. By property
27.1.2(d), we then have

P b=E; Ej,_, - E; F,F,---F, b mod v 'L(M).

Hence b is equal to some element in B(b) plus an element of v IL(M). Tt
follows that b € B(b).

In particular, we have b = #(b') for some b’ € Ay, b Since b # b, we
have b’ # my; hence b’ € Aﬁl’b with )’ < A;. It follows that b € M* with
X < A1. This contradicts the assumption that b € B;. We have proved
therefore that B(b) is disjoint from B(b).

Since B’ is the disjoint union of the canonical bases of the various A ALb
and these subsets are carried by ¢ injectively onto disjoint subsets of B, it
follows that ¢ restricts to an injective map B’ — B. Since B’ is a basis
of M’, it follows that ¢ : M’ — M is injective. Thus we may identify M’
with a U-submodule of M (via ¢) in such a way that B’ becomes a subset
of B. This submodule is clearly equal to M[A;]. The proposition follows.

Proposition 27.1.8. Let (M, B) be a based module and let A € Xt. Then
(a) BN M|[> )] is a basis of the vector space M[> \] and
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(b) BN M[> )] is a basis of the vector space M[> A].

First note that (b) follows from (a). Indeed, the vector space M[> A
is a sum of subspaces of form M[> )\'] for various X' > A. To prove (a),
we argue by induction on dim M. If dim M = 0, there is nothing to prove.
Therefore we may assume that dim M > 1.

For fixed M, we argue by descending induction on A. To begin the
induction we note that if ) (i, \) is sufficiently large, then M[> A] = 0
and there is nothing to prove. Assume that )\ is given. If M[A] = 0, then
M[> )] is a sum of subspaces M[> X] with X’ > A; hence the desired
result holds by the induction hypothesis (on A). Thus we may assume that
M]|)] # 0. Then clearly M* # 0. We can find A\; € Xt such that A\; > A,
M?*1 £ 0 and )\, is maximal with these properties.

Let M’ = M[)\,] and let B' = BN M’'. Then (M',B’) € C by 27.1.7.
Hence, by 27.1.4, M" = M/M', together with the image B” of B—B’, is an
object of €. Since M’ # 0, we have dim M"” < dim M; hence the induction
hypothesis (on M) is applicable to M"”. We see that B”NM"[> )] is a basis
of M"[> A]. Since M’ = M’[A\;] and A\; > A, we see that M[> ] is just the
inverse image of M"”[> A] under the canonical map M — M"; moreover, a
basis for this inverse image is given by the inverse image of B” N M"[> J]
under the canonical map B — B”. The proposition is proved.

27.2. THE SUBSETS B[}

27.2.1. Let (M, B) be a based module. Let b € B. We can find A € X+
such that b € M[> )] and A is maximal with this property. Actually, A is
unique. Indeed, assume that we also have b € M[> A'] and A’ is maximal
with this property. We note that M[> A\]N M[> X'] is a sum of subspaces
M([> X'] for various A\’ such that A < A\’ and X' < ) and from 27.1.8 it
follows that b € M[> A"] for some such X”.

If A # X, then )" satisfies A < A and ' < A", and we find a contradic-
tion with the definition of A\. Thus the uniqueness of A is proved.

Let B[)] be the set of all b € B which give rise to A € X+ as above.
These sets clearly form a partition of B. From 27.1.8, we see that, for
any A € X1, the set Uyex+,x>aB[N] is a basis of M[> )] and the set
Uxex+a>aB[N] is a basis of M[> A].

Proposition 27.2.2. Let f be a morphism in C from the based module
(M, B) to the based module (M’,B’) (see 27.1.3). For any A € X, we
have f(B[A]) Cc B’[A] U {0}.
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From the definitions, we see that f(M[> A]) C M'[> A] and f(M[>
A]) € M’[> A]. Hence if b € B[)], then either f(b) € B’[)N] for some
A'> Xor f(b) = 0. Assume that f(b) ¢ B’[\]. Then f(b) € M'[> ).
Using the obvious inclusion f(M)NM'[> A] C f(M[> }A]), we deduce that
b € M[> A] + ker f. Since both M[> )] and ker f are generated by their
intersection with B, it follows that either b € M[> A] or b € ker f. The first
alternative contradicts b € B[)]; hence the second alternative holds and we
have f(b) = 0. The proposition follows.

27.2.3. Let (M, B) be a based module. Let A € X*. We define B[\]*
to be the set of all b € B such that b € M* and E;b € v"!L(M) for all
i € I. We define B[)]' to be the set of all b € B such that b € M*°() and
Fbev L(M)foralliel.
Proposition 27.2.4. (a) We have B[A|" C B[)| and B[\ C B[)].

(b) Let p: M[> \] = M[> \]/M[> A\] = M be the canonical map. Note
that p defines a bijection of B[\ with a basis B of M and that (M, B)

belongs to C so that B[\" and B[M\' are defined. Then p restricts to
bijections B[A\|" — B[\" and B[A]'> — B[]l

We prove (a). Let b € B[A]*. There is a unique A’ € X* such that
b € B[\']. We must prove that A = \'. We have b € M[> \']. Replacing M
with M[> )|, we may assume that M = M[> )']. Let m be the canonical
map of M onto M "= M/M[> X]. Then B[)] is mapped by 7 bijectively
onto a basis B” of M" and we have 7(b) € B”. Moreover, m(b) belongs to
B"[A]* and we are therefore reduced to the case where M = M". Thus
we may assume that M = M[N]. Now 27.1.7 reduces us further to the
case where (M, B) is Ay with its canonical basis. In this case, there are
two possibilities for b: either b is in the \’-weight space or there exist ¢ and
b € B such that F;b' —b € v=L(M). In the first case we have b € M*’;
in the second case we have E;b — &' € v~1L(M); hence E;b ¢ v='L(M),
in contradiction with our assumption on b. Thus we have b € M, hence
A = X, as required. We have proved that B[A]* C B[)]. The proof of the
inclusion B[)\]'® C B[)] is entirely similar.

We prove (b). We assume that M = M[> )]. It is clear that p(B[A]") C
B[A* and p(B[\"®) c B[\)". Assume that b € B[)] satisfies b ¢ B[\J*.
We show that p(b) ¢ B[M". By our assumption, we have that either
be M with X # X or that E;b ¢ v L(M) for some i.

If b€ MY with N # )\, then p(b) € M> with X # X; hence p(b) ¢
BI)\™, as required. If E;b ¢ v='L(M) for some i € I, then there exists
b € B such that E;b— b’ € v=1L(M) and therefore F;b' — b € v 1L(M).
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We consider two cases according to whether or not & € M[> ). In
the first case (b’ € M[> )]), we have F;b/ € M[> )] (since M[> )] is a
subobject of M) hence b € M[> A]+v~1L(M); this implies that b € M[> )]
(using that BN M[> )] is a basis of M[> )]). Then we have p(b) = 0 and,
in particular, p(b) ¢ B[\]*, as required. In the second case (b’ ¢ M[> )]),
we have b’ € B[)]; hence m (V') € B.

Let L(M) be the A-submodule of M generated by B. From E;b —
¥ € v L(M), we deduce E;((b)) — n(t') € v~'L(M). In particular, we
have E;(m(b)) ¢ v~ 'L(M); hence p(b) ¢ B[A]", as required. Thus we
have proved the equality p(B[M\*) = B[A|*. The proof of the equality
p(B[)\]"°) = B[\ is entirely similar.

27.2.5. Coinvariants. Let (M, B) € C. Let M[# 0] = ®xz0M[)\]. The
space of coinvariants of M is by definition the vector space M, = M/M[#
0]. Clearly, M[# 0] is equal to the sum of the subspaces M[> )] for various
X € X+ — {0}; hence, from 27.2.8, it follows that Uy 2oB[)'] is a basis of
M([# 0]. We deduce that under the canonical map m : M — M, the subset
B[0] of B is mapped bijectively onto a basis B. of M,.

‘Note that 7 is a morphism in C if we regard M, with the U-module
structure such that M, = M,[0]. We see that

(a) (M., B.) is a based module with trivial action of U.

- Proposition 27.2.6. We have B[0] = B[0 hi — B[0)'°. This set is mapped
‘bijectively by m : M — M, onto B,.

To prove the first statement, we are reduced by 27.2.4(a),(b) to the case
where M = M|0], where it is obvious. The second statement has already
been noted.

27.3. TENSOR ProODUCT OF BASED MODULES

27.3.1. Let (M, B),(M’, B') be two based modules with associated involu-
tions ~: M — M,” : M’ — M'. We will show that the U-module M @ M’
is in a natural way a based module.

The obvious basis B ® B’ does not make M ® M’ into a based module,
since the involution ~: M @ M’ - M @ M’ given by m @ m/ = m ® m/ is
not, in general, compatible with the U-module structure.

We will define a new involution ¥ : M@ M’ — M ® M’ by ¥(z) = ©(Z)
foralze M@M';here ®: MM’ — M®M'is as in 24.1.1. Eventually,
¥ will be the associated involution of our based module.
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Let L (resp. 4L) be the Z[v~!]-submodule (resp. .A-submodule) of
M ® M’ generated by the basis B ® B’. From 24.1.6, we see that ©
leaves 4L stable and clearly = : M @ M’ — M ® M’ leaves 4L stable;
it follows that we have ¥(4L) C 4£. From 24.1.2 and 4.1.3, it follows
that ¥2 = 1 and ¥(uz) = a¥(z) forallu € Uand allz € M @ M’. We
shall regard B x B’ as a partially ordered set with (by,b}) > (b2, b}) if and
only if by € M1, b) € M'™1,by € M*2, b, € M'*2 where A\; > A, N, <

2 A1 + AL = A2 + A,
From the definition we have, for all b; € B, b, € B,

UB1®W) = D poypbabyb2 @b
ba€BbHEB’

where pp, b1:6,,8; € A and py, prip, 5, = 0 unless (by, b)) > (be,b}). Note
also that

Pby by by =1

and

E  Pbublsba,by Pba,bibabh, = Obsbs b4 4
b2€B,byeB’

for any by, b3 € B and b}, b; € B’; the last condition follows from ¥2 = 1.
Applying 24.2.1 to the partially ordered set H = B x B’, we see that there

is a anique family of elements 7y, 4.5, 5, € Z[v~!] defined for by,by € B
and b}, by € B’, such that
by by sbr,bf = 1
Moy ,bysba,by € VT Z[UT A (b1, b)) # (b2, b);
ﬂ-bl,b'l;bz,ba = 0 unless (bl,bll) > (bz,blz);
Tby byiba,by = Dby by Tba,b)iba,b Pba,bl:bs,b)
for all (by,b}) > (be, b5).
We have the following result.

Theorem 27.3.2. (a) For any (b1,b]) € B x B’, there is a unique element
b1 Ob) € L such that ¥ (b, Oby) = by Ob) and (b, b)) — by @ by € v~ L.

(b) The element by Ob) in (a) is equal to by @b} plus a linear combination
of elements by ® by with (bs,b3) € B x B’, (by,by) < (b1, b)) and with
coefficients in v=1Z[v71).

(c) The elements b1 $by with by, b) as above, form a Q(v)-basis By of
M ® M’, an A-basis of AL and a Z[v~']-basis of L.
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b1 {b] just defined satisfy the requirements of (b),(c) and that (d) holds.
It remains to show the uniqueness in (a). It is enough to show that an
element z € v™1L such that # = z is necessarily 0. But this follows from

(d).

27.3.3. The previous result, together with the known behaviour of bases
at oo under tensor product, (see 20.2.2) shows that (M ® M’, Bg) is a
based module with associated involution ¥. This is by definition the tensor
product of the objects (M, B), (M’', B').

27.3.4. Let A\, X € X*. Applying the previous construction to M = “A,
and M’ = A, regarded as based modules (with respect to the canonical
bases), we obtain a basis of “A\ ® A/, which clearly is the same as that
constructed in 24.3.3. Thus, “A) ® Ay, together with its canonical basis
in 24.3.3, is a based module.

Proposition 27.3.5. Let \, N, \" € X+.

(a) The U-modules M = “Axyx ® Axyar and M' = YAx ® Ay with
thefr canonical bases B, B’ constructed i~n 24.83.3, are in C; moreover, t :
M — M’ (see 25.1.5) is a morphism in C.

(b) For any Ay € X, we have t(B[A1]) C B'[M\] U {0}.

The fact that (M, B), (M’, B') are objects of C has been pointed out in
-27.3.4. The second assertion of (a) follows from Proposition 25.1.10. Now
(b) follows from (a) and 27.2.2.

27.3.6. Associativity of tensor product. Let (M, B),(M’, B'), and
(M",B") be three based modules. On the U-module M ® M’ @ M",
we can introduce two structures of based module: one by applying the
construction in 27.3.2 first to M ® M’ and then to (M ® M’) ® M"’; the
second one by applying the construction in 27.3.2 first to M’ ® M” and
then to M ® (M’ ® M"). Let By, By be the bases of M ® M’ ® M" obtained
by these two constructions.

We show that B, = Bs;. By definition, the associated involutions to
these two structures are given by

Y (Ae1)(6,)8% (" ® ")

V’,V“

and
d_(1enr)®e.)8R (8" 8")

’ 17
v
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respectively. These coincide by 4.2.4.

Next from the definitions, we see that the Z[v~!]-submodules of
M @ M'® M" generated by B; or B; coincide; they both coincide with the
Z[v~!]-submodule £ of M @ M’ ® M" generated by B® B’ ® B"; moreover,
if # : £ — L£/v™1L is the canonical projection, then n(B;) = n(Bz2) =
m(B® B’ ® B").

To show that B, = By, it suffices to show that (bOY )OO’ = bO(H Ob”)
for any b € B,b € B',b” € B”. Let by = (bV)Ob” € By and by =
bO(Y' Ob’) € B, From the definitions, we have that (b)) = 7(b® V' ® V")
and 7(b) = T(b® b ®b"). Hence m(by) = m(bz). Then by — by € v71L
and b; — by is fixed by the associated involution. This forces b = by,
as required. Thus we may omit brackets and write bOY Ob” instead of
(bOY YO or bO(H Ob”). This implies automatically that the analogous
associativity result is also true for more than three factors.

27.3.7. Coinvariants in a tensor product. Let (M, B), (M’,B’) be
two based modules. We form their tensor product (M ® M’, By,). The
following result describes the subset B¢ [0] of By

Proposition 27.3.8. Let b€ B,b € B’. We have
Bo[0] = Unex+{bOb'|b € Bl—wo(X))',b' € B'[N]™}.

- Let b € B,b € B’ be two elements such that b € M A e M. Accord-
ing to 27.2.6, the condition that b{b’ belongs to B¢ [0] is that A+ X =0
and F;(bOY) € v~!L(M ® M) for all 4; the last condition is clearly equiv-
alent to the condition that F;(b® b') € v~ 'L(M ® M'). By 20.2.4, our
condition is equivalent to the following one: A + X = 0, Fi(b) € v~ 'L(M)
and E;(b') € v-L(M’) for all i € I. The proposition follows.

27.3.9. We consider a sequence A1, Ao, ..., A, of elements of X*. Accord-
ing to 27.3.6, the tensor product Ay, ® Ay, --- ® Ay, is in a natural way
a based module (hence has a distinguished basis) and according to 27.2.5,
the space of coinvariants (Ay, ® Ay, - ® Ay, ). inherits a natural based
module structure (hence has a distinguished basis).

27.3.10. Let us assume, for example, that the root datum is simply con-
nected of type D,,, that n = 2n’ and that A\; = Ay =--- = A, = Ais such
that A, is the standard (2m)-dimensional module. Then we may identify
the space of coinvariants (A, ® Ay, -+ ® Ay, )« naturally with the dual
space of EndU(A?"'). Hence, from 27.3.9, we obtain a distinguished basis



27.3. Tensor Product of Based Modules 223

for the algebra EndU(Af’"'), the quantum analogue of the Brauer central-
izer algebra. This basis is of the same nature as the basis of the Hecke
algebra of type A defined in [3].



CHAPTER 28

Bases for Coinvariants
and Cyclic Permutations

28.1. MONOMIALS

28.1.1. In this chapter we assume that ([,-) is of finite type. Let A €
X*. For any sequence i = (¢1,12,...,ix) in I such that s; s;,---5;, is a
reduced expression of an element w € W, we consider the element 6(i, A) =
6192 ... g{*%) € £ where

a1 = (8in - 8, (1), A)y - - ,an—1 = (Siy (inN-1), A), an = (in, A);

note that ay,as,...,any € N, by 2.2.7.

Proposition 28.1.2. The element 0(i, \) depends only on w and not on
i.

Assume first that w is the longest element in the subgroup of W gen-
erated by two distinct elements i, j of I. In that case the assertion of the
lemma is the quantum analogue of an identity of Verma, whose proof will
be given in 39.3. We shall assume that this special case is known.

We now consider the general case. Let i’ = (j1,Jj2,...,j~n) be another
sequence like i (for the same w). To prove that 8(i, ) = 6(i’, \), we may
assume, by 2.1.2, that i’ is obtained from i by replacing a subsequence
i,4,4,7,... (m consecutive terms) of i by j,1, j,14,..., (m consecutive terms),
where 14, j are as above and m is the order of s;s;. But this follows imme-
diately from the special case considered above.

28.1.3. By Proposition 28.1.2, we may use the notation #(w, A) instead of
6(i, A) for w,i as above.
Proposition 28.1.4. The element 0(w, A) "1y € Ay is the unique element

of the canonical basis of Ax which lies in the w())-weight space.

We prove this by induction on N, the length of w. If N = 0, there
is nothing to prove. Assume now that N > 1. Let (i1,%2,...,ix) and
(a1,a2,...,any) be as in 28.1.1. Thus w = s;,8;, - Siy. Let w' =
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SigSiz ** * Siy SO that w = s;, w’. Let b’ (resp. b) be the unique element in the
canonical basis of Ay which lies in the w’())-weight space (resp. the w(\)-
weight space). Using the induction hypothesis, we see that it is enough to
prove that b= F{*V¥. We have w(}) = s;,w'(A) = w'()) — (i1, w'(A))i; =
w'(A) — a17] so that Fi(f‘)b' is a non-zero vector in the same weight space
as b; thus, Fi(la‘)b’ = fb for some f € A — {0}.

Next we note that E; b’ = 0, since the (w’(\) + 7} )-weight space is zero.
Otherwise, the w’~!(w’()) + 1} )-weight space would be non-zero, hence the
(A+w'~1(4}))-weight space would be non-zero, contradicting the fact that
A is the highest weight, since w'~1(i}) > 0. From the definition of F; , it
then follows that Fi(l“‘)b’ = Fi"l‘b' . By the properties of the basis at oo of
Ay, the previous equality implies that f = ¢ mod v~!A where cis 0 or 1.
Hence we have f = ¢ mod v~!'Z[v™!] where c is as above and f # 0.

The involution = : Ay — A keeps b,b fixed and we have Fi(la‘))b’ =
FVY = F*Y; hence fb=fb = fb. It follows that f = f; hence f = c.
Since f # 0 and cis 0 or 1, it follows that f = 1. The proposition is proved.

Praposition 28.1.5. We have o(6(wo, \)) = 8(wo, —wo())).

Let i = (i1,42,...,in) be a sequence in W such that s;,s;, -+ 58;, is a
reduced expression of wg. Define ay,ay,...,ax as in 28.1.1. Then i’ =
(in,iN-1,...,11) is such that s;, s;p_, -~ s;, is a reduced expression of wy.

Let bl,bz,‘,. .., by be defined by

by = (sil Tt Sinoy (iN)v —’LUO(/\)), o byor = <3i1 (i2)7 _wO()\»,
by = (i1, —wo(N));

then by = an,b2 = an_1,...,by = a;. Using 28.1.2, we have

a(8(wo, N) = o(8(3, N)) = o(6{6(2) ... g@))
(an) glan-1) (a1)
:olzN e'aN ! "'Oill

IN-1

=090 ..g*M) — (i, —wp(N)) = B(wo, —wo(N)).

IN-1

The proposition is proved.

28.1.6. We have

(a) S (6(wo, X)) = (=1)@PNy=nN*+a K, 5(0(wp, A))~
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where 2p and n are as in 2.3.1,
v = 3 (i), Vi
with u(i) € Y as in 2.3.2, and

& = D) N iy Wi+ /2.

iel

This follows from 2.3.2(a) and 3.3.1(d), applied to = §(wp, A). Note that
z € f,, where v is as above and tr v = E;:’:l(si” 85,0 (1p), A) = (2p, A).

28.2. THE ISOMORPHISM P

28.2.1. Coinvariants and antipode. Let M, M’ be two objects of C
and let u € U. For x € M,z’ € M’, we have

(a) ur ® ' = z ® S(u)z’ in the coinvariants (M ® M’),.

We may assume that € M*,z’ € M'*. First note that z ® ' = 0 (in
the coinvariants) unless A + A’ = 0.

We show (a) for u = E;. Both sides are zero unless A+ X’ + i’ = 0, when
we have

Exzex = —vfi‘—)‘u#)x QEiz = -2z K_Eix' =z ® S(E)z'

(iﬁ the coinvariants).
We show (a) for u = F;. Both sides are zero unless A+ A’ —4' = 0, when
we have

Fretz = —vfi"\l)x Q@ Fiz' = —z® F;K;z' = z ® S(F;)z’

(in the coinvariants).
We show (a) for u = K,,. We have

Kl‘:v ® xl = 'U("’)‘).'L' ® z,’w ® S(K“)xl o U_(/‘,A’)x ® (L'I.

But we can assume that v{#A) =y~ ()

Now if (a) holds for u,u’, then it also holds for linear combinations of
u,u’ and for uu’. Indeed wu'z @ ' = v'r ® S(u)z’ = 2z ® S(v')S(u)2’ =
z ® S(uu')z’ (in the coinvariants). Thus, (a) is proved.

An equivalent form of (a) is:

(b) S’(u)z ® ' =  ® uz’ in the coinvariants (M ® M’)..
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28.2.2. Let A = A, where A € X, and let (M, B) be a based module.
Let n = n) and let { be the unique element in the canonical basis of A

in the wp(A)-weight space. We define an isomorphism of vector spaces
P:A@M —- M®Aby

Pz ®y) = (1) 0y gz

forre A°and ye€ M. Here2p € Y,n: X — Z are as in 2.3.1.

We show that P maps E;(A ® M)~% into E;(M ® A); Fi(A ® M)¥
into F;(M ® A); and (A ® M)¢ into (M ® A)S for any ¢ € X. Indeed, if
zeA,ye M, and ¢+ (' +4 =0, then

P(Ei(z®y)) = P(Ez ®y + vz ® Eiy)

= (_1)(2p,C)v—n(C+i’)y ® Eiz 4 (—1)20¢ti0/2 2O By @ ¢
= (=1)@P0)iiti0)/2-00) By @ 7 + v i) /2y © Eiz)

= (=1){2p0)#i0 /2O B (y @ ).

Ifz e AS,y e M, and ¢ + ¢’ — i’ = 0, then

P(Fi(z ®y)) = P(z ® Fiy + v 2Rz )

= '(;—l)(z”'C)v_"(C)F'iy QT+ (_1)2P,Cv—i'i(in')/2—n(C—i')y ® Fix
— (=1)2p0 501 /2-0(~) (y @ Fig + v+ 02 Fy @ )

- (_1)(ZP,C)v—i-i(i,C’>/2—n(C—i')Fi(y ® z).

It follows that P induces an isomorphism of vector spaces P : (AQ M), —
(M ®A),.

28.2.3. Let = : M — M be the associated involution of the based module
(M, B). Recall that on A we also have an involution ~ associated with its
natural structure of based module. Then A ® M and M ® A are naturally
based modules with associated involution 6~ (see 27.3.3) and the spaces of
coinvariants (A ® M), and (M ® A), inherit from them structures of based
modules (see 27.2.5) with trivial action of U.

Proposition 28.2.4. P : (A® M), = (M ® A), is an isomorphism of
based modules.

The proof will be given in 28.2.8. It will be based on a number of lemmas.
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Lemma 28.2.5. For anyy € M~ we have

P ®y) = 0(wo, —wo(N)) "y ®n

(equality in (M @ A).).

Using 28.1.4, 28.2.1(b), 28.1.6(a), 28.1.5, we have

P(E®y) = (—1)Nynlwol)y @ £ = (—1)Z0My~n0M)y @ f(wo, A) 7y
= (=1){2pA) y=n(woN) 8 (o, ) )y ® 7

= v~ 2wy =nNter 0wy, —wo(A) "y @7

= p~Rwo M) —nNFertezg(y e (W) y @7

(equalities in coinvariants) where c; = — Y, v;i-4(3, A) /2 = —c;. Note also
that —n(we(A) — n(A) = 0 by 2.3.1(b). The lemma is proved.

Lemma 28.2.6. Let b€ B. Then
ERb=€EobeEARM

and
’ bn=>bdne M A.

From the definitions we see that £ ® b (resp. b ® n) is fixed by the
involution O~ of A® M (resp. M ® A). Hence the result follows from the
definition of £{¢b and b7.

In the following result, B[A]", B[\]!° are defined in terms of (M, B) as
in 27.2.3.

Lemma 28.2.7. There is a unique bijection B[A]* « B[A]'® such that the
following two conditions for b € B[A]M, b € B[A]'® are equivalent: b < b';
O(wo, A\)"b—0b" € M[> A].

Replacing M by M[> )], we are reduced to the case where M = M[> )]
(see 27.2.4(a)). Then replacing M by M/M[> A], we are reduced to the
case where M = M|[)] (see 27.2.4(b)). Using 27.1.7, we are reduced to
the case where (M, B) is A with its canonical basis. In this case, we have
B[MN" = {n} and B[\]** = {¢} and the result follows from 28.1.4.
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28.2.8. Proof of Proposition 28.2.4. Let B, (resp. BY ) be the basis
of A M (resp. M ® A)) defined as in 27.3.3, in terms of the based modules
(A, By) and (M, B). Here B; is the canonical basis of A. Let T : A®@ M —
(A M), and 7’ : M ® A — (M ® A). be the canonical maps. We know
that 7 defines a bijection of B¢ [0] onto a basis (By,). of (A ® M), and 7/
defines a bijection of Bg[0] onto a basis (Bg). of (M ® A)..

Let b € (Bj).- Let b be the unique element of B, [0] such that w(b) = b.
By 27.3.8, there exists A’ € X% and elements b; € By[—wo()\)]!°, by €
BIXN]" such that b = b1$by. In A, we have that Bi[-wo()X')] is empty
unless —wp()\’) = A and B[\ = {¢}. Thus we have b = £{by where
by € B[~wp(M\)]* and by Lemma 28.2.6, we have b= ¢®by. By Lemma
28.2.5, we then have P(b) = 6(wo, —wo(A)) “ba ® ) modulo the kernel of 7’

By Lemma 28.2.7, we can find an element b}, € B[—wp(\)]!® such that

0(’(1)0, —’w()(/\))_bz - b,2 € M[> —wo()\)]
Then we have P(b) = b}, ® 7 modulo the kernel of 7’. Note that
M[> —’wO(/\)] ®A

is contained in the kernel of 7’

By Lemma 28.2.6, we have b, ® n= b5$n. By 27.3.8, we have that
bodn € By[0]. It follows that m '(P(b)) belongs to 7(BZ[0]) = (BE)+-
have therefore proved that P maps (B ). into (Bg).. The proposmon is
- proved. ;

28.2.9. Let A\j, A2,..., A be a sequence of elements of X*+. As in 27.3.9,
the space of coinvariants (Ax, ® Ay, - - -® A, )« has a natural based module
structure (hence has a distinguished basis).

This last based module has the following property of invariance by a
cyclic permutation: there is a natural isomorphism

(AAl ® AAz ot ®AA,,)* = (AAQ ®AX3 e ® AA" ® AAI)*
induced by the map
21 ®T2 @ Tp o (1) gy @13 @2, @ Ty

where z, € AC“‘ This isomorphism maps the distinguished basis onto
the dlstmgulshed basis (see 28.2.4). If we compose the n iterates of this
isomorphism, we get the identity map of (Ax, ® Ay, -+~ ® Ay, )x, since we
may assume that {3 +(2+ -+ (, =0.
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A Refinement of the Peter-Weyl Theorem

29.1. THE SuBseTs B[\] oF B

29.1.1. In this chapter we assume that (/,-) is of finite type.

Let 3 be an element in the canonical basis B of U. We associate to 3 an
element \; € X as follows. We have 3 € Ulc for a unique ¢ € X. Choose
A A" € Xt such that A’ — A = ¢ and such that (i, \) is large enough for
all i. Then B(£—x ® 1) is in the canonical basis B of “A) ® Ay, and by
27.2.1, it belongs to B[);] for a unique A\; € Xt. We want to show that
A1 depends only on 3, and not on the choice of A\, \”. It is enough to show
that, if A, X" are replaced by A+ X, N’ + )", then the procedure above leads
again to A;. This follows from 27.3.5. Thus we have a well-defined map
B Xt (8 — A1). We shall write B[/\l] for the fibre of this map at A;.
Thus we have a partition B = U, ¢ x+B[\1]-

29.1.2. For any \; € X, we denote by U[> \] (resp. U[> A;]) the
Q(v)-subspace of U spanned by Ujx,;x,>x, B[A2] (resp. by Ux,;a,>a, B[A2])-

Lemma 29.1.3. The following conditions for an element u € U are equiv-
alent:

(a) u € U[> \y];

(b) for any A, X" € Xt we have u(€_x ® nar) € (“Ax ® Axn)[> Ay);

(c) for any object M € C of finite dimension over Q(v) and any vector
m € M, we have um € M[> \];

(d) if A2 € Xt and u acts on Ay, by a non-zero linear map, then \y >
A1,

The equivalence of (a) and (b) is clear from the definition. The equiv-
alence of (c) and (d) follows by expressing M in (c) as a direct sum of
simple objects. Clearly, if u satisfies (c), then it satisfies (b). Conversely,
assume that u satisfies (b); we show that it satisfies (c). We may assume
that m is in a weight space of M. By 23.3.10, we can find A\, \” € X+ and
a morphism f: “Ax ® Ax» — M (in C) such that f(€é_\ @ nav) = m. We
obviously have f(“Ax ® Ax»)[> M| C M[> A;]. Since (b) holds for u, it
follows that um = uf(§_x ® nar) = f(u(€—r @ Mar)) € M[> A1]. Thus the
equivalence of (b),(c) is established. The lemma is proved.
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Lemma 29.1.4. The following conditions for an element u € U are equiv-
alent:

(a) u € U[> Al
(b) for any A, N’ € Xt we have

w(é-x ®@mav) € (YA ® Axr)[> Al

(c) for any object M € C of finite dimension over Q(v) and any vector
m € M, we have um € M[> \];

(d) if A2 € Xt and u acts on Ay, by a non-zero linear map, then Ay >
A-

This follows from the previous lemma or can be proved in the same way.

Lemma 29.1.5. Let \; € X*. The subspaces U[> ;] and U[> 1] of U
are two-sided ideals. Hence U[> A]/U[> Ay] is naturally a U-bimodule.

This follows from the descriptions 29.1.3(c), 29.1.4(c) of U[> \;] and
U[) )\1]

29.1.6. The U-module structure on Ay, gives us a homomorphism of
algebras U — End(A A, ). This restricts to a homomorphism of algebras
(without 1)

U[> A1) = End(Ay,)

Qhose kei‘nel is, by Lemma 29.1.4, exactly U[> )\;]; hence we have an
induced homomorphism of algebras
(a) U[> \1}/U[> M| — End(Ay,) which is injective.
In particular, we have
(b) dim(U[> A\]/U[> A1]) < oo,
or equivalently,
(c) B[A,] is a finite set for any A, € X+,

29.2. THE FINITE DIMENSIONAL ALGEBRAS U/U|[P]

29.2.1. Let P be a subset of X+ with the following two properties:
(a) if A € P and X' € X7 satisfies A’ > A then X € P;
(b) the complement of P in X is finite.

Note that such P exist in abundance. We denote by U[P] the subspace
of U generated by UxecpB[)\]. From Lemma 29.1.5, we see that U[P] is a
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two-sided ideal of U, and from 29.1.6(c), we see that the algebra U/U[P]
is finite dimensional. Note that this algebra has a unit element (unlike
U). Indeed, since 1, € B for all ¢ € X, we have that 1. € U[P] for
all but finitely many (. Then Zce x 1¢, which is not meaningful in U, is
meaningful in U/U[P] and is the unit element there. Let A € X+ — P.
We show that U[P] acts as zero on the U-module Ay. Indeed, let 3 be an
element of B N P (these elements span P.) We have 8 € B[X] for some
A € P. If the action of 3 on A, were non-zero, then from Lemma 29.1.3,
it would follow that A > X’; using the definition of P, it would follow that
A € P, a contradiction. We have proved that fJ[P] acts as zero on Ay,
hence Ay may be regarded as a U/U[P]-module. This module is simple.
Indeed, even as a U-module it has no proper submodules. It is clear that
for A # X in X+ — P, the U/U[P]-modules Ay, Ay are not isomorphic
(they are not isomorphic as U-modules).
By the standard theory of finite dimensional algebras, it follows that

dim(U/U[P]) > > (dim A,)?
A

(sum over all A € X* — P). On the other hand, by 29.1.6(a), we have

dim(U/U[P]) = ) U[> A|/U[> A] < ) (dim A,)?
A A

(both sums over all A € X+ — P).
Comparing with the previous inequality, we see that

dim(U/U[P]) = > _(dimA,)?
A

and
dimU[> \]/U[> )] = (dim A,)?
for any A € X+ — P. This implies the following result.
Proposition 29.2.2. (a) The algebra (with 1) U/U[P] is semisimple and
a complete set of simple modules for it is given by Ay with A € X+ — P.
(b) For any A € X+, the homomorphism U[> \|/U[> A] — End(A,)
(see 29.1.6(a)) is an isomorphism.

Actually, we get (b) for A € X+ — P; but for any A € X+ we can find P
as above, not containing .
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29.2.3. From the definition, we see that the finite dimensional semisimple
algebra U/U|[P] inherits from U a canonical basis, formed by the non-zero
elements in the image of B.

29.3. THE REFINED PETER-WEYL THEOREM

Lemma 29.3.1. Let A€ X™.

(a) The anti-automorphisms S,8",0 : U — U carry U[> A] onto
U[> —wo(N)].

(b) The automorphism w: U — U carries U[> A] onto U[> —wp(A)].

Let u € U[> ). Assume that A € X+ and m € Ay are such that
S(uym # 0. The map 6y : “Ay ® Ay — Q(v) (see 25.1.4) may be
considered as a non-degenerate pairing; hence there exists m’ € “Ay such
that 6x/(m' ® S(u)m) # 0. Using 28.2.1, we see that 6y (m’ ® S(u)m) =
6y (um’ ® m); hence um’ # 0. Since “Ay = A_,, (x), We see using 29.1.3,
that —wp(A’) > A, or equivalently, that A’ > —wp()). Using again 29.1.3,
we, deduce that S(u) € U[> —wp())]. An entirely similar proof shows that
S'(u) € U> —wp(A)]. Thus S(U[> A]) € U[> —wo())] for all A and
S(U[> —wo(A)]) € U[> A] for all X. Since §5’ = §'S = 1, the assertions
about S and S’ in (a) are proved. The assertion about o follows from
the assertion for S, using 23.1.7 and the fact that U[> )] is generated by
.. elements in B which are contained in the summands of the decomposition
23.1.2 of U.

We prove (b). Let u € U[> )]. Assume that X' € X+ and m € Ay
are such that w(u)m # 0. Then um # 0 in “A, which is isomorphic to
A_ye(); hence, by 29.1.3, we have —wg(\) > X or equivalently, \' >
—wp()). Using again 29.1.3, we deduce that w(u) € U[> —wpA]. Thus,
w(U[> A)) € U> —wpA]. Similarly, w(U[> —wo(\)]) € U[> A]. The
lemma follows.

29.3.2. We shall use the following terminology: an element 8 € B is said
to be involutive if ow(B) = £6. (Recall that ow = wo maps B to +B.)
The following theorem is, in part, a summary of the results above.

Theorem 29.3.3. Given A € X, we define U[> )] (resp. U[> )]) as the
set of all u € U with the following property: if N € X+ and u acts on Ay
by a non-zero linear map, then N > A (resp. X' > \).

(a) U[> ) and U[> A] are two-sided ideals of U, which are gener-
ated as vector spaces by their intersections with B. The quotient algebra
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U[> A/U[> )] is isomorphic (via the action of U on Ay) to the algebra
End(A,); in particular, it is finite dimensional and has a unit element,
denoted by 1x. Let w: U[> A] — U[> A]/U[> A] be the natural projection.

(b) There is a unique direct sum decomposition of U[> X|/U[> )] into a
direct sum of simple left U-modules such that each summand is generated
by its intersection with the basis m(B[A]) of U[> A]/U[> A].

(c) There is a unique direct sum decomposition of U[> A]/U[> )] into a
direct sum of simple right U-modules such that each summand is generated
by its intersection with the basis m(B[A]) of U[> A\]/U[> A].

(d) Any summand in the decomposition (b) and any summand in the
decomposition (c) have an intersection equal to a line consisting of all mul-
tiples of some element in the basis m(B[\]). This gives a map from the set
of all pairs consisting of a summand in the decomposition (b) and one in
the decomposition (c), to the set w(B[)\]). This map is a bijection.

(e) Each summand in the decomposition (b) and each summand in the
decomposition (c) contains a unique element of the form w(83) where 3 €
. B[] is involutive.

(f) Let b,b' € B[\]. There exists b € B[\] and cpp v € A such that
bb' = cppr pb” mod U[> A].

(a) has already been proved. (b) follows from the definitions, using
27.1.7, 27.1.8 with M = (“Ax ® Ay)[> A]/(YAx ® Ayv)[> A] and with
A1 = A (for various X, X" € X+).

(c) follows from (b) using the anti-automorphism ow = wo of U which
maps B into itself, up to signs, (see 26.3.2) and maps U[> A] and U> Al
into themselves (see 29.3.1).

We prove (d). The two subspaces considered in the first sentence of
(d) are a minimal left ideal and a minimal right ideal in the algebra
U[> A/U[> A] which has 1, and is finite dimensional and simple (by
(a)). Their intersection is therefore a line. Since both these subspaces are
spanned by a subset of the basis m(B[)]), the same is true about their in-
tersection, and the first assertion of (d) follows. The map in the second
sentence of (d) is obviously surjective. It is a map between two finite sets
of the same cardinality (dim A,)? (see 29.2.2); hence it is a bijection.

We prove (e). Let G be a summand in the decomposition (b). The map

: U — U induces an involution ¢ of the vector space U[> A]/U[> Al.
The image of G under ¢ is a summand in the decomposition (c), which
by (d) intersects G in a line spanned by a vector in w(B[\]). This line is
necessarily stable under ¢ (since ¢ is an involution); hence our vector in this
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line is preserved up to a sign by ¢. This proves (e) as far as G is concerned.
The same proof applies to summands in the decomposition (c).

We prove (f). The product m(b)w(b’) is in the intersection of the left
ideal of U[> A]/U[> )] generated by m(b’) with the right ideal generated
by m(b), hence, by (d), is of the form cy p pm(b") for some b” € B[)] and
some cpp p € Q(v), which is necessarily in A since the structure constants
of the algebra U with respect to B are in A.

The theorem is proved.

29.4. CELLS

29.4.1. The subsets B[)\] (for various A € X*) are called two-sided cells;
they form a partition of B. For each ), the two-sided cell B[)] is further
partitioned into subsets corresponding to the bases of the various summands
in the decomposition 29.3.3(b) (these are called left cells) and it is also
partitioned into subsets corresponding to the bases of the various summands
in the decomposition 29.3.3(c) (these are called right cells). Then 29.3.3(d)
asserts that any left cell in B[A] and any right cell in B[)\] have exactly
one element in common; 29.3.3(e) asserts that any left cell and any right
‘cell contain exactly one involutive element. Since the number of left cells
(or right cells) in B[)] is dim A, it follows that the number of involutive
elements in B[)] is also dim A,.

,29.4.2.7Let A be an associative algebra over a field K with a given basis
B as a K-vector space. We do not assume that A has 1. The structure
constants cypp € K of A (where b,t/,b"” € B) are defined by bb' =
Zb” Cb,b',bnb”.

Generalizing the definition of cells in Weyl groups (which goes back to
A. Joseph), we will define certain preorders on B as follows. If b, b € B, we
say that b’ <p b (resp. b’ <g b) if there is a sequence b = by, bo,...,bp =
b in B and a sequence (1,02,...,0n—1 in B such that cg, b, ,,, # 0
(resp. Cb, B, byys # 0) for s =1,2,...,n—1. Wesay that b’ <pg bif thereis
a sequence b = by, bs,...,b, =¥ in B and a sequence (31, 32,...,8n—1in B
such that for any s € [1,n — 1] we have either cg, b, 5,,, # 0 OT Cb, .8, b,41 #
0. Then <, <g,<rr are preorders on B. We say that b ~p b’ if b <p ¥
and b <y b. This is an equivalence relation on B; the equivalence classes
are called left cells. Similarly, <p (resp. <pr) give rise to equivalence
relations ~gp (resp. ~Lg); the equivalence classes are called right cells
(resp. two-sided cells).

In the case where A = U and B = B, the definition of cells just given
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coincides with that given 29.4.1. (This can be easily checked.) The involu-
tive elements in Theorem 29.3.3 are the analogues of the Duflo involutions
from the theory of cells in Weyl groups.

29.4.3. We will describe explicitly the two-sided cells of B in the simplest
case where ] = {i} and X =Y =Z withi=1€ Y,/ =2 € X. (See 25.3.)
For each n > 0, we consider the subset

S(n) = {Ei(a)l_nFi(b); n>a+b}uU {Fi(b)lnEi(a); n>a+b}

of the canonical basis B (with the identification 25.3.1(c)). Note that &(n)
consists of (n+1)2 elements. The product of two elements of G(n) is given
by the following equalities (modulo a linear combination of elements in
Gn+1)USn+2)U---):

o
Zj Ei(a)l_nFi(d) ifb=cn>a+d
(a) () p(c) @ _ )
B 1ol B LB = : Fr O, E" Y ifb=cn<a+d
{ 0 i-f b#c
o
B F D bt c=nd 2 a
(a) ®) )y @@ _ ) ]
BTETETLET = [R50 ity e nid <
(0ifb+c#n
’;] FPLE® ifb=cn>a+d
@7 g p®y @@ _ ) r
Fon BB = 'Z] B, F* 9 ifb=cn<a+td
0ifb+c
m FUEifbtc=nd>a
(a) (b) (c) (@) _
F LB BB = [:] Ei("_“)l_nFi(d) ifb+c=n,d<a’

Oifb+c#n
Hence &(n) are the two-sided cells. The involutive elements in G(n) are
Ei(a)l_nFi(a) with @ > 0,2a < n and Fi(a)lnEi(a) with a > 0,2a < n, with
the identification E,-(“)l_nFi(") = Fi(a)lnEi(a) if 2a = n.
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29.5. THE QUANTUM COORDINATE ALGEBRA

29.5.1. Let O be the vector space of all Q(v)-linear forms f : U — Q(v)
with the following property: f vanishes on U[> A] for some A € X+, If
a € B, then the linear form @ : U — Q(v) given by d(a’) = 84,4, for all
a € B, belongs to O and {ala € B} is a basis of O. This follows from 29.3.3.
We define an algebra structure on O by the rule ab = e 3¢, where c
runs over B and 713? are as in 25.4.1. The previous sum is well-defined: all
but finitely many terms are zero. This product is associative by 25.4.1(b).

The linear map A : O — O ® O given by A() = 3, , mS,d ® b (with
mS, as in 25.4.1) is well-defined. All but finitely many terms in the sum are
zero. This map is called comultiplication. It is coassociative by 25.4.1(a)
and it is an algebra homomorphism by 25.4.1(c). The element 1 is a unit
element for this algebra. Consider the linear function O — Q(v) which
takes @ to 1 if a = 1, for some A € X, and otherwise, to zero. This
is an algebra homomorphism. Thus O becomes a Hopf algebra called the
quantum coordinate algebra. 1t is easy to see that this definition is the same
as the usual one.

We call {@|a € B} the canonical basis of O.

29.5.2. Let 40 be the A-submodule of O generated by the basis (a).
Since the structure constants m,, 2 are in A, it follows that 4O inherits
from O a structure of Hopf algebra over A. If now R is any commutative
~-A-algebra with 1, we can define a Hopf algebra over R by gO = R® 4(40).



CHAPTER 30

The Canonical Topological Basis
of (U-® UY’

30.1. THE DEFINITION OF THE CANONICAL TOPOLOGICAL BASIS

30.1.1. In this chapter we assume that (I,-) is of finite type.

We denote by (U~ ® UtY the closure of U~ ® Ut in (U ® UY (see
4.1.1). The elements of (U~ ® U*Y are possibly infinite sums of the form
Zb,b’eB co,rb” @ Y'T with ¢y pr € Q(v). In this chapter we shall construct
a canonical topological basis of (U~ ® U™} which gives rise simultaneously
to the canonical bases of all tensor products of type Ay ® “Ay.

Let ~: (U” ® Uty — (U~ ® U*Y be the ring involution defined as the
unique continuous extension of ~® ~ : U~ @ Ut — U~ ® U*. Note that
we have © € (U~ @ U*) (see 4.1.2). By 24.1.6, we can write uniquely

o= > apb ob”
b,b'€B; [b|=|b'|

where appy € A.
30.i.2. From 4.1.2, 4.1.3, it follows that the Q-linear map
V: (U UtY—= (U- Uty

given by ¥(z) = 6z (product in (U~ ® U*)) satisfies ¥2 = 1. We clearly
have ¥(fz) = f¥(z) for all f € A and all z. Hence if we set

Yoy @by = D anpb by @V THT = D 1, bbby ®b,T
b,b' €B;|b|=b’) ba,by€B

for all by, b} € B, then we have

Tby,bysba,by € A;

Thy,btsbg by = 0 unless (by, b)) < (b2,b3) (< as in 24.3.1);

Tby,bysby by = 15

= _ / /
D b, by €B To1 b ib2,b5 Tba bbby = Oy by Oy by, for any by, b7, b3, b3 € B.
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The last sum is finite by the previous statements. Applying 24.2.1 to the
set H = B x B we see that there is a unique family of elements py, 3; .5, 5, €
Z[v~!] defined for by, b}, b, by € B such that

Dby bbby = 15

Poubisbay € V20T (b1, 67) # (b2, bh);

Dby b, 50,65 = 0 unless (b1, b)) < (b, b3);

Py bib2,65 = D ba b, Por bl iba,b5Tba byiba,bh

for all (b, b)) < (b2, b)). Thus we have the following result.

Proposition 30.1.3. For any (b;,b]) € B x B, there is a unique element
By, b, € (U™ QU™ Y such that ©F,, v, = By, b, and such that Sy, p, —b7 ®b)*
is an (infinite) linear combination of elements by ® byt with (b, by) >
(b1, b)) and with coefficients in v~ 1Z[v~1].

—_ /
We have By, 5 = 34, vy, Poabyiba by 02 ® b3

30.1.4. The elements 3, p; € (U~ ® U*), for various (b;,b7) € B x B,
aré’said to form the canonical topological basis of (U~ ® U*). This is not
a basis in the strict sense.

Taking b, = b) = 1, we obtain an element T = ) Y, = 1,1 where
Y, € U, ® U} for all v and

IO To=1®1.

Hence T is an invertible element of (U~ @ UTY.
By definition, we have 8T = T'; hence

(b) e=r7"1

Note also, that if v # 0, then 7, is a linear combination of elements
b- @b+ (bt € B,) with coefficients in v~!Z[v~!]. This property, to-
gether with (a),(b), characterizes 1.

30.1.5. Let A\,) € X*. By the general construction in 27.3.2, the
U-module Ay ® “Ay has a canonical basis B¢. It consists of elements
(b=ma)Q (bt ) for various b € B()\) and b’ € B()).

Note that um is a well-defined element of Ay ® “Ay, for any
u € (U- @ Uty and any m € Ay ® “Ay/, by regarding the last space
as a U ® U-module. In particular, 8y, 5, (71 ® £-x/) is well-defined.
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Proposition 30.1.6. Let b, b’ € B.
(a) Ifb € B(A) and b/ € B(X'), then By (m®E_x) = (5=12) (B HE_x0).
(b) If either b ¢ B(X) or b’ ¢ B()'), then By (mr ® €—x/) = 0.

This follows immediately from the definitions and from 27.3.2.

30.1.7. Example.. Assume [ = {i} and X =Y = Z with i =1 €
Y,i = 2 € X. The canonical topological basis of (U~ ® U*Y consists of
the elements

- [ d- 8+C s
-’Bc,d=zvi s(s+c) S-;- _Fi(+)®Ei( +d) (c>d>0)
3>0 - 41

and

—s(s FS+C" s+c s
Yoa =y v TP FI QBT (d2c20)
>0 - 41

with the identification z. 4 = y.q4 for c = d.

. 30.2, ON THE COEFFICIENTS Dp, b:by by

30.2.1. The canonical topological basis in the previous section is com-
pletely determined by the set of coefficients py, 57,656, € Z[v~!] defined for
all by, b}, be, b5, in B. In this section we make a proposal for a possible topo-
logieal interpretation of these coefficients, assuming that the Cartan datum
is simply laced (of finite type). We shall assume that (by, b)) < (bs, b); oth-
erwise the coefficient is zero.

30.2.2. Let (I, H,...) be the graph of (I,-) (see 14.1.3); note that I = I.
Assume that we have chosen an orientation for this graph. According
to 14.5.1, to give by, b},b2, b, in B is the same as to give four objects
V1,V1, V2, V3 of V and orbits 04,01,02,0; of Gv,,Gv;,Gv,,Gv; on
Ev,,Ev;,Ev,, Ey;, respectively (notation of 9.1.2). Hence we may write
P0,,0};02,0; instead of py, b;.b, ;-

Let V=V, @V, €V and let z € Ey be an element such that V, and
V5, are z-stable and the restriction of z to Vy (resp. V3) is in Oz (resp. in

%). Let J be the stabilizer of z in Gy and let Z be the J-orbit of V3 in
the variety of all I-graded subspaces of V. Note that V3 is a point of Z
and that any W € Z is z-stable. Let Z’ be the subvariety of Z consisting
of all subspaces W € Z such that

(a) w nV2 = Vl (in V),
(b) V/(W +V3) 2 V] (in V);
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2
(c) the element of Ewny, defined by z corresponds under an isomor-
phism as in (a) to an element of O; C Ev,;

(d) the element of Ev /w4v,) defined by = corresponds under an iso-
morphism as in (b) to an element of O} C Ev;.

One can hope that the coeflicients of the various powers of v in
P0,,0{;0,,0; are equal to the dimensions of the stalks of the intersection
cohomology complex of the closure of Z’ in Z at the point Vo € Z, and
that they are zero if V3 is not in that closure.



Notes on Part IV

10.
11.

. The algebra U has appeared in [1], in a geometric setting (in type Ay), but its

definition in the general case is the same as that in type A,. One of the main
results of [1] was a topological definition of a canonical basis of U (in type 4,),
generalizing the author’s definition of the canonical basis of f. The method
of [1] works in almost the same way for affine type Ay, but the extension to
other types remains to be done.

. In [2], Kashiwara conjectured the existence of a canonical basis of U, for Cartan

data of finite type, and constructed a basis of the quantum coordinate algebra
O in which the structure constants were in Q [v,u™!]; this is presumably the
same as the basis in 29.5.1, in which the structure constants are in Z [v,v™!].

. The definition of the canonical basis B of U, in the general case was given in

[6]. Most results in Chapters 24 and 25 appeared in [6].

. Something close to Lemma 24.2.1 has been used in [3] to attach a polynomial

to two elements of a Coxeter group.

. Expressions like those in 25.3.1 appeared in [2], and are implicit in [1].
. I do not know what is the relation, if any, between the form ( , ) on U, in

26.1.2, and the form on U defined in [7).

Propositions 27.1.7, 27.1.8 (and also results similar to 27.2.4) appear in [2].
Theorem 27.3.2 is similar to results in [6]; the analogous result for more than
two factors (see 27.3.6) is new.

The existence of a canonical basis on the space of coinvariants (A, ® Ay, ...
® A, )+ (see 27.3.9) is new; it was known earlier for n = 3, see [5]. It implies
that the corresponding space of coinvariants over A is a free .A-module; this
answers a question of D. Kazhdan. (There is a somewhat analogous result
about the space of “coinvariants in the tensor product” (see [4]) of several
Weyl modules with the same negative central charge over an affine Lie algebra:
this space has dimension independent of the central charge. There are other
analogies between the two theories, for example the invariance property under
cyclic permutations (28.2.9) has a counterpart in the theory over affine Lie
algebras.)

The results in Chapters 28, 29 and 30 are new.

The positivity conjecture in 25.4.2 is made plausible by the results in [1].
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Part V

CHANGE OF RINGS

Let R be a commutative A-algebra with 1. The main topic of Part V is
the R-algebra RfJ, obtained from _AU by tensoring with R over A, and its
modules.

Chapter 31 contains a general discussion of gU and its module category.

In Chapter 32, assuming that the Cartan datum is of finite type, and
that a certain root of v is given in R, we show that the integrable modules
of gU form a braided tensor category.

In Chapter 33 we consider the specialization v = 1 and we establish the
connection with Kac-Moody Lie algebras.

Chapters 34, 35, and 36 are concerned with the case where v is a root
of unity in R. In Chapter 34 we establish various properties of Gaussian
binomial coefficients at roots of 1. In Chapter 35 we construct a quan-
tum analogue of the Frobenius homomorphism (under some rather mild
assumptions). This includes as a special case the classical Frobenius ho-
momorphism over fields of positive characteristic and also the exceptional
isogenies (in small characteristic) defined by Chevalley [1]. In Chapter 36
we study the Hopf algebra ru, which in some sense, is the kernel of the
Frobenius homomorphism. This algebra is finite dimensional if R is a field
and the Cartan datum is of finite type.



CHAPTER 31

The Algebra zU

31.1. DEFINITION OF prU

31.1.1. From now on, R will be a fixed commutative ring with 1, with a
given invertible element v. We shall regard R as an .A-algebra via the ring
homomorphism ¢ : 4 — R such that ¢(v"™) = v™ for all n € Z.

We consider the R-algebras

rf = R®4 (4f) and RU = R®4 (4U).

We have a direct sum decomposition rf = &, (rf,) where v runs over
N[I] and. pf, = R®4 (4f,). The canonical bases B and B of 4f, 4U give
rise to R-bases of gf, RU consisting of elements 1 ® b where b is in B or
B; we write b instead of 1 ® b. In particular the elements 1, € rU are
well-defined for all A € X. They satisfy as in fJ, 1aly = 6a a1,

The structure constants m¢,, M2 of U (see 25.4.1) can be regarded as
. .elements of R via the ring homomorphism ¢ : A — R. The identities
25.4.1(a)-(d) are clearly satisfied in R.

The comultiplication of pU (a collection of maps as in 23.1.5) is defined
by the same formulas as in 25.4.1.

31.1.2. The 4f ® 4 (4f°PP)-module structure (z ® z’) : u — ztuz’~ on
AU, by change of scalars, induces a rf ® g (rf°PP)-module structure on rU
denoted in the same way. Similarly, the 4f ® 4 (4f°PP)-module structure
(z®z') : u— z-ux’* on 4U, by change of scalars, induces a rf ® g (RfPP)-
module structure on U denoted in the same way.

From 23.2.2 we deduce that

(a) the elements b*1,0'~ (b0’ € B,\ € X) form a basis of the R-
module rU;

(b) the elements b=1)b't (b, € B,X € X) form a basis of the R-
module grU;

(c) the R-algebra pU is generated by the elements Ei(")l A Fi(n)l A for
various i € I, n > 0and A € X.
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31.1.3. We will give an alternative construction of gU in terms of rf.

Let rA be the algebra generated by the symbols z2+1.2'~, 2 1,z'* with
z € rf,, 2’ € gf,, for various v,/, and { € X; these symbols are subject
to the following relations:

B 1c(057)™ = (0) Lesairsny (B if i # j

R | I DIC e R IR

t>0

O 16y = S ol * T ] 0 e 080

t>0

ztle = 1epzt, 271 =1,z for x € f,;
(@*1)(Agra’™) = 8¢ rxtlea’™, (z71)(Lea'*) = 6¢ o™ Lea't
(@*1)(Aa™) = b lern(az), (27 1) (12" ™) = b¢erle—w(za’)™ if
. x € pfy;

(re+r'z )Yl =ra*le + 2’1, (re +r'2’) "1 =rz1c + 7'z’ "1

if x,z’ € gf, and r,7’ € R.
If z or ' in z*1cz’™ or ™ 1¢2't is 1, we omit writing it.

We have an obvious surjective R-algebra homomorphism prA — rU.
Using the relations of rA, we easily see that the symbols z1,2'~ generate
rA as an R-module. In other words, the elements bt 1.0, with b0’ € B

and ( € X, generate gA as an R-module. Since they form an R-basis of
RU, they must also form an R-basis of A and we deduce that:

(a) the natural algebra homomorphism rA — gU is an isomorphism.

31.1.4. There is a natural R-linear involution ¢ : rf — gf; it is given by
a change of rings from the analogous involution for R = A, which is the
restriction of o : f — f.

The automorphism w : U — U restricts to an automorphism w : AU —
AU tensoring with R, we obtain an R-algebra automorphism w : gU —
rU.

31.1.5. As in 23.1.4, we say that a gpU-module M is unital if
(a) for any m € M we have 1ym = 0 for all but finitely many A € X;

(b) for any m € M we have >,y 1am = m.
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We then have a direct sum decomposition (as an abelian group) M =
®rex M> where M?* = 1, M; we can regard M as an R-module by rm =
Y5 (r1x)(m) for r € R,m € M. Then the decomposition above is as an
R-module. The unital gU-modules are the objects of an abelian category
rC with the morphisms being homomorphisms of rU-modules.

31.1.6. Let M € RrC, let i € I and let n € Z. We define R-linear
maps E( MM > M, F : M = M by EPm = ¥,( E(")l)‘)m and
F(")m EA F(")l,\)m for allm € M. (Recall that E(")l)\ and F( )1, are
elements of B C U, hence are well-defined in zgU.) It follows immediately
from the definitions that 8{™  (E™ : M — M) and 6™ — (F™ : M —
M) define two gf-module structures on M, denoted by z,m — ztm and
x, m +— z~m respectively. We have

(a) EMWM> ¢ MM F™M* ¢ M for any i € I,n € Z and
A€ X.
Moreover, for any ( € X and any m € M¢, we have

(b) EF®m = FPE®m if i # j;
7 (0) B FOm = S o[ FTIEE

(d) F‘i(b)Ei(a)m _ tho & [—a+bt— (i,()]i)Ei(a—t)Fi(b—t)m

31.1.7. Conversely, let M be an R-module with a given direct sum decom-
. position M = @¢ex M¢ and given R-linear maps E(") F; ). M — M (for
i € I,n € Z) satisfying 31.1.6(a)—(d) and such that E(") F(") = 0 for
n < 0. Assume that 6™ — (E™ : M — M) and o™ (F(") M — M)
define two gf-module structures on M, denoted by z,m — ztm and
z, m v £~ m, respectively. Then this structure comes from a well-defined
structure of unital gU-module on M. Indeed, it is clear that this structure
gives an gpA-module structure on M hence a RU—module structure (see
31.1.3).

31.1.8. Let M, M’ € grC. The tensor product M ®g M’ (as R-modules) will
be regarded as a gU-module by the rule c(z ® z') = 3, , ¢(Mm3®)az @ ba'.
(All but finitely many terms in the last sum are zero.) The fact that the rule
above defines an gpU-module structure follows from the identity 25.4.1(c).
This gkU-module is unital, by the identity 25.4.1(d). Thus M ®g M’ is
naturally an object of rC.

Now let M, M’, M" be three objects of gC. By the previous construction,
the R-module M ® g M’ ®p M" can be regarded as an object of rC in two
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ways, (M @r M') ®p M” and M @r (M’ ® g M"). In fact these two ways
coincide; this follows from the identity 25.4.1(b).

31.1.9. From the definitions it is clear that, in the case where R =
Q(v),v = v, we have rC = C and the tensor product just defined coin-
cides with the one introduced earlier for C.

31.1.10. To any object M of rC, we associate (as in 3.4.4) a new object
“M of gC as follows. “M has the same underlying R-module as M. By
definition, for any u € U, the operator u on “M coincides with the
operator w(u) on M.

31.1.11. If R" — R is a homomorphism of commutative .4-algebras with
1, we have U = R ®p (gU) and for any object M € grC, we may
regard R ® pr M naturally as an object in rC with the induced grU-module
structure. This gives a functor r2C — RgC called change of rings, or change
of scalars. It commutes with tensor products (as in 31.1.8) and with the
operation w in 31.1.10.

31.1.12. Let (Y',X’,...) be another root datum of type (I,-) and let
f:Y —Y,9g: X - X' be a morphism of root data. This induces a
homomorphism ¢ : U’ — U between the corresponding Drinfeld-Jimbo
algebras (see 3.1.2). For each ¢’ € X’ and ¢ € X such that g(¢) = ¢’ let
4¢: AU 1(1 & AUlc be as in 23.2.5. By tensormg with R this gives rise
to R¢ rU’ 1(: o RUlc Let M be a unital gU-module. We can regard M
as a unital RU -module by the following rule: if m € M¢ and u € gU’ 1
then um is defined to be (R¢(u))m if ¢’ = g(¢), and 0, otherwise. This
gives a functor from unital gU-modules to unital gU’-modules.

31.1.13. Let A € X. The A-submodule 4M, of the Verma module M, is
a unital 4U-submodule (see 23.3.2); by change of scalars, it gives rise to an
object M) of rC, called an R-Verma module. We have an exact sequence
in RC:

Bi,n>0(RULx4nir) — ULy — My — 0,

where the first map has components given by right multiplication by
1 )\+mlE and the second map is given by u +— ul (1 is the canonical
generator of My). This is deduced by tensoring with R from the analogous
exact sequence over A.
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Let M € gC and let m € M be such that Ei(")m =0forallie I and
all n > 0. From the previous exact sequence, we see that there is a unique
morphism ¢ : My — M such that ¢(1) = m.

31.2. INTEGRABLE rU-MODULES

31.2.1. In this section we assume that the root datum is Y-regular (except
in 31.2.4). Let A\, X € Xt. The A-submodule 4Ay of Ay is a unital 4U-
submodule (see 23.3.7); by change of scalars, it gives rise to an object
rRAN =R®4 (AA,\/) of gC.

Similarly, the A-submodule 4Ax ® 4 (4Ax) of YAy ® Ay is a unital
AU-submodule (see 23.3.9), in fact a tensor product in 4C; by change of
scalars, it gives rise to the object 4Ax ®r (rAN) of rC.

Let ( = X — A € X. Consider the following morphisms of rU-modules

(®in> (i3 (RULnir)) @ (Bin> (3,0 (RU L 4nir))
fv

rUL,

-

YA\ ®r (RAN)

~

0

where f has components given by right multiplication by 1 ,\_m-/Fi(") (in the
first group of summands), 1xyns Ei(n) (in the second group of summands)
and 7(u) = u(€—_, @ na) . We write £_, instead of 1 ® £&_, and similarly
for ny.

Proposition 31.2.2. The sequence above is exact.

When R is A and v = v, this is a restatement of 23.3.8. The general
case follows from this by taking the tensor product with R, by the right
exactness of tensor products.

We can state the previous proposition in the following equivalent form.

Corollary 31.2.3. 7 is surjective and its kernel is the left ideal

Z R(JFi(n)I(-F Z RUEi(n)lc of RU.

i,n> (i) ,n>(i,A)
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31.2.4. In this subsection, the root datum is arbitrary. An object M € rC
is said to be integrable if for any m € M and any i € I there exists
ng > 1 such that Ef")m = Fz-(")m = 0 for all n > ng. In the case where
R = Q(v), v = v, this coincides with the earlier definition of an integrable
object of C.

From the definitions we see immediately that:

(a) if M, M’ € gC are integrable, then M ®r M’ € grC is integrable;
(b) if R* — R is as in 31.1.11, and if M’ € gr.C is integrable, then
R®p M’ € gC is integrable.

Let rC’ be the the category of integrable unital rU-modules, regarded
as a full subcategory of gC.

31.2.5. Returning to the assumptions of 31.2.1, we note that gA, and
%Ax ®r (rAx) are integrable. Indeed, this is already known over Q(v);
from this, the result over A follows, since our objects over A are imbedded
in the corresponding objects over Q(v) and finally, this implies the general
case, by 31.2.4(b) with R’ = A.

Proposition 31.2.6. Let M € gC; let AN € X*+. Let M be the R-
submodule of M» —* consisting of all m such that Ei(n)m =0 for all i and
all n > (i, A) and such that Fi(")m =0 for all i and all n > (i,N'). Then
the map Hom_y;(%Ax ®r (rAN), M) — M given by f — f(_x @) is
an jsomorphism.

This follows immediately from Corollary 31.2.3.

Proposition 31.2.7. Let M € grC. Then M is integrable if and only if it
satisfies the following condition:

(a) M is a sum of subobjects each isomorphic to a quotient object of
some %A ®r (rRAN) with A\, N € XT.

We know already that any object of the form {A\®g (rAx) with A\, X €
X7 is integrable. It follows immediately that, if M is as in (a), then M is
integrable. We now prove the converse.

Assume that M is integrable and that m € M¢ where ¢ € X. We
can find integers a;,a] € N such that Ei(a)m =0 for all ¢ and all a > q;
and Fi(al)m = 0 for all 7 and all &’ > a]. Since the root datum is Y-
regular, we can find A € X such that (i,\) > a; and (i,A + ¢) > d
for all i. Let X = A+ (. Then (i, ') > a} for all i. By the previous
proposition, there exists a morphism f : 4A\ ®g (rRAx) — M in gC such
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that f(£é—x ®na) = m. The image of f is a quotient of 4Ax ®r (rAx) and
it contains m. Hence M satisfies (a).

31.3. HiIGHEST WEIGHT MODULES

31.3.1. In this section, we assume that the root datum is X-regular.
Let M be an object of gC. We say that M is a highest weight module,
with highest weight A € X, if there exists a vector m € M> such that

(a) E{™m =0 for all i and all n > 0;

(b) M = {z~m|z € gf}; and

(c) M?* is a free R-module of rank one with generator m.
In this case, we have M = 3", ., M.

Proposition 31.3.2. Assume that R is a field.

(a) For any A € X, there exists a simple object (unique up to isomor-
phism) rLx of rC which is a highest weight module with highest weight
A o

(b) If X # X then rL) is not isomorphic to rLy:.

(c) If M is a highest weight module in rC with highest weight A, then
M has a unique mazimal subobject; the corresponding quotient object is
isomorphic to rL).

Let M be asin (c). A subobject M’ of M is distinct from M if and only if
M’ C ¥y, MY This shows that the sum of all subobjects of M distinct
from M is a subobject distinct from M. Thus, M has a unique maximal
subobject, hence a unique simple quotient object, which is clearly a highest
weight module with highest weight A. Applying this to the Verma module
rM,, which is a highest weight module with highest weight A, we obtain a
simple quotient gLy of this Verma module; this proves the existence part
of (a). If L' is a simple object of gC which is a highest weight module
with highest weight A, then, by 31.1.13, we can find a non-zero morphism
rM, — L'. This is necessarily surjective. Since gM) has a unique simple
quotient, we must have that L’ is isomorphic to gLx. Thus (a) and (c) are
proved. (b) is now obvious.



CHAPTER 32

Commutativity Isomorphism

32.1. THE ISOMORPHISM ¢R s m-
32.1.1. In this chapter we assume that the Cartan datum is of finite type.

Proposition 32.1.2. Let M € gC.

(a) M is integrable if and only if it is a sum of subobjects which are
finitely generated as R-modules.

(b) If M is integrable, then for any m € M there exists a number N > 0
such that zvm =0 for all x € pf, with trv > N.

Assume first that M is integrable. By 31.2.7, M is a sum of subobjects
which are quotients of objects of the form A\ ®g (rRAx) with A\, N € XT;
- these objects are finitely generated (free) R-modules. It remains to show
that an object M € gC which is finitely generated as an R-module, is
integrable and satisfies (b). This follows from the fact that there are only
finitely many A € X such that M* # 0, together with the fact that the
root datum is X-regular. If z € gf, and m € M?, then ztm € M**¥ and
= e M V.

32.1.3. Let f: X x X — Q be a function such that

fC+v, ¢ +v) = f(¢.¢)
(a) = =D mli )i /2) = DM QO i/2) — v

for all (,¢{’ € X and all v, € Z[I].

Such f exists: for example, we can choose a set of representatives H for
the cosets X/Z[I] and an arbitrary function ¢ : H x H — Q, and set for
any h,h’ € H and v,V € Z[I]:

Fh+v, B +v) = c(h, 1) = wili, ) (i-1/2) = > vili, h)(i-i/2) —v -V
i i
This function satisfies (a) and conversely, any function satisfying (a), is of

this form for a unique function c for fixed H. A function f satisfying (a)
clearly satisfies the following identities:
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(b) £(C,¢'+7) = £(G,¢) = (6, Qi+ /2,
FC+4,¢) = f(¢, ) =—(,{")i-i/2,
FC—7,¢") = f(¢.¢) = (5,¢")i- /2,
F(G¢ =) = f(¢,¢) = (5,Q)i-i/2,

forall {,{’ € X and i € I.

32.1.4. We fix an integer d > 1 and a function f : X x X — Q as in
32.1.3, such that the values of f are contained in %Z. Such f exists even
with integer values: it suffices to take the function ¢ in 32.1.3 with integer
values. Assume that we are given an element v € R such that v¢ = v. For
any rational number ¢ € 5Z, we will write v7 instead of v¥9. This is the
usual power of v, when ¢ is an integer.

Given two objects M, M’ in gC’, we define an (invertible) linear operator
I : MOM' — MM’ by II;(m@m') = vIA )mem’ form € M*,m’ €
MY Lets: M'®M — M®M’ be the isomorphism of R-modules given by
s(m’®m) = m®m’. We define the R-linear map © : MQpM’' - Mg M’
by

B(mem') = Z Z d(ppp )b m @bt m’
v beEB,
where © = )° Zb,b'eBu Poprb” ® YT is as in 4.1.2, 24.1.6 (with p,p € A)
and ¢ : A — R is as in 31.1.1. By 32.1.2 applied to M’, only finitely many
terms in the sum are non-zero for any given m,m’.
" Similatly, the R-linear map 8 : M ® g M/ — M @ M’ given by

O(mem') = Z Z @) mebTm

v bbeEB,

for any m € M,m’ € M’, is well-defined. From 4.1.3, we see that ©,0 :
M ®r M' — M ®g M’ are inverse to each other.

Theorem 32.1.5. Let {Rym = Ollys : M@ M — M @ M’'. Then
fRM M is an isomorphism in gC.

Let (f’,d’) be another pair like (f, d), but with d’ = 1; thus f’ has values
in Z. Assume that the theorem holds for f replaced by f’; we show that
it holds for f. Since f(A,X') — f/(\, X’) is constant when A, X’ run through
fixed cosets of Z[I] in X, the operator SH;,IHIS MM — M'®M is an
isomorphism in rC. Since fRy mr = g R, M/SH;,IH s, our claim follows.
Thus, in the rest of the proof we shall assume that d = 1 so that f takes
values in Z; we then have v = v.
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From the remark preceding the theorem, we see that ;Ras a is an iso-
morphism of R-modules; its inverse is s‘ll'I;lé MM — M'®@M. We
must show that uBIl;(m®m') = 6Il;u(m’®m) for all homogeneous m, m’
and all u € gU. Using the characterization 31.2.7 of integrable objects, we
are reduced to the case where both M, M’ are of the form $4A* ®g (rAx);
since such objects are obtained by change of rings from the analogous ob-
jects over A, we may assume that R = A. This can obviously be reduced
to the case where R = Q(v). We may assume therefore that R = Q(v). It
suffices to show that

A(u)Bll;(m ® m') = 8(Il; A(u)(m @ m'))

for all wu € U, m € M,m’ € M’'. (Here *A(u) is as in 3.3.4.) Let o :
U® U — U® U be the algebra automorphism given on the generators by

o(E;®1)=E;®K_;,
a(F;®1)=F® K,
c(1® E;) = K_; ® E;,
a(1® F;) = K;® F;,
a(K,®Ky)=K, QK.

We have the identity A(u) = a(*A(u)) for all u € U. Indeed, both sides
can be regarded as algebra homomorphisms U — U ® U; hence it suffices
to check that they agree on the generators E;, F;, K, which is immediate.
Therefore, the identity in 24.1.2(a) can be rewritten as follows:
Auw)o(m @ m') = 8(a(*A(u))(m @m')).

We will show that
(a) a*A@w) =TIAAI MM — Mo M,
for all u € U. Therefore we obtain

A(u)B(m®m') = O AL (m ® m')),

for all m,m’. This implies

A(u)8ll(m ® m') = O(I;*A(u)(m @ m')),
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for all m, m’, as required.

It remains to show (a). Clearly, if (a) holds for u, v’ then it holds for
uu', and for linear combinations of u,u’. Hence it suffices to verify (a) in
the case where u is one of the generators E;, F;, K,,. The verification for
K, is trivial. We apply both sides of (a) (with u = E;, resp. F;) to m® m/
where m € M¢, m’ € M’S’. The left hand side is

Em@m'+ K_;m® E;m’
(resp. m ® F;m' + Fym ® K;m'). The right hand side is
v—f(C,C')(Uf(CvC"f‘i')m ® Eim, + vf(c+i,1<’)Eim ® Rim’)

(resp. v/ (/) B @ m! 4+ vf €'~V K _;m @ Fym')). It remains
to use the identities 32.1.3(b) for f. The theorem is proved.

In the following corollary, we do not assume the existence of roots of v.

Cerollary 32.1.6. If M, M’ are in rC', then M ® M’ and M’ ® M are
isomorphic objects of rC’.

Indeed, f can be chosen with integer values.
. 32.2. THE HEXAGON PROPERTY

32.2.1. Let M, M’, M" be three objects of rC’. We define a linear isomor-
phism [II' : MM ' QM" - M@ M' ® M" by

fnl(m Qm ® m//) — vf(,\",,\+,\’)—f(,\",,\’)—f(,\",,\)m Qm' ®@m'
for all m € M*,m’ € M ,m" € M>".
We define a linear isomorphism (II” : M" @ M @ M' - M" @ M @ M’
by

fH"(m" Q@M ml) _ vf(A+A’,A”)—f(A,)\")—f(A’,A”)m// Qmem

for all m € M*, m’ € M ,m" € M*".

Proposition 32.2.2. (a) The map

R mem (I MM @M’ - M"@Me M
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coincides with the composition

1M®!RMII,MI
_

Rt ®1,
MM QM MM'@M 1M MTM, Ao Me M.

(b) The map
fRM®M’,M"(fH”)_1 . MII ® M ®MI M ® MI ®MII

coincides with the composition

1M®IRMI’MII
-

R @1
M@ MeM MM EM pr o M @M MeM &M

Let (f’,d’) be another pair like (f,d), but with d’ = 1; thus f’ has values
in Z. Assume that the proposition holds for f replaced by f’; as in the
proof of Theorem 32.1.5, we see that it also holds for f’. Thus, in the rest
of the proof, we shall assume that d = 1 so that f takes values in Z; we
then have v = v.

Using the characterization of integrable objects given in 31.2.7, we are
reduced to the case where each of M, M’, M" is of the form 4A* ® g (rRAN);
since such objects are obtained by change of rings from the analogous ob-
jects over A, we may assume that R = A; this case can be obviously reduced
to the case where R = Q(v). We may assume therefore that R = Q(v).

Letm € M*,m' € M'X ,m” € M"*". Using the definitions and 4.2.2(b),

we have

CRu memr(m@®m/ @ m’) = pf A7 AFY) Z 6,(m" ® (m®m'))

— pf AN Z v N HONGL2E18 (" @ m @ m')

U’,V”

(fRM",M [04) lM')(lM 03] fRM”,M')(m ®m’ ®ml/)
— ,Uf(,\u,,\') Z(fRM”,M ® 1M’)e,2,3('m om'® m/)

v

= 3 /AN NGRELE (m” @ m e m).

VI ,U”

On the other hand, using the definitions and 4.2.2(a), we have

Rt (m” @m@m') =/ O NS 6, (m@m') @ m”)

= W OEN ) D =S 0GBGY: (m g m' @ m”)

Ul,ll”



32.2. The Hezagon Property 257

and

(1M ® fRM’,M”)(fRM,M" ® le)(m" ®m ®m/)
= ’Uf(’\’,\”)(lM ® fRM',M”) z e,l,z(m ® m” ® m/)

= pf QAN +7) Y eBel(mem @m").

! "
[ZR7%

The proposition follows since f(A” — v, X) — f(A",A) = f(0,X) — f(v", ))
and f(N, M + ") — f(N, X") = F(N, ") — f(X,0) for v € Z[I].

Lemma 32.2.3. Let d > 1 be the order of the torsion subgroup of X/Z[I].
There exists a symmetric Z-bilinear pairing f : X x X — %Z which satisfies
32.1.3(a).

We can find a direct sum decomposition X = X; @ X5 such that Z[I]
is contained in X, as a subgroup of index d. There is a unique symmetric
bilinear pairing f; : X1 xX; — 1Z such that fi(#, ') = —i-j forall,j € I.
For'zy,z) € X; and z,2% € Xy, we set f(z1 + z2, 2] + 25) = f1(z1,7)).
This has the required properties.

Proposition 32.2.4 (Hexagon property). Let M,M’', M" € rC. Let
(f,d) be as in the previous lemma. Assume that we are given an element
'V € R such that ¥? = v. Then the map fRy» mom' : M @ M' @ M" —
M"® M Q® M’ coincides with the composition

1M®IRMII'MI
_

Rpger 1,
M®M/®MII M®M”®M’M’M”®M®MI

and the map
fRMeM M7 T MOMOIM - MM @ M"

coincides with the composition

1M®fR pgr pr
- - 7,

R 0 @1y
MII®M®MIf_y_-£_®—M)M®M/I®MI M®M,®M”.

This follows from Proposition 32.2.2, since in our case, ¢II’, ({II" are the
identity maps.



CHAPTER 33

Relation with Kac-Moody Lie Algebras

33.1. THE SPECIALIZATION v =1

33.1.1. Let g’f be the free associative algebra over R with generators
6; (i € I). As for 'f, which corresponds to the case R = Q(v), we have a
natural direct sum decomposition g'f = @, (r’f,) where v runs over N[I];
each 'f, is a free R-module of finite rank.

Let grf be the quotient of the algebra g’f by the two-sided ideal of g’f
generated by the elements

D N i L4

p+p'=1-(i,j')

for various 7 # j in I. Recall that ¢ : A — R is given.

Let rf, be the image of g'f, under the natural map r’f — gf. It is
clear that we have a direct sum decomposition Rf = @, Rf,,). From the
definition, we have, for any v, an exact sequence of R-modules

@u’,u";i#j(R,fu') ®Rr (R,fu”) i R,fu — Rfu —0

where the indices satisfy v/, v” € N[I] and '+ 0" +(1—(¢,5'))i+7 = v; the
first map has components z,z’ — z®; jz’. If we take this exact sequence
for R = Q[v,v™!] and we tensor it over Q[v,v™!] with Q(v) or with Ry (a
field of characteristic zero, regarded as an .A-algebra or Q[v, v~!]-algebra
via v — 1), we obtain again exact sequences, by the right exactness of
tensor product. We deduce that

RO?V =Ro® (Q[v,v-l]fu)
and i )
Qi = Q(v) ® (qp,»-1f)-

Since Q[,,’,,_llf’,, is a finitely generated Q[v,v~!]-module and Q(v) is the
quotient field of Q[v,v~!], we deduce that

(a) dimQ(v)(Q(u)f‘u) < dlmRo (Ro?u)
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By 1.4.3, there is a unique (surjective) algebra homomorphism Q(v)f' —
f which takes 6; to 6; for all ¢ (and preserves 1). It is clear that this
homomorphism maps g»)f, onto f,, hence

(b) dimgy) £, < dimq(,,)(q(,,)f,,) for any v € N[I].

Note that g,f is the Ro-algebra defined by the generators 8; (i € I)
and the Serre relations

SO (-1 (er/p)e;eF fp') =0

p+p'=1-(i,j’)

for various i # j in I. Thus it is the enveloping algebra of (the upper
triangular part of) the corresponding Kac-Moody Lie algebra over Rp.

33.1.2. Assume now that the root datum is Y-regular and X-regular. Let
A€ Xt and let M = g Ay € g,C’. The linear maps E;, F; : M — M
satisfy in our case:

(a) E;M¢ ¢ M+ F;MS¢ < M~ for any i € I and ¢ € X;

(b) (E;F; — F;E;)m = 6;,;(i,{)m for any ¢,j €  and m € M¢;

(©) Xpaprmi—ijn(—1)P (EF/P)E;(EF [p') =0: M — M for any i # j
in I;

(d) Zpﬂ,:l_(i’j,)(—l)pl(F‘ip/p!)Fj (FP/p')=0:M — M for any i # j
in 1.
" This shows that M is an integrable highest weight module of the Kac-
Moody Lie algebra attached to the root datum. By results in [3], namely,
the complete reducibility theorem of Weyl-Kac and the Gabber-Kac theo-
rem, M is simple as a module of that Lie algebra and the Rp-linear map

rof/ Y R FOSN o M
i
given by
0,0i, -+ -0, — Fy Fyy - Fy s

is an isomorphism. It follows that
(e) roAn is a simple object of g,C and
(f) for given v € N[I], we have

dimpg, (Rofu) = dimRo(RoAlA\_y)

provided that (i, A) are large enough for all <.



260 33. Relation with Kac-Moody Lie Algebras

From the definition of Ay and g,A,, it is clear that
(g) dimp, (RoAi_") = dimgg) A:\\_" for any A, v and

(h) for given v € N[I], we have dimq(,)(f,) = dimq,) Ay~ provided
that (i, A) are large enough for all .
From (f),(g),(h) we deduce that

dimQ(v) (f,,) = dimRo (Roi:u)

for all v. Combining this with the inequalities 33.1.1(a),(b), we see that
those inequalities are in fact equalities. In particular, the natural surjective
homomorphism Q(v)f' — f must be an isomorphism. Similarly, the natural
surjective homomorphism g,f — g,f is an isomorphism since

dimp, (rof,) > dimp,(f,) = dimqq,)(f,) = dimpg, (r,f.)

for all v.
Thus we have the following result.

Theorem 33.1.3. (a) The natural algebra homomorphism Q(,,)f' — f is
an isomorphism.
(b) We have dimq(y) f, = dimp, (g, f,) for any v.
(c) The natural algebra homomorphism r,f — g, f is an isomorphism.
{d) If A € X, then the dimension of the weight spaces of Ax are the

same as those of the simple integrable highest weight representation of the
corresponding Kac-Moody Lie algebra.

33.1.4. Remark. Parts (a), (b) and (c) of the theorem hold for arbitrary
root data, since only the Cartan datum is used in their statement.

Corollary 33.1.5. The algebra U can be defined by the generators E; (i €
I, F, (t€l), K, (p€Y) and the relations 3.1.1(a)-(d), together
with the quantum Serre relations for the E;’s and for the F;’s.

33.2. THE QUASI-CLASSICAL CASE

33.2.1. In this section we assume that the A-algebra R is a field of char-
acteristic zero and ¢(v;) = £1 in R for all i € I. We then say that we are
in the quasi-classical case; this is justified by the results in this section. We
also assume that (I, -) is without odd cycles (see 2.1.3). Then, by 2.1.3, we
can find a function
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(a) i — a; from I to {0, 1} such that a; + a; = 1 whenever (i, ') < 0.

Let Rp be the ring R with a new A4-algebra structure in which v € A is
mapped to 1 € R. We want to relate the algebras rf and Rof' . We cannot do
this directly, but must enlarge them first as follows. Let A be the R-algebra
defined by the generators 6;, K; (i € I) subject to the following relations:
the ; satisfy the relations of rf, the K; commute among themselves and
I?,'Oj = ¢(’U¢)<i’j’)9jki, for all 3,5 € I. _

Let Ap be the R-algebra defined by the generators ;, K; (¢ € I} sub-
ject to the following relations: the 8; satisfy the relations of Rof' , the K;
commute among themselves and f{,ﬂj = ¢(v,-)<i'j')0jl~(i, for all 4,7 € I.

It is clear that, as an R-vector space, A (resp. Ap) is the tensor product
of gf (resp. g,f) with the group algebra of Z! over R, with basis given by
the monomials in K;.
Proposition 33.2.2. (a) The assignment E; — E] = Eil?f‘ and K; — K;
for all i, defines an isomorphism of R-algebras Ag — A.

(b) dimg(rf,) = dimg(g,f,) for all v.

:gc) The natural algebra homomorphism rf — &f is an isomorphism.

Let 7,7 € I be distinct. A simple computation shows that we have in A:
EE; EIP = ¢(v,) P04, )63 pastr' ) P B B f(i(P+P')a»' f{;:
_ The facter B(vi)*@+PIE+P'=1) 5 1 since ¢(v;) = +1 and the exponent is
even. By the definition of a;, we have

B(v;) (B3N Paitp'as) — 4y )BTV PP gy ) (TP

and this equals ¢(v;){3? if p + p’ = 1 — (i,5'). Note also that ¢([n]}) =
B (v;)™=1/2p), since ¢(v;) = £1. Hence, if p+p’ =1 — (i, '), then

$([p)([P'];) = plvs) PP~ D+ =10 2pi0

= ¢(vi)(p+p')(p+p'—1)/2¢(vi)—pp’ ¢(v;)PA—Pplp't
= ¢(v;)PHPIPHE =1)/2 40, VT WP 1)

It follows that

Z (—1)”/(E{”/p!)E;-(E{pl/p'!) - ¢(Ui)(i,j’)(1—(i,j'))/2
p+p'=1-(i,j’)
S VP ES /() E (B () R R.

p+p'=1-{i,j’)
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This shows that the assignment in (a) preserves relations, hence defines
an algebra homomorphism Ay — A. The same proof shows that the as-
signment E; +— Eiki_“‘ and K; — I?,- defines an algebra homomorphism
A — Ay; it is clear that this is the inverse of the previous homomorphism.
This proves (a).

For any v, the isomorphism in (a) maps the subspace Rof isomorphically
onto the subspace ( rE, )K where K is a monomial in the K; depending only
on v. This proves (b).

The homomorphism in (c) maps gf, onto gf, for any v. Using (b), it
follows that this restriction gf, — gf, is an isomorphism. This implies (c).
The proposition is proved.

The next result compares the algebras g, U and U.

Proposition 33.2.3. There is a unique isomorphism of R-algebras f :
roU — RU such that

F(Bil) = ¢(v)* OB, f(File) = ¢(vi) 7o EOH R, (1) = 1¢

forallie€ I, € X. Here a; is as in 33.2.1(a).

To construct f, we take advantage of the fact that for the algebra ROU,
we know a simple presentation by generators and relations, while for gU
we do not. It will be easier to first construct a functor from gC to g,C and
theh to show that it comes from an algebra homomorphism.

Let M be an object of rC. The linear maps E;, F; : M - M (i € I)
satisfy

(a) E;M> ¢ MY F;M*» ¢ M*¥ for any i € I and A € X;

(b) (E:;Fj — F;E))m = 6; ;¢(v:)»V~1(i, \ym for any 4,5 € I and m €
M'\'

(€) Xpprmr iy (1) $(vi)P 1) (EL [p) B (EY /p')) = 0: M — M for
any ¢ # j in I;

() St a7y (~ 17 G(02)P 7 (FP fp) F5 (FF [pY) = 0: M — M for
any ¢ # j in I.

For any a € Z, we define linear maps P;, : M — M by P, ,(m) =
¢(v;)*“m for m € M>. We define linear maps E!, F! : M — M in terms
of the function 33.2.1(a) by E; = E; P, ,,, F! = ¢(v;)F;Pi1_4,. As in the
proof of the previous proposition, we can check that:

(al) EIM> ¢ MMY, F!M> c M*~¥ forany i€ I and A € X;

(b1) (E{F; — F{E;)m = §; ;(i, \)m for any i,j € I and m € M?>;
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(c1) Zpﬂ’,:l_(i’j,)(—l)p'(E,fP/p!)E;(E{”'/p’!) =0: M — M for any
i#jin I;

(d1) 3,41 n (VP (FIP/P)F}(F/ [p'l) = 0 : M — M for any
i1# jin I. Since g, f = Rof' (see 33.1.3) has the presentation given by the
Serre relations, it follows that M with its weight space decomposition and
with the linear maps Ej, F] is an object of g,C.

Thus, we have defined a functor I" : gC — g,C. This functor has the
following obvious property: it associates to M an object I'(M) with the
same underlying R-module as M and any endomorphism of M in gC is at
the same time an endomorphism of I'(M) in g,C. Applying the functor I to
rU, regarded as a left module over itself, we obtain a structure of a unital
left ROU-module on rU. Thus, we have an R-bilinear pairing R{,U x gU —
rU, denoted by a,b — a  b; this has the properties (aa’) * b = a * (a’ * b)
and (a * b)b’ = a * (bb’). The last property holds since right multiplication
by b is an endomorphism of gU in gC, hence also in Rro,C. We define a map
f:r,U— rUby f(a) = > cex a*1¢; only finitely many terms in the sum
are non-zero. We have

' ’f(a)f(a') = Z(a *1¢)(a’ * 1¢/)

¢.¢'

=2 ax) L@ x1)
¢’ ¢

= Za* (' *1¢) = Zaa' * 1o = f(aa').
¢’ ¢’

It is clear that f has the specified values on the algebra generators
Eil¢, Filg,1¢ of g, U.

We show that f is an isomorphism. The elements E;l¢, Fil¢,1; are
algebra generators of rU, since ¢([n]}) = £n! is invertible in R for any
i € I and any n > 0. It follows that f is surjective. As in 31.1.2, rU
(vesp. r,U) is a free rf ® rf°PP-module (resp. g,f ® g, f°PP-module) with
generators 1¢ (under (z ® 2') : u — ztua’~ ), and f carries the subspace
of r,U spanned by z*1,z'~ with

TEDu VSN(RofV))x, € D ¢tr uSN’(Rofu)

and fixed ¢ onto the analogous subspace of rU. Since these subspaces are
both of the same (finite) dimension over R, the restriction of f must be an
isomorphism between them. This implies that f is an isomorphism. The
uniqueness of f is obvious. The proposition is proved.



264 33. Relation with Kac-Moody Lie Algebras

Corollary 33.2.4. Assume that the root datum is Y -regular and X -regular
and that A € X*. Then gAy is a simple object of rC.

By the proof of 33.2.3, this is equivalent to the statement that g A, is
a simple object of g,C. (See 33.1.2(e).)



CHAPTER 34

Gaussian Binomial Coefficients
at Roots of 1

34.1.1. Let ! be an integer > 1. In this chapter we assume that the A-
algebra R, with ¢ : A — R and with v = ¢(v), is such that R is an integral
domain and the following hold

vi=1landv* #£1forall0<t<l.

All the identities proved in 1.3 for Gaussian binomial coefficients imply,
after applying ¢, corresponding identities in R. However, certain identities
will be satisfied only in R. We shall now give some examples of such
identities.

Lemma 34.1.2. (a) Ift > 1 is not divisible by |, and a € Z is divisible by
1, then ¢([$]) = 0.
(b) Ifa; € Z and t, € N, then we have

lar]\ _ e+ (@
¢<[”1D -V t1)’

(c) Let a € Z and t € N. Write a = ap + lay with ag,a; € Z such that
0<ap<!l—1andt=ty+1t) withtg,t; € N suchthat0 <tz <1—-1. We

have
al\ _ (aoti—arto)l+(ar+1)ty1? ap a
o(ld]) - (o)) (&)

Here (‘t’l‘) € Z is an ordinary binomial coefficient. We prove (a) for a > 0
by induction on a. If a = 0, we have trivially [':] = 0; if a = [, the equality
#([3]) = 0 follows directly from the definitions.

Assume now that a > 2! and that (a) holds for a — [ instead of a. By
1.3.1(e), we have

o([) = 2 e ([ ) 1))
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For each term in the sum, we have that either ¢’ or t” is not divisible by
[; hence the sum is zero by the induction hypothesis. This proves (a) for
a > 0. We now prove (a), assuming that a < 0. Write t = ty + l¢; with
0 <ty <!l. We have

([) = ()
= 5 ey (o) ([51]),

t+t =t

Consider a term in the sum corresponding to (¢, ¢”). Since —a+It; > O is
divisible by I, we see from the earlier part of the proof that ¢( [_“:,'“1]) =0
unless t’ is divisible by {. But then t” is congruent to t modulo I. Hence
t” is congruent to tp modulo . It follows that ¢ > ¢;, hence [t”tﬁl] =0.
Hence our sum is zero and (a) is proved.

We prove (c), assuming (b). In the setup of (c) we have

o([)= e ([E]) e ([2])

By (a), the sum may be restricted to indices such that ¢’ = It{ for some
t{ € N and such that t’ < ap. Then ¢ is congruent to ¢ modulo {, hence ¢’
is congruent to ¢y modulo I. Since both t/, ¢, are in [0, — 1], we must have
t' =ty and therefore t”” = It;. Thus,

() Bt ) (i)}

This shows that (c) is a consequence of (b).
We prove (b) for a; > 0 by induction on a;. The case where a; = 0 or
1 is trivial. Assume now that a; > 0. By 1.3.1(e), we have

(L)) =, 2, e (D)o (o))

By (a), we may assume that the sum is restricted to indices divisible by {,
namely t’ = It],t" = It with t] + t;, = ;. Using the induction hypothesis,
we get

la'l — 12(a1t1—t'1+t'1') ay — 1 1 —_ 12(a1+1)t1 a
o(lnl) =, 2~ AU o)

)+t =t
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We have used the identity 1.3.1(e), specialized for v = 1. This proves (b)
for a; > 0.
We now prove (b) assuming that a; < 0. We have

e(fw]) =0 (™50 7)

I ([(1 1)+ z(;:n ) — 1)])

— it (oo =] )

The last equality follows from (d). By the part of (b) that is already proved,

we have
¢ l(—a1 + tl - 1) _ vl2(_al+tl)tl —Q) + tl -1
ltl tl

— vl2(_al+t1)t1 (—l)tl <al) .

t
It follows that

laa |\ _ ittty Q=1+ (—ar )t [ 31
#([am]) = o :

1

"'It remains to observe that

(e) vV H! = (—1)!*1.

Indeed, if { is even, we have v! = —1 and both sides of (e) are —1; if | is
odd, then v! = 1 and both sides of (e) are 1. The lemma is proved.

34.1.3. Let p > 0. We have

(a) ¢([tp)!/([1)?) = ptv*PP=1/2,
We prove (a) by induction on p. If p = 0 or 1, then (a) is trivial. Assume
that p > 2. We have

¢([tl'/([YP) = o([ie - DI /(MNP )é ([ﬂ) '
Using 34.1.2 and the induction hypothesis, we see that
o(ltp)'/ (1)) = (p — 1)ty = DE=DHTEEED = pryFre-D),

This proves (a).
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Lemma 34.1.4. Assume that 0 <r <a <!l. We have

(a) E;—:t(l)—l(_l)l—r+l+qv—(l—r)(a—l+1+q)+q¢( [l;r]) = v g( [trl])

In the left hand side of (a) we may replace v°~! by (—1)!*1. Note also
that [ — r > 1; hence

l—r

Z(—l)qvq(l"”f) [l ; T] -0

q=0
(see 1.3.4). Hence the left hand side of (a) equals
-7 I
(_1)r+lvr(a+1——l)~la Z (_l)qvq(l—l+7-)¢ ([ - T‘:I)

g=l—a q

T r(a+1— —aa—r —r—q (I—-r7—¢ YA =141 l—r
= (-1)"tlv (a+1-1)—1 Z(_l)z ¢ (—r=¢) -1+ )¢([ ¢ ])

q’'=0

For any ¢’ in the last sum, we have by 34.1.2(c), ¢( [lq_,r]) = vi7 g [;,T]) .
Thus the left hand side of (a) is

(__1)a+l—r+lvr(a+1——l)—la Z (__l)a*r—q’vlq'+(l—r—q')(l—l+r)¢ ( [_T]>

N = q
‘ a—r , , -1 _r
_ (_1\aHl-r+1_l-(l-7)l-la —q'+r(a—r-q’)
= (—1yetry Sovrreag Tt De([7])
q'=0
r—1
- (_1)a+l—r+lvl—(l—r)l—la¢([ T ])
a—rT

=ty (2 J) <vene([7).

We have used v! = v~ . The lemma is proved.



S

CHAPTER 35

The Quantum Frobenius Homomorphism

35.1. STATEMENTS OF RESULTS

35.1.1. In this chapter we fix an integer [ > 1. Then the integers [; > 1,
the new Cartan datum (7, o) and the new root datum (Y™*, X*,...) of type
(I,0) are defined in terms of I, (I,-),(Y, X,...) as in 2.2.4, 2.2.5.

35.1.2. The assumptions (a),(b) below will be in force in this chapter.
(a) for any ¢ # j in I such that [; > 2, we have |; > —(¢,5') + 1;
(b) (1,-) is without odd cycles (see 2.1.3).

N(;te that (a) is automatically satisfied in the simply laced case: in that
case, we have [; = [ for all ¢; in the general case, the assumption (a) can
be violated only by finitely many I. Note also that (b) is automatically
satisfied if (I,-) is of finite type.

35.1.3. Let I’ be one of the integers [, 2, if | is odd, and let I’ be equal to
21, if | is even. Let A’ be the quotient of A by the two-sided ideal generated
by the I’-th cyclotomic polynomial fir € A. Thus, (f1, f2, f3,...) = (v —
Lv+1Lv2+v+1,...).

In this chapter, we assume that the given ring homomorphism ¢ : A — R
factors through a ring homomorphism A’ — R, or that R is an .A’-algebra
or, equivalently, that fi(v) =0 in R, where v = ¢(v).

35.1.4. When (I,-) is replaced by (I,0), the element v; € A, whose defi-

oy .. 12
nition depends on the Cartan datum, becomes v} = v*°¥/2 = (A

For any P € A, we denote by P} the element obtained from P by
substituting v by vj. For each ¢ € I, we set v; = ¢(v;) and v} = ¢(v}) =

2
Vi .

Lemma 35.1.5. (a) Leta € L,Z andt € ;N. We have ¢([],) = ¢( ['t'//ll']*)

(equality in R).
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(b) Let a € l;Z and lett € N be non-divisible by l;. We have ¢( [':]1) =0
(equality in R).

It suffices to prove this for R = A’. This is an integral domain in which
vZi = 1and vZ # 1 for all 0 < t < ;. We prove (a). Applying 34.1.2(b) to
v; and !; instead of v and I, we see that ¢( [‘t‘]z) = v,(-aH‘)t (?ﬁ:) Applying

the same result to v} and 1 instead of v and I, we see that ¢( [‘t’ﬁ]*) =
idq
2

via+le/i} (‘://ll‘) It remains to use the equality v} = vi . The proof of (b)
is entirely similar; it uses 34.1.2(a).

35.1.6. Let f* (resp. U*) be the Q(v)-algebra defined like f (resp. like U),
in terms of the Cartan matrix (I, o) (resp. in terms of (Y*, X*,...)). Then
the R-algebras gf, pf*, RU, gU* are well-defined.

We state the main results of this chapter.

Theorem 35.1.7. Recall that R is an A’-algebra. There is a unique R-
algebra homomorphism Fr : pf — gf* such that for alli € I and n € Z,
{ Fr(9§")) equals 05"/1‘) if n € ,Z, and equals 0, otherwise.
Theorem 35.1.8. There is a unique R-algebra homomorphism Fr’'
rE* — pf such that Fr'(6™) = 0™ for alli € I and alln € Z.
Theorem 35.1.9. There is a unique R-algebra homomorphism Fr : gU —
rRU? such that for alli € I,n € Z and { € X, we have:

Fr(Ei(")lc) equals E,-("/l")lc ifn € ,Z and ( € X*, and equals 0, other-
wise;

Fr(Fi(n)lc) equals Fi("/l‘)lc ifn € ,Z and ( € X*, and equals 0, other-
wise.

We give a proof of the last theorem, assuming that theorem 35.1.7 is
known. Using the presentation of the algebra gU in terms of rf given in

31.1.3, and the analogous presentation of the algebra rU* in terms of gf*,
we see that it is enough to prove that the assignment

ztlcz™ — Fr(zt)1 Fr(z7),z " 1czt v Fr(z7)1:Fr(z")
for z,z' € gf, ( € X*,
ztlez™ = 0,27 1czt — 0

for z,2’ € rf, ( € X — X* respects the relations described in 31.1.3. (Here,
Fr is the homomorphism given by Theorem 35.1.7.) This is immediate,
using Lemma 35.1.5.
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35.1.10. Remark. The homomorphism Fr constructed in Theorem
35.1.9 is called the quantum Frobenius homomorphism. It is compatible
with the comultiplication on rU and gU* (proof by verification on the
generators Ef")lc and Fi(n)lc).

35.1.11. The uniqueness part of Theorems 35.1.7 and 35.1.8 is clear. To
prove the existence part of these theorems, we note that the general case
follows by change of scalars from the case where R = A’. Since A’ is an
integral domain, it is contained in its quotient field K and the algebras
a'f, 4f* are naturally imbedded in the corresponding algebras over K.
Thus, if the theorems are known over K then, by restriction, we see that
they hold over A’. We are thus reduced to proving the theorems assuming
that R is the quotient field of A’. The proof in this case will be given in
35.2, 35.5.

35.2 PROOF OF THEOREM 35.1.8

35.2.1. In the rest of this chapter (except in 35.5.2, 35.5.3), we assume that
R js the quotient field of A’. Note that R is a field of characteristic zero and
that the order of v2 = ¢(v?) in the multiplicative group of R is I. Thus, we
have v2 =1 and v? # 1 for all 0 < t < I. By the definition of /;, we have
vZi = 1and v # 1forall 0 < ¢t < l;. In particular, ¢([n]}) is invertible
in R, if 0 < n < [;. For any ¢ we have v} = %1 since v?l‘? = 1; hence, when
dealing with the algebras rf*, glU*, we are in the quasi-classical case (see
33.2).

Lemma 35.2.2. The R-algebra gf is generated by the elements Of") (i€
I) and by the elements 6; for i € I such that l; > 2.

Recall that the R-algebra gf is generated by the elements 05") for various
iand n > 0. Writing n = @ + ;b with 0 € a < [; and b € N, we have
01(") = vgb‘*0§“)9§’*b) (using 34.1.2). On the other hand,

(a) 6/ = ¢([a]}) =262 (see 35.2.1) and
(b) 9(1 b) _ (b')_l l (b~ 1)/2(9(1 ))b
The equality (b) follows from the equalities
(68) = b/ ()6 in £
and
BB/ (1)) = bo(wy ")
(see 34.1.3). The lemma is proved.
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35.2.3. We now give the proof of Theorem 35.1.8. As observed in 35.1.11,
it is enough to prove the existence statement in 35.1.8, assuming that R is
as in 35.2.1.

We will show that there exists an algebra homomorphism grf* — gf
such that 6; — 9?‘) for all i. Since the assumption 35.1.2(b) is in force, the
algebra gf* has a presentation given by the generators 8; and the Serre-

2
type relations; this follows from 33.2.2(c) . Since ¢(([n]')?) = vi""("_l)/ %n!
(see the proof of Lemma 35.2.2), we see that it suffices to prove that, for
any 7 # j, we have the following identity in gf:
' 2p(p—1)/2, 12p' (0 —1)/2 (8L3)P o(15) (68+))?
(a) Ep+pl=l—(‘i,j,)l]‘/l|’(_1)p v; p(p—1)/ v; ?'(p )2 ( ‘p!) 0§ i) ( p’!) =0

Using (Bfl‘))b = b!v:?b(b_])/zggl‘b) (equality in gf, see 34.1.3), we can

rewrite (a) in the following equivalent form:
! A(L; l; Lip
(b) 2p+p'=1—(i,j')t,-/z,-(_1)p 9§ p)9§' 1)01( )= 0.
It remains to prove (b). Let a = —(¢,j’). For any g € [0,!; — 1] we set
ga= 3. (=)roftTim0gglgl) ¢ Lt
r+s=alj+li—q
 This is f; j1;,a1;+1,—¢;—1 in the notation of 7.1.1.

Let g = Zf]:ol(—l)qvf qu“‘q_ng&(q). By the higher order quantum
Serre relations (see 7.1.5(b)), we have g, = 0 for all ¢ € [0,l; — 1];
hence ¢ = 0. On the other hand, setting s’ = s + ¢, we have g =
L cr,310£')0;-l" 16" where

1

li—l ’

Z li—1— lijqg+liqg—q|S
Cr,sr = (_1)T+q'U:( )t 39+hg q[ ] .
i

Er,s{;;r+s'=alj+

q=0 ERE

Taking the image of ¢ = 0 under the obvious map 4f — gf, we obtain
S Bene)80800 =0 in gf.
r,s'ir+s'=alj+l;
For fixed s’, we write s’ = a + I;b where 0 < a < |; — 1. We have
&( [2]1) = v_bql"qﬁ([‘;]i) (see 34.1.2); hence

i

li—-1
Blers) = (=17 v 3 (c1)avil Dbl <[a] )

9=0 a1

= (-1)rvD i(—l)qvg(a—l)q& ([Z])

g=0 '
1 —1b. (i—1)(cd;+1;—1;b
—60,,,(—1)"’1“' z‘bvl(. Hal;+1;—1:b)

=& a(_l)l—b+alj/l,» .
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We have used the identity vi*"™1) = (—1)k+1) see 34.1. 2(e). (b) fol-

lows. Thus, we have an algebra homomorphlsm Fr' : gf* — gf such
that Fr'(8;) = 0,([‘) for all 1.
To complete the proof we must compute Fr’ (GE")) for n > 0. We have

Fr'(0) = ¢((In])3) " Fr'(8:)" = v "7V 2 () =1 (610)m = (™0,
Theorem 35.1.8 is proved.

35.3. STRUCTURE OF CERTAIN HIGHEST WEIGHT MODULES OF gU

Proposition 35.3.1. Assume thati # j in I satisfy l; > —(i,5') + 1. The
following identity holds in gf:

(17 _ . 3
609, = Z V(-G r>¢([ (21:3 )} )Hf’)f’j@i(“")-
i

We set a = —(i,j’). Using Corollary 7.1.7 with m = [;,n = 1, we see
that we are reduced to checking the identity

Li—a—1
i (- 1)1;—T+1+q —(li-r)(a— l+1+q)+q¢ i =T =v’.‘(°‘_r)¢ a
q 1 ¢ T i

q=0

““for any # € [0, a)]. This follows from Lemma 34.1.4.

Proposition 35.3.2. Assume that the root datum is X -regular. Let \ € X
be such that (i,\) € ;Z for alli € I. Let M be a simple highest weight
module with highest weight A in gC and let 1 be a generator of the R-vector
space M.

(a) If ¢ € X satisfies M¢ # 0, then { = A — Y, lin;i’, where n; € N. In
particular, {i,() € ,Z for alli € I.

(b) If i € I is such that l; > 2, then E;, F; act as zero on M.

(c) For any r > 0, let M/ be the subspace of M spanned by the vectors

F(l“)F(“z) . F(l")n for various sequences iy,is,...,%, in I. Let M’ =
Z M. Then M =M.

Clearly, M is spanned by vectors in M¢ where ( is of the form ¢ =
A — Y, lLinid’, with n; € N. Such ( satisfies (i,¢) € [;Z for all i € I. We
use the fact that, for j € I, the integer (¢, j') is divisible by ;.

We show by induction on r > 0, that
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(d) E;M] =0,F;M. =0 for any i € I such that [; > 2.
Assume first that r = 0. Then E; Mg = 0 is obvious. Assume that for
some i € I such that [; > 2, we have x = F;n # 0. For any j € I, we have

Ejz = EjFin = FEjn+ 66 ([(i, i) n = 6i,;0 ([(%1)0] ) 7
Since (i,A) € [;Z, and l; > 2, we have qﬁ([(if‘)]i) = 0; thus, E;z = 0. If
n > 2, then E](-"):z: = EJ(")Fm is an R-linear combination of FiEJ(.")n and of
E'J(-"_l)n, hence is again zero. Thus, E](.")x =0 for all j € I and all n > 0;
since £ € M~ there exists a unique morphism in gC from the Verma
module M) _; into M which takes the canonical generator to z; its image
is a subobject of M containing = but not 1. Since M is simple, we must
have z = 0. Thus (d) holds for r = 0.

Assume now that » > 1 and that (d) holds for r — 1. To show that it
holds for r, it suffices to show that E,-Fj(lj I = O,F,-Fj(lj dm = 0 for any
i, in I such that I; > 2 and any m € M]_,¢. If [; > 2, then EiF]-(lj)m

- is an R-linear combination of F ]-(lj)Eim and of F;"_lm, hence is zero since
E;m = 0, F;m = 0, by the induction hypothesis. If [; = 1, then E;F;m =
FE;m + 6; j¢( [(i’f)]i)m where (i,¢) € 1;Z, hence ¢( [(i’IC)]i) = 0, as above;
since E;m = 0, by the induction hypothesis, we have again E;F;m = 0.

If i # j, then from the identity in 35.3.1, we deduce by interchang-
ing" 4,7 and applying o, that F,-FJ-(I’ )m is an R-linear combination of
Fj(lj_r)FiF}r)m for various r with 0 < r < —(j,%') < l;. For such r we
have F;F\'m = 0. (Indeed, if [; > 2, then F;F;”'m = 0, by the induc-
tion hypothesis; if /; = 1, then r = 0 and FiFj(r)m = Fym = 0, again by
the induction hypothesis.) Thus, we have FiFj(l" dm =0 Ifi = 7, then
F}F}"' ‘m = Fj(l")Fim = 0, by the induction hypothesis. This completes the
inductive proof of (d).

Next we show by induction on r > 0 that

(e) EMIM! c M!_, for any i € I,
where, by convention, M’ , = 0. This is clear for 7 = 0. Assume now that
r > 1. We must show that Ei(l‘)Fj("')m’ € M/_, for any j and any m €
M]_,. Now Ei(l“)Fj(l" )m’ is an R-linear combination of F}(lj ) Ei(l‘)m’ (which
is in M]_, by the induction hypothesis) and of elements Fj(l"_t)E'i(l"—t)m'
with ¢t > 0 such that ¢t <[;,t < I; (which are zero if t < l; orif t =1;,t < I,
by (d), and are in M/ _, if t =1; = ;). Thus, (e) is proved.
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From (d), (e), 35.2.2, and the obvious inclusion Fi(l‘)M; C M/, we
see that 3° M/ is an grU-submodule of M. (It is certainly equal to the
sum of its intersections with the weight spaces of M since it is spanned by
homogeneous elements.) Since M is simple, we must have M = " M.
Thus (c) is proved. Now (b) follows from (d) and (c).

We prove (a). Let ¢ € X be such that M¢ # 0. By (c), we have M’S # 0.
Then, as we have seen at the beginning of the proof, ¢ is of the required
form. The proposition is proved.

Corollary 35.3.3. There is a unique unital RU* -module structure on M
in which the -weight space is the same as that in the gU-module M, for any
( € X* C X, and such that E;, F; € gf* act as El.(l‘),Fi(l‘) € rf. Moreover,
this is a simple highest weight module for gU* with highest weight A € X*.

We define operators e;, f; : M — M fori € I by e; = Egl"),_fi = Fi(l‘).
Using Theorem 35.1.8, we see that the e; satisfy the Serre-type relations of
rf* and that the f; satisfy the Serre-type relations of pf*.

If { € X — X* we have M¢ = 0, by 35.3.2(a). If { € X* and m € M¢,
then, by 31.1.6(c), we have that (e; f; — fje;)(m) is equal to §; ;&( [(iif)]i)m
plus an R-linear combination of elements of the form F}*~*EX~*(m) with
0 < t < I; which are zero by 35.3.2(b). Since (i, () € l;Z, we see from 35.1.5

([571) =+ (["3"])

Therefore, (e; f; — fjei)(m) = 6,-,j¢([(i’cl)/l‘]:)m. It is clear that e;(M¢) C
MSH and fi(MS) ¢ MS4Y,

Thus, we have a unital fU*-module structure on M. By 35.3.2(c), thisis
a highest weight module of g U* with highest weight A. This gU*-module is
simple. Indeed, assume that M” is a non-zero gU*-submodule of M. Then
M" is the sum of its intersections with the various M¢ (with ¢ € X) and is
stable under all Ei(l"), Fi(z") : M — M (in the gU-module structure). Now
M?" is automatically stable under E?, F? (in the rU-module structure) for
any ¢ and a such that 0 < a < [;, since these act as zero on M. Using now
lemma 35.2.2, we see that M” is stable under E™, F™ for any i and any
n € N. Thus, M” is a (non-zero) pU-submodule of M; hence M” = M.
The corollary is proved.

Corollary 35.3.4. Assume, in addition, that the root datum is Y -regular
and that A € X*. Then the simple highest weight module for RU* defined
in Corollary 35.3.8 is grA,.
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Indeed, the module gA, of gU* is simple. By the assumption 35.1.2(b),
we may apply 33.2.4.

35.4. A TENSOR PrRODUCT DECOMPOSITION OF gf

35.4.1. Definition. Let f be the R-subalgebra of grf generated by the
elements 6; for various ¢ such that [; > 2. (Note that without the assump-
tion 35.1.2(a), the definition of § should be more complicated.) We have
f = @uf, where f, = gf, Nf.

Theorem 35.4.2. (a) If ¢ € I and y € f,, the difference 9,([")3/ _

vi_l‘(i’")yﬂgl‘) belongs to §.

(b) The R-linear map x : rf* @r f — rf given by x @ y — Fr'(z)y is
an isomorphism of vector spaces.

We prove (a). If (a) holds for y and y/, then it also holds for yy’. Hence
it suffices to prove (a) when y is one of the algebra generators of f. Thus,
we may assume that y = 0; where j satisfies /; > 2. By our assumption,
we then have l; > —(i,5’) + 1. Therefore, we may use the identity in
Proposition 35.3.1, and we see that 9?")9]- -v; i ,)0j9§l‘) is an R-linear
combination of products 61(7)0]-91(1"_’) with 0 < 7 < —(4,j') < l;; these
products are contained in f, by the definition of f. This proves (a).

We prove (b). We first show that x is surjective. Using Lemma 35.2.2,
we see that gf is spanned as an R-vector space by products z,z3-- -z,
where the factors are either in f, for some v (factors of the first kind) or of
the form 01(1‘) (factors of the second kind).

By (a), any product z,z54+1 with z, (resp. z,41) a factor of the first kind
(resp. of the second kind) is equal to vl'z,1+125 plus an element of f,. for
some 7 and some v'. Applying this fact repeatedly, we see that z,z2-- -z,
is a linear combination of analogous words in which any factor of the second
kind appears to the left of any factor of the first kind. It follows that x is
surjective.

It remains to show that yx is injective. Recall that the elements of B
may be regarded as an R-basis of gpf*. Assume that for each b € B, we are
given an element y; € f such that y, = 0 for all but finitely many b and
such that we have a relation ), Fr'(b)ys = 0 in gf. We must prove that
yp = 0 for all b. We may assume that each y, belongs to f, for some v.
Assume that yp # 0 for some b. Then we may consider the largest integer
N such that there exists b with y, # 0 and tr |b] = N.
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In this proof we shall assume, as we may, that (Y, X,...) is both Y-
regular and X-regular. Let A € X+ and )\’ € X; assume that (i,)\) € [;Z
for all 7 (i.e., that A € X*). We consider the objects M = gLy, M’ = My,
of rC (see 31.3.2, 31.1.13); let 1,1’ be generators of the R-vector spaces
M> M’ Then M' ® M € gC.

In M’ ® M we have ), Fr'(b)"y, ( ® n) = 0. We have y, (/ ® ) =
v”(")yb~ (7’) ® 5, for some integer n(b), since any element of f, with v # 0
annihilates 7 (see 35.3.2(b)). Hence we have

(©) X o™ Fr' ()~ (y; (n') ®n) =0 in M’ ® M.

Let M, = @M™* C M where the sum is taken over all \; € X of the
form A — ", lip;t’ with 3", pi = N. Let m : M — M; be the obvious
projection. We apply 1® 7 : M’ ®@ M — M’ ® M, to the equality (c). We
obtain

(d) 32, vy, (') ® Fr'(b)~(n) = 0
where the sum is taken over b subject to tr |b] = N.

By 35.3.3, we may regard M as a gU*-module; this is a simple highest
weight module of pU* which is just gAy (see 35.3.4). Note also that
F#'(b)~17j in the g U-module structure is the same as b~ in the gU*-module
structure.

We shall assume, as we may, that (i, A) are not only divisible by [;, but
are also large for all 2, so that the vectors b—n € M are linearly independent
when b is subject to tr |b] = N (a finite set of b’s). Here we use that
"“M = gA, as a gU*-module. Then from (d) we deduce that y, (n') = 0,
hence y, = 0 for all b such that tr |b| = N. (We use the fact that M’ is a
Verma module.) This is a contradiction. The theorem is proved.

35.4.3. We assume that the root datum is simply connected. Then there
is a unique A € X% such that (i, \) = ; — 1 for all i. Let 7 be the canonical
generator of gAj.

Proposition 35.4.4. The map x — z~7n is an R-linear isomorphism f —
rAL.

Let J = Ei,n>l¢(Rf01(n))' It suffices to show that J @ § = rf. An
equivalent statement is that o(J) @ f = gf since § is o-stable. We have
o(J) = 2> 0§")Rf. If i,n are such that n > [;, then we can write
n=a-+ l,'b‘ with 0 < a < I; and b > 1 and we use the formulas in the
proof of Lemma 35.2.2. We see that 95") C 051‘)31‘. It follows that o(J) =
> 9§[‘) rf. The fact that >, 051") rf and f are complementary subspaces of
rf follows easily from Theorem 35.4.2(b). The proposition follows.
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35.5. PROOF OF THEOREM 35.1.7

35.5.1. As we have seen in 35.1.11, we only have to prove existence in
35.1.7, assuming that R is as in 35.2.1.

By Theorem 35.4.2, there exists a unique R-linear map P : gf — gf*
such that P(Hg"‘) - -0&‘")9,-1 -+-8;,)isequal to 6;, ---6;, if r =0 and to 0
if r > 0. (Here 4,,...,1, is any sequence in I and ji,...,Jr is any sequence
in I such that {;, >2,...,l; >2.)

We show that P is an algebra homomorphism. It suffices to show that
(a) P(z0;) = P(z)P(6;) for any = € rf and any 7 such that I; > 2 and
(b) P(xegl")) = P(z)P(0§l")) for any z € gf and any 1.

(a) is obvious. We prove (b) for z = 051“) e oﬁ‘"’ojl -+ -6, by induction
on r > 0. The case where r = 0 is trivial. Assume that r > 1. We have
z = z'0; where j = j, and 2’ = 02") e oﬁ‘"’o]-l @,

If 7 # j then, using the identity in 35.3.1 (after applying o to it), we see
that z’ 0,-01("') is equal to a multiple of =’ 95"')9,- plus a linear combination of
- terms of the form 266,60 where 0 < r < ;.

By (a) and the induction hypothesis, we have

P(z'6{0;) = P(a'6{"")P(6;) = 0

and *
P(«'6{76;6%"7) = P(z'9"0;)P(6“ ") = 0.

It follows that P(m’HjB?‘)) =0. If i = 7, then x’9j0,(l‘) = x’ezf")o,- and the
same proof as the one above shows that P(:v’0j0§l‘)) = 0. On the other
hand, we have from the definition P(z) = P(z'6;) = 0. Hence (b) holds in
this case; both sides are zero.

To complete the proof we must compute P(Bg")) for n > 0. Writing
n=a+1bwith0<a<landbe N, we have 8™ = v3¥:g{®g{®) a5 in
Lemma 35.2.2, hence P(6{™) = v@% P(6{)P({"*?)). This is zero if a > 0,
i.e., if n is not divisible by ;. If a = 0, then

P(6(™) = P(O{*) = (o) v *C D2 a0y
= (b))~} (v} /20 = 6.

The theorem is proved.
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35.5.2. We now discuss to what extent the assumptions 35.1.2(a),(b) are
necessary. Theorem 35.1.8 depends only on the assumption 35.1.2(b). This
assumption can be replaced by the assumption that ! is odd; then essentially
the same proof will work (using the results in 33.1, instead of those in 33.2).
If the Cartan datum is of finite type, then as pointed out in 35.1.2, the
assumption 35.1.2(b) is automatically satisfied; hence 35.1.8 holds in this
case.

We now discuss Theorem 35.1.7. Here we may again substitute the as-
sumption 35.1.2(b) by the assumption that [ is odd. If the Cartan datum is
irreducible, of finite type, 35.1.2(b) is automatically satisfied, but 35.1.2(a)
can fail; more precisely, if 35.1.2(a) is not satisfied, then we may assume
that

(a) we have (i,j') = —2 for some i,j € I and [ = 2 or

(b) we have I = {i,j} with (i,5') = -3, (j,i) = ~1 and l =2 or 3.

In case (a), the algebra gf is known in terms of explicit generators and

relations (see [6]) and the statement of 35.1.7 can be verified by checking
that these relations are satisfied in pf*.
' “In case (b), the explicit presentation of the algebra gf is not known for
general [; however, for small ! (for example | = 2 or 3), it is possible to
again write generators and relations, using the formulas in [6], and with
their help to verify 35.1.7. We omit further details.

We see that 35.1.8, 35.1.7 (hence also 35.1.9) hold unconditionally in the

“case where the Cartan datum is of finite type. It is likely that they hold
without any restriction whatsoever.

35.5.3. Frobenius homomorphism in the classical case. We now
assume that [ is a prime number and that the A-algebra R is such that
v=1and ! =0 in R. (For example, R could be the finite field with [
elements.) Let I’ =l if l is odd and let I’ = 4 if [ = 2. Then the value of the
I’-th cyclotomic polynomial at v = 1 is divisible by /; hence if we define A’
as in 35.1.3 (with the present choice of I), we have that R is an A’-algebra.
Hence Theorems 35.1.7, 35.1.8, 35.1.9 hold in this case. (For Cartan data
of finite type, the assumptions in 35.1.2 are not needed; for infinite types,
35.1.2(a) is needed, and 35.1.2(b) is needed only if | = 2.) For Cartan data
of finite type, we thus obtain the transpose of the classical Frobenius map
or of an exceptional isogeny in the sense of Chevalley.



CHAPTER 36

The Algebras pf, pu

36.1. THE ALGEBRA gf

36.1.1. In this chapter we assume that the Cartan datum is simply laced.
As in the previous chapter, we fix an integer [ > 1. We preserve the assump-
tions of 35.1.1- 35.1.3. Note that in this case, 35.1.2(a) is automatically
satisfied. Note also that in this case, we have [; = and v; = v for all 7.

36.1.2. We define an R-algebra gf as follows. If R = A’, then gf is the
R-subalgebra of gf generated by the elements 9§") for various %, n such that
0 < m < l. In the general case, we define gf = R® 4 (a-f). We have a direct
sum decomposition gf = @, (rf,) indexed by v € N[I]; for R = A, it is
induced by the analogous decomposition of gf and, in general, is obtained
by extension of scalars from the special case R = A'.

From the definitions we see that in the case where R is the quotient
field of A’, grf is the R-subalgebra of grf generated by the elements Hgn) for
various i,n such that 0 < n < [, or equivalently, by the elements 6; for
varigus i (if { > 2) and by 1. (We use the fact that ¢([n]') is non-zero in
this field for 0 < n < l.) It follows that in this case, gf is the same as the
algebra § defined in 35.4.1.

We shall need the following result.
Lemma 36.1.3. Leti,j € I be such that (i,5') # 0. Let m,n € N be such
that m € IN and n < L.

(a) og’")a;.") € 4f is an A'-linear combination of elements u,6'") where
s € [0,m] is divisible by | and us € 4/f.

(b) 0,(")0;-'") € af is an A'-linear combination of elements Ogs)u’s where
s € [0,m] is divisible by | and u), € 4.
We have (i, j') = —1, since the Cartan datum is simply laced. We prove

(a). We may assume that m > 0. Then m > [, hence m > n+1 and 7.1.7

is applicable. Thus we can express 0§m)0§") as an A’-linear combination of

9™ g(s")
i 3 i

terms where 7,8’ € N,7+ s =m,m —n < s < m. For such

a term, we have r < n < [, hence 0,(")05") € af and 01(3’) is either 01("’)
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or, if s’ < m, a power of v times 01(5’—m+1)01(m—1) (see 34.1.2). In the last
expression we have m —l € IZ and 0 < ' —m+ 1 < [; (a) follows. Now (b)
follows from (a) by using the involution o.

Theorem 36.1.4. The R-module gf, is free for any v € N[I].

Lemma 36.1.5. . Assume that the root datum is simply connected. Let
A € Xt be defined by (i,\) = l; — 1 for all i. Let n be the canonical
generator of pAx. The map x — x~ 1 is an isomorphism gf — RA.

It suffices to prove this in the case where R = A’; the general case
follows by change of rings. The fact that this map is injective follows
from Proposition 35.4.4 (over the quotient field). We prove surjectivity.
The argument is similar to the one in the proof of 35.4.2. Note that grf
is spanned as an R-module by products z,z;-- -z, where the factors are
either of the form 92(") with 0 < n < | (factors of the first kind) or of the
form 8™ with m € IN (factors of the second kind).

By Lemma 36.1.3, any product x;z,; with z; (resp. z;41) a factor of the
segond kind (resp. of the first kind) is an A’-linear combination of products
of the form z)z% - - -z _,z] where z},z),...,z,_, are factors of the first

kind and z.. is a factor of the second kind. Applying this fact repeatedly,

we see that 2122 - - - T is a linear combination of analogous words in which

any factor of the first kind appears to the left of any factor of the second
- kind.

Since the R-module rA) is generated by elements ™7 with =z € gf,
we see from the previous argument that gA, is generated by elements
I > ---x,n where z' € gf and z),22,...,z, € grf are factors of the
second kind.

Since (Hgm))‘n = 0, for any m such that m > (i,A) = l; — 1, we have
(0§"‘))—n = 0 for any m € [N such that m # 0. It follows that the R-module
rA, is generated by elements 2’ ~n with z’ € rf. The lemma follows.

36.1.6. Proof of Theorem 36.1.4. We may assume that the root datum
is simply connected. Hence Lemma 36.1.5 is applicable. The isomorphism
in that lemma is compatible with the direct sum decompositions according
to v; it remains to observe that the canonical basis of gA) provides a basis
for the summand corresponding to v.

The following result is an integral version of Theorem 35.4.2(b); here R
is not assumed to be a field.
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Theorem 36.1.7. The R-linear map x : grf* ®r (rf) — rf given by
z®y +— Fr'(z)y is an isomorphism of R-modules.

It is enough to prove this in the case where R = A’; the general case
follows by change of rings. The fact that x is surjective has already been
proved in the course of proving Lemma 36.1.5 (actually the products in that
proof are in the opposite order of what we need now, so we must apply o
to them). Next we note that x is a homomorphism between two free A’-
modules (the freeness of rf* and of grf is already known; the freeness of
rf follows from 36.1.4). Hence to prove that x is injective over A’, it is
enough to prove the corresponding statement for the quotient field of A’.
That statement is already known (see 35.4.2(b)). The theorem is proved.

36.1.8. Let pf — gf be the R-algebra homomorphism induced by change
of scalars from the analogous homomorphism for R = A’, which is the
obvious imbedding.

Corollary 36.1.9. The natural algebra homomorphism grf — grf is an
imbedding; its image is the R-subalgebra of rf generated by the elements
95") for various i,n such that 0 <n < .

We shall identify rf with a subalgebra of rf, as above.
36.2. THE ALGEBRAS gl, g

36.2.1. Let pu be the R-subalgebra of U generated by the elements
E'i(n)lc, Fi(")lc for various i, n such that 0 < n < ! and various ( € X. Note
that gi is the free rf ®r (rf°PP)-submodule of gU with basis (1¢) (the
module structure being (z ® z') : u — zTuz’~); the same statement holds
for the module structure (z ® z’) : u — z~uz'*.

Lemma 36.2.2. gpu is closed under comultiplication.

This is easily proved by checking on the algebra generators of git.

36.2.3. In the rest of this chapter we assume that | = !’ is odd. Then
vl = 1. We introduce a certain completion gii of git as follows. Note that
any element pu can be written uniquely as a sum

(a‘) E(,('ex T¢ ¢
where z¢ ¢ € 1¢(ru)1¢ are zero except for finitely many pairs (¢, ().

We now relax the last condition and we consider infinite formal sums (a)
in which the only requirement is that there exists a finite subset F C X
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such that z¢ ¢+ € 1¢(rtt)1¢/ are zero unless { — ¢’ € F. The set of all such
formal sums is denoted by gii. (Note that the set F varies from element to
element of gil.) The R-algebra structure of ril extends in an obvious way
to an R-algebra structure on gi; this algebra has a unit element ZC 1.
Note that that the two gf ®r (rf°PP)-module structures on gu extend in
an obvious way to two rf ®g (rf°P?)-module structures on gii.

For any X*-coset ¢ in X, we define 1. = ZCEC 1. € gu. Let J
(resp. J') be the R-submodule of gil generated by the elements z+1.2'~
(resp. z~1.z't) for various ¢ € X/X* and z,z’ € gf.

Lemma 36.2.4. (a) Fi(b)u C J for any u € J and any i,b such that
0<b<l.
(b) J is an R-subalgebra of gii and J = J'.

To prove (a), we may assume that u = Ei(f‘)---Ei(:”)lcm’ ~ where
ai,...,ap € [0,l — 1],c € X/X* and ' € gf. We argue by induction on p.
If p = 0, the result is trivial. Assume that p > 1. Let z; = 95:2) . -9§:”).
We have

. u=1sE"afa'~
for some ¢ € X/X*. If i # ), the desired result follows immediately.
Assume that i = ¢;. We have

ay +b— (i, - - _
Z Z ¢ ([ ' Y ( C>:|> Ei(al t)lC—(‘11+b—t)i'Fi(b t):l"-l"ml .

CeC t>0it<a;t<b
For each t,( in the sum we have 0 < ¢ < ! and a1 +b— (3,{)= a1 +b— (3, (o)
mod !Z, for some fixed element (o of ¢. We have

([0 ) e )

(see 34.1.2); here we use the hypothesis that [ is odd. Hence we have
Fi(b)u _

Z p ([m + bt— (i,C0>]) E,'(al_t)Fi(b_t)(Z le—ayir)xia’™.

t>0;t<a;;t<b ¢ec’
Note that Zce o l¢—a,ir = 1cv for some ¢” € X/X*. Using now the induc-
tion hypothesis, we see that Fi(b)u € J; (a) is proved. Using repeatedly
(a) and the identities 1c1¢ = 6c o 1c, for ¢,/ € X/X*, we see that J is a
subalgebra of pii. Again, using (a) repeatedly, starting with 1.2'* € J for
c € X/X*,z' € gf, we see that J' C J. By symmetry, we have J C J',
hence J = J’. The lemma is proved.
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36.2.5. Definition. gu is the R-subalgebra J = J' of gii.

Note that the algebra gru has a unit element ) _1.; here c runs through
the set X/X*. The set X/X* is finite, since by the definition of X*, the
map ¢ — (i,¢) mod [ defines an injective map X/X* — (Z/1Z)!.

From the definition, we see that pu is the free gf ® g (rf°P?)-submodule
of rtt with basis {1.|c € X/X*} (the module structure being (z®z’) : u —
ztuz’~); the same statement holds for the module structure (x®z') : u —
z-uz't.



Notes on Part V

1. The results in Chapter 32 are due to to Drinfeld, for R = Q(v). The extension
to the case where R is a field and v is a root of 1 in R is new; it answers a
question that Drinfeld asked me in January 1990.

2. The fact that the simple integrable modules of a Kac-Moody Lie algebra admit
a8 quantum deformation (Chapter 33) was proved in [4]; for Cartan data of
finite type this was also stated in [8], but the proof there has a serious gap.
(It appears [2] that, for Cartan data of finite type, this result was known to
Drinfeld.) The results in 33.2 are new.

3. The results in Chapter 34 have appeared (for ! odd) in [5].

4. The quantum Frobenius homomorphism, for Cartan data of finite type and
with some restrictions on I , was implicit in [5] and explicit in [7]; its general-
ization given in Chapter 35 is new.

5. In the case where R is a field of characteristic zero, v is a root of 1 in R, and
the Cartan datum is of finite type, RU is the finite dimensional Hopf algebra
defined in [6], [7] (with some restrictions on the order of v). The extension to
infinite types is new.
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Part VI

BRAID GROUP ACTION

In the classical theory of semisimple Lie algebras, the Weyl group plays
an important role. Now the Weyl group is not quite a subgroup of the
corresponding simply connected Lie group; only a finite covering of it is.
As Tits has shown [9], one can choose such a covering which is naturally
a quotient of the braid group. In particular, there is a small obstruction
to making the Weyl group act on a simple integrable module for the Lie
algebra; what acts naturally is a quotient of the braid group, which is a finite
covering of the Weyl group. Since in this case, the obstruction involves only
signs, it is almost invisible. In the quantum case, the obstruction becomes
- quite serious, and in this case, not even a finite covering of the Weyl group
can be made to act; the braid group still acts, but in general not through
a finite quotient.

In Part VI we explain how the braid group acts on integrable U-modules
and on U itself. (In fact there are several braid group actions, but they are
related to each other in a simple way.)

The symmetries T} ., T}’, of an integrable U-module have already been
introduced in Chapter 5. In Chapter 39 it is shown that these symmetries
satisfy the braid group relations, hence they define braid group actions.
These symmetries are studied simultaneously with the analogous symme-
tries of U (see Chapter 37) which also satisfy the braid group relations.

In Chapters 38 and 40 we study the connection between the symmetries
of U and the inner product (,) on f. In Chapter 41 we define a braid group
action on grU and on its integrable modules for any R.

In Chapter 42 we assume that the Cartan datum is simply laced and of
finite type and we use the braid group actions to give a purely combinatorial
parametrization of the canonical basis B in terms of reduced expressions
for the longest element of W.



CHAPTER 37

The Symmetries T/.,T. of U

37.1. DEFINITION OF THE SYMMETRIES

37.1.1. In this section we fix i € I and e = +1. Recall that in 5.2.1 we
have defined some symmetries T/, T{, : M — M for any integrable module
M of U. In the following proposition we define analogous symmetries

T ., T" :U— U.

i,er"ie
Proposition 37.1.2. (a) For any u € U, there is a unique element u” €
U such that for any integrable U-module M and any z € M, we have
TV (u"2) = uT!_,(2).
(b) The map u — u” is an automorphism of the algebra U, denoted by
(c) For any u € U, there is a unique element u' € U such that for any
integrable U-module M and any z € M, we have T o (u'2) = uT] (2).
(d) The map u — v’ is an automorphism of the algebra U, denoted by
Til_. 1tlis the inverse of T}, : U — U.

Thus, for any integrable U-module M, any z € M, and any u € U, we
have
T o (uz) = T; ()T} . (2)

and

Ti-e(uz) = Tj_ (W)T;_,(2).

37.1.3. The proof will be given in 37.2.3. The proof will give at the same
time the following formulas for the values of the automorphisms 77 LT
U — U on the generators of the algebra U.

T} (E:) = —K.iF, T (F)) = —E;K_;;

T} o(Bj) = X iom iy (V) 0 BV E;E®) for j # i;
T} o(Fj) = X g ommijy (V)0 TFOFEM for j # i
TiI,e(Ku) = Ku—(u,i’)i;
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i,e ' tie

Til,l—e(Ei) = _Fik—eia Tz"—e(Fz) = —f{eiEi;

’I‘i,,l—-e(EJ') = zr+s=—(i,j’)(_l)rvfrEi(S)EjEzgr) for ] ?é i;
T/ _(F)) =3, +s=_(,.1j,)(—1)%;”F}”F,-F}s) for j # i;
ﬂ,l—e(Kﬂ) = Kn—(u,i')i-

More generally, we have, for any n > 0:

ﬂ,e(Egn)) = (_l)nv:n(n-l)keniFi(n)i
T (F™) = (-1 " VB R ns;

T; (E('n)) =) i (—l)rv'-"E(r)E(-n)E-(s) for j # 1
nLe\"g r+s=—(1,j')n i i 3 i J )
Ti,,e(Fj(n)) - E‘r—l—S:—(i,j’)n(_l)rvi_erFi(S)Fj(n)E(r) for j # 4

TV_(E™M) = (-1 F R enss
T/ (F™) = (=)0 "D Reni B
TV (E) = T i gyn (VBB EL for § £ 4;

i,—e
T (F}"))=Zm:_(i,,»)n(—l)rvf"F‘fr)F}")E(s) for j # i.

i,—e
37.2. CALCULATIONS IN RANK 2

37.2.1. Given i # j in I, we set a = —(i,j’) € N. For any m,n € Z, we
set (compare 7.1.1)

Zijn,mie = Tn,mie = frtm;e = Z (_1)r”ier(an_m+])Ei(r)EJ('n)Ei(s) e U%;

r+s=m

z! =Ty e = 3 (F)TCTIER EMED € Ut

1,jin,m;e n,m;e
r+s=m

Yi,jin,mie = Yn,mpe = Z (_1)rvi—er(an—m+l)Fi(3)F](n)Fi(r) ceU;

r48s=m

’ .t o
yi,j;n,m;e - yn,m;e - fn,m;-e

Z (_l)rvi—er(an—m+1)E(T)F;n)Fi(s) ceU" .

r4s=m

I

With this notation, we have the following result.
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Lemma 37.2.2. Let M be an object of C' and let z € M. We have
(&) T _o(En,amsez) = E{VTY_, (2);

2,—€e
(b) T} (% amse?) = E\VTY ()5
(©) TV o(Yn,anez) = F\VTV_(2);

(@) T} o (Vo amse?) = FLVTY (2)

We may assume that z € M*. We have z, gn.c2 € MArani'+ni’ et
9= (), 9 = (i, A+ ani’ + nj’) = g+ an.
We have

Mot = 5 B OB e
a,b,cEN;—a+b—c=g’

By 7.1.3(a) and 7.1.5(a), we have
Ei(C)xn,an;e = vieacnzﬂ,aﬂ;eEi(C)'
Hence

"
Ti,—e(xn,an;ez)
con b, —e(—ac+b)+eacn 1~(a) (b) (c)
= 3 (~1)%y; ECF®z, B2,
a,b,ceN;—a+b—c=g’

By 7.1.3(b) and (a), this can be written:

b
ST 3 () (et eacn—e(s —b)

a,b,cEN;—a+b—c=g’' b'=0
a) iz (b=b") 1n(c)
X E,( K—eb'ixn,an—b’;eFi E;"z

b
— Z Z(_l)b+b'vi—e(—ac+b)

a,b,ceN;—a+b—c=g’ b'=0

eacn—e(bb' —b')—eb’ (i,A\+ci’ —bi’' +ani’+nj’) +(a) b—b") r~(c)
X v, ( ) )E,' zn,an—b’;eF;( E;"z

b a
bibita’, ¢t [om — b +d
- T E gy
a,b,c€EN;—a+b—c=g’ b'=0a’=0 i

X T contrtate E,-(““") Fi(""") Ei(C) 2
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i,e ' i,e

where
(e) t = e(ac—b+acn+bb +b —b'g—2b'c— ab'n+ocan+aa’ —d —2ab’).
We make a change of variable: a” = a — a’,b” = b — b'. The exponent
(e) then becomes

t=e(a'(—1+b"—a"—c—g)+(a”c—b")+(a"+c)(—a"+b"—c—~g))

We use the condition —a’ — a” + b’ + b” — ¢ = g + an which is equivalent
to—a+b—c=g".

We have Tp an—b'+a;e = 0 unless 0 < an — b +a’ < an (see 7.1.5), or
equivalently, 0 < —a” + b” — ¢ — g < an; hence we may add the condition
0< —a” + b’ — c— g < an in the summation without changing the sum.

In the presence of the equation —a’ —a” + ¥ + V" —c =g+ an, the
inequality o’ > 0 implies ' > 0 since a” — b"” + ¢+ g+ an > 0. The sum
becomes

Z (__l)b”,Uie((a"c—b”)+(a"+c)(—a“+b"—c—g))
a’” b ,ceN;0<—a’’ +b"'—c—g<an
174 i
’ "(—1—a"+b" —c— —a +b —c—g
x Z (_l)a ,Ufﬂ( a c—9) o
a’eN i
x BV FVES

Tn,—a”+b'—c—g;e

Thé sum over a’ is zero unless —a” +b” —c — g = 0 (see 1.3.4). Hence the
sum becomes

b e a''c—b" (al/ b’ c
E (-1) Ui( )xn,O;eEi )Fi( )Ez( )Z
a”,b”,cEN;—a”+b”—c=g

which equals E(")T”_e(z) This proves (a).
Using 5.2. 3(b) we have

(_1)(i,z\ —e(i, )\)Tl

z,—e

TII

1—e

and
Ti’,l—e(mn,an;ez) = (_1)<l’)‘)+an’vi_e(1,/\>—eanﬁ,—e(x"’a"?ez)'

Hence (a) implies

T; (Tn,aniez) = (=1)"v eanE(n) —e(z)

1,—€
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Substituting here

2‘.I — (_l)anv;ean

n,an;—e Tn,an;e
we obtain
T} —e(@nan-e2) = B{VT]_(2).
Replacing e by —e, we obtain (b).
We now apply (a),(b) to z and “M instead of M. The action of T,
(resp. T} ) in “M is the same as the action of T; _. (resp. T},) in M; thus
(a) and (b) for “M imply

T} _(w(Tn,anie)z) = FOT! _ (2)

and
TY,(@(Th ane)?) = F{VTI(2)  for M.

We have w(Zn,anie) = Yn,an;—e a0d W(T), 4n.e) = Yn,an;—e. Hence
fTz’,—e(yn,ovn;—ez) F(n)Tt’,—ez

and
e(yn an;—eZ) = F(n)T"

Repla.cmg e by —e, we obtain (d) and (c).

37.2.3. Proof of Proposition 37.1.2. We show the uniqueness of u”
in 37.1.2(a). It suffices to show that, if & € U satisfies T{_.(iz) = 0 for
any integrable U-module M and any z € M, then @ = 0. Since T}’_,
invertible on M, we have that 4 annihilates any integrable U-module. But
this implies @ = 0 (see 3.5.4). Thus the uniqueness in 37.1.2(a) is proved.

To prove existence, we observe that, if (a) holds for two elements u;, uz,
then it also holds for uyuz and au; + buy for any a,b € Q(v); indeed, it is
clear that (uju2)” = ujuy and (au; + bug)” = auf + bul.

Hence it suffices to prove the existence of 4" in the case where u is one of
the generators Ej, F, K, of U. For K,,, this follows from 5.2.6. For E;, F;
this follows from 5.2.4. For Ej;, F; with j # i, this follows from 37.2.2.

This proves (a). The argument above shows that u +— u” is an algebra
homomorphism. In an entirely similar way we see that (c) holds and that
u +— v’ is an algebra homomorphism.

It remains to show that (u”)’ = u and (u')” = u for all u. For any M, 2
as above, we have, using 5.2.3(a):

(ul)llz — T/ TII e(u')"z — i,_e(u,TIil,,e ) — unle:r:/ez = uz.
Thus (u’)” — u annihilates any integrable U-module, hence (u')"” = u. The

identity (u")’ = u is proved in the same way. The proposition is proved.
Y Y.
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i,e ' 1,e
37.2.4. We have
wﬁyew = 7"7.’,’6 : U - U a'nd aT’il,ea = CI’LI,,"e : U - U'

The symmetries T} ,, T/’ are related to the involution ~ : U — U as follows:

T (u) =T _(@), T/.(u)=T_.(a)foraluel.
Let u € U be such that K;uK_; = vu We have
T} (u) = (=1)"0{"T; (u),
or equivalently,
Ti(u) = (-1)"T; o(KeiuK —ei).
These formulas are proved by checking on generators.
Proposition 37.2.5. Let i # j in I. For any m € Z, we have
(a) f1'11",6(:l:;,j;l,m;e) = Ti,5;1,— (3,j ) —m;er
(b) Ty _e(@iji1,mie) = m;,j;l,—(i,j’)—m;ef
The two formulas are equivalent, by 37.1.2(d), so it suffices to prove
(a). For m < 0 or m > —(i,j’), both sides of (a) are zero. So we may
assume that 0 < m < —(i,5’). We argue by descending induction on m.
For m = —(i,j'), (a) follows from 37.2.2(b). Assume now that (a) is known
for some m such that 1 < m < —(i,j’). We show that it is then also true

for m — 1.
Recall from 7.1.2(b) the identity

. r
_Fimi,j;l,m;e + l‘i,j;l,m;eFi = [—(Z,J ) -m+ l]iK—eixz’,j;l,m—-l;e-

Applying to it the algebra isomorphism ¢ : U — U?, which interchanges

! we deduce that

Tij1,mie AN T 1 mees

~2 i mieFs + il jig e = (=6, 4') = m+ 1l i1 n ;e Kei-
We apply Tj , to this; using the induction hypothesis, we have

[_(ihj,) -m+ I]iﬂ,e(x;j;l,m—l;e)ﬁ'—ei
= ﬂ,e(xé,j;l,m;e)EiK—ei - EiK—Eiﬂ,e(x'Ii,j;l,m;e)
= Tiji1,— (i) —mie BiK —ei = BiK_eii i1, —(i,5") —mie

e((i,j')+2m)
- Y Eiz; ;

= (Zi,j;1, (i) —mie Bi i1,— (6,57) —mie ) K —ei

= [_(i’jl) -m+ l]ixi,j;l,—(i,j’)—m+1;ek—ei‘
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The last equality follows from 7.1.2(a). Since [—(i,j') —m+1]; # 0, we de-
duce that T} (2} ;.1 m—1,e) = Ti,ji1,—(i,j")~m+1;e- This proves the induction
step. The proposition is proved.

37.3. RELATION OF THE SYMMETRIES WITH COMULTIPLICATION
37.3.1. We define two elements
L;’ = Z(_1)nv:"("—1)/2{n}iFi(") ® Ez_('"),
n

L; =Y iV n} R © EM

n

of (U® UY (see 4.1.1 and 4.1.2).
Proposition 37.3.2. The following equality holds in (U ® UY, for any
ueU:

(a) (Ti —1 ® T; _))A(T}1u) = LiA(u)Ly.

It suffices to show that for any integrable U-modules M, N, the two sides
of (a) act in the same way on M ® N. Let ¢ € M,y € N. Using 5.3.4 twice,
we have

N

" LiA@L{(z®y) = L (uL{(z ® y))
= ((Ti,,ll)—l ® ( i,,,l)—l)Ti',ll(u(Tz'/,ll)_l(Ti’,llm ® T;y))
= ((Ti’,ll)—l ® (T;Hl)_l)Tzul(u)(Tzl,,lx ® Tz,,,ly))
= ((Ti -1 ® T _))A(T1u))(z ® ).

The proposition is proved.



CHAPTER 38

Symmetries and Inner product on f

38.1. THE ALGEBRAS f[i], °f[i]

38.1.1. In this section we fix i € I. For any j € I distinct from ¢ and for
any m € Z, we set

£(i,55m) = Tr g (~ 170, BT HDG06,00) €

116, 55m) = g (1), 7T, € 5.

1,7;m) is the same as the element f; ;.1 ;.- in 7.1.1.
»731, MMy

Let f[i] (resp. “f[i]) be the subalgebra of f generated by the elements
f(i,5;m) (resp. f'(¢,7;m)) for various j € I, distinct from %, and various
. m € Z. Since o : f — f interchanges f(i,j;m) and f’(¢,j;m), we have
a(f[i])) = 7f[q].

Lemma 38.1.2. (a) f =3, 0if[i];

(b) £ =350 £[i]6;-

"Note that (b) follows from (a) by applying o. We prove (a). We consider
a product yy2 - - - y, of elements in f in which each factor is either 6; or is
of the form f(i,j; m) for some j different from ¢ and some m € Z. Assume
that there are two consecutive factors y, = f(%,j;m) and ya41 = ;. Using
the formula

—o @IV, £ jim) + £, §im)B; = [m+ 1) f (3, 5;m + 1)

which follows from 7.1.2(a), we see that we may replace y,%,+1 by a scalar
multiple of y,+1Y. plus a scalar multiple of f(7,j;m + 1). Using this pro-
cedure repeatedly, we see that y,y> -- -y, is equal to a linear combination
of products y}y5 - - - y;,, which do not have consecutive factors of the form
described above, hence have the property that for some s > 0, we have
Vi =yy ==y, = 0; and y,,,,...,y, are of the form f(i,j;m) for
various j,m. Thus, y1y2---yn belongs to Y, 0:f[i]. Now any word in
the generators 8; (j € I) is of the form y,y, - - yn with y, as above, since
6; = f(i,7;0) for j # i. The lemma follows.
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Lemma 38.1.3. There is a unique algebra isomorphism = — g(z) of
f[i] onto “f[i] such that T|(z*) = g(x)* for any z € f[i]. We have
T, y(&'*) =g (")t for any =’ € *fli].

Since T}, T] _, are inverse algebra isomorphisms, it suffices to note that
ﬂ,ll(f(l,],m)+) = f,(iaj; _(isj,) - m)+
and
ﬂ,,—l(f/(ivj;m)-’-) = f("'v]: _<i’j/> - m)+a
for any j # i and any m € Z. (See 37.2.5.)

Lemma 38.1.4. Assume that z € f satisfies T]',(z*) € U*. Then ;r(z) =
0.

We may assume that z is homogeneous. By 3.1.6, we have

()T K — K_.(; +
(a) ot F — Fat = ri(z)* K; K:ll(z"'(m) )
Vi —v;

By 38.1.2, we can write

ri(@)/ (i — o) = 3 00y,

t>0

and

@)/ — o) =369z

>0
where y;,z: belong to f[i] and are homogeneous. By 38.1.3, we have
T/,(yf) € Ut and T/,(z}) € U* for all t > 0. Applying T/, to both
sides of (a), we obtain

~ T/ (a1 K Ei + K BT (a)

(b) =3 (=Dt OV EP R (T (6 K =i — KTl (21).
t>0

By our assumption, the left hand side of (b) is in K_;U", hence so is the
right hand side. Using the triangular decomposition in U, we deduce from
(b) that T, (y;) = 0 for all ¢ > 0 and T},(z;}) = 0 for all ¢ > 0. Since
T/, is bijective, this implies zt = 0 for all t, hence 2z, = 0 for all t and
ir(z) =0.
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Lemma 38.1.5. Let z; (t > 0) be elements in the kernel of ;r, which are
zero for all but finitely many t. Assume that ) _, Ogt):ct =0. Thenz; =0
for all t.

This follows from 16.1.2(c) in the setup of 17.3.1.
Proposition 38.1.6. (a) The following three subspaces of f coincide:
f[i]; {z € f|T}",(z*) € U*}; and {z € f|;r(z) = 0}.
(b) The following three subspaces of f coincide:
7fi]; {z € f|T] _,(z*) € U*}; and {z € f|ri(z) = 0}.

Note that (b) follows from (a) by applying 0. We prove (a). By 38.1.3
and 38.1.4, the first space in (a) is contained in the second and the second
in the third. Let z € f be such that ;7(z) = 0. It remains to prove that
z € f[i].

By 38.1.2, we can write z = ), Bgt)zt where z; € f[i] for all t. By
38.1.3 and 38.1.4, we have ;r(z;) = 0 for all . We then have 0 = (zo —z) +
o>t 0,@.1:,5 where g — z and z; for ¢ > 0 are in the kernel of ;. Using
38.1.5, we deduce that o — = = 0 and z, = 0 for ¢t > 0. In particular, we
have z = z, € f[i].

The proposition is proved.

Lemma 38.1.7.

r(f(i,5;m)) =1® f(i,j;m)
m m—t—1

+ Z H 1- vi—2h+2m—2a—2)U:(m—t)f(i,j;t) ® 0§m_t),

r(f'(i,5;m)) = f'(i,5;m) ®1
m m—t—1

— —2a— m— —t . .
+3 T @—o?rem=2e=2yfm99""0 @ f'(i, s ).
t=0 h=0

We set a = —(i,j5'). Using 1.4.2 and the fact that r is an algebra
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homomorphism (see 1.2.2), we compute

T(f(za J) m)) = E (—l)r,+"'",vi_(7"+T”)(0—m+1)+7'/7‘”+3’s“
P 4r ol s =m
= Z (—].)r,+r"v._(r,+r”)(0’—m+1)+7"r"+3'3"_,.Ha+2rns,
1

4! 48’ 8 =m

r" + s” ’ ’ s
X [ ] 676,68 @ o7+
1

,'.II
11

+ Z (_l)r’+r”vi—(r'+r”)(a—m+1)+r'r"+s s"42r"s’ —s'a

rl 4/ g 48 =m

/ 4 ’ ! " 1/
g [r +s] 6 +) © ")g,00")

r
' s'(m—r'—8")—r' (a—m+1) —
=2 (1Y > (-1)
r"s’ 7‘”,.9”;1‘"-}-3”:'"1—1"—3’
” ’ ’ " /" ! 1" ’” "
x ’U: (r'+s’'—a—(a—m+1)) [T ,,-.’/-/s ] 91_(7' )9]_057‘ )®91(" +s")
o i
+ Z (_l)r"vr"(m—r"—s"—(a—m+1))+(m—r"—s")(s”+r"—a)
i
r’l,sll
’ 7 ! / / 7 7 1" "
% Z (—l)r ’U: (—1+s +r)[’f' -};S:I ol(r +s)®0£r )0]_01(3 )
.85+ =m—r' —g" r i
s’
— Z(_l)rlv:'(m—r'—8')—r'(a—m+1) " 1_[3 (1 _ vi—2h+2m—2a—2)
r’,s' h=0
% osr')ojoz(s') ®0§m—r'—s') + Z (_1)r”vi—r"(cx—m+1)1 ®91(r")0j91(s")

r'4s'"'=m

m m—t—1

=18 fG,5m)+ Y [] (1—vy2rt2m=2a-2),0m 0 15 j: ) @ 6™,
t=0 h=0

This proves the first formula of the lemma. The second formula follows
from the first, using the formula r(o(z)) = (¢ ® o)'r(z) (see 1.2.8(a)).

Lemma 38.1.8. Let x € f[i] and let 2’ = g(x) be the corresponding ele-
ment in °f[i] (see 38.1.3).

(a) We have r(z) € f[i] @ f and r(z') € f ® °f[i].
(b) Let 'r(z) € f[i] @ f[i] be defined by r(z) — 'r(z) € f[i] ® 6;f. We use
the direct sum decomposition f = f[i] @ 6;f (see 88.1.5).
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Let "r(z') € “f[i] @7 f[i] be defined by r(z)—"r(z') € £6, @ 7f[i]. We use
the direct sum decomposition f = 7f[i|®f6;. We then have (9®g)('r(z)) =
"r(z'), where g is as in 88.1.3.

We prove (a). If 21,z € f satisfy r(z;) € f[i] ® f and r(z2) € f[i] ® f,
then r(r1z2) € f[i] ® f since r respects products and f[i] is closed under
multiplication. Hence to check that r(z) € f[i] ® f for z € f[i], it is enough
to check this in the special case where z = f(3, j; m). But this follows from
the previous lemma. This proves the first assertion of (a). The second
assertion of (a) is proved in the same way.

We now prove (b). Let (zn)ren be a basis of the vector space f[i], con-
sisting of homogeneous elements; then (9(zn)nen) is a basis of the vector
space “f[i] (see 38.1.3). Let f(h) = |zu|, f(R) = |g(zr)| be the correspond-
ing elements of N[I].

Using (a), we can write uniquely

r(z) = Z Cashh 20 ® 6 21
n>0;h,h'€H
r@)= > dunwg(zn)0” @ glew),
n>0:h,h'€H

where ¢(n; h, h'), d(n; h, h’') € Q(v) are zero for all but finitely many indices.
By 3.1.5, we have
(c) A(x™) = 3n>0m,neH Crih,h 2, WK ()i ® E( )Zh"
(@) A@*) = Toso wen dninwa(zn)* BV K poy ® glew)*
By definition, we have A(z'+) = A(T/,(zt)). Applying T; _, ® T} _, to
(d) we obtain
(T; _1 ® T] _))A(T(z™))
= Y w0V R VK © 23
n>0;h,h'€H
By 37.3.2, we can replace (T} _; ® T} _;)A(T",(z*)) by LiA(z*)LY, which
by (c) equals
Li( Z Cnsh,h/ g Kf(h’)+m ® E )Zh»)L”
n>0;h,h'€H
Thus, we have
> dunw ()" T R FV Ry © 2,
n>0;h,h'€H

= Lj( Z Crsh,h Z)Tf(f(h’)+m’ ® Ez( )L
n>0;h,h'eH
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or equivalently,

(> dunp ()G R FY Ry © 2L
n>0;h,h'€H
=Li( Y cummwz Kpnyin ® EV2)
n>0:h,h'€H
(equality in (U ® U)).

We consider the U ® U-module “My ® “My, where My is a Verma
module. Both sides of the previous equality act naturally on this U ® U-
module. Applying them to the vector £ ® €, where £ € “ My is the canonical
generator, we obtain the equality

Z v:(t—1)/2{t}i(_l)nvi—n(n—l)dn;h’h/

n,t>0;h,h'€eH
x 2zt K_niFV K ;00 FO€ ® 2 EMe
(e)
= 3 o cann (FO% Kyt ® BV EM)ze,
n, t>0 h,h'eH

(equahty in “ Mo ®“My). Since F;€ = 0, only the summands withn =t =0
contribute to the left hand side of (e). Let 7 : “ My/E;* Mp be the canonical
map. After applying 1® 7 to (e), the summands with (n,t) # (0,0) (in the
right hand side) go to zero; hence (e) implies the equality

Z dosn,ne 2t € @ 7( zh, Z cOhhrzh£®7r(zz',§)
hh'€H h,h'€H
in“Mp ® (“’Mo/E “ Mp).
The vectors z;, F¢ are linearly independent in “ Mp; hence we deduce that

Z (doh,nr — cosp,nr)T(2H€) =0

h'eH

in “My/E;*“ M), for all h. Hence

Z (doh,nr — cosn,nr)zne € Oif,
h'eH
for all h. Using the fact that f[¢] N (6;f) = 0 (see 38.1.5), we deduce that
do;h,hf — CO;h,h' = 0 for all h, K.
By definition, we have 'r(z) = }_, ,.cyConp2n ® 2zn, and "r(2’') =
Eh,h,eH do;h,n'g(2n) ® g(zn’) and the equalities do,n p» = co.p n imply that
(9 ® g)('r(z)) ="r(z’). The lemma is proved.
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38.2. A COMPUTATION OF INNER PRODUCTS

Proposition 38.2.1. For all z,y € f[i], we have
(a) (9(2),9(v)) = (2, ).

Assume that we are given two elements 2/, 2" € f[i] such that

(9(z"),9(4")) = (&',¥)

and
(9("),9(y")) = (=", y")
for all y',y"” € f[i]. We show that we then have

(9(z'2"), 9(y)) = (2'2",y),
for any y € f[i]. By definition, we have

('2",y) = (' ® 2", r(y))
and

(9(z'2"), 9(v)) = (9(z") ® 9(2"), 7(9(¥)))-
We have (2, 6;f) = 0 since ;7(z") = 0 (see 1.2.13(a)); hence

(2 ®2",r(y)) = (¢ ®2"/r(y))
(with the notations of lemma 38.1.8). Similarly, (g(z’),f6;) = 0, hence

(9(z") ® g(2"),r(9(¥))) = (9(z') ® 9(2"),"r(9(¥)))
=((g®9)(Z ®2"),(g®g)r(y))

The last equality comes from lemma 38.1.8. By our hypothesis, we have
((g®9)(Z ®2"),(g®g)r(y)) = (2 ® 2”,’r(y)). Combining the equalities
above, we obtain (g(2’'2"), g(y)) = (2’2", y), as claimed.

Since the algebra f[i] is generated by the elements f(i, j; m), we see that
it is enough to prove (a) under the assumption that = = f(, j;m). We can
assume also that y is homogeneous of the same degree as f(i,7;m). Since
y € f[i], this forces y to be a scalar multiple of f(¢,7;m). Thus, we are
reduced to verifying the identity

(f(i’j;m)’ f(l,],m)) = (fl(i’j;m,)vfl(ivj;ml))
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for any m, m' such that m + m’ = a = —(z, j'). (See the proof of 38.1.3.)
We have f(i,j;m) = 0(’") mod 6;f; since (f(z,j;m), 6;f) = 0, as above,
we have (f(,7;m), (¢, 7; m)) = (f('i jim),0; 6’('")) This is equal, by defi-
nition, to (r(f(¢,5;m)),0; ®9 ) and, by 38.1.7, this equals
(b) TTg' (1 — o7 +2m=2=2)(6;, 6,) (6™, 6{™).

Similarly, we have f'(i,j;m') = 0?" )0j mod f8;; since
(f,(ivj; TI’L’), fet) = Oa
we have
(635 m), £/ gsm')) = (f(6,35m),60™85).

This is equal, by definition, to (r(f’(¢, j; m’)),b’(m) ® 6;) and, by 38.1.7,
this equals

(0) TTis' (1 — w7 22 =22=2)(9;,6,) (6™, ™).

We substitute (o,?"",ag"‘)) and (Ggml),Ol(m,)) in (b) and (c) by the ex-

pressions given by 1.4.4; we see that the expressions (b),(c) are equal. The
proposition is proved.

38.2.2. We say that a sequence h = (4y,12,...,1,) in I is admissible if for
any a,b such that 1 < a < b < n, we have

(a) la,—l ‘la+1,—1 T, -1, —I(E"b) e U+ and

(b) T2, T, -T2, o (Es,) € U™,

Assume that an admissible sequence h as above is fixed, and that we are

given 0 < p < n. An element z € f is said to be adapted to (h,p), if for
any a such that 1 < a < p we have

(C) z,,,—l ta+1,—l Tz,,, —1(I+) € U+7
and for any b such that p+ 1 < b < n, we have
a 1,17 Ti,;+1,1(x+) e Ut.

ip,1 7 41,1
Given such z and given a sequence ¢ = (¢, ¢z,...,¢c,) € N, we define
L(h’cyp’x) € f by

L(h,c,p,z)*
Ef::rl)ﬂp+1,—l( ‘l(c::'z)) 1p+1,—171‘llp+2,—1 1", 1,—1(E(cn))
XS ATY e T (BY) - Ty (BB,

The definition is correct, since the factors in the right hand side are in U,

by (a),(b).
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Proposition 38.2.3. Let c = (¢1,¢2,...,¢,) € N*, &' = (c},ch,...,¢cL) €
N” and let x,2’ € f be adapted to (h,p). We have the equality of inner
products (L(h, ¢,p,), L(h,c’,p, ")) = (z,2') [T, (65", 65%).

yVie

For any i € I, t,t' € N and y,y’ € f[i] = ker(;r), we have

(2) (609,6y) = (6,68") (v, 9.

Indeed, we may assume that y, 3’ are homogeneous. We can write r(y’) =
3" y; ® y4 with y1, y5 homogeneous, and |y}| € {4,27,3¢,...} (see 38.1.8(a))
and our assertion follows easily from the definitions. -Similarly, if y,3’ €
?f[3], we have

(b) 8", y'6{) = (6, 6{)) (v, ).

Assume first that p < n and that the proposition is true when p is
replaced by p + 1. Let &,& be the sequences defined by &,41 = &5 =0
and & = cs5,8, =, for s #p+ 1. Let & = g(z) € f,&’ = g(z’) € f, where
g is as in 38.1.3 (with i = ip41). Let p = p+ 1. It is clear that Z,i’ are
well-defined and that they are adapted to (h,p + 1). We have from the
definitions

L(h,c,p,x)* = E{7T]

ipy1 T ip41,—1

(L(h,&,5,2)*).
By our assumptions, we have

TI

ip+l,—1

(L(h,&,p,2)*) € UT;
hepcp

g L(ha é’ﬁ’ i') € af[ilH-l]
and

T! . _1(L(h,&p,2)") = (g7 (L(h,E B, &)

tp+1,

where g is as above. Similarly

L(h,¢,p,2)* = BT

ip+1 ip41,—1

(L(h,&,p5,%)")
and
L(h,&,p,%) € “flip1), T, _1(L(h,&,5,&)") = (¢7'(L(h,&,5,3)*.
Using (a), we have
(L(h,c,p,z), L(h,c,p,2'))
= (0 Vg™ (L(h,&,5,8)), 657 g ™ (L(h, &, 5,7)))

ipt1 ? Tp4a
c (cpr1)yy — o o~ o~ _ - o~ ~
= (6, 6,7+)) (g7} (L(h, &, 5,8)), g~ (L(h, &, 5, "))

= (052,072 )(L(0,&,5,3), L(B, €, 5, 2)).

p+1 7 Tlp4d
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The last equality follows from 38.2.1.
Using now this hypothesns we see that the last expression equals
(9(2), 9(z")) TTo=y (65°),65). We now replace (g(z), 9(z')) by (z,a") and
we see that the formula in the proposition holds in this case. Using this
argument repeatedly, we are reduced to the case where p = n. In the rest
of the proof we assume that p = n. We now have
L(h,c,n,z)t = 2¥T) | TV N

in,1%i,_1,1 i2,1

(BEY)... Ty [(BEn))EE,

We now assume that n > 1 and that the result is known for n — 1 instead
of n.

Let h be the sequence (i1,%2,...,in—1). Let € = (c1,¢2,...,Cn—1),¢
(chychy. . Ch_y). Let T = g7z, = g~'2’ where g is as in 38 1.3, with
i = ip. It is clear that #,%’ are well-defined and they are adapted to
(h,n — 1). We have from the definitions

L(h,c,n,z)* =Tl ;(L(h,&n —1,8)")EL,
ana similérly
L(h,c',n,2')" = T ((L(h,&,n— 1,5:')+)E§::‘).

By arguments almost identical to the ones above (using (b) instead of (a))
we see that

(L(h,c,n,z),L(h,c',n,z'))
= (g(L(h,&,n -1, z))ﬂ(c“),g(L(h, ¢,n— 1,5:’))0(4'))
= (9(L(h,&n — 1,)),9(L(h,&,n — 1,7)))(8¢, 6))

= (L(h,&n —1,%),L(h,& n—1,3))(0,6{)

= (g7 }(x),g7 () H(O“"),off
= (z,z’) H(O(C’) 9(0

Using this argument repeatedly, we are reduced to the case where n = 0.
We now have L(h,c,n,z) = z and the result is obvious. The proposition
is proved.
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Braid Group Relations

39.1. PREPARATORY RESULTS

39.1.1. Study of the symmetries 7}, on A,. In this and the next
subsection, we assume that the root datum is X-regular and Y-regular.
Let A € X*t. Let n € Ay be as in 3.5.7.

Lemma 39.1.2. Let i = (i3,i2,...,in) be a sequence in I such that
8i,Siy *** Sip 15 @ reduced expression of an element of W. We have

() T} T/ .- T.’N,en = F‘i(lal)Fi("!az) e E(:N)n, where

11,67 212,€ 1
ay = <S'iN e 'Siz(il)a’\),' ceyAN-1 = (SiN(iN—l)”\>,aN = (iNaA);
note that ay,as,... ,an € N (see 2.2.7).

We argue by induction on N > 0. For N = 0, there is nothing to
prove. Assume that N > 1. Let 7(i) be the left hand side of (a). Let
i’ = (i2,43,...,%n). Then the induction hypothesis is applicable to i’ and
it remains to show that

(b) T}, (")) = F ()

‘Note that n(i’) belongs to the s;,s;, - - - 8;y (A)-weight space of Ay, and
we have, by definition, a; = (i1, 8i,8:i5 - - - Siy (A)). Using 5.2.2(a), we see
that (b) would follow from the equality E;, (n(i)) = 0.

Since E;, (n(i’)) belongs to the s;,si, - - - siy () + 7}-weight space, it is
enough to prove that this weight space is zero. If this weight space were
non-zero, then the s;, - - - 8i; 84, (8i, Siy - - - Sip (A) +17)-weight space, which is
the (A + siy - - - 8i58i,(2]))-weight space, would also be non-zero. But then
we would have A+ s, - - - 84,84, (¢])) < A, hence s; - - - 8,84, (7)) < 0 which
contradicts the assumption that s;,s;, - - - 8; is a reduced expression. The
lemma is proved.

39.1.3. A lemma on monomials. Assume that s;,s;, - - - 5;, is a reduced
expression in W. Let A € X be such that (ip,A) > 0 for p =1,2,... ,n.
Set

an = (in?’\)’a"—l = <sin(iﬂ—1)>)‘)a e = (sinsin—l e siz(il)v’\)'

Note that a;,as,... ,€ N. Let ¢ = Fi(f’)Fi(:Z) . --Fi(:").
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Lemma 39.1.4. For any i € I, we have
Bz =zFE; + yi(f(_ivi(i”\)_l - f{,-vi_(i”\)ﬂ) for some y; € U™
We argue by induction on n. For n = 0, there is nothing to prove.

Assume that n > 1. Let 2’ = Fi(:z)Fig“s)---F}(:”). By the induction
hypothesis, we have

Eix' =2 E; + yi(k_ivfi,z\)—l _ f(wi—(i,x)ﬂ)
for some y; € U~. Hence
Eiz = E;F*¢

% -1 [ 0y — 1
 pla-n Koo T — Kop it

= F‘z.(lal)Ei$l -6 x

L2XD Sl * -1
! vy — v;

= Fi(lal)x’Ei +Ipi(lal)y;(k_ivi(i,z\)—l _ kivi—('i,/\)+1)

7 . al—l ~‘ ——a1+1
pla-1) K_iv; — Kiv; ’

- 6,",'1 i 1 xT.
; Vi —Y;
It remains to note that
s . o -/
ay = (i1, —agiy — agiy — - — aniy, + A),

which follows easily from the definitions.

/,/39.2. B‘hAID GRrRouUP RELATIONS FOR U IN RANK 2

39.2.1. In this section we assume that I consists of two elements ¢ # j
and that the Cartan datum is of finite type or, equivalently, (i, j')(j,7} is
equal to 0,1,2, or 3. We define accordingly h = h(7,j) to be 2,3,4 or 6
(see 2.1.1). In this case, the root datum is automatically X-regular and
Y -regular.

By interchanging if necessary i and j, we may assume that either (¢, j') =
(4,%') =0, 0r (j,i) = —1 and (i,5') € {—1,—-2, -3}. We shall consider each
case separately.

39.2.2. Assume that (i,j') = —3,(j,i') = —1, so that h = 6. Note that
v; =v3. Asin 37.2.1, we set

Time= . (-0 ™EDEEY e U,

r+s=m

Time= D (1) MEOEEN € Ut

r+s=m
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Recall from 7.1.2 that
0P B2y e + T1mie Bi = [m 4 i1 m e

and
—Fiml,m;e + xl,m;eFi = [4 - m]iK—eixl,m—l;e-

Applying o, which interchanges z1 ;.. and z ., we deduce that

e(3—2m) 4 ’ /
—-v; ml,m;eE'i + Eiml,m;e = [m + 1]ia"l,m—f—l;e

and

—Z) meFi + Fi) e = [4— m]im'l’m_l;ekei.
By 37.2.5, we have T} .(E;) = 71,3, and T}"_,(E;) = z} 3... By 37.2.5 with
the roles of i, j interchanged, we have T} (E;) = —v§E; E; + E,E; =z 1,
and similarly, T}'_ (E;) = z1,1;e. By 37.2.5, we have T}'__(21,1,e) = 2} 2.,
and T} (7] 1.c) = T1,2;¢- We have

Ti{:—e(zllﬂ;e) = [2];1T]{,’—e(_vfx,1,l;eEi + Eim’l,l;e)
= [2]1'_1(_vfﬂ:—e(zll,l:eﬂ}/{—e(Ei) + TJ{,,—e(Ei)TJ{,I—e(wll,l;e))
= [2]7 N (—v§Eiz1,1e + 1,156 Bi) = 21,25

We set

& = [3];7 1 (—v; °T1,21eT1, 150 + T1,00T1,2;6)
and

&' = 87 (—v; 2 1,61 gy + T1,2:6%1, 156)-
We have

T} o (z1,3,) = [8]; ' T} o(—v; *Eiz1 2e + 71 2,0 i)
= 8171 (—v; T} o (B)T} o(T1,20) + T} o (@1,2:) T} o (Ei))

-1 - o
= [311 (_vi e:1",1,1;(3‘11:,1,2;(»: + x,1,2;ez,l,1;e) = mla

T]{,—e(xll,&e) = [3]:1T” (_vi_exllﬁ;eEi + Eiz,l,?;e)

’ J,—¢€
= [3];1(—vi_e"rj],':——e(x’lﬂ;e)T{, (EI) + qyf—e(Ei)T;:—e(mll,Z;e))

J,—¢€

= BT (—v7 *Z1,21eT1, 150 + T1,1:T1,256) = &,



39.2. Braid Group Relations for U in Rank 2 307

:l-:i,,e(j’.,) = [3]1'_17;{,03(_v;ex,l,l;exllﬂ;e + x,1,2;ex’1,l;e)

= [3]i_l(—vi_eﬂ,e(zll,l;e)ﬂ,e(311,2;e) + ﬁ,e(mll,Z;e)ﬂ,e(xll,l;e))

= [3]:1(-"’;831,2;6“51,1;8 + Z1,1;eT1,2,¢) = &

From the previous formulas we see that

T. Tie o Tie . Tie T.
(a) E; — z1,3. z > T » Ty 3,6 — Ej
and
T T/ T T iy
O ' i, e J.e Vi i,e J.e
(b) Ei = %) 1, — T12ie = T19;e — T1,1e — B

Thus, T, T} T1 T} Tt (E;) = E; and T/ T, T, T, T} .(E:) = Ei. Ap-

et jetietjetie jetietjetie

plying w and using 37.2.4, we deduce that 7}, T T/ T/ T/, (F;) = F; and

e j,e i,e"jetie

T 17! T! T! T! (F;) = F;. Replacing e by —e we deduce

e e y,emt,em g,e

ﬂ,eﬁ,eﬂ,eﬁ,en’,e(lpj) = E? and

T T T, T T (F) =F,.

Jetietjetietje

From (a),(b), it follows that

T) T T8 T T0 Tl (Ej) = T} E; = —K.; F,

Jetie” jevie” jevie

T T} Tl o T o Th e T o (By) = T1 T o T T}  Th o (— Ko Fy) = —Kej F,

t,etjeti,etjetie

T;,eﬂ,,en,eﬂ,en,e i,,e(Ei) = ﬂ,eT{,en,eﬂ,eI’;,e(—kﬂE) = —Re‘i'pi’
T T T/ TJ’ T, T; (E;) = T{ ,E; = —K.;F;. Thus, the automor-

t,etjetietjetietje
: / / ol TN / T o) TN ’ ot
phisms T} T} TL T4 T! T, and T} T} Th TL.Th T}, coincide on the

i,etje t,etj,e
generators FE;, E;; similarly, they coincide on the generators F;, F; and
one checks easily that they coincide on each K, hence are equal. Taking
inverses, we see that the automorphisms
T T T T T T and

—eti,—e

/" 1 11 1" 7
1},—31;,—61},—67" T; T;

’/
t,—e*j,—eti,—e

are equal.
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39.2.3. Assume that (i,5') = —2,(j,i') = —1, so that h = 4. Note that
v; =vZ. Asin 37.2.1, we set

T mie = Z (_l)rv:r(S—m)El(r)EjElgs) € U+,

r+s=m

wll,m;e — E (_l)rv:r(S—m)Et(s)EjEi(r) e Ut.

r+s=m

Recall from 7.1.2 that

_vf(2 2™ Ei1 mie + T1mie Bi = (M + 1iZ1,matie-

Applying o, which interchanges z1,m;e, and z ..., we deduce that

—of @I B+ By e = M i pp1ie-

By 37.2.5, we have T} _E; = Z1,2,c and T]'_ E; = 2 5,.. By 37.2.5 with the

roles of i, j interchanged, we have
7;,z(E'i) = _v;EjEi + EiEj = z,l,l;e

and similarly
T ( i) = T1,15e:

J,—¢

By 37.2.5, we have Tj/__(%1,1,¢) = #1,1,.- We have

1,—e

T”—e(xl 2; e) = [2]1 lT”_e( xl 1; eE + E; (El 1; e)
= I (T (@) T o(B) + T (BT o (31,1)
= [2]1’—1(_Eiz1,1;e + xl,l;eEi) = T12e-

From the previous formulas we see that

! T/ TI
(a) E—»xlze—mcl“—»E
and

I / /
(b) E—’l'ne—*-’”lle—’” i-
Thus,

ﬂ,eﬂ,eﬂ,e(Ej) = Ej and
Jz,eqji’,ejwj{,e(Ei) =E
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Applying w and using 37.2.4, we deduce that

T/ T/ T/ (F;)=F; and

Je"ie

T TY T (F) = F

jetie

Replacing e by —e, we deduce that
H,eu,eﬂ,e(ﬂ) = Fj and

T, T! T (F,) = F.

Jeti,etje

From (a),(b), it follows that
T, T: T 1. (E;) = T, E; = —K.;F},

j.eti,e"jetie

T! T, T. T (E;) =T/ T, T, (- Ke; Fj) = -K.; F;,

e jetietje e  jetie

T} TL T} T o(Be) = T} T1. T (~KuiFy) = —KuF,

]Ye i\e J?e I’e J?e l!e ]76

T} T T.. T (E;) = T, E; = —K.F;.

nL,e"),e",em),e

. Thus, the automorphisms 7} T} T} T} . and T| T] . T; . T; . coincide on
the generators E;, E;; similarly, they coincide on the generators Fj, Fj
and one checks easily that they coincide on each K, hence are equal.
Taking inverses, we see that the automorphisms 7;/_ T}’ T;" T} _, and
T;,'_e i’:_eT]ff_e i’,’_e are equal.

"39.2.4." Assume that (1,7") = (4,7') = -1, so that h = 3. Note that
v; = v;. Asin 37.2.1, we set

T = Y ()W EDEES € U,
r4s=1

T = O ()W EPEED € Ut
r+s=1

By 37.2.5, we have T} . (E;) = 1,1, and T}'_.(E};) = 2 ;... By 37.2.5, with
the roles of 4, interchanged, we have T} (E;) = z},,. and T} _ (E;) =
T1,1e-

From the previous formulas we see that

Ti’,e ]{,8
(a) Ej — z13, — By,
and

T, T!

(b) E; — ‘Tll,l;e — Ej‘
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Thus,
T‘]{,eqwil,e (EJ) = E; and
ﬂ,eT}{,e(Ei) = Ej'

Applying w and using 37.2.4, we deduce that

T/ T(F)=F  and

e

T TV (F) = Fj.

198 Jle

Replacing e by —e, we deduce that

T/ T (F)=F; and

ielje
T; Ti . (F;) = Fu.
From (a), (b), it follows that
T, T. T} (E;) = T/ Ei = — Ko F,

i,etj,eti,e

T} T1 o T} o (Bj) = T} T} o(~Kej Fy) = —KeiFy,

Jjretietje J.e

T, T} T/ (Ei) = T/ T} (—KeiF;) = —Ke; Fj,

i,e"jetie i,etje

T} T, T, (E:) =T, E; = —K;F;.

je"i,e” je

Thus, the automorphisms T; T; . Tj. and T; T; T; . coincide on the
generators E;, E;; similarly, they coincide on the generators F;, F; and one
checks easily that they coincide on each K, hence are equal. Taking in-
verses, we see that the automorphisms T;/_ . T;"_ T} _, and T} _ T} _ T/

—eti,—e i,—e —eti,—e
are equal.

39.2.5. Assume that (i,j') = (j,7') = 0, so that h = 2. By definition, we
have

T, .(E;) = E;,T;_.(E;) = E;, T (E;) = E;, T} _(E;) = E;

and similar formulas with F;, F; instead of E;, E;. We have
T]{,eT;'/,e(Ej) = T’]{,e(Ej) = _Reij’
T} T} (Ej) = T, (—Ke; Fy) = —Ko; F;.
Thus, T} T; .(E;) = T; T; .(E;). Similarly, T} T/ ,(F;) = T} T/ . (F;)-

je"i,e ,e" j,e j.etie i,e” j,e

Thus, T} T/, T; ,T; . coincide on Ej, F; and, by symmetry, also on E;, F};

jetiertietje
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they clearly coincide on K,; hence they are equal. Taking inverses, we see
that the automorphisms 7' T}_,,T;'_ T, _, are equal.

39.3. THE QUANTUM VERMA IDENTITIES

39.3.1. In this section, we preserve the assumptions of 39.2.1. From
39.2.2-39.2.5, we see that for any p such that 0 < p < h — 1, the following
elements belong to U* (each product contains p factors T or T"):

(' v ﬂ,eqz,eTiI,e)(Ej); ( t n,en!,eqy,e)(Ei); ( o n’:—eﬂf—eﬂ:—e)(Ej);

(T} _T'_.Tj_.)(E;). It follows that the sequences (3,,4,...) and
(4,4,7,...), with h terms each, are admissible in the sense of 38.2.2.

Consider the following four sets of elements of U*; each element written
below is a product of h elements of U* and (c;,c2,...,c,) runs through
Nh:

(8) {ESVTE Ly (BT _\T) _((B)) - )

(0) {B™ Ty (BT \TY o (Bf) - )

() {B T (BT T (B() - );

(d) {B{ Ty (BT T () ).
Using 38.2.3 (with z = 1 and p = n or p = 0) we see that each of the
sets (a),(b) is an orthogonal set for an inner product on U™, hence each
of the sets (a), (b) consists of linearly independent vectors. This implies,
by the results in 37.2.4, that each of the sets (c), (d) consists of linearly
independent vectors.

Lemma 39.3.2. FEach of the four sets (a)-(d) in 89.8.1 is a basis of the
Q(v)-vector space Ut.

These sets consist of homogeneous elements. The number n(v) of ele-
ments in the intersection of one of these sets with U} is the same for any
of the four sets. By 39.3.1, it suffices to show that dimq(,) U} < n(v) for
all v. Using 33.1.3(b), we see that it suffices to show that

(a) dimg(qf,) < n(v) for all v
(notations of 33.1.1; Q is regarded as an A-algebra with v — 1).

We shall examine the various cases separately. Assume first that (i, j') =
(4,#") = 0. Then 0;,0; commute; hence any word in 6;,6; can be expressed
in of as a linear combination of monomials 0363.

Assume next that (i,j') = —1,(j,7) = —1 so that h = 3. We set
0;; = —0;0; + 0,0, € Qf' . Then 6;; commutes with both 8; and 6; by the
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Serre relations. Hence any word in 6;,8; can be expressed in Qf' as a linear
combination of monomials 0_’;9%0,9.

Assume next that (7,j') = ~2,(j,') = —1 so that h = 4. We set
0i; = —0;6; +6;6;,20;;; = —6,;6; + 6;0;; (in Qf'). Using the Serre relations,
we see that any word in 6;, §; can be expressed in Qf' as a linear combination
of monomials G;OQjOfijOf. This is a special case of the Poincaré-Birkhoff-
Witt theorem which can be checked directly.

Finally, assume that (i,j’) = —3, (j,7') = —1 so that h = 6. We define

the following elements in qf inductively:
9,'_,' = —91-91' + 9i9j, 29,',']' = —9,‘]'0,' + 0,-9@-,
30iiij = —0ii;0; + 0,035, 305::55 = —0:50::5 + 014505
Using the Serre relations, we see that any word in 6;,6; can be expressed
in Qf as a linear combination of monomials O;Hfjﬁfiijjﬁfiﬂfﬁj@{ . This is
again a special case of the Poincaré-Birkhoff-Witt theorem which can be
checked directly. The estimate (a) follows. The lemma is proved.

39.3.3. Remark. It is easy to see that UT is a noetherian domain. In-

deed, it is enough to show that Qf‘ is a noetherian domain and for this we
note that the associated graded ring for a suitable filtration is the algebra
of (commutative) polynomials in finitely many variables.

39.3.4. Let J (resp. J') be the Q(v)-subspace of Ut spanned by the
elements in 39.3.1(b) such that (cz,c3,...,ch—1) = (0,0,...,0) (resp. such
that (cz,cs,...,ch-1) # (0,0,...,0)).

Lemma 39.3.5. J' is a two-sided ideal of Ut. We may identify canoni-
cally the quotient algebra Ut /J’ with the Q(v)-algebra defined by the gen-
erators E;, E; and the relation E;F; = vy lEjEi.

We identify f = Ut via z — z+. Then we may regard (,) as a bilinear
form on U*t. From 38.2.3, we see that for any v, each of the subspaces
JNU} and J'NUY is the orthogonal of the other with respect to (,). To
check that J’ is a left ideal, we must check that E;J’ C J’ (the inclusion
E;J' C J' is obvious).

From the definition of ;7, we have that ;r(EE?) is a scalar multiple
of E;-‘Ef"l. Hence ;r(J) C J. This implies, by taking orthogonals, that
E;J' C J'. Thus, J' is a left ideal. Similarly, J’ is a right ideal. Hence
the quotient algebra Ut /J’ is well-defined. Clearly, J maps isomorphically
onto it. Hence the products E;‘Ef with a,b € N form a basis of Ut/J'. It
remains to observe that E,E; = vj'lEjEi holds in U*/J’ since in Ut, we
have —viE;E; + E;E; = T; E; € J'. The lemma is proved.
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39.3.6. Let A\ € X*t. We define two sequences (aj,a2,...,an) and
(by,ba,...,by) in ZP by ay = (---s;8:8;(),A), by = (- 8;8;5:(j), A); both
products have (h — 1) factors s; a2 = (---8;8i(j),A), bz = (- --8i85(i),A);
both products have (h — 2) factors s, etc. Note that a,,b, € N, since
8i8;8;--- and s;s;s;--- (h factors) are reduced expressions in W.

Let z = FVFEDFE . and y = F*VF®YF® ... both products
have h factors F. Note that z,y belong to U, where

v=aji+agjtazgi+---=bj+byi+bsj+---

Both sums have h terms. Then v is given by (4i + 63, A)i + (2i + 45, A)j if
h=6, (2i+ 2, i+ (i + 25, \)j if k=4, G+, i+ G+ \jif h=3,
(B, A)i+ (G, A\)jif h =2,

The following result is a quantum analogue of an identity of Verma [10].

Proposition 39.3.7. z =1y.

The result is trivial when A = 2. We assume that h > 3.

. For any i; € I, both E;,z and E;,y belong to the left ideal of U gen-
erated by E;, and (I?_ilvﬁ”)‘)_l - f(ilvi_l(i"’\)ﬂ) (see 39.1.4). We may
assume that Y is generated by i,j. Then there exists A’ € X such that
(41, ') = (i1,A) — 1 for 4, € I. Applying = and y to the generator 1
of the Verma module M), we obtain vectors z1,yl € My, such that
E; (x1) = 0,E;,(y1) = 0 for ¢y € I. Note that z1,yl belong to the
\’-weight space of My, where X" = X — v;i’ — v;j'. Hence there are
well-defined morphisms of U-modules 3,7y : Myx» — My which take the
generator 1 € M~ to z1,yl, respectively.

Using the explicit expression for v;,v; in 39.3.6, we see that (i), \") =
—(i;,A\) — 1, where iy = i; if h =4 or6andi =j,j =iif h =3 In
particular, we have (i1, \”) < —1 for i, € I. From 6.3.2, it then follows
that the Verma module M~ is simple.

Since z and y are non-zero (see 39.3.3), we have that z1 # 0,y1 # 0,
hence 3,y must be isomorphisms onto their images. These images may
be regarded as non-zero left principal ideals of U™, if we identify M
with U~ in the obvious way. By 39.3.3, Ut, hence also U™, has the
Ore property, hence these two ideals must have a non-zero intersection.
This intersection is a non-zero submodule of the simple U-module (M),
hence it coincides with it. Similarly, it coincides with y(My~). Thus,
we have B(Mx+) = v(Mx~). Since these two modules have the same (one-
dimensional) \”-weight space, it follows that 21 = fy1 for some f € Q(v)—
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{0}. Thus, z = fy in U~. We shall identify the algebras U~ and U™ via
.F,' hd E,', E, — Ej.

We now apply to both sides of the equality z = yf (in U%) the natural
homomorphism Ut — U*/J’ (see 39.3.5). Since in Ut — U+ /J’ we have
E.E; = vj_lEjEi, we see that z,y are mapped to

,U;Ei(al+aa+'" )Ej(az+aq+"~ ), v;Ei(bz-i-bq-f'"' )E§bl+b3+'")

respectively, where

s = Zapaq,t = Z bpr by

p<gq p'<q

and p is even, ¢ is odd, p’ is odd, ¢’ is even. It follows that vl = fvg. From
the definition of the sequences (ay,ay,...,as), (b1,b2,...,bs), we see that
s =t, hence f = 1. The proposition is proved.

39.3.8. Remarks. (a) The use of non-commutative ring theory in the
proof of the fact that the two left ideals considered above have non-zero
_ intersection can be avoided as follows. Let v’ € N[I]. The intersection of
either of our left ideals with U, , has dimension n(v’) (notation of 39.3.2);
on the other hand, dim U, , = n(v+v’). To show that the intersection is
non-zero, it suffices therefore to show that 2n(v’) > n(v+v/) if v/ has large
enough coordinates (here v is fixed as in 39.3.6). But n(v') is explicitly
computable and the previous inequality is easily checked.

(b) In the simply laced case there is a much shorter proof of the quantum
Verma identities (see 42.1.2(h)).

39.4. PROOF OF THE BRAID GROUP RELATIONS

In the following lemma, we preserve the assumptions of 39.2.1.

Lemma 39.4.1. Let M be any integrable U-module. We have

T T =T, T, T), - : M - M;

et jetie i,etje’

both products have h factors.

By the complete reducibility theorem 6.3.6, it suffices to prove the lemma
in the case where M = A with A € X*. Let n € A, be as in 3.5.7. Using
39.1.2, we see that

(a) (T, T T, )= (F;(al)Fj(az)Fi(aa) .-+)n and

i,etjetie’



89.4. Braid Group Relations for U in Rank 2 315
(b) (T3, The Ty In = (P FCDEP - )y
(all products have h factors) where (a1,a2,...,as),(b1,b2,... ,bn) are as
in 39.3.6.
By 39.3.7, the right hand sides of (a),(b) coincide. It follows that so do
the left hand sides:

(¢) (T!.T. T, )n= (T T T, )n.

i,etjetie jetietje”
Let u € U. Using (c¢) and the equality in U
(ﬂ,ejwj{,eﬂ,e T )('Ll.) = (T{,eT:i/,eI’J{,e ee )(u)
(see 39.2) we see that

(T T eTie - )(un) = (T T T e )W) (T7 T, T - - ))

i,etjetie’ i,etjetie

= (T} T T )@) (T T The - )

i,elj,e ielje"
= (T} Ti Tje - - ) (un).
Since any vector in Ay is of the form un for some u € U we see that
T, T T =T T, Tj. - : M — M. The lemma is proved.

i,e* jetie j.eti,e
39,4.2. Now (I,-) is again an arbitrary Cartan datum.

Theorem 39.4.3. For any i # j in I such that h = h(i,5) < oo (see
2.1.1), we have the following equalities (all products have h factors):

(a) ﬂ,eﬂ,e’I‘i’,e = Tg,eTil'eTJ{,e T
O TT T = T T T
as autoni’orphisms of U and
(C) ﬂ,en,eﬂ,e = Jy,ej”i/,eryl,e Tty
(d) ﬂ’f_ei"}f_eﬁ,'—e P TJ{,I—eﬁ,,—eT_;{—e e

as linear maps M — M where M is any integrable U-module M.

We prove (c). Let U’ be the algebra defined like U by replacing I by
I’ = {i,j} and keeping the other data X,Y,(,),... unchanged.

We may restrict M to an (integrable) U’-module in an obvious way.
Since (c) is true for this restriction, by 39.4.1, it is also true for the original
M. Thus (c) is proved. (d) follows from (c) by taking inverses.

We prove (a). Let u € U. Let uy = (T7 . T; . T;.---)(u) € U and

ieljetie’

ug = (% T/ T.,---)(u) € U. For any integrable U-module M, and any

).e” e e
m € M we have (using (c) twice):
w (T T T ..)m)zul((Ti',eT( T! - )m)

J’e )e ]le J)e 1’96

! T T - Y(um) = (T T, T, - - ) (um)

et j,eti,e j.etietje

= (
=u((T} T¢ T, - -+ )m).

ch 1’)6 ]’e
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Since T; T} T} .-+ : M — M is an isomorphism, it follows that u; — u
acts as zero on M. Since M is arbitrary, it follows (see 3.5.4) that u; = us.
This proves (a). In the same way we deduce (b) from (d). The theorem is

proved.

39.4.4. Let e = +1. Let w € W. We define algebra isomorphisms T}, , :
U—-UandT,,.:U—Uby

T,.=T] T, .- T and

i1,e” ig,e iN,e

T =7 T ...T

i1,e"iz,e in,e?

where s;;s;, -+ siy is a reduced expression of w. (7T, ., T, . are indepen-

dent of the choice of reduced expression, by 2.1.2 and 39.4.3.) From the
definition, we have

! _TI / U _ ! /!
ww’/,e — twetw e’ tww e~ fwetw e

if w,w’ € W satisfy I(ww’) = l(w)l(w’). Thus we have four actions of the
braid group on the algebra U.

39.4.5. By 5.2.3 and 37.2.4, we have
Tz = (T,L’U—l,_e)-l, Ty, w=T, ,:U->U, oT, o=T, _.:U—-U.

Let us define, for any linear map P : U — U, a new linear map P : U —
U by P(u) = P(a) for all u € U. With this notation, we have

Ty =Tl o Tl =Tl

,—e)twe w,—e*
(see 37.2.4).

39.4.6. Let u € U be such that, for any ¢ € I, we have Kiuk_i = v;"u for
some integer n;. For any w € W, we have T, ,(u) = (—1)*v*T}, ,(u) where
a,b are integers depending only on w and (n;) but not on u. This follows
from 37.2.4.

39.4.7. For any integrable U-module M and any w € W, we define Q(v)-
linear isomorphisms T, ., : M — M and T,, . : M — M by

T Tt o o o T

t1,e*ig,e iIN,e) T w,e i1,6"i2,e iN,e?
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where s;, 3;, - - - siy is a reduced expression of w. (T, ., T}, , are independent
of the choice of reduced expression, by 2.1.2 and 39.4.3.)
From the definition, we have
1va’,e = T‘a::,e 1,0’,6) aw’,e = T'n,z:,e tZ',ev
if w,w' € W satisfy l(ww') = l(w)l(w') (identities as maps M — M).
Thus, we have four actions of the braid group on M. We have T}, , =
(T:”_,’_e)‘1 : M — M for all w. For any u € U,m € M, we have

Toe(um) = Ty, o (u)(T,, em), Ty o (um) = Ty . (u)(Ty ;).



CHAPTER 40

Symmetries and U”

40.1. PREPARATORY RESULTS

Lemma 40.1.1. Assume that we are giveni # j in I. Let h = h(i,j) < oo
be as in 2.1.1. Let p be an integer such that 0 < p < h. We denote by T};.,
(resp. T} ;.,) the automorphism - - - T;\T;\ T}, (resp. ---T; T; _T;_,) of
U; both products have p factors. Then T'; (E;) and Tj;.,(E;) belong to
the subalgebra of U generated by E;, E;; T} ;.,(E;) and T} ;. (E;) belong to

1,35P
the subalgebra of U generated by E;, E,-.

In the case where h < 00, the lemma is contained in 39.2. In the rest
of the proof we assume that h = oo, or equivalently, that aa’ > 4 where
a= —(i,7') and o’ = —(j,7'). To symplify notation, we set
©z(d, 3 m) = Tiji1,mi—1, z(j, 35 m) = Tj,i51,m;—1 and
m'('i,j;m) = x;,j;l,m;—l’ ml(j’i; m) = m;,i;l,m;—l
in Ut (see 37.2.1).

Let Z be the subalgebra of U™ generated by the two elements z(i, j; @)
and’z(i,j;a — 1). Let Z’ be the subalgebra of U* generated by the two
elements z(j,%;a’) and z(j,7;@’ — 1). We prove by induction on m the
following statement:

(a) if m > 1, then T} _,(z(4, j;m)) € Z".
For m = 1, this follows from the computation

T _1(2(3,5;1)) = Tj _1(2'(G, ;1)) = z(j, 50 — 1).
Assume now that m > 1. Applying T _, to
—o7 T Big(i, jim — 1) + 2, j;m — 1 E; = [mliz(i, j;m),
we obtain

— v, O (540! )T_y (26, ;m — 1))

+ T]{,—l(x(i’j;m - 1))‘T(J’ i a/)
= [m}:Tj _, ((i, 5;m)).
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This equality, together with the induction hypothesis, shows that
T; _y(x(i,5;m)) € Z'; (a) is proved.

We have

(b) Tj _1(2) C Z', provided that a > 2 and T} _,(Z’) C Z, provided
that o’ > 2.

The first assertion of (b) follows from (a); the second one follows from
the first by symmetry. We show by induction on p > 1 that

(c)ifa>2and & > 2, then T} ;
and in Z (if p is odd).

For p = 1, we have T} ;.,(E;) = T; _,(E;) = z(i,j;@) € Z. The in-
duction step is given by (b). This proves (c). In particular, under the
assumptions of (c), 7} ;.,(E;) belongs to the subalgebra of U generated by
E;, E;; by symmetry, we have also that T; ;. ,(E;) belongs to the subalgebra
of U generated by E;, E; (for all p).

We next consider the case where one of a, o’ is 1 and the other is > 4. We
may assume that a > 4,0’ = 1. Let Z; be the subalgebra of U generated
by the elements z(i, j; ), x(i,j; — 1) and z(i,j;a — 2). Let Z] be the
subalgebra of U generated by the two elements z'(z, ;1) and z'(i, j;2).
From T; _,(z'(4, j;m)) = z(4, j; & — m) we see that

(d) T{ _,(Z1) C 2.

We show by induction on m that

(e) Tj;1(x(3,5;m)) € Z] for any m > 2.

We have

Tj1(z(3,5;1)) = T _1 (2’ (4,4, 1)) = (4, 4;0) = E;.

We also have

(E;) is contained in Z’ (if p is even)

Tj){,—l(Ei) = -’E(],i, l) = ml('L’], 1)

It follows that
T} 1 (2(3,52) = (27T} 1 (—v; P Eix(i, 5 1) + 2(,5; 1) E)
= [27 1 (~o; @7 P2/ (i, 5; ) E; — B’ (i, 5; 1)) = 2'(3,5; 2).
Thus Tj _,(x(4,j;2)) € Z; so that (e) holds for m = 2. We now assume
that m > 2. Then
T _1(2(i, j;m)) = [m; Ty (—v; @™ B (i, jim - 1)
+ z(4,j;m — 1)E;)
= [m];* (—o; @722 (4, DT (i, 53m — 1))

7

+T; 3 (z(i,5;m — 1))z'(3,5; 1))
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and this is in Z], by the induction hypothesis. Thus (e) is proved.
We show by induction on p > 1 that
(f) 1”,(E ) is contained in Z) (if p is even) and in Z, (if p is odd);
T} ;.p(E:) is contained in Z] (if p is odd) and in Z; (if p is even).

We have T} ;,(E;) = T _,(E;) = z(i,j;@) € Z1 and T}, (E;) =
T} _,E; = z(j,4;1) = 2'(3,4;1) € Z]. Thus (f) holds for p = 1. The
induction step follows from (d),(e). To apply (e), we use that a > 4. In
particular, T} ;. (E;) and T} ;.,(E;) belong to the subalgebra of U generated
by E;, E;. This completes the proof of the second assertion of the ler.\ma.
The proof of the first assertion is entirely similar.

Lemma 40.1.2. Let w € W and let i € I be such that l(ws;) = l(w) - .
We have

(a) Ty o (E:) € UY;
(b) T'zlu,e(Ei) € Ut.

We prove (a) for e = 1 by induction on /(w). When I(w) = 1, the result
. is trivial. Assume now that [(w) > 1. We can find j € I such that I(ws;) =
I(w) — 1. Note that ¢ # j. By standard properties of Coxeter groups, there
is a unique element w’ € W such that l(w’s;) = l(w')+1,l(w’s;) = l(w')+1
and w = w'y where either

(c) y = $;8j8; -+~ 8; (p > 2 factors) and l(w) = l(w') + p,l(y) =p or

(d) y = 8;8:8; -+ 8j (p > 1 factors) and l(w) = l(w') + p,I(y) =

We have necessarily p < h(3, j), since [(ws;) = l{(w) + 1. According to
40.1.1, T, (E;) belongs to the subalgebra of U generated by , Ej. Then

w 1(Ei) = Tiy 1T\ (E;) is in the subalgebra of U generated by Ty, ;(E;)
and T, 1 (Ej)- Since, by the induction hypothesis, we have T, ; (E; ) e Ut
and T”, 1(E;) € Ut, it follows that Ty, ,(E;) € U*. This proves (a)
assuming that e = 1.

We apply ~ : U — U to T, ,(E;) € Ut; using 39.4.5, we obtain
T _1(E;) € U*t. Thus, (a) is proved. The proof of (b) is entirely sim-
ilar.

'Proposition 40.1.3. Let h = (¢1,42,...,1,) be a sequence in I such that
i, 8iy - 8i, 15 a reduced expression for some w E W

Then T,z’; er‘rz’;e T” le( ) € Ut and T, z;e 123 ’ Ti’n_l,e(Ein) €
Ut.

This follows immediately from the previous lemma.
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40.2. THE SUBSPACE Ut (w,e) oF Ut

Proposition 40.2.1. Let w € W and let e = £1. Let h = (iy,142,...,i,)
be a sequence in I such that s;,s;, ---s;, is a reduced expression for w.

(a) h is admissible (see 38.2.2).

(b) The elements E(':‘)T,’1 e(Ei(:’)) T T}, .- -T{"_lye(Ei(:")) (for var-
ious sequences ¢ = (c1,C2,...,¢n) € N™) form a basis for a subspace

Ut(w,e) of Ut which does not depend on h.
(¢c) The elements E(c‘)T," e(E‘:’)) T T -fl"i'r"_he(Eg")) (for var-

t1,€712,€
ious sequences ¢ = (c1,¢C,...,¢,) € N™) form a basis for the subspace

U*(w,e) of Ut defined in (b).

(d) Let i € I be such that I(s;w) = l(w) — 1. Then E;Ut(w,e) C
Ut(w,e).

n

(a) follows from definitions using 40.1.3. We prove (b) assuming that
e = —1. We shall regard (,) as a pairing on U™, via the isomorphism
f— Ut given by z + z+. The fact that the set of vectors in (b) is linearly
mdependent follows from the fact that it is an orthogonal set with respect
to (,) (we use (a) and 38.2.3, with p =0 and z = 1). Let U*(h,e) be the
subspace spanned by this set of vectors. To show that Ut (h,e) depends
only on w and not on h, it suffices, by 2.1.2, to check the following state-
ment: if h’ is obtained from h by replacing h consecutive indices ¢, j, 1, .
inh by the h indices JriyJ,... (for some i # j with h = h(i,j) < oo),
then U*(h,e) = U*(h/,e). Usmg the fact that the T"’s are algebra auto-
morphisms of U satisfying the braid relations, we see that the last equality
would be a consequence of the analogous equality in the case where I is
replaced by {%,7}. But in that case, the desired equality holds by 39.3.2;
both sides are equal to U*t. This proves (b) for e = —1. Now (b) for e = 1
follows from (b) for e = —1 by applying = : Ut — U™* (see 39.4.5). Using
39.4.6, we see that (c) follows from (b). We now prove (d). If i is as in (d),
then we can find a sequence h = (i;,12,...,%,) in I such that i; = i and
8i,Siy ** + S;, is a reduced expression for w. From the definitions, it is clear
that for this h, we have E;U"(h,e) C Ut (h,e); (d) follows.

Corollary 40.2.2. Assume that the Cartan datum is of finite type. Then
U™ (wo,e) = U*. Hence, given e = +1 and a sequence h = (iy,1z,...,1i,)
in I such that s;, s, - - 8i,, is a reduced expression for wy, the vectors

n

E(CI)T/ (E(C2))

11,€

(n)
tne(Ei™)

ue 1,28
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(for various sequences ¢ = (c1, ¢z, ...,cn) € N™) form a basis for the Q(v)-
vector space U™ ; moreover, the vectors

ESOTY (BS) - T Tl - Thh_ (B
(for various sequences ¢ = (c1,¢C2,...,¢n) € N*) form a basis for the Q(v)-
vector space U™.

For any i € I, we have I(s;wp) = l(wp) — 1, hence E;U*(wp,e) C
Ut (wo, e) (see 40.2.1(d)). Thus, U*(wo, €) is a left ideal of Ut. It clearly
contains 1, hence it is equal to Ut.

40.2.3. It would be interesting to find an extension of the statement of
40.2.2 to the case of an affine Cartan datum (I,-). (For a result in this
direction, in the case of affine SLy, see [1], [4].)

The following approach may be useful in finding such an extension. As-
sume that we are given a sequence h = (...,i_2,i_1,%,%1,%2,...) of ele-
ments in I (infinite in both directions) such that for any integers a < b, the
product ;,8;,,, - - - 8i, has length (b —a+ 1) in W. Infinite sequences like
h above are known to exist for Cartan data of affine type.

We also assume as given an integer p. Let P be the set of all

z € f such that T} \T T”+1, zt € Ut forall + > p+ 1 and
1-’1,!7_17"'3-}-[,_1 71’,,,_193+ € U+ for all s S D.

. Eor any sequence ¢ = (...,c—2,¢-1,¢0,€1,C2,...) of numbers in N (in-
finite in both directions and such that ¢, = 0 for all but finitely many n)
we define L(h, c,p, z) € f by the following formula

L(h,c,p,2)* = (E&T,, (BEHT,, T, (B
% :L'+( Tz’,,,,l ‘L,,_;,l(E(cp 2))Tz’,,,, (Ez(;z 1))E(:P))'

This is well-defined, since the factors on the left and on the right of z*
belong to U, by 40.1.3. Now let ¢/ = (...,c_4,¢ 1,¢p,¢},¢5,...) be
another sequence like ¢ and let =’ € P.

The following result is a consequence of 38.2.3.

Proposition 40.2.4. We have the equality of inner products

(L(b,¢,p,2), L(b, ¢, p,2)) = (z,2) [T 057, 657).
s€Z
40.2.5. Let Ut (>) (resp. U (<)) be the subspace of U* spanned by the
elements E(P+) T _(E Eler+2yv ' (E-(c”+3)) .

ipr1 " iptils ip+2 ) tpt1,— 17 dp 42, — 1\ ipya

(resp. by the
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elements --- T}’ | T} _1I(Ef:ff)T{;1(Ef:f:1))Ef:p)) for various sequences
(Cp+1,Cp+2,-..) in N, with ¢, = 0 for large n (resp. for various sequences
(cp,Cp—1,-..) in N, with c_,, = 0 for large n.)

The previous proposition implies that the natural map
() Ut(>)@ P U*(<) - U*
given by multiplication is injective. It would be interesting to show that,

in the affine case, the map (a) is an isomorphism and to describe explicitly
the space P.



CHAPTER 41

Integrality Properties of the Symmetries

41.1 BRAID GROUP ACTION ON U

41.1.1. Let e = *1 and let i € I. The symmetry T}, : U —» U
(resp. Tj’, : U — U) induces for each A\, )" a linear isomorphism
rwUpr — s;(A’)Us.-(z\”) (notation of 23.1.1; s; : X — X is as in 2.2.6).
Taking direct sums, we obtain an algebra automorphism 77, : U — U
(resp. T}, : U — U) such that T] (1x) = 14, (resp. T{.(1x) = 1,,(a) for
all A and T/, (uza'u') = !, (u)T! ()T} o(&')TL, () (resp. T}, (uza's’) =
T/ ()T (z) T} (2") T} (u")) for all u,u' € Uand z,2" € U. Then T].isan

automorphism of the algebra U with inverse T/"_,. These automorphisms

i,—e*

satisfy braid group relations just like those of U.
41.1.2. From the formulas in 37.1.3, we deduce that

| TE(EM1) = (<) VIR )
T (F{M1,) = (=), O ENTDEM

T, (EML) = Y (1) EDEMEP 1, for j # i;
r+s=—(i,j')n
T (FPL) = Y (F)wo  FOFYED 1, for j #1;

r+s=—(i,j')n

Tz,,, e(Ei(n)lz\) — (_l)nvfn("+(i,/\)-l)Fi(n)18i(/\);

T (F{™M1,) = (=1) oGV EM )

T/ (EPL) = Y. ()" EPEMEM,, ) for j #4;
T+e=—(i,j')n

T (FP) = Y () EOFFEO 1, for j #i.
r+s=—(i,j')n

It follows that T}, T;’, restrict to A-algebra automorphisms AU — 4U.

They take 1) to 1,,(y) for any A € X.
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The following result is an integral version of 40.1.3.

Proposition 41.1.3. Let h = (i1,12,...,i,) be a sequence in I such that

8,84y +* + 8i,, 1S a reduced expression for some w € W; lett € Z. Then
(a) T:: T o T:; L(BY) € aU+;
(b) T, Tl e Th,_, o(BY) € AU*.

Let u be the left hand side of (a). Let ¢’ € X; define ( € X by ( =
8i8iz *** Sin_,(¢'). We have ule =T;) T77 - T} | e(Ei(:)lcz). Hence, by
41.1.2, we have ul¢ € 4U. On the other hand, by 40.1.3, we have u € Ut.
Thus, to prove (a), it suffices to prove the following statement: if z € f and
¢ € X satisfy %1, € AU, then z € 4f. This follows immediately from

23.2.2. The proof of (b) is entirely similar.

The following result is an integral version of 40.2.1.

Proposition 41.1.4. Let w € W and let e = 1. Let h = (i,12,... ,ip)
be a sequence in I such that s; s;,---s;, is a reduced expression for w.
Then

“a) the elements E(cl) T e(E('JZ)) T T}, e T _ 1’e(E(c")) (for var-
ious sequences ¢ = (cl,c2,.. ,tn) € N") form an A-basis for an A-
submodule 4U*(w,e) of Ut (w,e) which does not depend on h;

(b) the elements ESVTY (ES) ... T) [ TY - T! _ (EE™) (for var-
ious sequences ¢ = (c1,¢2,...,¢n) € N™) form an A-basis for AU (w,e)
in (a).

(c) Let i € I be such that l(s;w) = l(w) — 1 and let t € Z. Then
E,.(t)AU‘*(w, e) C AU (w,e).

Using the method of 40.2.1, we see that it suffices to prove (a) in the
case where I consists of two elements 7,5 and h(i,j) < oo. In that case,
the result follows from the analysis in [7]. (If i-i = j - j, this can also be
deduced from Lemma 42.1.2.)

41.1.5. With the notations of 41.1.4, let f € 4f be the element corre-
sponding to E(c‘)T1 _l(E(CZ)) T, T, T _ l,_I(Ei(:")) under the
isomorphism f — U given by z — z¥.

Proposition 41.1.6. Let w,n,h,c be as in 41.1.4. Let m : L(f) —
L(f)/v=1L(f) be the canonical projection. We have 6% € L(f) and there is
a unique element b of the canonical basis B such that w(6§) = £m(b).

From 38.2.3, we have (65, 0§) € 1+v~'Z[[v"!]]nQ(v). This implies the
proposition by 14.2.2(a).
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Proposition 41.1.7. Assume that the Cartan datum is of finite type.
Then

(a) AU (wo, ) = 4U™.
This follows from 41.1.4 in the same way as 40.2.2 follows from 40.2.1.

41.1.8. Braid group action on pU. Let R be as in 31.1.1. Let e = %1.
For any i € I, the A-algebra automorphism 77, : 4U — 4U (resp. T,
AU — AU) induces, upon tensoring with R, an R—algebra automorphism

: RU — gU (resp. T” rU — RfJ) These automorphisms satisfy the
brald group relations on RU just like they did over Q(v) (this holds over for
A by reduction to Q(v), since 4U is imbedded in U, and then it holds in
general by change of rings from A to R). Similarly, we have fl",',e_1 T/,

as automorphisms of zU.

41.1.9. Braid group action and the quantum Frobenius homomor-
phism. Let R be as in 35.1.3. In the setup of 35.1.9, the homomorphism
Fr: RU — RU* is compatible with the braid group actions on RU and
rU*. The proof is by checking on generators.

41.2. BRAID GROUP ACTION ON INTEGRABLE rU-MODULES

41.2.1. In the following proposition we assume that the root datum is
Y -regular and we consider A\, € X 7.

Proposition 41.2.2. The symmetries T! ,,T!". of the U-module “A\ @Ay

,e? " 1,e

map the 4U-submodule “Ax ®a (4aAy) into dtself.

Let m € %4Ax ®4 (4Ax). By definition (see 5.2.1), the vector T} ,(m) is
given by a sum of infinitely many terms such that all but a finite number
of terms (depending on m) are zero. The finitely many terms that can be
non-zero are of the form um where u € 4U. They belong to “GAA® A (aAN)
since this is an 4 U-submodule. Thus this submodule is stable under T .-
The same argument shows that it is stable under 7}',. The proposition is
proved.

41.2.3. Let R be as in 31.1.1. Let M be an integrable object in gC. We
define R-linear maps T}, : M — M and T}, : M — M by the formulas in
5.2.1, in which v is regarded as an element of R, by the .A-algebra structure
on R. It is clear that these operators are well-defined.
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Proposition 41.2.4. (a) The operators T}, : M — M satisfy the braid
group relations. The same holds for the operators T}',: M — M.

(b) We have T} ,~' = T}'_, as operators M — M.

i,—e
(c) For any u € rU and any m € M, we have T/ (um) = T] [(w)T] ,(m)
and T}, (um) = Tj (u)T; (m).

N

Using the functor in 31.1.12 in the case where (Y’, X’,...) is the simply
connected root datum of type (I,-), we can reduce the general case to the
case where the root datum is simply connected, hence Y-regular. In that
case, using the characterization of integrable objects given in 31.2.7, we are
reduced to the special case where M = $A\ ®g (rAx) with A, N € X,
Indeed, suppose that M is a sum of grU-submodules M, and that the
proposition holds for each M,. Then it clearly holds for M. Suppose that
M is a quotient of an integrable object M’ such that the proposition holds
for M’; then it clearly holds for M.

In this special case, the proposition follows by change of scalars from
the case R = A which in turn follows from the already known case where
R = Q(v). The proposition is proved.
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The ADF Case

42.1. COMBINATORIAL DESCRIPTION OF THE LEFT COLORED GRAPH

42.1.1. In this chapter we assume that the Cartan datum is simply laced
and of finite type.

Lemma 42.1.2. Consider the Q(v)-algebra with generators a, § and rela-
tions a?8 — (v + v NaBa+ Ba? =0, Ba-— (v+v1)Baf+af? =0.
Set v =aB —v'Ba. Forz =a,B or+, andn > 0, we set (™ = z"/[n]';
forn < 0, we set (™) = 0. We have

(a) ay =vya, vBy=1p;

(b) o @) = > v~ (P=n)(a=n) gla=n) 4 (n) o (p—n) .

(c) »7(m) = Zj,+j”=m(*l)j,v—j,ﬂ(jl)a(m)ﬂ(j”);

(d) a(p)ﬁ(q)a(r) = Zm,nZO;m+n=p+r—q [m;n] ﬂ(r_m)a(p+r)'8(p_n)’ if
p+r2gq;

(e) ﬂ(p)a(q)ﬁ(r) = Zm,nZO;m+n=p+r—q [m;n]a(r—m)ﬂ(p—rr)a(p—n)’ if
ptr=gq;

(B) a®B@al) = ¥ y=(p=mla=m) [P=m47] gla=n)y(m) g p-ntr),

(g) BP DB = zn;nSr p—(@—n)(r-n) [f:f;tp]ﬂ(r—n+p),y(n)a(q—n);
(h) P gt o (") = g+ 3),

(a) is obvious.

Now (b) is obvious when p < 0 or ¢ < 0. For ¢ = 1, (b) states that
a® B = v PBa® 4 yaP~V); this is proved by induction on p > 1, using
(a). Assume now that ¢ > 2 and that (b) is known when q is replaced by
q — 1. We write (b) for (p,q — 1) and multiply it on the right by 3. Using
the case ¢ = 1, we substitute

[3(4—1—n),y(n)a(z>—n)ﬂ — ﬁ(q—1—n)7(n)(v—p+nﬁa(p—n) + 'ya(”_"_l)).

This can be rearranged using (a) and yields (b) for (p,q). Thus (b) is
proved.

To prove (c), we replace o™ 3U") in the right hand side of (c) by the
expression provided by (b); we perform cancellations, and we obtain (c).
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To prove (d), we replace P39 on the left hand side and a®+7)g(P—")
on the right hand side by the expressions provided by (b); we perform
cancellations, and we obtain (d). Now (e) follows from (d) by symmetry;
(f) and (g) follow immediately from (b) and (h) is a special case of either
(d) or (e). Note that (h) is a special case of the quantum Verma identity
39.3.7.

42.1.3. Let H be the set of all sequences h = (i3, 42,...,%,) in I such that
8i,8iy -+ - 8;, 1s a reduced expression for wg. (Thus, n = I(wy).)
We shall regard H as the set of vertices of a graph in which h =

(21,%2y...,%n) and W' = (j1,72,...,Jn) are joined if h’ is obtained from
h by

(a) replacing three consecutive entries ¢,7,7 in h (with ¢ - j = —1) by
35,7 or by

(b) replacing two consecutive entries i, j in h (with i - j = 0) by j,.

For such joined (h,h’), ie., in case (a) (resp. (b)) we define a map
RM : N = N™ as follows. This map takes ¢ = (c1,...,¢,) € N” to
c = (c},-..,c,) € N™ which has the same coordinates as c except in the
three (resp. two) consecutive positions at which (h,h’) differ; if (a,b,c)
(resp. (a,b)) are the coordinates of c at those three (resp. two) positions,
the coordinates of ¢’ at those positions are

(b+ ¢ — min(a, c), min(a, ¢),a + b — min(a, c)) (resp. (b,a)).

It is easy to check that Rﬁl is a bijection; its inverse is R},.
From 2.1.2, it follows that

(c) the graph H is connected.

42.1.4. Given h = (iy,...,i,) € Hand ¢ = (c1,...,¢cn) € N, we define

(a) Ey=
E(Cl)Tl E(Cz) T T E(Ca) LT T T E(Cn)
[ il,"l( 2 ) i,—1 ’ig,—l( i3 ) T i i —1( in )'

2 1,—1742,—1 in—1,

According to 41.1.3, 40.2.2, the elements Ef (c € N™) are contained
in 4UY and form a Q(v)-basis of U%. We shall denote this basis by Bj,.
Hence, given h,h’ € H and ¢ € N*, we can write uniquely

c __ c,c’ e’
h = E , 'Yh,h'Eh'
c’eNm

where 'y,cl”'l':, € Q(v).
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Proposition 42 1.5. (a) Assume that h,h’ are joined in the graph H. For
c,c’ € N*, yp}, is in Z[v™!]. Its constant term is 1 if ¢’ = RY(c) and is
zero otherwise.

(b) For h € H, let Ly, be the Z[v~']-submodule of Ut generated by the
basis By. Then Ly, is independent of h € H. We denote it by L.

(c) Forhe H, let m: L — L/v™1L be the canonical projection. Then
7(By) is a Z-basis of L/v~'L, independent of h € H; we denote it by B.

Assume that the proposition is known in the special case in which [
consists of two elements i, j. Using the definitions and the fact that the
Ti',_1 : U — U are algebra homomorphisms satisfying the braid relations,
we see that (a) in the general case is a consequence of (a) in the special case.
To prove (in the general case) that the objects defined in (b),(c) in terms
of h,h’ € H coincide, we may assume, in view of the connectedness of the
graph H, that h, b’/ are joined in H, in which case the desired statements
follow immediately from (a).

Thus, we may assume that we are in the special case above. In the case
. where i-j = 0, the result is trivial. Hence we may assume thati-j =j-i =
—1. Now H consists of two elements: h = (3,5,7), h’ = (j,1,7). Besides
L, Ly, we introduce the Z[v~!]-submodule £ of Ut generated by the set

B' = {EPE{PE"|q>p+r}U{EPEDED|g > p+r}

in which we identify Ei(p )EJ(."')Ei(T) = E_gT)Ei(q)E](.T) forg=p+r.

By definition, we have T] ,(E;) = E;E; — v 'E;E; = T;,(E;) and
T; _\(E:) = E;E; — v E;E; = T]',(E;). 1t follows that T} \T; | E; =
E; and T; ,T] _,E; = E;. Hence, if ¢ = (c1,¢2,¢3) € N3 and ¢’ =
(cy, ch,ch) € N3, we have

Ef = E{")(E;E; — v 'E;E;)*VE{*

and
Ef, = ESV(EEj — v\ E; E;) D E"),

where the notation z(®) is as in Lemma 42.1.2. Let (p,q,r) € N3 be such
that ¢ > p + r. From 42.1.2(f), we have

EPE@DED = ZU-(p_n)(q n) [p n:r] pa- -t
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where

- (P-m)(a—n) [P ; " : T] € v~ -ma-n=r)(1 4 4=17[p-1))

is in v™'Z[v™}), if n < p and it equals 1 if n = p. Similarly,

EPEWED =3 y-la-mr—m) [" - " :I’] Ermtpman
n=0

where

p—(a-m)(r=n) [T ;’_’ : P] € u=(r=M@=p=n)(] 4 y=1Z[p=1))

is in v"1Z[v™Y], if n < r and it equals 1 if n = 7. These formulas show
that L,y = £ and, if 7 : £ — L£/v™1L is the canonical map, we have
7(B’) = m(Bw); moreover, m maps B’ onto w(B’) bijectively.

By the symmetry between ¢ and j, there is an analogous statement for
hi(note that £, B’ are symmetric in ¢,j). Thus, we have £, = £ and
w(B') = w(Bn). It follows that (b),(c) hold. The formulas above show also
that (a) holds. The proposition is proved.

Corollary 42.1.6. The A-subalgebra A4U" of Ut coincides with the A-
submodile 4L of Ut generated by L.

The fact that 4£ C 4U™ has been noted in 42.1.4. To prove the reverse
inclusion, it suffices to show that for any i € I and any s € N, 4L is stable
under x multiplication by Ei(s). Now 4L has an A-basis formed by the
elements E}, where h is a fixed element of H which starts with ¢ and ¢ runs
through N™. Multiplication by Ei(s) takes each element of this basis to an
A-multiple of another element of this basis. The corollary follows.

42.1.7. From the definitions it is clear that £ = &, L, where £, = LNU}
for any v € N[I]. This induces a direct sum decomposition £/v™1L =
®,L, /v L,. It is clear that B is compatible with this decomposition; in
other words, we have B = U, B(v) where B(v) is the intersection of B with
the summand £, /v™L, of L/v™1L.

42.1.8. We consider the equivalence relation on H x N™ generated by
(h,c) ~ (h’,c’) whenever h,h’ are joined in H and RP (c) = ¢’. Let H be
the set of equivalence classes.
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Lemma 42.1.9. For any h € H, the map f : N™ — H, which takes any
c to the equivalence class of (h,c), is a bijection.

From 42.1.5(a), we see that the (surjective) map H x N™ — B given by
(h,c) — w(E}) is constant on equivalence classes; hence it factors through
a (surjective) map H — B. On the other hand, for any h € H, the
composition N™ LA 5 Bisa bijection (again by 42.1.5). The lemma
follows.

We have the following result.

Theorem 42.1.10. (a) For any b € B there is a unique element b € L
such that w(b) = b and b =1b.
(b) The set {b|b € B} is a Z[v~']-basis of L and a Q(v)-basis of U+,

We shall regard the pairing (,) on f as a pairing on U* via the iso-
morphism f — Ut given by z +— z*. Let h € H. By 38.2.3, the basis
Eg of Ut, where c is running through N™, is almost orthonormal for ().
" Applying 14.2.2(b) to this basis, we see that any element S € B satisfies
Bt € £ and n(B%) € +B. In particular, we have L(f) C £. Applying
14.2.2(b) to the canonical basis B of f = U* and to z = Ef, which satis-
fies (x,z) € 1+ v~ 1Z[[v=1])] N Q(v) by 38.2.3, we see that z € L(f); hence,
by the previous sentence, £ = L(f) and n(z) = +m(8%) for some g € B.
Since Bt C L(f) = L, we see that the existence statement in (a) holds.
The uniqueness in (a), as well as statement (b) now follow from the known
properties of B. The theorem is proved.

42.1.11. We keep the notation from the proof of Theorem 42.1.10. We fix
i € I. Assume that h € H starts with i. Let b € B be such that b = 7(E}))
where the first coordinate of ¢ is 0. Let ¢/ € N™ be such that ¢’ has the
same coordinates as ¢ except for the first coordinate, which is s € N. Let
¥ = n(EL') € B. We shall use the following notation. For b € B, we define
B» € Bby Bf = b (see the proof of 42.1.10).

Lemma 42.1.12. (a) Write Ef = 2zt where z € f. Then z € f[i] and
Ef = (952)*.

(b) We have By = ¢, mod v~ 1L(f).

(c) We have By € Biyp.

(d) We have By = mi,s(Bs)-
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Since c starts with 0, the element Ef € Ut is in 7] _,U*, hence by
38.1.6, z is in f[i], and ;r(z) = 0; hence ¢ (z) = 05’)z. It follows that
#2(2)* = B Eg = ES'. This proves (a).

We prove (b). Using (a) and the definitions, we have z = 3, mod v=1L(f)
and ¢¢z = By mod v~1L(f). Since ¢! maps v—'L(f) into itself it follows
that ¢2z = ¢2(8,) mod v~1L(f), hence ¢?(B) = By mod v~1L(f). This
proves (b).

From the fact that the elements Eﬁ", where ¢” runs through N, form
a basis of U™, it follows immediately that

(e) for any ¢ > 0, the elements EE where ¢” runs through the elements
of N™ with first coordinate > ¢, form a Q(v)-basis of EfU*.

We prove (c). Assume that 3, € B;; with ¢t > 0. Then 8} € E{UT,
hence it is a linear combination of elements as in (e); in particular, Ef,
appears with coefficient 0, contradicting the definition of 8y. This proves
(c). Since By, By € B, we see from 17.3.7 that (d) follows from (b) and (c).
This completes the proof.

Carollary 42.1.13. We have B = {blb € B}. (We identify f = U* as
above.)

From the proof of 42.1.10, we have that {b|b € B} ¢ B. We show by
induction on N = trv that b € B, if b € B,. If N = 0, this is clear.
Assume that N > 1. By 14.3.3, we can find € I and s > 0 such that

‘be B” 'We then have b = mi,s0 where B € B;,o (see 14.3.2). We have
8= +b; where b, € B. By the argument in the previous lemma we have
that the sign is +, hence b= 5, sbl By the induction hypothesis, we have
by € B; the previous equality then implies that beB.

42.1.14. The basis {b|b € B} = {8*|8 € B} of U is in a natural bijection
with the set B, which in turn is in a natural bijection with the set H (see
the proof of 42.1.9). We thus have a purely combinatorial parametrization
of the canonical basis B.

The structure of left colored graph on B (see 14.4.7) corresponds to a
structure of colored graph on H, which we will now describe in a purely
combinatorial way.

For any ¢ € I, we define a function g, : H — N as follows. Let ¢ € I:I;
we choose h € H such that the sequence h starts with ¢. By 42.1.9, c is
the class of (h,c) for a unique ¢ € N™. We set g;(c) = ¢1 where ¢, is the
first coordinate of c. To show that this is well-defined, we consider h’ € H
such that the sequence h starts with i. Let ¢/ € N™ be such that c is the
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class of (h’,c’) and let ¢| be the first coordinate of ¢’. We must show that
c1 = ¢j. Now the set H; of all sequences in H which start with ¢ can be
naturally identified with the set of reduced expressions for s;wg; applying
2.1.2, we see that H;, regarded as a full subgraph of H is connected. Hence
to prove that ¢; = ¢}, we may assume that h,h’ are joined in the graph.
Then c and c’ are related by an elementary move as in 42.1.3(a) or (b).
This elementary move operates on coordinates other than the first, since
h, b’ start with the same element i. Thus, we have ¢, = ¢, as desired.

42.1.15. For any i € I, we define a partition H = Utzoﬂi,t by setting
ﬁi,t =g, 1(t). We define a bijection Tig I:I,-,o o I:I,-,t as follows. Let
(h, c) be a representative for an element of fli,o. Then c starts with 0; let
¢’ be the element of N™ which starts with ¢ and has the same subsequent
coordinates as those of c. By definition, m;;(h,c) = (h,c’). One checks
that this map is well-defined. From our earlier discussion, it is clear that the
partitions of H just described, together with the bijections 7; ;, correspond
to the analogous objects for B which are the ingredients in the definition

of the left colored graph.

42.1.16. We can also describe in purely combinatorial terms the left col-
ored graph for not necessarily simply laced Cartan data, by reduction to
the simply laced case, using 14.4.9 and 14.1.6.

422 REMARKS ON THE PIECEWISE LINEAR BIJECTIONS R:' :N® @ N»

42.2.1. Let h,h’ € H. We define a bijection Rl : N* =~ N” as a
composition
(2) RY' = Ruo) Ry B

where h(0), h(1),... ,h(t) is a sequence of vertices of the graph H such that
h(0) = h, h(t) = h’ and such that h(s), h(s + 1) is an edge of the graph
H for s = 0,1,...,t — 1; the factors on the right hand side of (a) are the
bijections defined in 42.1.3. (A sequence as above can always be found, by
2.1.2.) From 42.1.5, it follows that the definition of Rk' is correct, that is,
it does not depend on the choices made. Indeed, 42.1.5 gives us an intrinsic
definition of this bijection: with the notation in 42.1.5, we have Rt' (cy=¢
if and only if 7(Ef) = W(Eﬁ’,) The bijections R:' are piecewise linear, since
they are products of factors which are piecewise linear.

42.2.2. In this section we will show that the bijections R{‘l' also appear in
a completely different context.
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Let K be a field with a given subset Ko C K — {0} containing 1, and
such that the following holds:

(a) if f, f' € Ko, then f + f' € Ko, ff' € Ko, L5 € Ko.

For example, we could take

(b) K=R,Ko =R or

(c) K = R((¢)) where € is an indeterminate and Kj is the subset of K

consisting of power series of the form f = ase® + as+1€°*! + - such that
s > 0 and a, > 0; we then set |f| = s.

42.2.3. We consider a split semisimple algebraic group G over K, corre-
sponding to the root datum, with a fixed maximal unipotent subgroup U+
and a fixed maximal torus 7 normalizing U, both defined over K. For
each i € I, we denote by U;" the simple root subgroup of U+ corresponding
to i; we assume that we are given an isomorphism z; of the additive group
with Ll;“, defined over K. Let B~ be the Borel subgroup opposed to U™*
and containing 7. We shall identify G, ", T,U;", B~ with their groups of
K-rational points. We shall regard z; as an isomorphism of K onto U;'.

Proposition 42.2.4. Letw € W. Let h = (i1,12,...,in) be a sequence in
I such that s;, i, - - - Si,, 15 a reduced expression for w.

(a) The map KF — U given by

(P1,02,- -+, Pn) = Tiy (P1) T3, (P2) - - i, (Pn)

is injective.
(b) The image of the map (a) is a subset Ut (w) of Ut which does not
depend on h.

(c) If w' € W is distinct from w, then U (w) NUT(w') = 0.

Let &% (h) be the image of the map in (a). To prove (b), it suffices,
by 2.1.2, to check the following statement: if h’ is obtained from h by
replacing h consecutive indices 4, j, 1, ... in h by the h indices 3,1, j,... (for
some i # j with h = h(4,j)), then U+ (h) = Ut (k').

To prove this statement, we may clearly assume that I consists of two
elements %, j. In the case where i - j = 0, we have z;(p)z;(p") = z;(p")z:(p)
for any p,p’ € K. Assume now that i - j = —1. We have the following
identity, by a computation in SLj:

z;(t)zj(s)zs(r) = z;(t)zi(s")z;(r")
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where
I — sr ! — /— st
(d)t_t+r’ s=t+r, r'=3%
or equivalently,
1 147
() t=gfm s=t'+r, r=g25.

By the definition of Ky, we have s,t,7 € K if and only if s', ¢, € K.
This proves (b). We prove (c). Let $; be an element of the normalizer of
T in G which represents s; € W. If p € K — {0}, we have z;(p) € Bs;B.
Hence if py,p2,... ,pn are in K — {0}, then

iy (p1)iy (p2) - - - i, (Pn) € B3iy B8, B-++ 8, B C By, 54, -+ 8i, B

n

by properties of the Bruhat decomposition. Thus, U*(w) C B$;,8:, -+ $;, B
so that (c) follows from the Bruhat decomposition.
We prove (a). Assume that

iy (p1)Ti, (P2) - -~ Ti,, (Pn) = T4, (p1) T4, (03) - - - 2, (P,)

where py,...,p, and pi,...,p;, are in Ko. We prove that p; = pj for all |
by induction on n. This assumption implies

iy (1 — PVTi, (P2) -+ @i (Pn) = T4y (03) - -~ Tia (P],)-
If py — p} # 0, the two sides of the last equality are in
1

Bs,—lsiz s ‘é’i"B)Bs‘iz‘éig e 6",' B,

n

by the argument above. This is a contradiction. Thus, we must have
p1 = p}. Then we have

iy (P2) T (Pn) = iy () - -~ T4, (P],)
and the induction hypothesis shows that p; = p, ... ,pn = pl,-

Corollary 42.2.5. The subset Uyewldt(w) of UT is closed under multi-
plication. It coincides with the submonoid (with 1) of Ut generated by the
elements x;(p), for various i € I and p € K.

Let i € I and p € Ky. Let h = (i,42,...,i,) be as in 42.2.4. If
8i8i, 8, +++ 8, is a reduced expression in W, then z;(p)U*(h) C U* (k')
where h' = (¢,%1,142,... ,%,). If 8;8;,8;, - - - 8;, is not a reduced expression in
W, then we have s;,s;, -+ - 8;, = 5;8;,8j, - --8;,_,. for some j1,72,...,Jn-1.
Set h! = (4,j1,j2,--.,Jn-1). Clearly, z;(p)d*(h’) C U*(h’) and, by
42.2.4(b), we have U*(h') =U*(h). It follows that z;(p)UU+(h) C Ut (k).

We have thus proved that the set U,ewl ™ (w) is stable under left mul-
tiplication by elements of the form z;(p) as above. The corollary follows.
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42.2.6. From now on we assume that K, Ky are as in 42.2.2(c). Recall
that we then have a well-defined map f — |f| from K{ to N.

For any h = (iy,%2,...,i,) in H and any ¢ = (c1,...,¢n) € N”, we
define a subset U (h,c) of U™ as follows. By definition, U™ (h, c) consists
of all elements of Y+ which are of the form z;, (p1)zi,(p2) - - - Zi, (Pn) where
P1,P2, - - - , Pn are elements of Ko such that |p1| = ¢1, |p2| = c2, ..., |pn] = ca.
From 42.2.4, we see that we have a partition

(a) Ut (wo) = LUt (h,c).

Proposition 42.2.7. Let h,h’ be elements of H and let c,c’ be elements of
N™ such that RY (c) = ¢/. We have Ut (h,c) = Ut (h',c’). In particular,
the partition 42.2.6(a) of U™ (wo) is independent of h.

We may clearly assume that h, h’ are joined in the graph H. That case
reduces immediately to the case where I consists of two elements 4, j. The
case where i - j = 0 is trivial.

Assume now that i - j = —1. Using the identities (d),(e) in the proof
of 42.2.4, we see that it is enough to verify the following statement. Let
t,g,r,tf,g’,r' € Ko be such that t' = L, s’ =t +7,7' = t—i—‘; Then
|t'| = |s|+|r|—min([t], [r]), |s'| = min(j¢],|r]), |r'| = [t]+]s|-min([¢], [7]).
This is immediate. The proposition is proved.

“42.2.8.” We now see that the set of subsets in the partition 42.2.6(a) of
U (wp) (which is intrinsic, by 42.2.7) is in natural 1 — 1 correspondence
with the set ﬁ, hence also with the canonical basis B. At the same time
we have obtained a new interpretation of the piecewise linear bijections
R}," : N™ 22 N” in terms of the geometry of the group G.
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The braid group action on U has been introduced (with a different normal-
ization) in [5), in the simply laced case, and in [6], for arbitrary Cartan data
of finite type. Another approach (for Cartan data of finite type) to the braid
group action has been found by Soibelman [8]. The general case has not been
treated before in the literature. The fact that the braid group acts naturally
on integrable modules over arbitrary ground rings (see 41.2) is also new.

. The paper(3] of Levendorskii and Soibelman contains several results relating

braid group actions (for finite type) with comultiplication and with the inner
product. In particular, an identity like 37.3.2(a) appears (for finite type) in [3].
Our lemma 38.1.8 is closely related to [3, 2.4.2]; however, neither of these two
results implies the other. Propositions 38.2.3 and 40.2.4 are generalizations of
3, 3.2].

Corollary 40.2.2 and Proposition 41.1.7 appeared in [6] and [2].

Most results in 42.1 appeared in [7]. The results in 42.2 are new; in obtaining
them, I have been stimulated by a question of B. Kostant.
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(for v € Z[I));
tr v
1.2.1. 'f; 'f,; |z| for z € 'f; 6;; N[I]
1.22. r:'f->'fQ'f
1.2.3. (,) on'f
124. 7
1.2.5. f; f,; (,) on f;
|z| for z € £
1.26. r:f>fef
1.2.7. o on 'f;
1.29. con f
1.2.10. ~ on Q(v), on f;
Fo'f = 'f&f, {,} on'f
1.2.12. ~on f; 7: f — f®f;
{,}onf
1.2.13. r;; ;7
1.3:1. A4; [7]
1.3.3. [n]; [n]'
1.4.1. 6
1.4.7. Af, Af,
2.1.1. h(i,5); W
,2.1.2. Yw)
2.13. Wo
221 Y; X; (it 07
223. A< X
2.2.6. s;
2.3.1. 2p; n
2.3.2. p(i)
3.1.1. 'U;'Ut;, 'U,
U, U+, U~
E;; Fi; Ky;
E®), F®),
Ri; Ru;
R AR A
313. won U; 0 on U
3.14. Aon U,'U
3.1.12. ~on U

3.1.13. 4U
3.24. U°
3.2.6. Ut; Uy
331. 8,8
34.1.C
3.44. “M
3.4.5. M,
3.4.7. CM
35.1. C
355 Xt
3.5.6. Ax
3.5.7. “Ax; ma; €=
4.1.1. A
4.1.2. 6; 6,
4.2.1. 612, 62 613
5.1.1. C!
5.2.1. Ti',e,Ti’,’e M- M
5.3.1. L; LY
6.17. Q=: M - M
7.1.1. fi,j;n,m;e = fn,m;e
8.1.1. D(X); D(K); H"K; K|[j]
8.1.2. M(X); M(X)[n]; H*K; T<n;
8.1.7. Mg(X); Mg(X)[n]; K
8.1.9. D;(X,G; A, B)
8.1.11. Lp; ®(K)
9.1.2. V; V,; Gv; Ev
9.1.3. X; F.; .’i',,; I:.,
9.1.3. Pv; Qv
9.2.1. Prw; Qr.w
9.2.5. Indy wi
-V

Rest wi

Ind¥yw
9.2.10. ResY w
9.3.1. Pv,;i>y; Pviriy
11.1.5. O

12.1.2. V% V2; Qv; Pyv; K(Qv); K(Pv)

12.1.3. O’ = Ofv,v7}Y
12.1.5. indY w; resy. v
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13.2.1. 4k

13.2.6. k

14.2.1. A

14.23. B

14.2.5. B,

14.3.1. Bi;>n; “Bi;>n;
Bi;n; aBi;n

14.4.2. B; B,

14.4.6. B;;n; ’B;.n

14.4.11. B()\); B(Ay)

15.1.2. U

16.1.1. D;

16.1.3. ¢;; &

16.1.4. F;; E;

16.2.3. A(Z); A

17.3.3. L(f)

18.1.1. (A),

18.1.2. B()\)

18.1.5. L(f),

18.1.8. L(A); L'(A)

19.1.1. p: U—-TU

19.1.2. (,) on A

19.3.1. 4Ax

19.3.4. ~: Ay — Ay

23.1.1. )‘IU)‘H; U; 1,\

23.1.2.. U(v)

23.18. - :U—-U

23.3.3. P(¢,a,d’); aP(¢{,a,a’)

24.3.3. b, O b
25.2.1. bOcb”

2524. B

Indezx of Notation

25.4.1.
26.1.2.
27.1.1.
27.2.1.
27.2.3.
27.2.5.
27.3.2.
29.1.1.
29.1.2.
31.1.1.
31.1.5.
31.2.4.

mMgy; ma’
(,)on U

M[A; M[> A); M[> )]
B[A]

B[A]hi; B[A]'D

M*

b1 OB

B[M]

U2 M) U> A

¢ : A — R; Rﬁ; Rf
rC

rC’

31.1.13. g M),

31.2.1.
31.3.2.
32.1.5.
33.1.1.
35.1.3.
35.4.1.
36.1.2.
36.2.1.
36.2.5.
37.1.2.
37.2.1.

38.1.1.
38.1.3.
39.4.4.

41.1.1.
42.1.8.

rAN

rLx

fRM M

rf

AI

f

o

RU

RYU

I T, :U-U

« gl .
xn,m;e: :En,m;e’

« o
Yn,m;es yn,m;e

£[d]; 7f[d]
g : f[i] — 7f[i]
Ttlv,mTtZ,e

™ .7 :U—=>U

i,erie

H



Index of Terminology

adapted basis, 16.3.1
admissible
automorphism, 12.1.1
form, 16.2.2
almost orthonormal, 14.2.1
antipode, 3.3.2
skew, 3.3.2

based module, 27.1.2

basis at 00, 20.1.1

braid group, 2.1.1

Brauer’s centralizer algebra, 27.3.10

canonical basis of f, 14.4.6
of Ay, 14.4.12
of “Ay ® Ay, 2434
of U, 25.2.4
signed...of f, 14.2.4

topological...of (U~® U™, 30.1.4

Cértan datum, 1.1.1
symmetric, irreducible, without
odd cycles, of finite type,
of infinite type, 2.1.3
cell
(two-sided, left, right), 29.4.1
~coinvariasts, 27.2.5
comultiplication 3.1.4
coordinate algebra
(quantum), 29.5.1
coroot, 2.3.1

discrete subset, 9.1.3
dominant, 3.5.5

equivariant perverse sheaf, 8.1.7
semisimple complex, 8.1.8

flag, 9.1.3

Fourier-Deligne transform, 8.1.11

Frobenius homomorphism
(quantum), 35.1.10

graph, 9.1.1

hexagon property, 32.2.4
highest weight module, 31.3.1

induction, 9.2.5
integrable object, 3.5.1

Kashiwara’s operators, 16.1.4
left graph on B, 14.4.7
length of w, 2.1.2

linear category, 11.1.1
morphism of root data, 2.2.2

orientation, 9.1.1

periodic functor, 11.1.2
perverse sheaf, 8.1.2

quasi-classical case, 33.2.1
quasi-R-matrix, 4.1.4

reduced expression, 2.1.2
restriction, 9.2.10
root datum, 2.2.1

Y -regular..., X-regular...,

simply connected..., adjoint..., 2.2.2

semisimple complex, 8.1.3
Serre relation

(quantum), 1.4.3
signed basis, 12.6.4
sink 9.3.4
structure constants 25.4.1
symmetries, 5.2.1

traceless, 11.1.4
triangular decomposition, 3.2, 23.2.1

unital module, 23.1.4
Verma
module, 3.4.5,
quantum .... identity, 39.3.7

weight space, 3.4.1
Weyl group, 2.1.1



Comments added in the second printing

1. Let M € C’ and let i € I,e = +1. We define two Q(v)-linear maps
Sie)Sie: M — M by

Sz{,e — Z (_1)bvf(c2_a2_ac+ab—bc+a+c) Fi(a) Efb) Fi(c)i('-ie(a~c)’

a,b,c

Sze — Z (_l)bv;:(c2—a2—ac+ab—bc+a+c) Elga)Fi(b)Ei(c)I"{ie(c—a)

a,b,c

where a, b, c run over Nj although the sums are infinite, on any given vector
in M, all but finitely many terms in either sum act as zero.

Several readers have asked me about the relationship between these op-
erators (which appeared in (3, 3.1]) and the operators T}, T}, : M — M
in 5.2.1. The relationship is as follows:

! __ ! e 1 __ ol pr—e
Si,e“‘Tz',eKi’ Si,e_n,eKi '

To prove this, we may replace C’ by C; and we may assume that M is a
simple object of C. Then the desired identities are checked by calculations
similar to those in 5.2.2.

It follows that the braid group relations 39.4.3(c),(d) remain valid if
T',T" are replaced throughout by $’,S”.

2. In the last sentence on p. 183, it was stated that it should be possible
to remove the signs + in Corollary 26.3.2. This is indeed true, as was shown
by Kashiwara [2].

3. The question raised in the last sentence of 40.2.5 has been answered
by J. Beck [1] in the untwisted case.

REFERENCES

[1] J. Beck, Convez bases of PBW type for quantum affine algebras, Communications
in Math. Phys. (to appear).

[2] M. Kashiwara, Crystal base of modified enveloping algebras, Duke Math. J. 73
(1994), 383-414.

[3] G.Lusztig, Problems on canonical bases, Amer. Math. Soc., Proc. Symp. Pure Math.
(1994).
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Errata to Introduction to Quantum Groups (1994 printing)

. 3 line 13: after “homomorphism,” and before “then” insert:

preserving Z[I]-gradings

.9, line —5: inside the last bracket [ |, replace a’ by o’ and ¢’ by ¢”.
. 11, in the numerator of the first fraction on line -4, insert a factor v} v;
. 12, in the numerator of the fraction on line -8, insert a factor v;

. 13, just before 1.4.7, add the following text.

Here is another proof of Proposition 1.4.3 which is not based on
1.4.5 but is based, instead, on the following statement which is easily
verified.

(a) For any k € I tae left-hand side of the equality in 1.4.3 is in the
kernel of r; : f — f£.

Note that 1.4.3 follows from (a) in view of 1.2.15(a).

. 31, in 3.4.6 line 6: delete (a) (twice) and in 3.4.6 line -2, replace

E,F“ by E,, F,.

. 32 line 3.5.3(b): replace

E;FN + Q()FN~" by E;FN + QU)K FN '+ Q(v)K; 1EN !

. 32 line —1: add: See also 23.3.11.

. 33, line 13, replace My by A,.

. 40, line -3: replace n + 2m by n + 2m — 2.

. 40, line —1: replace n — 2m by n — 2m + 2.

. 41 lines 5,6: replace If x € M™(0), then by definition, (¢ — s, )z = 0 by

We have M"™(0) = 0.

. 41 lines 9, 10, 11, 12: replace (four times) n + 2m by n + 2m — 2.
. 42: delete lines 1,2.
. 42 line 6: replace roman m,n by italic m,n.

. 45: the equalities in line -2 of 5.2.6 should read

v(/‘-/\)_<i7A>(”’?i,> — v(/—‘»(”yi/)iv’\> — v(”lv’\).

. 45: the line “This follows immediately from the previous lemma” in 5.2.7

should read: This has been stated in the proof of the previcus
lemma.
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o - = B = B = B - B - B = - A - T - B = I <

. 49, line —5: insert 2 in front of the second X.
. 49, line —7: insert 2 in front of the second .
. 50, line 4: replace 2 by 4 in front of the second %.

. 56, Lemma 7.1.4 should read:
Assume that m = an + 1. We have

vn—l v—n+1
74 J Tk o J +
ij:,m;e - 'r_:_,m;eFj = R—j——l n—1,m;1 — Kj——ffn—l,vn;—l‘
vj —vj vj =1
.57 line 3 and 4: the factors v¢" "™ %" should be be deleted.

. 68 at the end of 9.1.2: insert the line:
“Here g; : V; — Vj is the restriction of g.”

. 71 line -8: replace G xp ' by G xg F.
. 72, line 7: replace T; by T;.

. 77 in 9.3.1 line —8: replace
Y(i) =2~ by 2%
and /(i) >~(i) dy % >

. 85, line 11: insert ) befcre =.

. 87, lines 2,3 of 10.3.2: delete “and Ty =0 foralli’ eI -T1'"”
.91, lines 7, 8, 12, 18: replace ...(a*) by ---@ (a*) (in five places).
. 113, lines —13, —12: replace “a-orbit” by “orbit”.

. 118, line 8 of 14.2.2: replace p, € Z by py € Q.

. 124, line 2 of 14.4.11: replace N+ by ML

. 128: Ref. 6, add: I.H.E.S. before 67.

. 132, line 1 of 16.1.2(b): replace v—t(t=1)/2 py o~ H=1/2,

. 138 line -7, -5, -3: replace last L(M)) by L(M).

. 138 line —2: replace all £(M)) by L(M) (three times).

. 164, line 6 of 19.1.1, replace Sp; by p1S.

. 171, line 4: replace Let 0 € Ay by Let b€ Ay, b# 0.

- 177 line —2: replace w(u)x(n) (following the second =) by w(u) - x(n).



p. 181 in lines 2, 5, 6: replace dp 9, '.n by dp.6,.8 n-
V| by |-

p. 181 in lines 2, 6: replace

p- 185 in line -8, —9: replace
LAY, A5, A and any t € UM, — X)), s € U(A] — AY),
by the following:
AL, A, AL, AY in X, any vy, v in Z[I] such that
A=A =v1, A] = A =12 (in X) and any ¢t € U(14), s € U(rr),

p- 190 line —1: replace M ® T' by “M,®T'.

At the end of p. 191 (after ”...from 23.3.6”) add a new subsection:
23.3.11.

We give a more detailed proof of Proposition 3.5.4 based on results in
this chapter. Let my x» be as in 23.1.1. From the definition we see that if
u € U satisfies 7y, x,(u) = 0 for any A;, A2 in X then u = 0.

Let @ = Y ,a;i € N[I], b = Y ,bi € N[I], A € X, J(\a,b) =
SLUFSMH 4 S UE + % oy (K — V). Let u € NgpaJ (), a,b).
By 3.5.3 it is enough to show that u = 0. Hence it is enough to show
that mx, a,(u) = 0 for any A, Ap in X. If (¢, A9) = a; — b; for alli € T
we have mx, z,(J(A2,a,b)) C P(Ag,a,b) (notation of 23.3.3). Herce it is
enough to show that for any ( € X we have NP((,a,b) = 0 where the
intersection is taken over all a,b such that (i,{) = a; — b; for all i. Us-
ing the isomorphism ¢ in 23.2.5 we see that we may assume that our
root datum is simply connected. We identify X+ with N[I] by A — )
where A = }".(i,\)i. It is enough to show that for any ¢ € X we have
N aex+c=x—aP(¢, A, A) = 0. For X, A € X such that ¢ = \'—\ we have
an isomorphism Ul; — f @ f = “M, ® My (see 23.3.1(c)) which by 23.3.5
carries P((,\",A) onto 7, ® f + f ® To» where 7, (resp. 7y) is the kernel
of the canonical homomorphism f = “My — “Ay (resp. £ = My — Ay).
It is then enough to show that Ny yex+.c=xv-A(TH @ F+f® Ty) = 0.

Now assume that = belcngs to the last intersection. We have
T=) cpcr fu @f, where F, F' are finite subsets of N[I]. We can find
A € Xt such that A+ ¢ € X+, 26, A) > tr(v) + tr(v), 3,6 A+ ¢) >
tr(v) + tr(v') for any v € F,/ € F'. If z # 0 then for such A we have
x ¢ T\®f+f® T,y This shows that z = 0. This proves 3.5.4.

p- 200 line —5: replace last A’ by A



p. 220: part (d) of Theorem 27.3.2 and the first two lines of the proof are
missing. Thus, at the bottom of p. 220 (after 27.3.2(c)) add:
(d) The natural homomorphism £N ¥ (L) — L/v™L is
an isomorphism.
The element by 0 b} = 3, 4 b, by,ba by b2 ® by satisfies the
requirements of (a). This shows the existence in (a). It is also clear
that the elements

p. 228: the diamond in linz 2 of 28.2.6 should be bigger (of the same size
as the diamond in ine 4 of 28.2.6).

p. 237 in line 2 of 29.5.1: replace: on U[> )] for some X € X* by
on some two-sided ideal of finite codimension of U.

. 240 first line of 30.1.7: remove one dot after “Example”.
. 246 line 8: replace x € f, by = € gf,

. 320 in line 5 of 40.1.2: replace l[(w) =1 by I[(w)=0.

. 320 in line 6 of 40.1.2: replace [(w) > 1 by I(w) > 0.

= I~ L o (R = Sl = |

. 325 line —10: replace [7] by [6].
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