On conjugacy classes in the Lie group E8

George Lusztig (M.I.T.)

2

Classification of simple Lie algebras (or Lie groups)/ \mathbf{C}

(Killing 1879, a glory of 19-th century mathematics):

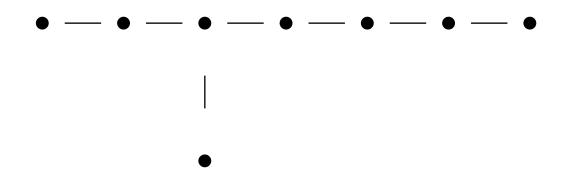
 $4 \propto$ series and 5 exceptional groups of which the

largest one, E_8 , has dimension 248. It is the most

noncommutative of all simple Lie groups: $\frac{\dim(G)}{\operatorname{rk}(G)^2} = \frac{248}{8^2}$

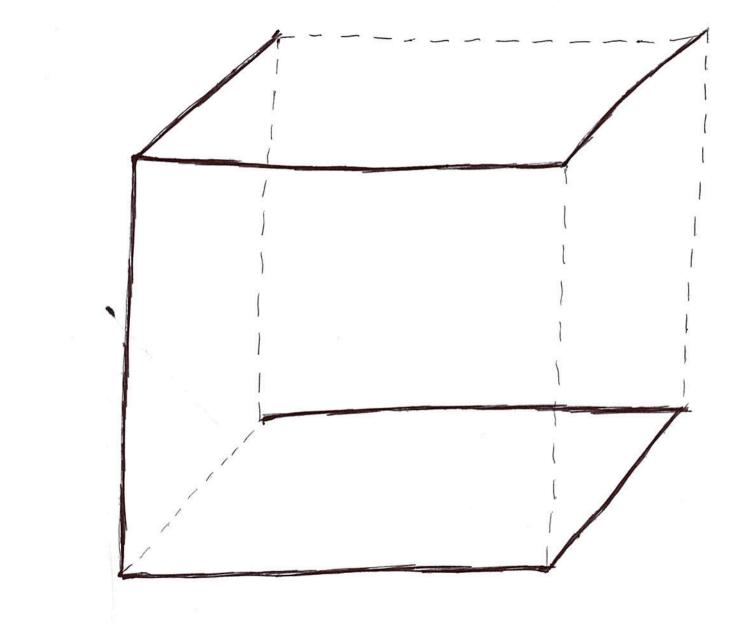
is maximal among simple Lie groups ($\cong 4$).

The Lie group E8 can be obtained from the graph E8:



by a method of Chevalley (1955), simplified using theory of

"canonical bases" (1990).



I=set of vertices of the graph E8.

V=free **Z**-module with basis $\{\alpha_i; i \in I\}$ and bilinear form:

$$(\alpha_i, \alpha_i) = 2; (\alpha_i, \alpha_j) = -\sharp (\text{edges joining } i, j) \text{ if } i \neq j.$$

This bilinear form defined by Korkine-Zolotarev (1873) before

Killing and nonconstructibly earlier by Smith (1867). Roots:

$$R = \{ \alpha \in V, (\alpha, \alpha) = 2 \}; \ \sharp R = 240.$$

 $M = \mathbf{C}$ -vector with basis $X_{\alpha}(\alpha \in R), t_i(i \in I).$

For $i \in I$, $\epsilon = 1, -1$, define $E_{i,\epsilon} : M \to M$ by

$$E_{i,\epsilon}X_{\alpha} = X_{\alpha+\epsilon\alpha_i}$$
 if $\alpha \in R, \alpha + \epsilon\alpha_i \in R$,

$$E_{i,\epsilon}X_{\alpha} = 0 \text{ if } \alpha \in R, \alpha + \epsilon \alpha_i \notin R \cup 0,$$

$$E_{i,\epsilon}X_{-\epsilon\alpha_i} = t_i, \ E_{i,\epsilon}t_j = |(\alpha_i, \alpha_j)|X_{\epsilon\alpha_i}.$$

$$R^+ = R \cap \sum_{i \in I} \mathbf{N}\alpha_i, \ M^+ = \sum_{\alpha \in R^+} \mathbf{C}X_\alpha \subset M.$$

$$\dim M = 248, \dim M^+ = 120.$$

 $G = E8(\mathbf{C}) =$ subgroup of GL(M) generated by $\exp(\lambda E_{i,\epsilon}), i \in I$,

 $\epsilon = 1, -1, \lambda \in \mathbb{C}^*$. (The Lie group E8.) Replacing

C by F_q leads to a finite group $E8(F_q)$ which, by Chevalley

(1955), is simple of order q^{248} + lower powers of q.

The Weyl group is $W = E8(F_1) = \{g \in Aut(V); gR = R\}$. Note:

$$\sharp(E8(F_1)) = \lim_{q \to 1} \frac{\sharp(E8(F_q))}{(q-1)^8} = 4!6!8!.$$

For a group H, the *conjugacy classes* of H are the orbits of

the action $x: g \mapsto xgx^{-1}$ of H on itself. They form a set cl(H).

Main guiding principle of this talk:

The conjugacy classes of $G = E8(\mathbf{C})$ should be organized

according to the conjugacy classes of $W = E8(F_1)$.

For $w \in W$ let $l(w) = \sharp(R^+ \cap w(R - R^+)) \in \mathbb{N}$ (length).

For $C \in cl(W)$ let

 $C_{min} = \{ w \in C; l : C \to \mathbf{N} \text{ reaches minimum at } w \}.$

 $C \in cl(W)$ is *elliptic* if $\{x \in V; wx = x\} = 0$ for some/any $w \in C$.

cl(W) has been described by Carter (1972);

 $\sharp cl(W) = 112, \ \sharp \{C \in cl(W); C \text{ elliptic}\} = 30.$

The G-orbit of M^+ in the Grassmannian of 120-dimensional

subspaces of M is a closed smooth subvariety \mathcal{B} of dimension

120, the flag manifold.

The diagonal G-action on $\mathcal{B} \times \mathcal{B}$ has orbits in canonical bijection

 $\mathcal{O}_w \leftrightarrow w$

with W. (Bruhat 1954, Harish Chandra 1956).

For $w \in W$ let $G_w = \{g \in G; (B, g(B)) \in \mathcal{O}_w \text{ for some } B \in \mathcal{B}\}.$

For $C \in cl(W)$ let $G_C = G_w$ where $w \in C_{min}$; one shows (using

Geck-Pfeiffer 1993): G_C is independent of the choice of w in

 C_{min} ; also, $G_C \neq \emptyset$, G_C is a union of conjugacy classes. Let

 $\delta_C = \min_{\gamma \in cl(G); \gamma \subset G_C} \dim \gamma,$

$$\boxed{G_C} = \bigcup_{\gamma \in cl(G); \gamma \subset G_C, \dim \gamma = \delta_C} \gamma.$$

 $|G_C|$ is $\neq \emptyset$, a union of conjugacy classes of fixed dimension, δ_C .

Let $G^{un} = \{g \in G; \text{ all eigenvalues of } g : M \to M \text{ are } 1\}.$

Theorem. (a)
$$\bigcup_{C \in cl(W)} \overline{G_C} = G.$$

(b) For any $C, C' \in cl(W), \overline{G_C}, \overline{G_{C'}}$ are either equal or disjoint.
(c) For any $C \in cl(W), \overline{G_C} \cap G^{un}$ is either empty or a single
conjugacy class.

(d) If $C \in cl(W)$ is elliptic then $\delta_C = 248 - l(w)$ for any $w \in C_{min}$ and $\overline{G_C} \cap G^{un}$ is a single conjugacy class.

See arxiv:1305.7168.

Proof: uses representation theory of $E8(F_q)$ (a part of its

character table known since 1980's) and computer calculation.

(Help with programming in GAP was provided by Gongqin Li.)

The subsets $|G_C|$ partition G into the *strata* of G.

If $\gamma, \gamma' \in cl(G)$ we say: $\gamma \sim \gamma'$ if γ, γ' are contained in the

same stratum. If $C, C' \in cl(W)$ we say: $C \sim C'$ if $|G_C| = |G_{C'}|$.

These are equivalence relations on $cl(G) = cl(E8(\mathbf{C}))$,

 $cl(W) = cl(E8(F_1))$; by the theorem we have canonically

 $cl(E8(\mathbf{C}))/\sim \leftrightarrow cl(E8(F_1))/\sim.$

Examples. If
$$C = \{1\}$$
 then $\overline{G_C} = \{1\}$.

If $C \in cl(W)$ contains all w in W of length 1 then $|G_C|$ is a single

conjugacy class (it has dimension 58.)

Let $C_{cox} = \{w \in W; w \text{ has order } 30\};$ it is a single conjugacy

class in W, Coxeter class. If $C = C_{cox}$ then $G_C = |G_C|$ is the

union of all conjugacy classes of dimension 240 (Steinberg 1965).

Let
$$cl_u(E8(\mathbf{C})) = \{\gamma \in cl(E8(\mathbf{C}); \gamma \subset G^{un}\}; cl_u(E8(\bar{F}_p)) =$$

analogous set with **C** replaced by \overline{F}_p , p a prime number.

 $\sharp(cl_u(E8(\mathbf{C}))) = 70, \text{ (Dynkin, Kostant)}, \, \sharp(cl_u(E8(\bar{F}_p))) = 70 + n$

where $n = 4, 1, 0, 0, \dots$ for $p = 2, 3, 5, 7, \dots$

We have a natural imbedding $j_p : cl_u(E8(\mathbf{C})) \to cl_u(E8(\bar{F}_p))$ and

 $cl(E8(\mathbf{C}))/ \sim \leftrightarrow \cup_{p \text{ prime}} cl_u(E8(\bar{F}_p)) \text{ (union taken using } j_p).$

Hence number of strata is 75.

The definitions above extend to any simple Lie group G.

If $G = S0_5(\mathbf{C})$, then $cl(W) = \{C_4, C_4^2, C', C'', \{1\}\}$

where C_4 consists of the elements of order 4;

 $|G_{C_4}|$ is the union of classes of dimension 8,

 $G_{C_4^2}$ is the union of classes of dimension 6,

 $G_{C'}|, |G_{C''}|$ are the two conjugacy classes of dimension 4,

$$|G_{\{1\}}| = \{1\}.$$

 $A_5 =$ alternating group in 5 letters. Let

 $Y = \{\phi \in \operatorname{Hom}(A_5, G); \text{ centralizer of } \phi(A_5) \text{ in } G \text{ is finite} \}.$

We have $Y \neq \emptyset$, by Borovik (1989). (Note: G is the simple group

of largest dimension for which the analogue of Y is $\neq \emptyset$.)

G acts on Y by conjugation.

Problem: What is the number of orbits of this action?

Theorem. Y is a single G-orbit.

Sketch of proof. A_5 has generators x_2, x_3, x_5 with relations

$$x_2^2 = x_3^3 = x_5^5 = 1, x_2 x_3 x_5 = 1$$
 (Hamilton, 1856).

For n = 2, 3, 5 let \mathbf{c}_n be the unique conjugacy class in G such

that $\operatorname{codim} \mathbf{c}_n = 240/n$ and any element of \mathbf{c}_n has order n.

One can show:
$$\mathbf{c}_n \subset \boxed{G_{C_{cox}^{30/n}}}$$
.

According to Frey (1998), Serre (1998), $\phi \in \text{Hom}(A_5, G)$ is

in Y if and only if $\phi(x_n) \in \mathbf{c}_n$ for n = 2, 3, 5.

Thus Y can be identified with

$$Y' = \{ (g_2, g_3, g_5) \in \mathbf{c}_2 \times \mathbf{c}_3 \times \mathbf{c}_5; g_2 g_3 g_5 = 1 \}$$

and the G-action on Y' (simultaneous conjugation) has finite

stabilizers hence all its orbits have dimension equal to $\dim G$. It

is enough to show that for the analogue of Y' over F_q with

q large and prime to 2, 3, 5 we have

 $\#Y'(F_q) = q^{248} + \text{lower powers of } q.$

By Burnside (1911):

$$\# Y'(F_q) = \frac{\# \mathbf{c}_2(F_q) \# \mathbf{c}_3(F_q) \# \mathbf{c}_5(F_q)}{\# E8(F_q)} \sum_{\rho} \frac{\rho(a_2)\rho(a_3)\rho(a_5)}{\rho(1)}$$

where $a_n \in \mathbf{c}_n(F_q)$ and ρ runs over the irreducible characters

of the finite group $E8(F_q)$. From the representation theory of

 $E8(F_q)$ we can evaluate the right hand side and get the desired

estimate for $\sharp Y'(F_q)$.

E8 is the only simple Lie group G in which the group of connected components of the centralizer of some $g \in G$ is not solvable. (Such g is unipotent, contained in $\overline{G_{C_{cox}^5}}$.)