CHARACTER SHEAVES ON DISCONNECTED GROUPS, X

G. LuszTIG

INTRODUCTION

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k with a fixed connected compo-
nent D which generates G. This paper is a part of a series [L9] which attempts to
develop a theory of character sheaves on D.

Our main result here is the classification of "unipotent” character sheaves on
D (under a mild assumption on the characteristic of k). This extends the results
of [L3, IV,V] which applied to the case where G = G°. While in the case of
G = GY the classification of unipotent character sheaves is essentially the same
as the classification of unipotent representations of a split connected reductive
group over F,, the classification in the general case is essentially the same as
the classification of unipotent representations of a not necessarily split connected
reductive group over F, given in [L14].

We now describe the content of the various sections in more detail. §43 con-
tains some preparatory material concerning (extended) Hecke algebra and two-
sided cells which are used later in the study of unipotent character sheaves. In
844 we study the unipotent character sheaves in connection with Weyl group rep-
resentations and two-sided cells. (But it turns out that the method of associating
a two-sided cell to a unipotent character sheaf along the lines of [L3, III] is better
for our purposes than the one in §41.) A number of results in this section are con-
ditional (they depend on a cleanness property and/or on a parity property); they
will become unconditional in §46. In §45 we show that the problem of classifying
the unipotent character sheaves on D can be reduced to the analogous problem in
the case where GV is simple and G has trivial centre. In §46 we extend the results
of [L3, IV,V] on the classification of unipotent character sheaves on D from the
case G = GY to the general case.

Erratum to [L9, V]; in line 4 of 25.1 replace last a by s.

Erratum to [L9, VI]: on p.383 1.-25,-24 replace Z by 'Z® and A) by A;.

Erratum to [L9, VII]: on p.248, 1.4 of 35.5 replace G°F by G°F'.
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Erratum to [L9, VIII]: on p.346, 1.14 replace the first k£ by £’; on p.350, 1.3 and
1.4 of 39.6 delete ” The restriction of”, ”to”; on p.350, 1.6 of 39.6 replace first ¢ by
x; the 5 lines preceding 39.8 ("If n = 3 then ... is proved”) should be replaced by
the following text:

"If n = 3 then W must be of type of type Dy, I' is the alternating group in
four letters a, b, c,d, W) is either {1} or Z/2 (with trivial T-action) or the Z/2-
vector space spanned by a, b, ¢, d with the obvious I'-action. It is enough to show
that £ = E' @ E” where E’ is a U[WF)T-module defined over Q and E” is a
UMW )T ]-module of dimension 1 over {. If WUOIT has order < 2, this follows
from the fact that

(a) any simple Y[I']-module is either defined over Q or has dimension 1.
(Indeed, if it has dimension > 1 then it is the restriction to I' of the 3-dimensional
reflection representation of the symmetric group in four letters, which is defined
over Q.)

Now assume that W) has order > 2. We can find a homomorphism e :
WE) — {* (with image in {1, —1}) whose stabilizer in I' is denoted by T and

a simple U[I'.]-module Ey such that F = Ind%EK;E (E. X Ep); here E. is the one

dimensional U[W 5)]-module defined by € (necessarily defined over Q). If I'. =T
then F = FE. X Fy where Ej is as in (a) and the desired result follows. If T’ has
order 2 then FEj is defined over Q hence F is defined over Q. If I'c # I" and T, is
not of order 2 then I'; is of order 3, Ej is the restriction to I'. of a one dimensional
U[I'-module E” and we have E = E'®QE" where E' = Ind%ixill: (E.X4) is defined
over Q. Hence the proposition holds in this case. The proposition is proved.”

Erratum to [L9, IX]: on p.354, 1.-8 replace Vi,V,P by Qy, QP on p.354, 1.-7
replace 34.4 by 34.2; on p.355, 1.-8, 1.-13 replace V) by €2; on p.359, first line of
40.8 replace ¢y by ¢y ,; on the preceding line replace in by €; on p.361, 1.9 insert
» ” before £; on p.363, 1.6 before "Let” insert: ”Let Lf = IC(Zé‘jD,L",w).”; on
p.365, second line of 41.4, two ) are missing; on p.366, last displayed line of 41.4
replace 1 A by 4 e(A); on p.368, 1.2 remove ”the condition that”; on p.369, 1.7 a )
is missing; on p.371, 1.1 replace H,, by H; on p.372, 1.4 of 42.5 replace ®A by ®A,
on p.376, 1.-22 replace WW by W; on p.376, 1.-10 replace H>: Ap by HD: A
p.377, 1.-10 replace vt by ¥; on p.378, 1.6 replace A by D

Notation. Let € := ep be as in 26.2. If X is an algebraic variety over k
and K € D(X) we write H'(K) instead of PH'(K). If K € D(X) we set
griK = 3 ,c7(—-1)"H(K), an element of the Grothendieck group of the cate-
gory of perverse sheaves on X. The cardinal of a finite set X is denote by | X|.

CONTENTS

43. Preparatory results on Hecke algebras.

44. Unipotent character sheaves and two-sided cells.
45. Reductions.

46. Classification of unipotent character sheaves.
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43. PREPARATORY RESULTS ON HECKE ALGEBRAS

43.1. This section contains some preparatory material concerning (extended)
Hecke algebra and two-sided cells which will be used later in the study of unipotent
character sheaves.

We fix an even integer ¢ > 2 which is divisible by |G/G°|. Let I' be a cyclic
group of order ¢ with generator w. Let W be the semidirect product of W with T’
(with W normal) where waw ! = ¢(z) for + € W. Note that the group WP in
34.2 is naturally a quotient of W, via zw’ — z D with x € W, i € Z. Let Irr(W)
be the category whose objects are the simple (or equivalently, absolutely simple)
Q[W]-modules. Let Irr¢(W) be the category whose objects are the simple Q[W]-
modules Fy such that tr(z, Fy) = tr(e(z), Ey) for all z € W. Let Mod(W) be
the category whose objects are the Q[W]—modules of finite dimension over Q. Let

Irr(W) be the subcategory of Mod(W) consisting of those objects that remain

simple on restriction to Q[W]. Let Irr(W) be a set of representatives for the
isomorphism classes in Irr(W). Let ¢ be the object of Irr(W) whose underlying
Q-vector space is Q with W acting trivially and w acting as multiplication by

—1. Note that if £ € Irr(W) then E|qw] € Irr*(W). Conversely, we show:

(a) for any Eg € Irr* (W), the set {E € Irt(W); E|qw) = Eo} has ezactly two
elements; one is isomorphic to the other tensored with t.
From [L14, 3.2] we see that there exists a linear map of finite order v : Ey — Ejy
such that v(z(e)) = e(z)(vy(x)) for any e € Ey, x € W. (We use the following
property of e: if s, 8" € I are such that ss’ has order > 4 then s, s’ are in distinct
orbits of € on I.) Moreover, from the proof in [L14, 3.2] we see that v can be
chosen so that fycl = 1 where ¢ is the order of the permutation ¢ : W — W.
In particular we have v¢ = 1. This proves that the set in (a) is nonempty. The
remainder of (a) is immediate.

Let & be a subset of Irr(W) such that {E|qw); E € €} represents each isomor-
phism class in Irr€(W) exactly once.

43.2. Recall the notation A = Z[v,v~!]. Define [ : W — N by I(zw?) = I(z) for
x € W,i € Z; here [ : W — N is the standard length function. Let wy be the
longest element of W. Let H be the A-algebra with 1 with generators Tw(w € W)
and relations

TwTy = Ty for w,w’ € W with [(ww’) = I(w) + I(w'),

T2=T,+ (v—v )T, for s e I ) ) i
We have a surjective A-algebra homomorphism ¢ : H — HP, T, +— T,pi for
r € W, i € Z where HP is the algebra HP in 34.4 (with n = 1); thus, a number of
properties of H can be deduced from the corresponding properties of H{ in §34.

Let € — ¢T be the A-algebra isomorphism H — H such that 7] = (—1)l(w)T;_11
for all w € W. Let : A — A be the ring isomorphism such thitﬁ = v~¢ for
ic€Z. Let™: H— H, ¢~ £ be the ring isomorphism such that a7}, = ETJL for
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w e W, a € A; this isomorphism commutes with & — &, For w € W we set

Cw = Z Ul(y)_l(w)Py7m(U2>Tywi € H,

yeEW;y<z

6w - Z (_1)l(2)_l(m)UZ(I)_Z(Z)Pwozawoﬂﬁ(vz)fzwi S I:I7
zEW;x<z

where w = 2w’ (z € W,i € Z) and

Pya(q) = Z”y,w,jqj/zv Nyzj € 2
JEZ

are the polynomials defined in [KL1] for the Coxeter group W. Note that n, , ; =0
unless j € 2Z and n, ., ; = ;0. We have ¢, = CxTwi and ¢, = c¢,,. It follows that
dy= > () WyTWH@Pp (T, e H
yeEW y<z
and ¢}, = cl .

Let HY = Q(v) ®4 H, a Q(v)-algebra. Let H' = Q®4 H where Q is regarded
as an A-algebra under v — 1. We have H' = Q[W] (with T,, € H"' identified
with w € QW] for w € W). Let £ — &|,—; be the ring homomorphism H — H'
given by v — 1, T}y — w for w € W.

Let H, H, H' be the algebras defined like H, H?, H* by replacing W by W.
We identify H, HY, H' with subalgebras with 1 of H, H’, H* in an obvious way.
We have H! = Q[W]. Note that H is the same as the algebra H,, in 31.2 (with
n=1).

For x,y € W we have c,cy, = ) w75 ,c. with 77 € A. There is a well de-
fined function a : W — N such that for any x,y, 2 € W we have r} , € V@) Z[v~ 1]
and for any z € W we have r; ¢ v22)=1Z[y~1] for some x,y € W. For any
z,y,2 € W we define v, , .1 € Zby 1}, = Voy.z—102Z) mod v2)T1Z[v ).

We define a preorder < on W as follows: we say that 2’ < z if there exists x1, 2o
in W such that in the expansion (in H) ¢z czCuy = D cw Ty ¢y With 7y € A
we have r,, # 0. Let ~ be the equivalence relation on W attached to <. The
equivalence classes for ~ are called the two-sided cells of W. (See also [KL1].) We
write x < y instead of x <y, x £ y. It is known that a : W — N is constant on
each two-sided cell. If ¢, ¢’ are two-sided cells we write ¢ < ¢’ instead of x < 2’
for some/any x € c, 2’ € ¢/. This is a partial order on the set of two-sided cells;
we also write ¢ < ¢’ instead of ¢ X ¢/, c # c'.

The free abelian group H* with basis {t,;x € W} is regarded as a ring with
multiplication given by t.t, = > w Vay,.-1t- for z,5 € W. This ring has a
unit element of the form ) ;. ts where D is a well defined subset of W. We
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have H® = ®.HZ° (as rings) where ¢ runs over the two-sided cells and HZ® is the
subgroup of H> generated by {t,;x € c}. Let H*®® be the free abelian group with
basis {t,w’;x € W,i € [0,c—1]}. We have naturally H* ¢ H® (t, = t,v°). The
group ring Z[I'] is also naturally contained in H>® by @’ — 3 gep tav'. We regard
H* as a ring with 1 so that H> and Z[I'] are subrings with 1 and wt,w ! = teo(a)
for x € W. We have a surjective ring homomorphism ¢ : H® — HlD i
tyw' — t,pi for & € W,i € Z where HP"™ is the ring HP>° (with n = 1) in
34.12.

Define A-linear maps ® : H — A® H®, ® : H — A® H>® by &(cl) =
> eW,deD.a(d)—a(z) Ta,atz for T € W, é(clwi) = ®(cl)w! for x € W,i € Z. Now

®, & are homomorphisms of rings with 1. We have a commutative diagram

H —— A®H®
| al
HP —— A HP™

where the upper horizontal map is the composition of T : H — H with ® and the
lower horizontal map is the map denoted by ® in 34.1, 34.12 (which is not the
same as the present ).

For any field k let H® = k® H®, H® = k® H®. Let ® : H® — HE )
oY . HY — ﬁao(v) be the Q(v)-algebra homomorphisms obtained from ®, d by
extension of scalars. Let ®' : H' — HY, ol . g — I:Ia" be the Q-algebra
homomorphisms obtained from ®,® by extension of scalars. Now &Y, ®, !, d?
are algebra isomorphisms. Since the Q-algebra Q[W] = H! is split semisimple,
the same holds for the Q-algebra Hg'.

Now ¢ — &1 induces by extension of scalars a Q(v)-algebra isomorphism HY —
H? and a Q-algebra isomorphism H' — H'; these leave HY, H! stable and are
denoted again by & — &1,

43.3. Let Ey € Irr(W). We can view Ey as a simple Hg-module E§° via ®'.
Now Q(v) ®q E§° is naturally a simple Ha"(v)—module and this can be viewed as
a simple H"-module Ej via ®.

Let E € Irr(W). We can view F as a simple ﬁ&o—module E> via ®'. Now
Q(v) ®q E is naturally a ﬁao(v)—module and this can be viewed as an H"-module

EV via ®". By restriction, E can be viewed as a simple Q[W] = H'-module Ej.
From the definitions we see that EY is the restriction of the H’-module E¥ to H".

Let £/ be the Q[W]—module with the same underlying Q[W]-module structure
as F but with action of @ equal to —1 times the action of @ on E. Then E'? is
defined. Clearly, E’Y, EV have the same underlying H”-module and the action of
Tw on E’Y is equal to —1 times the action of Tw on E".
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Let sgn be the object of Irr(W) with underlying vector space Q on which w € W
acts as multiplication by (—1)! (). We set Ef = F ® sgn € Irr(W).

43.4. Let E € Irr(W). From the definitions, for any ¢ € H, ¢ € H*® we have:
(a) tr(§, £Y) € A, tr(§, BY)[v=1 = tr(§lo=1, F), tr((, ) € Z.
Hence it makes sense to write

tr(¢, EY) = Ztr(&,E”; i)v' where tr(¢, EV;i) € Z.
i€Z

More generally for £ € H” we write tr(¢, E?) = Y ez tr(&, EY; i)v® (possibly infi-
nite sum) where tr(§, EV;i) € Q (here tr(§, EV) € Q(v) is viewed as a power series
in Q((v)))-

For any & € H we show:
(b) tr(€, (BY)") = tr(€", BY).

Let E*T be the ﬁ”—fnodule whose underlying Q(v):module is EV but with £ € H?
acting as &7 in the H”-module E?. Note that the H’-module E*T is simple and its
restriction to an H"-module is simple. Also, the assignment E’ — E’Y defines a

bijection between the set of isomorphism classes of objects of Irr(VV) and the set of
isomorphism classes of simple H"-modules whose restriction to H" is simple. Thus
we have EVT = BV for some F; € Irr(W). It is enough to show that (ET)" = Evi

or that (E1)Y 2 E? as H’-modules. Using (a) for & € H we have
v ’UT v

tr(gvzlv El) - tr(ga El)vzl = tr(ga E )’021 = tr(€T7 E )v:l

= tr(¢" o1, B) = tr(€lo=1, E @ sgn).
Thus, tr(w, Ey) = tr(w, ET) for any w € W so that E; = ET in Irr(W) and
(ET)? = EY, as required.

For any w € W we have:

(c) tr(T; 1, EY) = tr(Ty, EY).

The proof is the same as that of 34.17 (we use also (a)).
For any £ € H we show:

(d) tr(&, BY) = tr(&, EV).
We may assume that £ = cle with x € W, j € Z. Since & = &, it is enough to
verify:

>, mamtw’ EX)= Y (e’ EY).

zeW,deD,a(d)=a(z) zeW,deD,a(d)=a(z)
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This follows from the obvious identity r; =% for any z,y,2z € W.

For any w € W we show:
(e) tr(To, (EN)?) = (=1)"te(T,, EV).

Using (b),(d), we see that the left hand side of (e) equals

(=)' te(T1), BY) = (=1)!®)tx(T, BY) = (=1){@t(T,, Ev).
This proves (e).
43.5. For E € Irr(W) we define f2 € Quv,v™'], f2° € Q by

(a) Z tr(Ty, EY)? = f dim E, Z tr(ty, E°)? = f¥ dim E.
reW reW

Note that f3, fz” depend only in E|qw);. Now fg is # 0; it specializes to
W[/ dim E for v = 1. Since E§° is a simple H&-module, the integer tr(t,, £§°)
is # 0 for some 2 € W. Hence fg° # 0. For E, E’ in Irr(W), the following holds:
() > rew t1(Tpery BVt (T, B'°) equals fg dim E if E, E are isomorphic and
equals 0 if E|qw] 2 E'|qw-
This can be deduced from 34.15(c) using the commutative diagram in 43.2 (we
use also 43.4(a)). Similarly,
(¢) D pew tr(zw, E)tr(zw, E') equals [W| if E, E" are isomorphic and equals 0
if Blqiw) # E'lqmw)-

43.6. Let Ep € Irr(W). Let EF° be the irreducible Hg'-module corresponding to
FEy as in 43.3. Since HY = ®.Q® H° as Q-algebras, there is a unique two-sided
cell ¢ = cg, such that EG° restricts to a simple module of the summand Q ® HZ®°
(and all other summands act as 0 on E§°). Let ag, be the value of a on cg,.

Let E € Irr(W). We set cg = cp,, ag = ag, where Ey = Elqw) € Irr(W).
We show:

(a) if ¥ € W, then tr(cl_, EV) = tr(t,w, E*)v= % mod v~ *EH1Z[v]; equiva-
lently, tr(cl_, EY; —ag) = tr(t,w, E®) and tr(cl_, EV;a) =0 for all a < —ag;

(b) if * € W and the action of cl_ on EV is # 0, then z < & for some z € cg.
From the definition,

tr(cl _, BY) = Z Ty atr(t.w, E%).
zEW,deD,a(d)=a(z)

In the last sum we have tr(t,w, E°°) = 0 unless z € cg in which case a(z) = ag.
z _ a agp—1 -1 z -1 _
For such z we have 77 ; = 7, 4.-1v*" mod v*? Z[v~—'] hence TEa = Tig =

Yed 10" mod v 2 Ft1Z[v] and

tr(cl _, BY) = Z bz tr(t,m, E)v™ "% mod v *ET1Z[y]
z2EW
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and (a) follows.

In the setup of (b), the action of }°_ \y jep a(a)=a(z) Ts,at-@ on E> is # 0.
Hence there exist z € cg,d € D such that r7 ; # 0 (so that z < z). This proves
(b).

We show: ) )

(c) ifx € W, then tr(Tyw, EV; —ap) = sgn(x)tr(tyw, E) and tr(Ty, EV;a) =

0 foralla < —ag. )
We argue by induction on I(x). If [(z) = 0 we have z = 1 and Ty, = cl._ and the
result follows from (a). Assume now that [(z) > 0. From the definition we have
el = sgn(z)T(vw) +& where € € 2wt ia(ary<i(x) VL[] Twre. The indugtion hypoth-
esis shows that tr(¢, EV;a) = 0 for all @ < —ag. Hence sgn(z)tr(T,w, EV;a) =
tr(cl_, EV;a) for all @ < —ag; now (c) for = follows from (a).

TTo?

Using (c¢) and 43.5(b) we see that

fpdimE = Z tr(tyo, E°°)?v 2% 4 strictly higher powers of v.
zEW

Using now 43.5(a) we obtain

(d) fi = feev 2*E 4 strictly higher powers of v.

Now let E’ be another object of Trr(W). We show:

(e) > pew tr(tam, EX®)tr(tyw, E'*°) is equal to fz* dim E (if E, B’ are isomor-
phic) and is equal to 0 if E'|qiw] % Eo.
We can assume that cgr = cg (otherwise, the sum in (e) is 0). Combining 43.5(b)
with (c) for £ and E’ and with (d) we see that

0720y w tr(tew, E®)tr(t,w, E'°°)
plus a Z-linear combination of strictly higher powers of v is equal to f£f dim Ev—22#|}
plus a Z-linear combination of strictly higher powers of v (if E, E’ are isomorphic)
and is equal to 0 if E'|qmw) % Fo. Taking coefficients of v™2*# we obtain (e).

We show:

(f) E(CE) = Cg.

For any x € W we have tr(e(z), Ey) = tr(x, Ey). It follows that for any x € W
we have tr(te(y), £6°) = tr(tz, £5°). We can find o € cg such that tr(t., £5°) # 0.
Then tr(te(,), £6°) # 0 hence €(x) € cg and (f) follows.

43.7. Let (W, S) be a Weyl group (.5 is the set of simple reflections). Let o : W —
W be an automorphism of W such that o(I) = I and such that whenever s # s’
in S are in the same orbit of o, the product ss’ has order 2 or 3. Let b € Z~ be
such that o = 1. Let W be the semidirect product of W with the cyclic group
C of order b with generator ¢ so that in W we have the identity cxo~! = o(x)
for any x € W. Let I be a o-stable subset of S and let W; be the subgroup of W
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generated by I. Let F be a simple Q[W]-module such that E |Qpw is simple. Let
W, = W;C, a subgroup of W. Let Eg, = Q; ® E. We show:

(a) The Qi[W;]-module Eq,ly, is isomorphic to ©;E; where each E is a
Q:[Wi]-module and either

B is induced from a Q:[WC’)-module where C' is a proper subgroup of C, or

Ellw, is simple and E’; is defined over Q.
The general case reduces immediately to the case where o permutes transitively
the irreducible components of W. In this case we may identify W with Wy x
Wi x...x Wy and S = S x S1 X ... x5 (t factors) where (Wy,S7) is an
irreducible Weyl group; the automorphism ¢ may be written as o (wy, wa, ..., w;) =
(o' (wy), w1, wa, ..., we—1), w; € Wy where o’ is an automorphism of (W7, S7). We
have I = Iy xIy x... I where Iy C I is o’-stable. Hence Wy = Wy, xWp, x...xW7i,.
Note that b/t € Z~¢. Let W1 be the semidirect product of W5 with the cyclic group
C4 of order b/t with generator o’ so that in W1 we have the identity o/z10' "1 =
o'(x1) for any xq € Wi. We can find a simple Q[Wl]—module E; such that Ey|w,
is simple and such that £ = E; X E; X... X E; (¢ factors) as a Q[W;]-module and
oactson E ase; MeaW...Kep — o'(ey) ey Kea K., . Keyq, (6; € E;). Let
W[l = Wi, (4, a subgroup of Wl.

Assume that (a) holds when W, S, 0, b, I, E are replaced by Wy, S1,0’,b/t, I, Ej.
Let B q, = Qi ® E1. Then we can identify El,Qz|VT/zl = @jes 1 ; where each

By, isa Q;[W7,]-module with properties like those of E% in (a). We have Eq, =
Dy o, in 7B 5 KRBT, K. KB S as a Wi-module. If we take the sum of all
summands where (j1, jo, ..., j¢) is fixed up to a cyclic permutation then we obtain
a Wi-submodule & of Eq,- If j1,j2,...,j: are not all equal then &|w, is induced
from a Q;[W;C’]-module where C’ is a proper subgroup of C. If j; = jo = - -+ = jy,
then € = F{ ; ME] ; K. .RE] ;. Ifinaddition £} ; is induced from a Q;[Wy, C{]-
module where C} is a proper subgroup of C; then £ is a direct sum of Q;[Wj]-
modules induced from Q;[W;C’]-modules where C’ are proper subgroups of C.
If on the other hand Ef ; [w,, is simple and Ej ; is defined over Q then &|w,
is simple and &£ is defined over Q. Thus (a) holds for W,S,0,b,I, E. We can
therefore assume that (W,S) is an irreducible Weyl group. Let b’ be the order
of o : W — W. We have b/t € Z-(. By the proof of [L14, 3.2] we can find a
Q-linear isomorphism ¢’ : E — E such that ¢'* =1 and o'z’ ' = o(2): E — E
for any € W. Since E|y is absolutely simple we must have ¢’ = +0 : E — E.
Hence if (a) holds when E is modified so that the action of o is replaced by that
of o/ (and b is replaed by b’) then (a) also holds for the original E and b. Thus
we may assume that b = b’. In this case we have b < 3. Assume first that b < 2.
We write Eq, |y, = ©;E; where each EJ is a simple (:Ql[Wj]—module. If j is such
that E’|w, is not simple then E! is induced by a Q;[W;C’]-module where C’
is a proper subgroup of C. If j is such that E}|w, is simple then there exists a

Q[W;]-module Ej of finite dimension over Q such that E; lw, = Q®Ey as Q[Wy]-
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modules; moreover, by the proof of [L.14, 3.2], there exists a Q-linear isomorphism
7 : Ey — Eg such that 62 = 1 and 626! = o(z) for any z € W;. We extend & to
a Q-linear isomorphism Q; ® Ey — Q; ® Ey denoted again by &. Since Ej is an
absolutely simple W;-module we have o = a5 : Q;® Ey — Q; ® Eq where a € Q.
Since 02 =62 =1o0n Q; ® Ey, we have a = +1. Hence 0 : Q; ® Ey — Q; ® Ey
is defined over Q. We see that (a) holds for F. Next we assume that b = 3 so
that W is of type Dy4. In this case (a) is verified by examining the known explicit
W-graph realization of E. This completes the proof of (a).

43.8. We now return to the setup in 43.1, 43.2. Let I be a subset of I such that
e(I) = 1. Let P € Pr (see 26.1). Then NpP # 0 so that D' := NpP/Up is
a connected component of the reductive group G’ := NgP/Up; note that G’ =
P/Up. Let W} be the subgroup of W generated by W (see 26.1) and I'; now
W, I, W; play the same role for G, D’ as W,I, W for G, D. Let I:I}’ be the
algebra defined like HY (with W/ I replaced by W, I). We have naturally ﬁ}’ C

H?" as algebras with 1. For any subgroup I of I let I:I}”F/ be the subspace of I:I}’
spanned by the elements T)_: with 2 € W; and i € Z such that @’ € I"; this

is a subalgebra of ﬁ}’ Let ﬁ}] Qz’ﬁaz’ ﬁ;’gl be the Q;(v)-algebras obtained by

applying Qi(v) ®qe) () to Hf, H, H]™" .

Let £ € Irr(W). Let EV be the HV-module corresponding to F, see 43.3. We
have the following result: )

(a) The restriction to H} o of the H&l-module Q; ® EV is isomorphic to ;B
where each E; 8 a I:I}’ Ql—module and either

(i) E} is of the form I:I}’ ® o EY for some proper subgroup T' of I' and
1,Q;

7Ql
~ ’U,F/
some HI:QZ_ : )
(ii) E} is of the form Q; @ M;® where M; € Irr(Wy);
here M j s defined like EV in terms of VV] instead of W.
Note that (a) is a v-analogue of 43.7(a). It can be proved by the same method

as 43.7(a) or it can be reduced to 43.7(a) with W = W, b = c.

module EY/, or

43.9. In the setup of 43.8 let x € W ;. We show:

(Lo, BY) = > (B, E)tr(Tow, E"),
E’elrr(Wr)
(a) tr(zew, B)= Y (E,E)tr(aw, E);
E’elrr(Wr)

here for any E’ in the sum,

(E',E) = dimq.) Hom, (B, E’) = dimg Homy, (E', E).
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Using 43.8(a) we can write the left hand side of the first equality in (a) as

Z trQ, () (Tow E).
J

Here E’ is as in 43.8(a); if it is as in 43.8(i) then trQl(v)(me,E;-) = 0 since
IV # T'. The contribution of the j as in 43.8(ii) yields the right hand side of the
first equality in (a). The proof of the second equality in (a) is entirely similar.

We show:

(b) If E' in (a) satisfies (E', E) # 0 then ap < ap;
(here ap is as in 43.6 and aps is defined similarly in terms of E’ ,WI). Indeed
the simple W;-module E’|w, appears in the Wi-module E|w, hence (b) follows
from [L12, 20.14(a)].

Let I:I}X’ be defined like H> but for W; instead of W. For z € W[ we show:

(c) tr(tpe, E°) = > (E', E)tr(tye, E'™).
E'clrr(Wi)ag =ag

(The simple Q ® Hy°-module E'™ is defined like E> but for W instead of W.)
We take the coefficient of v~%# in both sides of the first equality in (a) (they are
in A; using 43.6(c) we obtain

sgn(z)tr(tyow, %) = Z(El, EVtr(Tyw, E'; —ap)
E/

where the sum over E’ is as in (a). By (b) the previous sum can be restricted to
the E’ such that agr < ag. The contribution of E’ with ap < ag is 0 by 43.6(c)
(for W;). Thus the sum can be restricted to the E’ such that ag: = ap. For such
E’ we have, using again 43.6 (for W):

t1(Tyw, B'; —ag) = t1(Tyw, E'V; —ap:) = sgn(z)tr(t,w, B')

and (c) follows.

43.10. For any E € Irr(W) we define ¢ : Ww — Z by ¢p(zw) = tr(zw, E).

Note that ¢pg, = —¢r (1 as in 43.1). The functions ¢ with E € Irr(W) generate

a subgroup R(W) of the group of all functions Www — Z which are constant on the
orbits of the conjugation W-action on Ww. From 43.5(c) we see that {¢p; E € ¢}

is a Z-basis of R(W). For any x € W we set

1 -
(a> wa — Z~ itr(tmw: EOO)QSE = Z tr(tmw7 Eoo)¢E € R(W>
Eclrt(W) Ee¢
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From 43.6(e) we see that for any E € & we have:

(b) D tr(tew, E®)Rye = fiF dim(E)dr € R(W).
reW

Now let I be a subset of I such that e(I) = I. We define a homomorphism
J:VVI : R(W;) — R(W) by

J“}ZVVI (¢pr) = Z (E'E)op

Eclir(W)ap=ag

for any B’ € Irr(W;). This is clearly well defined. For z € W, we define
N£w~ € R(Wjy) in the same way as Ny, € R(W) but in terms of W; instead
of W. From 43.9(c) we see that

(©) T (L) =R

43.11. Let I be a subset of I such that e(1) = I. We fix a two-sided cell ¢’ of W7
such that e(c¢’) = ¢’. There is a unique two-sided cell ¢ of W such that ¢’ C ¢; we
must have €(c) = ¢. We show:

(a) if B’ € Irr(W;), E € Irr(W) satisfy ¢’ = cgr (see 43.6 with W replaced by
W;) and (E',E) # 0, then cg < c.
To prove this we may replace E, E’ by their restrictions to W, W;. Thus we may
assume that W = W, W; = W, w = 1. Since ¢/ = cp, there exists z € ¢’ such
that the action of t, in the Q ® H*-module E'* is # 0. Using 43.6(a) we see
that the action of ¢l in the HY-module E’? is # 0. Since (E’, E) # 0, E! may be
regarded as a HY-submodule of EV. Hence the action of ¢l in the HY-module E"
is # 0. Using 43.6(b) we see that z < x for some z € cg. By definition we have
x € c. This proves (a).

We show: 3 B 3

(b) if E' € Irr(W7), E € Trr(W) satisfy ¢ = cgr (see 43.6 with W replaced by
V~VI) and aer = ap, (E',E) #0, then ¢ = cg.
Since the a-function of W7 is known to be the restriction of the a-function of W,
we see that the value of the a-function on ¢ and cg coincide. Since cp =< c (see
(a)) it follows that ¢ = cg.

43.12. Let z € W. Let ¢ be the two-sided cell containing x. According to [L14,
(5.3.1)] there exists uniquely defined elements a, , € Q(v) (for y € W,y < z)
such that

(-1t — Zy;%m(—l)l(y)ay’xcz acts as zero on E{ for any Ey € Irr(W) with
Cry % C.
Moreover for y < x we have

_ 0y
Ay,x = E , Ay, ;57U

J€Z%o
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where ay ,.; € Z for all j and a, ,; = 0 unless j = l(z) + {(y) mod 2, see [L14,
(5.3.6)]. It follows that the sum

1 —Il(x v X
(a) Z §tr(c;rr:w - Z (_1) i )+l(y)ay,mc;5w7 E )¢E € R(W)
E€lrr(W) Y;y=x

is equal to the same sum restricted to those F such that cg = c¢. For such F
we have ap = a(z) and for any y such that y < =z, ay7mtr(cLW,E”) is of the
form v~2(*)+1 times a rational function in v which is regular at v = 0; moreover,
tr(cl_, EY) is of the form v=2®)tr(t,, ) plus higher powers of v. Thus (a) is
of the form

1
Z iv_a(x)tr(txw,Eoo)qSE +o
Eclir(W);cp=c

where o is a linear combination of elements ¢pr with coefficients of the form
v~2®)+1 times a rational function in v which is regular at v = 0. In the pre-
vious sum the condition cg = ¢ can be dropped and the sum is unchanged. We
see that (a) is equal to v"2®)R, + ¢ with o as above. Taking in this identity
coefficients of v~2(*) in the expansions at v = 0 we obtain

New= 3 ltrlcle, B —a(s)

Eelrr(W)

(b) - Z (_1)_l(x)+l(y)ay,w;jtr(czw7 Ev; —a(x) - J))¢E

Y,J;y=<z,5>0

44. UNIPOTENT CHARACTER SHEAVES AND TWO-SIDED CELLS

44.1. In this section we study the unipotent character sheaves in connection with
Weyl group representations and two-sided cells. A number of results in this section
are conditional (they depend on a cleanness property and/or on a parity property);
they will become unconditional in §46.

The following convention will be used in this section. In parts of 44.3-44.7,
marked as #...#, we assume that the ground field k is an algebraic closure of F,
and we fix an Fg-structure on G' with Frobenius map F' : G — G which leaves
B*, T (see 28.5) stable and induces the identity map on W and on G/G?; we will
view the various varieties which appear with the natural F,-structure induced by
that of G. The results in other parts of this section are valid for a general k (by
a standard reduction to the case k = F,).

If X is an algebraic variety with a given F,-structure we write D,,(X) for the
corresponding mixed derived category of Q;-sheaves. If A € D,,(X) is perverse
and j € Z, we denote by A; the canonical subquotient of A wich is pure of weight

]
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44.2. For any w € W let

Zgy p = {(B,B',z) € Bx Bx D;xBx~! = B',pos(B, B') = w}
(see 28.8),

Zyy p =1{(B,B',z) € Bx B X D;xzBxz~! = B’ pos(B, B') < w};
note that Zé‘jl D= uw’EW;w’ngéU;’D- Let

B = {(B,B') € B x B;pos(B, B') = w},
BY = {(B,B’) € B x B;pos(B, B") < w}.
Define i : Zy'; , — BY by u(B, B',z) = (B, B’). Note that y is a fibration with
connected smooth fibres and Zé”ll b = pu~H(BY') for any w' < w. Hence Z¢ip is
an irreducible smooth open dense subvariety of Zé”l p- Let Q}” be the local system
Q; on BY and let Q}”ﬁ = IC(BY, Q) € D(BY). Let Qlw be the local system Q;
on Zé‘jLD and let

Qlwti = IC(Z&I,D7 Qlw) = p Qi e D<Z&I,D)'
44.3. & For y,w € W, y <w and i € Z let ny ,,; be as in 43.2; by [KL2],
(a) H'(Q"")| sy is a local system isomorphic to (QV)®"v-wi - moreover it admits
a filtration (over ¥,) with ny . ; steps and each subquotient isomorphic over F,
to Qi(—i/2).
Using the fibration p we deduce that
(b) Hi(ézwﬁ)\zéﬂw is a local system isomorphic to (Qly)@”y»w»i; moreover, it

admits a filtration (over F,) with ny.,; steps and each subquotient isomorphic
over F, to Q;(—i/2). )
Define 7, : Zy'y , — D, 7w 2 Zj'y p — D by (B, B’,x) — x. Let

- w _ — wi
K% = T Q ED(D), Kg = 1w Qi GD(D)

(With notation of 28.12 we have K} = Kﬁ’le .) We view Qlw and Qlwﬁ as objects
of Dy, (Zy'y p) and Dm(Zé‘jLD) such that Frobenius acts trivially on the stalk at
any F,-rational point of Zé’jl’ p- Applying to them m,, and 7, we obtain objects
K7, € Dyu(D), K € Dy (D).

The following equality in the Grothendieck group of mixed perverse sheaves on
D is verified (using (b)) along the lines of [L3, 12.6]:

() Y CUH(Ep) = Y, Y (“D'nywnH (KD)(-h/2).
1€EZ yeW y<w i,h€Z
We now take the part of weight j in (c); note that H’(Kp) is pure of weight j

since 7, preserve weights and Qlw is pure of weight 0.) We see that for any
j € Z, the following equality holds in the Grothendieck group of perverse sheaves
on D:

(d) () HI(KE) = > > (D) nyuwnH (K));n-®

yeEW ;y<w i,h€Z
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44.4. We shall often write D*" instead of DR (see 28.14).

Definition. We say that a character sheaf A on D is unipotent if A € Dun,
Let Qun be the set of isomorphism classes of unipotent character sheaves on D.
The following two conditions on a simple perverse sheaf A on D are equivalent:

(i) A € D"

(i) A 4 K% for some w € W.

This follows from (a) below which is verified along the lines of [L3,I1I, (12.7.1)].

(a) Let w € W be such that A A K¥, for any y € W,y < w. Then (A :
HY(KY)) = (A: H(KY)) for any i € Z.

Let = be a set of representatives for the isomorphism classes of objects in Dun;
note that = is a finite set.

44.5. Let A € D"". We regard HT., as an ideal in H. Let ¢§' : HT, — A be
the composition of the map H T, — H 1TD (restriction of the natural surjection
H — HP) with the map ¢4 : HiTp — A in 31.7 (with n = 1). From the
definitions, (9 is an A-linear map # and for any x € W we have

(a> C ( l(m)T —dlmGZ A Hz Km) )UJ Py

For x € W we show:

(b) (' (erTw) = v~ MO (A HI(K))(—v).
JEZ

& By 44.3(d) we have for any j:
(CU)/(AHI(KR) = Y > (~1)'nyen(A: H(ED)j-n).
yeW; y<z i,h€Z
We deduce
b= S (4 B (Rp))(~0)!
JEZ

:U—dimG—l(m) Z Z nymh A Hz(Ky )J h)

yeEWiy<zi,j,heZ

(C) :U—dimG—l(m) Z Z nymh A HZ(K?J) )Uj +h‘

yeWiy<zi,j/ ,heZ

We can rewrite this as

oD D et ¢ Tye)

yeW;y<z heZ

=07 S P ()W IT,L) = ¢ (eaT).

yeEW;y<z

This proves (b).
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44.6. Let K""(D) be the subgroup of the Grothendieck group of the category
of perverse sheaves on D generated by the objects in Dun. Let K&”(D) =Q®
K*(D). Let (:) be the symmetric Q-bilinear form on K&'(D) with values in
Q such that (A: A) =1if A e D" and (A: A') = 0 if A, A’ € D" are not
isomorphic. Note that if P is a perverse sheaf on D all of whose simple subquotients
are in D“" then the present meaning of (A : P) agrees with the earlier meaning,
see 31.6.
For any x € W we show:

(a) gri(Kp) = > Pya(l)gri(K}) € K" (D).
yeW;y<z

@& Specializing 44.5(c) for v = 1 & we deduce

gri(Bp) = > Y nyangri(K%);) € K" (D)

yEW, y<z j’',h€Z

and (a) follows. )
For any F € Mod(W) we set

(b) Rp = [W[™' Y (=1)"™ Ctr(zw, E)gri(Kp)
TEW

(an element of K&'(D)). We show:

(C) RE = |VV|_1 Z (—1)dimGtr(5mw|v:1vE)QTI(KTD>
zeEW

where ¢, is as in 43.2. We shall use the known inversion formula

(d) Z (—1)l(y)_l(z)Py,z(q)Pu}QI,sz(q) =0y
2EW;y<z<wz

for any y < z in W. Using (a),(d) and the definition of ¢,, we see that the right
hand side of (c) is

|W|_1 Z (‘DdimG(_l)l(z)_l(m)Py,w(l)Pwoz,wom(Dtr(zwaE)grl(KyD)

z,y,zEWiy<ae<z

= W[ Y (1) Chr(yo, B)gri(K}) = R,
yeEW

as required. 3 o B
Let Modg, (W) be the category of Q;[W]-modules of finite dimension over Q;.

For E € Modg, (W) we define Rg € Q; @ K**(D) by the same formula as (b).

For any ¢ € R(W) (see 43.10) we define Ry, € K§'(D) by Ry = > pce PERE
where ¢ = ) e PE¢E (PE € Z). This is independent of the choice of & since

Rgg, = —Rg for E € Irr(W). Note that for ' € Irr(W) we have Ry, = Rg.
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44.7. Let A € D", For any E € Irr(W) we set

v 1 T T v
(a) AE = m mgv C(’;‘(me)tr(me,E ) € Q(v).

17

Note that this definition is compatible with that in 34.19(b). Using 34.19(a) we

see that for any £ € H we have

(b) ' (€T=) = ) b ptr(¢T, BY).
Eee
Taking here £ = ¢,z € W and using 44.5(b), we deduce:
@ Y(A:HIER) () = v O S pir(e, T, 1Y),

JEZ Eec¢

Let DU be the subcategory of D" whose objects are the unipotent character

sheaves on D which are cuspidal.

An object A € D*"¢ is said to be clean if the following condition is satisfied:
Als_g = 0 where S is the isolated stratum of D such that supp(A) is the closure

S of S.

We say that D has property 2y if any A € Dune ig clean. We say that D
has property 2 if for any parabolic subgroup P of G° such that NpP # (), the
connected component NpP/Up of NgP/Up has property 2. (Compare 33.4(b).)

We say that D has property 2 if for any A € D and any w € W, i € Z such

that (A: HY(KY%)) # 0 we have i = dim supp(4) mod 2.
In the remainder of this section we assume that D has property 2.
Using 35.18(g) we see that for any E, E’ in & we have

(d) Z bvl7Eva/7El = 6E,E"
Ale=

Let A € D"". Using 35.22 we see that for any E € Irr(W) we have

(e) ar € Q.

(The quasi-rationality assumption in 35.22 is automatically satisfied in our case;

see 43.4(a).) In view of (e) we shall write bs g instead of b% . We show:
(f) bA,E = (—1)dimG(A : RE)

Let x € W. & Setting v = 1 in 44.5(a) we obtain

(8) G (Tow)lom1 = Y (1) (A: H'(KD);) = (A: gri(KD))-#

i’j
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Setting v = 1 in (b) with ¢ = T}, and using (e) we obtain

¢ (Tow) o=t = Z ba ptr(zw, E).

Eee¢

Combining with (g) we obtain

(h) (A:gri(KD)) = bagtr(zwm, E).
Ece¢

Using the orthogonality relations 43.5(b) specialized for v = 1 we obtain

bag = WIS tr(am, E)(A: gri(K5))
TEW

for any F € €. This proves (f) in the case where E € €. This clearly implies (f)
in the general case.
We can now rewrite (h) as

(i) gri(KH) = (-1)M™¢ " tr(zw, E)Rp
Eece¢

in £g'(D) and (c) as:

() DA H(Rp)(—v) = () Cum GO 37 (A Ry)tn(e, T, B7).

We show:

(k) there exists E € € such that (A: Rg) # 0.
We can find 2 € W and j € Z such that (A : H/(K%)) # 0. Then the left hand
side of (j) is # 0 hence so is the right side. Thus (k) holds.

We show:

(1) For E,E' € Monl(W) we have

(Re: Rp) = [W|™' Y tr(aw, E)tr(zw, E).
reW

Moreover, if E,E’ € & then we have (Rg : R@) =0p B - )
Here (:) is the bilinear form Q; ® K"*(D) x Q; ® K*"*(D) — Q extending (:) in
44.6.

Assume first that E,E" € €. Clearly, Rg = > 4=(A" : Rp)A', Rp =
doae=(A": Rp)A’. Tt follows that

(Re:Rw)= Y (A":Rp)(A': Rp) =Y bapbap =0

AleE Ale=



CHARACTER SHEAVES ON DISCONNECTED GROUPS, X 19

where the last two equalities come from (f),(d). This proves the second equal-
ity in (1). To prove the first equality in (1) we may assume that F, E’ are sim-
ple objects of Modg, (W). If the restriction of E to Q;[W] is not simple then
tr(zw, E) = 0 for any * € W hence both sides of the first equality in (1) are
0. Thus we may assume in addition that E|Q1[W] is simple; similarly we may
assume that E’ ‘Qz[W] is simple. Replacing E, E’ by their tensor products with

one dimensional representations of W which are trivial on W reduces us to the
case where E, E’ come from objects of & by extension of scalars. Using then the
second identity in (1) we see that it is enough to show that for E, E’ € & we have
(W1 Y cw tr(zw, E)tr(zw, E') = 0p, g But this is known from 43.5(c). This
completes the proof of (1).

For any € W, i € Z we take the coefficient of v*+/(*)+dim & ip the two sides of
(j); we obtain

1

(m) (~)H@ A FHEG(RE)) = ST tr(e, T, B i) (A Rp).
E€lr(W)
For any y, 2z in W we show
“lrwyw ! z
(n) gri(Kp "7 ) = gri(Kp).

Using (i) this is the same as

Z tr(y 'zwy, B)Rp = Z tr(zw, E)Rg

Eece Eece¢

which is clear since tr(y~'zwy, E) = tr(zw, E) for any E € €.

We show:

(o) if E € Mod(W) then Rp is a Z-linear combination of elements Rp, with
E, € Ir(W).
We can write Q; ® E = @®,E; where E; are simple QZ[VV]—modules. Hence
Re = Rq,or = >, Re,- If h is such that Ej|w is not a simple Q;[W]-module
then tr(zw,Ep) = 0 for any x € W hence Rg, = 0. If h is such that Ej|w
is a simple Q;[W]-module then by taking the tensor products of E; with a one
dimensional representation of W which is trivial on W we obtain a module which
comes from an object of Irr(W). It follows that Rp = 3. B, ce CE e, where cg,
are integer combination of roots of 1. Using (1) we have ¢p, = (Rg : Rg,) =
(W'Y cw tr(zw, E)tr(zw, E1). This is a rational number. Being also an al-
gebraic integer it is an integer. This proves (o).

We show:

(p) for E € €, v € W we have (Rg : gr1(K%)) = (—-1)4mCtr (2w, E).
Using (i) we have (Rg : gri(K3)) = (Rg : (-1)M™C Y L, e tr(zw, E')Rp) so
that (p) follows from (1).
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44.8. The A-linear involution d : R(D) — K(D) in 42.2 induces (by the special-
ization v = 1) a Z-linear involution d : (D) — K(D) (K(D) as in 38.9). By
extension of scalars, d gives rise to a Q-linear involution Q ® K(D) — Q ® K(D)
denoted again by d.

Let A € D. We show that:

(a> d(A) _ (_1)codim(supp(A))Ao

where 4° € D. We can find a parabolic Py of G° such that NpPy # () and a
cuspidal character sheaf Ay on Dy := NpPy/Up, such that A is a direct sum-
mand of indBO(Ao). We have Py € Py where J C I e(J) = J. By 38.11(a) we

have d(A) = (—1)17</A° where A° € D and J, is the set of orbits of € : J — J.
It remains to show that codim(supp(4)) = |J¢| mod 2. From the theory of ad-
missible complexes (6.7) and from 3.13(b) we see that dimsupp(A4) = dim G° —
dim(Py/Up,) + dimsupp(A4p) that is, codim(supp(A4)) = codim(supp(4yp)). Also
the analogue of J, for Ag is J. itself. Thus we are reduced to the case where A = Ag
that is, we may assume that A is cuspidal. Let G’ = PZ2,\G, D’ = PZ2,\D.
Then the support of A is the closure of a subset of D which is the inverse im-
age of a single G’°-conjugacy class C' in D’ under the obvious map D — D’.
Moreover, D/Zg,o = {1}. The set I for G’ can be identified with that for G.
Since codim(supp(A4)) = codimp.C, it is enough to show that codimp C = |I|
mod 2 for any G’’-conjugacy class C' in D’. According to Spaltenstein [S] we
have codimp/C' = 23 + r where [ is the dimension of the variety of Borel sub-
groups of G'Y that are normalized by some fixed element of C' and 7 is the rank
of the connected centralizer in G’ of any quasisemisimple element of D’. Thus,
codimp/C' = r mod 2. It remains to note that r = |L|.
By 42.9 (specialized with v = 1) we see that for any z € W we have

(b) d()_H'(Kp)) = (-1)'® Y H'(Kp)
i€Z i€Z
in K(D). Here H'(K},) is identified with the element Y- ,,.=(A" : H'(K}H))A’ of

K(D). We show that for any E € Irr(W) we have
(C) d(RE) = RE®sgn'
Indeed, by (b), this is the same as the obvious equality

(WY D ()t O (e, B)H(KD)
1€EZL tEW
=W Y (—1)TIm (o, B @ sgn)H (KP).
1€Z xeW

If A € D" then, by 44.7(k), there exists E € Irr(W) such that the coefficient of
Ain Rg is # 0. Applying d to Rg we see that the coefficient of A° in d(Rg) is
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# 0 that is, the coefficient of A° in Rpgeen is # 0. In particular, A° € Dun. In
the same way we see that for any F € Irr(W) we have

(d) (A: Rp) =+(A°: Rpgsgn)-
Using (a) and the equality dd = 1 we obtain
A = (—1)e0dimsupp(A)) g( 4°) — (1 )codimlsupp(4)) (1 ycodim(supp(4°))( goYo
It follows that (A°)° = A and
(e) codim(supp(A4)) = codim(supp(A°)) mod 2.

44.9. For any sequence s = (81, S, . . ., 8) in I we write K%, K%, instead of KIS:SZ,
KPR, see 28.12.
Let A € D", Then (A: H(K%)) # 0 for some w € W, i € Z. We set

(a> eA — (_1)i—|—dimG'

We show that e is well defined. Assume that we have also (A : H* (K%')) # 0
with w’ € W, i € Z. We must show that ¢ = ¢ mod 2. Let s = (s1,82,...,5,),
s’ = (s}, 85,...,5.,) be sequences in I such that s;s5...5, = w, sish...s., =,
r=1I(w), r =1l(w). We will show that

(b) K% is a direct summand of K$,.
Assuming this and the similar statement for w’,s’ instead of w,s we see that
(A : HY(K%)) # 0 and (A : H'(K%)) # 0 and the congruence i = i’ mod 2
follows from 35.17(a). (Although in 35.17 it is assumed that D is clean, in the
present application it is enough to use the weaker hypothesis that 2 holds for D.)

Recall that I_(lsj = 75!Q; where

T./

Zs1p=1{(Bo,B1,...,B,,g) € B! x D;gByg~' = B,,pos(Bi_1, B;) € {1, s;}
for i € [1,7]}

and Tg : ZS,I,D — D is given by (By, B1,..., B, g) — g. Recall from 44.2 that
_ - wi _ _

KY = 7m0 Q; . We have g = Typ Wlilere p ZS,;,D — Zé‘jI’D is given by
(Bo, B1,...,Br,g) — (Bo, Byr,g). Hence K3}, = pu1(p1Qq) so that to prove (b) it

— wi _
is enough to show that Q; is a direct summand of p;Q;. This follows from the
fact that p is proper and is an isomorphism over an open dense subset of Zy; .

This proves (b).
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44.10. We now fix a subset I C I such that e(I) = I. Let P € Pr (see 26.1).
Then NpP # () so that D’ := NpP/Up is a connected component of the reductive
group G’ := NgP/Up; note that G'° = P/Up. Let ©’ : NpP — D’ be the
obvious map. As in 27.1 we consider the diagram D’ & Vi LI Vs a—”> D where
Vi = {(g,7) € D x G%a2" gz € NpP}, Vo = {(9,2P) € D x G°/P;2x7 gz €
NpP}, a(g,x) = 7' (x7tgz), d'(g,7) = (g,2P), a”’(g,xP) = g. As in 27.1 for any
G'%-equivariant perverse sheaf A’ we define a complex of sheaves A = ind5, (A4’) €
D(D) by A = af’ A1[2dim Up] where A} € D(V) is such that a* A" = a'*A]. We
show:

(a) if A’ € D'"" then indB, (A") is isomorphic to a direct sum of objects of D"
The proof is similar to that of [L3, I, 4.8]. Before giving it we need some prelim-
inaries. Let B’ be the flag manifold of G'® = P/Up. For § € B' let § € B be
the inverse image of 3 under the obvious map P — G’°. Let w € W (see 26.1).
Recall that

Zé‘jLD = {(B,B',x) € Bx Bx D;zBx~' = B',pos(B, B') < w}.
Replacing here D, I by D', I we have
Zyr o =1{(8,8,y) € B x B' x D';yBy~" = B, pos(3, §') < w}.

We have a commutative diagram with cartesian squares

~/

|t
z

_ s -
Zétjl,D’ ‘/1 Z&I,D

5l 5,l 5,,1

D’ - = Vo, ——— D

where

‘71 = {(ﬁ7b/7y797x) e B x B x Dl?Qﬁ?J_l = ﬁlwx_lgx € NpP,
y =7'(z" " gz),pos(B, B') < w},
a(3,68,y,9,2) = (8,8,y), @ (8,8, y,9,2) = (xBz~ ',z 1, g),
5(676,72/) =Y, 5,<ﬂ7ﬂ,7y7gax) = (9,37), (5”<B,B,,£C) = (l‘, ZP) with 2z € GO
such that z='Bz C P.

Note that a, a are smooth with connected fibres and a’, a’ are principal P-bundles.
It follows that

IC(V1, Qi) = a* IC(Zg'1 pr, Qu) = & IC(Zi'y p, Qu)
where the first Q; lives on

{(67 b/7y7g7x) < vl;pos(ﬁ,ﬁl) = w} = Q_I(Z&I,D’) = d/_l(Zéle,D)7
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the second Q; lives on Zé‘jLD, and the third Q; lives on Zé‘jI,D. Hence
that is, 6{IC(V1,Q) = a*Kp, = o/*K' where K’ = §/IC(Z; , Qi) € D(Va).

Since a, a’ are smooth with connected fibres of dimension dim D+dim Up, dim D —
dim Up respectively we see that for any ¢ we have

a* (HimdimD=dimUr g 3 [qim D + dim Up] = H'(a*K%,)

hence (seting j =i —dim D — dim Up):

a*(H'K®,) = o'* (HIT24mUr 1[92 dim Up).

We see that N . ‘
indB, (HIKY,) = af (H/T?3mUr g7,
We have
(b) ®,indp, (H' Kp,)[—j] = &;(H/ P2 ™ Ur K5)[—j] in D(D).

Indeed the left hand side is

®©; af (HIT2ImUP 7Y = o K'[2 dim Up)|
= a{’é!”IC(Z(})’jLD, Ql)[Q dim Up] = Kg[Q dim Up];

(we have used that K’ = @&;H’K'[—j] which follows from the decomposition
theorem [BBD] applied to the proper map §”). This is equal to the right hand side
of (b) since K% = ¢;H7 (Ké”)[—j], by the decomposition theorem applied to the
proper map a”6”. Now H7 K}, is a direct sum of character sheaves on D’; hence,
by 30.6(a), indB, (H/KY,) is a perverse sheaf on D for any j. Taking H* for both
sides of (b) we obtain for any ¢ € Z:

(c) indB, (H'KY,) = giT2dimUp 1,

Now let A’ € D'*". We can find w € W; and i € Z such that A’ appears in
H'KY,. Since H'K%, is semisimple, A’ is a direct summand of H*K¥,. Using (c)
we see that indB, (A’) is a direct summand of H*+24mUr K% Hence (a) holds.

From (a) we see that A’ — indB,(A’) (with A’ € D'*") defines a group homo-
morphism K*"(D’) — K**(D) and a Q-linear map Kg'(D') — K§'(D) denoted
again by indB,.
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Applying this homomorphism to both sides of 44.6(a) for D’ instead of D and
for x € W7 and using (c) we obtain

griEp) = Y Pue(l)indB (gri(Kp)).

yEWr;y<z

Here P, , are as in 43.2 for W or equivalently for W. The left hand side can be
evaluated using 44.3(d) for D; we obtain

Y P(Wgri(Kp) = Y Pya()indB (gri(K}H)).

YyEWr;y<z yeEWry<z

Since the matrix (Py )z yew, is invertible, we deduce for any y € W:
(d) indp, (971(KD,)) = gri(Kp).

44.11. We preserve the setup of 44.10. Let T, W be as in 43.1 and let W} be the
subgroup of W generated by Wy and I'; now W, plays the same role for W as
W for W. For any E’ € Mod(WI) the element Rp € K§'(D') is defined as in

44.6(b). Let mdglE’ € Mod(W) be the induced module. We show:

(a) indp, (Rp) = Rindg g € KQ'(D).

I

Applying indB, to 44.6(b) with E, D replaced by E’, D’ and using 44.10(d) we
obtain

indB, (Rpr) = (W72 Y (1) 9ty (avo, B H (KF).
1€Z xeWr

Using the definitions and 44.7(n) we have

de o =IW|~ 12 Z 1)HdmChr(pm ind B H (KY,)
1€Z €W

= W[ W, [P > (—1)F M Cor(yawy ™!, B H' (KD)
1€Z xeW,yeW;yzwy 1eWrw
. . 1, oyt
CWWATY Y (1) G e, B (Y
i€Z zeWi,yeW
=W WY Y () O (ew, B H (K )
1€Z zeWi,yec W

(WIS S (1) (e, B (K.
1€EZ ZGWI

Now (a) follows since dim G = dim G’ mod 2.
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44.12. We preserve the setup of 44.10. Let s be a sequence in I. From 29.14 we see
that resg (K3) = ®rer K ., [—dy] where 7 is a certain finite collection of sequences

in I and dy are integers. Since K% = &, H(K%)[—i], K%, = &, H'(KY,)[—i], we
have

(a) oresp (H'(K3))[—i] = @ver H' (Kp)[—i — di].

By 31.14, resB (H'(K%)) is a perverse sheaf on D’. Hence taking H* for both
sides of (a) we obtain

(b) resp (H'(KD)) = @uer H* (KD,

In particular, if A € D“" then, reSD/(A) is a direct sum of objects in D'“".
Hence A — resB (A) (with A € D*") defines a group homomorphism K**(D) —
Ku™(D') and a Q-linear map K*"(D)q — K&'(D’) denoted again by resD’. Tak-
ing alternating sum over 7 in (b) we obtain

(c) resp (gr1(K3)) = > _(—1)*gri(Kp).
teT

For any £ € K§'(D), § € K§' (D) we have

(d) (resB'(€) : &) = (€ : indB,(¢))

where the first (:) refers to D and the second (:) refers to D. Indeed, we can assume
that £ = A € Dun, ¢ = A’ € D'"; in this case (d) follows from the equalities in
30.9 and the semisimplicity of the perverse sheaves resd (A), indB, (A’).

The following subspaces of Kg'(D) coincide:

-the subspace (1) spanned by the Rg (with E € Mod(W));

-the subspace (2) spanned by the Rp (with E € Irr(W));

-the subspace (3) spanned by the elements gri(K3) (with x € W);

-the subspace (4) spanned by the elements gri(K%,)) for various sequences s in
I.
Indeed (1) C (3) by 44.6(b); (3) C (2) by 44.7(i); (2) C (1) obviously; moreover,
(3) = (4) by the arguments in 31.7. We denote any of the four subspaces above
by Vp. We define similarly a subspace Vp, of K§'(D'). We show:

(e) resB/(RE) = RE|v”v,

where Flg,, € Mod(W7) is the restriction of E. From (c) we see that resB maps

Vp into Vps. Thus both sides of (e) are in Vp/. Now the restriction of (:) (for D)
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to Vps is nondegenerate (we use the analogue of 44.7(1) for D’). Hence to prove
(e) it is enough to show that

(f) (resP (Rg) : Rg/) = (Rpyg,, « Re)
for any E’ € Mod(W;). By (d) and 44.11(a), the left hand side of (f) is equal to

(RE : indg/(RE/) == (RE 'R

indgl )
Using 44.7(1) for D and for D’ we see that it is enough to use the equality

Wt tr(zow, E)tr(zw, indW. E') = [W,| ™! tr(zw, B)tr(zw, E').
Wi
zeW r€WT

which follows from the standard character formula for an induced representation.
This proves (f) and hence (e).

44.13. Let x € W be such that for any y € W we have yrwy o ¢ W;. We
show:

’

(a) resp (gr1(Kp)) = 0.

Using 44.7(i), we see that it is enough to show:

—1)dimG tr(zw, £ resB’ Rg) =0.
D
Ece

Using 44.12(e) and 44.6(b) for D’, we see that left hand side is

Y tr(ww, E)Ryg, = [Wi7H Y Y (=) C (200, BE)tr(zwm, E)gri(K,).
Eee¢ FEe¢ zeW;

To show that this is zero it is enough to show that for any z € W we have

Z tr(zw, E)tr(zw, E) = 0.
Ece

The left hand side is equal to [W|~1W/| times 3" tr(zw0, E)tr((zw) ', E) where
E runs over the simple Q;[W]-modules up to isomorphism. (A module E whose
restriction to W is not simple contributes 0 to the last sum.) It is enough to show
that the last sum is 0. It is also enough to show that zw and xw are not conjugate
in W. But this follows from our assumption on x. This proves (a).
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44.14. An element w € W is said to be D-anisotropic if the following condition
holds: for any z € W, I G I such that e(I) = I we have zwe(z)™! ¢ W;. Let
A€ Dv,

We show:

(a) A is cuspidal if and only if any w € W such that (A : gri(K})) # 0 is
D-anisotropic.
Assume first that A is not cuspidal. By 31.15 there exists I G I, ¢(I) = I and
P € Pr (so that NpP # ()) such that settlng D’ NpP/Up, G' = NgP/Up
we have resg (A) # 0. By 31.14 and 44.12, resB "(A) is an N-linear combinations
of objects in D'“". Hence there exists € W and i € Z such that (resB (A) :
HY(K%)) ;é 0. Using 44.7(m) for D’ we see that there exists £’ € Irr(W7) such
that (resP (A) : Rp/) # 0. Hence there exists y € W; such that (resB (4)
gri(KY,)) # 0. Using 44.12(d) we deduce (A : indB, (gri1(K¥,)) # 0 and using
44.10(d) we see that (A : gri(K%)) # 0. Since y € Wy, y is not D-anisotropic.

Conversely, assume that there exist w € W,z € W, [ ; I such that (A :
gr1(K%)) # 0, e(I) = I and zwe(z)~! € W;. Using 44.7(n) we see that we can
assume that x = 1,w € W;. Choose P € P; (so that NpP # ) and set D’ =
NpP/Up, G' = NgP/Up. Using 44.10(d) we see that (A : indB, (gr1(K%))) # 0.
Using 44.12(d) we see that (resB (A) : gri(K%,)) # 0 so that resD (A) # 0. Thus
A is not cuspidal. This proves (a).

We show:

(b) Let w € W be such that w is D-anisotropic. Then l(w) = |I.| mod 2 where
L. is the set of orbits of e : 1 — 1.
We use the notation in 42.7. We consider the equality

(~DMHS V) = > (-1 H™ (V)
n
(see 42.7) in the Grothendieck group of W-modules. Taking the trace of wD €
W?P we obtain

(—=1)M det(wD, Vg) = Zt

where
ty = (=1)"tr(wD, ®jen Grer, A (|F]).

Since wD permutes the summands in the last direct sum, we have t,, = 0 unless
there exist J € n and F' € F; such that D(J) = J and wD(F') = F. For such J, F
we can find F; € F; such that D(F;) = Fy and {y € W;y(Fy) = F;} = W;
moreover, F' = 7 1(F;) for some z € W and we(z) 1 (Fy) = 27 1(F;) so that
zwe(z) Y (F;) = Fy and zwe(z)~! € W . Since w is D-anisotropic we see that
J = 1. Thus t, = 0 unless n = {I}. On the other hand, if n = {I} then
Fy=1{0}, 7, =0 and t, = 1. Thus we have (—1)/* det(wD, Vr) = 1. Note that
det(w,Vr) = (—1)"*). Since D permutes a basis of Vg indexed by I (according
to €) we have det(D,Vr) = (—=1)/1=1Tl. We see that (—1)"®)(—1)<l = 1. This
proves (b).
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44.15. Let P be a parabolic subgroup of G° such that NpP # (. Let D' =
NpP/Up (a connected component of NoP/Up). We show:

(a) If A’ € D'vn A € D gre such that A appears with non-zero coefficient in
indB, (A") (or equivalently A" appears with non-zero coefficient in resB (A)) then
e = e?'. Moreover, codim(supp(A)) = codim(supp(A4’)).

We can find I C I, ¢(I) = I such that P € P; and w € Wy, i € Z such
that A’ is a direct summand of H'(K%,). Then indB, (A’) is a direct summand
of indB,(H'KY,) hence a direct summand of H*2dmUr ¥ (see 44.10(c)). It
follows that A is a direct summand of H*2dmUr ¥ By definition we have
el — (_1)i+dim(P/Up)7 el — (_1)i+2dimUp+dimG0. Thus, e4 = e This
proves the first statement of (a). We can find a parabolic subgroup P; of G°
such that NpP, # 0, P, € P and A; € D" (where D; = NDP;/Up,) such
that A’ is a component of indg/1 (A1) hence A is a component of indp (A;). To

prove the second statement of (a) it is enough to show that (—1)codim(supp(4)) —

(_1)Codim(supp(A1)), (_1)codim(supp(A’)) _ (_1)codim(supp(A1)). Thus we are reduced

to the case where A’ is cuspidal. In this case, by 3.13(b) we have dim supp(4) =
dim(G°) —dim(P/Up) +dimsupp(A’). Thus, codim(supp(4)) = codim(supp(A’))
and (a) is proved.

We show:

(b) If A € D" and A° € D" is defined by d(A) = (—1)ccdim(supp(4)) g° (see
44.8(a)) then e*” = e,
If P, D’ are as in (a) then, by (a), indB,resB (A) is a linear combination of objects
A, € D" with et = e, Since d(A) is an alternating sum of elements of the

form indB, resB’ (A4), we see that d(A) is a linear combination of objects A; € D"
with e4t = e4. Now (b) follows.

Let x € W. We show:

(c) The element Ry, , € K§' (D) is a Z-linear combination of objects A € Dun
such that et = (—1)/z)—a(@),
Let ¢ be the two-sided cell containing z. Using 43.12(b), for any A € D" we have
(with notation in 43.12):

1
. _ T v,
(A:Ry,.)= ) ) 5 (tr(crm, B —a(z))
Eelrr(W)

(d) — Z (—1)_l(x)"i'l(y)ay,x;jtr(clw, B —a(z)— j))(A: Rg).

Y,J;y=<z,7>0
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From 44.7(j) we have for any A € D*" and z € W:

> (d(A) : H (Kp))(—v)!
JEZ
. . 1
= (-G T S(d(A) : Ri)tr(eew, BY)
Eelr(W)
im im z 1 v
= (—1)dimGydim G+(z) Z~ §(A ! RE@sgn)tr(C2, EY)
E€lr(W)
) . 1
— (_1)d1rnG,Ud1rnG+l(Z) Z §(A . RE)tr(Czw7 (E ® Sgn)v)
Eelrr(W)

. : 1
= (-LAmEyImEHE Y T (A Rp)tr(cl, BY).

zZT)

Eelrr(W)

(We have used 44.8(c), 43.4(c).) Hence for any N € Z we have

1 v im 2)(IZ z
> A Rp)t(cl, BV N) = (d(4) s BN OO (7)) (—1) Ve,
Eelr(W)

Introducing this in (c) we obtain

(A: Ry, )= (_1)l(x)—a(:r:)(d<A) . fpdim G+i(z)~a(z) (Kﬁ))
(€)= ) ayey(—1)WTET(d(A) A EHE Tl (K ),

Y,J;y=<x,7>0

Since a, .; are integers (see 43.12) we see that (A : Rx,_) € Z. Assume now that
(A: Ry, ) #0. Using (e) and 43.12 we see that either

(AO . fdim G—l—l(:n)—a(m)(f_("lr))) 7& 0
or there exist y, j such that j = i(z) +I(y) mod 2,

(Ao . HdimG—l—l(y)—a(w)—j (K%)) 7& 0
(here A° is as in 44.8(a)). In the first case we have e?” = (—1)/®)=2(=) 1In the
second case we have e’ = (—1)!W)—a@)—j — (_1)i#)=a(®) gince j = I(z) + I(y)
mod 2. This implies (c) in view of (b).

Note that D has property 2 (see 44.7) if and only if for any A € D*" we have
ed — (_1)Codim(supp(A))).

44.16. We show that if D has property 2 then for any A € D" weW,iekZ
we have

(a) (-1)+mE(A: d(H'(Kp))) € N.
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Indeed the expression (a) is equal to (—1)F4mE(d(A) : H{(KY)) (see 38.10(e)).
If this is # 0 then it is equal to (—1)cdimGuwr(4)eA”(A° . HY(K®)). By property
2 for A° and 44.8(e), this is equal to

(_1)Codim(supp(A))(_l)codim(supp(Ao))(Ao : Hz([_(g» _ (Ao : Hz([{g)) e N.

This proves (a).

44.17. Let x € W and let ¢ be the two-sided cell of W that contains z. Let a be
the value of a: W — N on ¢. We show that in K& (D) we have:

(_1)—a—|—l(m)H—a+l(m)+dim G(K%)

(a)
= Ry, @sgn + Q-linear combination of elements Ry , gsgn With x <z,
(_1)—a—|—l(x)d(H—a—l—l(gc)—i—dirn G(K%))
(b) = Ry, + Q-linear combination of elements Ryx_,  with s

By 44.7(m), the left hand side of (b) is equal to . %tr(cmfw, E?; —a)d(REg). By
44.8(c) and 43.4(b), 43.6(b), this equals

1 ~ 1 ~
; §tr(CITW7 Ev; _a')RE®sgn = ; Etr(CIT’w7 (E ® Sgn)v; _a)RE

1
= XE: tr(ct _,EY; —a)Rp = Z itr(cJr EY;—a)Rg =V + V"

rTo)
E;cg=<c

N =

where

1 1
b = Z Etr(clw,E”;—a)RE: Z itr(tmw,Eoo)RE

Eicg=c Ei;cg=c

1
=D stt(tew, EX)Rp = Ry,
E

1
I Z §tr(cLW,E”;—a)RE.

Eicg=<c

Now b” is a Z-linear combination of elements of the form Rg where E is such
that cg < c and these elements are Q-linear combinations of elements of the
form Ry,  for various 2’ € W such that 2’ < z, by 43.10(b). This proves (b).
Now (a) is obtained by applying d to both sides of (b) and using the equality

d(Ry) = Rygsen for any ¢ € R(W) (see 44.8(c)).
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Now let a’ be the value of a : W — N on the two-sided cell wge = cwy. We
show:

(_1)—a'—l—l(wom)H—a'—l—l(wom)—l—dim G(Kgox)

(c)

= RNwOm@sgn + Q — linear combination of elements RNsz,w@,sgn with « < 2.

This is obtained by replacing = by woz in (a) and noting that for y € W we have
woy < woz if and only if z < y.

In the remainder of this section we assume that D satisfies property 2 (in
addition to property ).

For any x € W we set r, = Ry, _, Ty = (—1)_a(w””l(w”)RNwOW@Sgn. We note
the following properties of the elements r,., 7.

(i) (ry : 72r) = 0 whenever x o4 x';

(ii) for any two-sided cell ¢, the Q-vector space spanned by {r,;x € c} coincides
with the Q-vector space spanned by {7,;x € c};

(iii) for any € W there exist d, ,» € Q defined for 2’ < z such that
(Aire +3 00 2pdeare) € N forany A € D,

(iv) for any z € W there exist d, ., € Q defined for < 2/ such that

(A:7, + Zx’;m-<x’ a?m,m/fm/) € N for any A € Dvn,
In the setup of (ii), let V. be the Q-vector space spanned by Rg with E € Irr(W)
such that cg = c. From the definitions, for any = € c, r, belongs to V... Conversely,
for any E € Irr(W) such that ¢z = ¢, Rg belongs to the first vector space in (ii),
by 43.10(b). Thus the first vector space in (ii) is equal to V.. Let V! be the Q-
vector space spanned by Rp/gsen With B/ € Irr(W) such that cgr = wgpc. From the
definitions, for any = € ¢, 7, belongs to V/. Conversely for any E’ € Irr(W) such
that cpr = woc, RErgsgn belongs to the second vector space in (ii), by 43.10(b).
Thus the second vector space in (ii) is equal to V/. If E’ € Irr(W) then we have
cgr = woc if and only cprgsen = ¢ (a known property of two-sided cells). It follows
that Ve = V{ and (ii) is proved.

We prove (i). Let ¢, ¢’ be the two-sided cells that contain x, 2’ respectively.
Assume that ¢ # ¢’. Tt is enough to show that (h: h') = 0 for any h € V¢, h' € V1.
Hence it is enough to show that if E, E’ € Irr(W) are such that cg = ¢, cp = ¢
then (Rg : Rg/) = 0. This follows from 44.7(1) since E, E’ have nonisomorphic
restrictions to Q[W].

Now (iv) follows from (c) and (iii) follows from (b) in view of 44.16(a).

From (i)-(iv) we deduce, by a general result in [L3, III, 16.8], that:

(d) (A:ry)eN, (A:7,)eNforany Ae D", zeW.

We show: ) 3
(e) Let A € D" and let E, E' € Irr(W) be such that (A: Rg) #0, (A: Rg/) #
0. Then Cg = Cgr.
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By the proof of (ii) we see that there exists € cp such that (A : ry,) # 0;
similarly there exists 2/ € cgs such that (A : r,/) # 0. Using this and (d) we
deduce (A :r,) >0, (A:ry) > 0. It follows that (r, : rp) > 0. (By (d), (ry : 7e)
is a sum of terms in N, at least one of which is > 0.) Again by the proof of (ii)

we have
/
Ty = E sg, Re,,mer = E Sg,RE,,

Ei;cp,=cE Eszjcp,=cp/

where sg, € Q, s, € Q. From (r, : ryr) # 0 it follows that there exist Ey, Fy
such that cg, = cg, cg, = cp/, (Rg, : Rg,) # 0. From 44.7(1) we deduce that
E1, E5 have isomorphic restrictions to QW] hence cg, = cg,. It follows that
cg = cgr. This proves (e).

Proposition 44.18. Recall that D is assumed to have property 2 and property
A. Let A e D",
(a) There exists a well defined two-sided cell ¢’y in W such that whenever

E € Irr(W) and (A : Rg) # 0, we have cg = ¢'y. Moreover we have €(c’y) = c/y.
(b) We have woc'y = ca where c4 is as in 41.4.

(a) follows from 44.17(e) and 43.6(f). We prove (b). Recall (41.8) that
(c) A4 K% for some x € ca; if o' € W and A K% then x < .

We show:
(d) if E € Irr(W) is such that (A: Rg) # 0 then ca =< wocp.

Using 44.6(c) we see that

(WYY () (Epfomr, B) (A HY(KD)) # 0.
i€Z tEW
Hence there exist x € W, i € Z such that t1(Cpe|v=1, E) # 0 and (A : H(K%)) #
0. Using (c) we deduce that y < x for some y € c4. From the definitions we have

- (_1)l(wOw)T ot

Wo ~woxTo *

It follows that tr(woc, ,elv=1,E) # 0. Thus the action of ¢, ,|,=1 on E is # 0.
Using 43.6(b) we see that z < woz for some z € cg. Hence x < wpz. Since y <z,
we have y < wpz. Since y € ¢4 we have c4 < wocg. This proves (d).

We show:

(e) There exists E € Irr(W) such that (A: Rg) # 0 and wocg = c4.
Let z be asin (c). We have .5 (A: HI(K%))(—v)? # 0. Using 6.7(c) we deduce
that

,UdimG—H(m) Z bA’EtI'<Cxw,Ev) 7£ 0.
Ee¢

Hence there exists E € Irr(W) such that (A : Rg) # 0 and tr(cyw, £¥) # 0 that
is, tr(cl_,(ET)?) # 0. The last condition implies, in view of 43.6(b) that z < z
for some z € cgi = wocg. Thus, wocy <X c4. Since ¢4 <X wocg by (d), it follows
that ¢4 = wocg. This proves (e).

From (e) we see that woc’y = c4. The proposition is proved.
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44.19. For any e-stable two-sided cell ¢ of W let ﬁ}jn be the category whose
objects are those A € D"" such that ¢/, = ¢ (see 44.18) and let K°(D) be the
subgroup of K""(D) generated by the various A € f)g” up to isomorphism. We
have K*"(D) = ©.K°¢(D) where c runs over the e-stable two-sided cells of W. We
show:

(a) A — A° (see 44.8(a)) induces a bijection between the set of isomorphism
wo

- 4t also induces an

classes in D™ and the set of isomorphism classes in D" ;

isomorphism K¢(D) — Kwo¢(D).
Let A € D¢". Then (A: Rg) # 0 for some E € Irr(W) such that cg = c. We have
(d(4) : d(Rg)) # 0 and (A° : Rpgsgn) # 0 (see 44.8(d)). Thus A° € Dy =

ﬁfjfgc. The remaining statements of (a) are immediate.

44.20. Let I be a subset of I such that e(I) = I. We fix a two-sided cell ¢’ of W7
(see 26.1) such that €(c’) = ¢’. There is a unique two-sided cell ¢ of W such that
¢’ C ¢; we must have ¢(c) = c.
Let Irre (W) = {F € Irr(W); cg = ¢}, Irre/ (W) = {E' € Irt(W); ¢ = ¢'}.
Let Re(W) be the subgroup of R(W) generated by the elements ¢z with
E € Irro(W). Let Re/ (W) be the subgroup of R(W;) generated by the elements
¢p with E' € Irre:(W7). From 43.11(b) we see that

(a) T R(W) — R(W) satisfies J3y (Rer(Wr)) C Re(W).

Let K¢(D) be as in 44.19. We define similarly K¢ (D’). Define a Q-linear map pe :
Q® K" (D) - QRK(D) by A Aif Ac D¥ and A — 0if A€ D" ¢/, # c;
this restricts to a homomorphism K“*(D) — K¢(D). Note that for E; € Irr(W)
we have Rp, € Q ® K1 (D) hence

(b) pe(RE,) = RE, if cp, = ¢ and pe(RE,) =0 if cp, # c.
Let £’ € Irre/(W7). We show:

(c) RJ\‘,{,"I (¢5r) — pC(RindVZWVI )

By 44.7(o) and (b), both sides of (c) are integer combinations of elements of form
Rpg, with E; € €. Hence (using 44.7(1)) it is enough to show that for any F; € &
we have

(@) (R o) ) = (pe(Ropgy ) R,
If cp, # c then from (b) we see that the right hand side of (d) is zero; moreover,
since ¢pr € R/ (W) we have J“}’VVI(QSE/) C Re(W) (see (a)) hence RJWWI(¢E/) €

K¢(D) so that the left hand side of (d) is also zero. Thus, we may assume that
cg, = c. In this case (d) can be rewritten in the form

(RJVV;‘,’I(%/) P Rp,) = (Rindglp : Rg,)
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or equivalently (using 44.7(1)) in the form

> (E',E)[W|™" Y tr(uw, E)tr(uw, E)

Beln(W)iag =ap uEW
(e) = |W|~! Z tr(xw,indglE’)tr(xw,El).
zeW

The right hand side of (e) can be rewritten as [W;|~' 3"\ tr(zw, E')tr(2w, E1)
substituting tr(zw, Fp) = ZE:’LGIrr(WI) (B, Eq)tr(zw, E') (see 43.9(a)) this be-
comes

W™ Z tr(zw, E') Z (EY, B1)tr(zw, BY)

2EWy Ejelr(Wy)
= Y (BLE)UE.E}) = (E\E) -~ (E'©E)
Ej€lrr(W)

where a(E',E7) is 1 if B/ 2 Ef,is —1 if E' 2 E] ® ¢ and is 0 otherwise. Now in
the left hand side of (e) the second sum is zero unless E is isomorphic to E; or to
E7 ® ¢ in which case we have automatically apr = ap (since ap = ag, ). Thus the
left hand side of (e) is equal to

S (ELB)W|T Y tr(uw, E)tr(uw, E))

E€lr(W) ueW
= Y (B B)(E.E) = (E,E) - (E,E,® E).
Eelr(W)

This proves (e) and hence (c).

For any A’ € D' we set tindB, (4’) = pe(indB, (A)), (see 44.13). Now A’
tindB, (A") defines a group homomorphism K¢ (D) — K¢(D) and a Q-linear map
Q® ICC/(D’) — Q ® Kc(D); these are denoted again by tindB, .

Let ¢' € Re/(W7). We show:

(f) tindD, (Ry) = R 5 (o)
We may assume that ¢ = ¢p where E' € Irre (WI) From the definitions we
have Ry, € Q ® K¢ (D) and tindp, (Ry,,) € Q ® K°(D). Applying pc to the
identity

indP,(Ry,,) =R € K& (D)

indgl B/
(see 44.14(a)) we obtain

til’ldg/ (R¢El> - pC(Rindg E')'
I
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Now (f) follows from (c). )
For any z € ¢ we have N, € Re(W). Similarly for any z € ¢’ we have
NI € Ro(W7). Combining (f) (with ¢’ = XL __ 2z € ¢/) with 43.10(c) we see that

(g) tindB, (Rr_) = Ru_.

We define a homomorphism ’ J;ZVV 1 R(W) — R(W;p) by

PALCHE > (E',E)¢p
E'€lrr(Wr)sap =ag

for any E € Irr(W).
Let ¢ € Re(W) and let A’ € D'%". We show:

(h) (tindB, (A") : Ry) = (A’ : R ).

, W
T ()

We may assume that ¢ = ¢ where E € Irro(W). By the definition of tindB, (4’),
the left hand side of (h) is equal to (indB,(A4’) : Rg). From the second equality in
43.9(a) we see that

_ /
Rpjy, = > (E.E)Rp.
E'€lir(Wy)
By 43.9(b) we may restrict the previous sum to those E’ such that ap < ag;
moreover for E’ such that ag: < ag we have cg # ¢’. Thus we have Rp, =
I

B
the right hand side of (h) is equal to (A’ : RE|WI) hence to (A’ : resB (Rg)) (see
44.12(e)) and (h) is equivalent to (indB,(A’) : Rg) = (A’ : resB (Rg)); but this
follows from 44.12(d). This proves (h).

44.21. We preserve the setup of 44.20. We assume that

(i) for any E’ € Irre/ (W) there exists a unique E € Irre(W) (up to isomor-
phism) such that (E’, E') # 0; moreover we then have (E', E) = 1;

(i) for any E € Irro(W) there exists a unique E’ € Irre/(W;) (up to isomor-
phism) such that (E’, E) # 0; moreover we then have (E', E) = 1;
Note that the £’ — E in (i) and F +— E’ in (ii) defined inverse bijections E’ < E
between the sets of isomorphism classes of objects in Irre/(W;) and Irre(W). If
E’ < E then

J\‘)AVII (¢E’) = ¢E7
/J\‘;]VV "(¢g) = ¢ + linear combination of elements ¢ with

(a) E" € (W) — Irre (W7).

plus a linear combination of A” € D'"" with ¢y, # ¢/. We see that
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The second equality in (a) is obvious. To prove the first equality in (a) we consider
E € Irr(W) such that ag: = ap and (E', E) # 0. It is enough to show that E = E.

By 43.11(b) we have ¢z = c. Using (i) we see that £ = F, as required.
We show:

(b) if A€ D'4" then tindYy (A') # 0.

Assume that tindg (A’) = 0. From 44.20(h) we deduce (A’ : R ) =0 for
I

T (o)
- - W
any I € Irre(W). Thus, for any E' € Irre/(Wy) we have (A" : Ry,,) = 0 (see
(a)). This contradicts 44.7(k) for D’. This proves (b).

We show:

(c) if A€ D% then A := tindgl (A) is a single object of D™,

By 44.7(k) we can find E’ € Irr(W7) such that (A’ : Rg/) # 0. We have necessarily
E' € Irres(W7). By 43.10(b), Rg is a Q-linear combination of elements Ry:_ such
that tr(t,w, E*°) # 0 (and in particular x € ¢’). Hence there exists € ¢’ such
that (A" : Ryr_) # 0. By 44.20(d) we have

(d) RNL—J =nmA] +ngAs+---+n,A,

where A; € D'“" are nonisomorphic to each other and n; € Z~(; we can assume
that A; = A’. We have:

! J“;V TNym) = Niw + linear combination of elements ¢ with

(e) E" € Irr(Wp) — Irres (W7).

Using (a) we see that this is equivalent to the identity tr(t,w, E*°) = tr(t,w, E'*)
(for any E” <> E as above) which follows from 43.10(c). For 4, j in [1,7] we set
T = (tindgl (A;) : tindgl (A;)). We have

S g = (tindW (R ) « tindW (Rys_)) = (tindYy (Rwr_): Ry,.)
1,j€[1,7]

= (Rnr_ - R,J‘\gzmm)) = Ry« Ryr_) = Z[: | n;.
ie([l,r

(The first equality comes from (d); the second equality comes from 44.20(g); the
third equality comes from 44.20(h); the fourth equality comes from (e); the fifth

equality comes from (d).) Since tindgl (A;) is an N-linear combination of objects

in D" and is # 0 by (b), we see that (tindgl (A;) : tinng(Aj)) is>1ifi=j
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and is > 0 if 4 # j. Hence from the equality ZHE 1) NG Tij = Zie[l,r] n? it
follows that z; ; = 1if ¢ = j and x; ; = 0 if i # j. Since A’ = A; we see that (c)
holds.

We show: i )

(f) If Ay, Ay are objects of D' and A = tindgl(Al) = tindgl (A2) then
Al = A,
Assume that A; % As. Let E' € Irrc/(VVI). We can find E € Irrc(W) such that
(E',E) =1. For i = 1,2 we have

(A: Rp) = (tindy (4;): Rp) = (A;: R ) = (A; : Rp).

'J\;V:,,IWE)

(The second equality holds by 44.20(h); the third equality holds by (a).) Thus
we have (A1 : Rg/) = (A2 : Rp) for any E’ € Irre/(Wyp). This implies that
(A1 : Ryr_) = (A2 : Ryt _) for any z € W;. We can choose z € ¢’ such that
(A1 : Ryr_) # 0. Then we have also (Ag : Ryr_) # 0. We can assume that Ay, As
are the first two terms in the right hand side of (d). But in the proof of (c) we
have seen that (tindgl (Ay) : tindgl (A3)) = 0. This contradicts the assumption
that tindgl(Al) = tindgl(Ag) which is # 0 by (b). This proves (f).

We show: X )

(g) If A € D™ then there exists A" € D'*" such that A = tindgl (A).
By 44.7(k) we can find FE € Irr(W) such that (A : Rg) # 0. We have necessarily
E € Irre(W). Let E' € Irre/(W7) be such that E/ « E. By 44.20(f) we have
0# (A: Rg)=(A: RJW () ) = (A: tlndgl (Rp/)). Hence there exists A’ €

D' such that (A’ : RE/) # 0 and (A : tindgl (A’)) # 0. This implies that
A= tindgl (A’). This proves (g).

Combining (c),(f),(g) and using 44.20(h) and (a), we obtain the following result:

(h) A" — tindgl (A") defines a bijection between the set of isomorphism classes
mn ﬁ’ “n and the set of isomorphism classes in D“” this bijection has the following
property: for any E € Irr(W) and any A’ € D.,*" we have (tlndW (A"):Rg)=0
if E ¢ Irro(W) and (tlnng(A’) : Rp) = (A’ : Rg/) where E' € Trrg (W) is
defined uniquely by (E', E) = 1.

45. REDUCTIONS

45.1. In this section we show that the problem of classifying the unipotent char-
acter sheaves on D can be reduced to the analogous problem in the case where G°
is simple and Z4 = {1}.

Let 7 : G% — G° be a simply connected covering of the derived group of
G?. Let GO = 22, x GY.. The homomorphism ¢ : G — G°, (z,g) — 27(g) is
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surjective with finite kernel which may be identified with {z € Zgo ;7(2) € Z20}.
Let s(G°) be the category whose objects are the local systems £ of rank 1 on G°
such that for some &y € 5(Z22,) we have ¢*€ = K Q; or equivalently £ is a direct
summand of the local system (€ X Q;). (When GY is a torus this definition of
s(GY) agrees with that in 28.1.) Let £ € s(GY). We show:

(a) € is GO-equivariant for the conjugation action of G on G°;

(b) € is GY. x GO.-equivariant for the G°, x G9.-action on G° given by (x1,x2) :
g r(z1)g7(53);

(c) for any x € G° we have LXE =2 &€ where L, : G° — G° is given by g — xg.
Let & € sn(Zgo) be such that £ is a direct summand of ¥,(£y X Q;). The G°-
action on GO given by y : (z,2) — §(z,2)§~! (where § € ¥ ~1(y)) is well defined
and is compatible under 1) with the conjugation action of G° on G; moreover,
E X Qy is Go—equivariant. Hence (& X Q) is G%-equivariant and (a) holds.
The GY. x GY.-action on GO given by (71, z2) : (2,2) — (2, 11725 ) is compatible
under 1 with the G%, x G -action on G° (as in (b)) and & X Q; is G, x G-
equivariant. Hence (&, X Q;) is G2, x GY.-equivariant and (b) holds. We prove
(c). The GV-action on GO given by (z,x) : (2/,2') — (2"2/,xx’) is compatible
under ¢ with the G9-action on G° given by (z,7) : g — 2"7(x)g and & X Q; is
GO-equivariant. Hence 11(& X Q;) is GO-equivariant. Since the map G9 — G,
(z,x) — 2"7(x) is surjective, we see that (c) holds.

Let B*,T be as in 28.5. Let h : T — G° be the inclusion; let T = 7~ (T (a
maximal torus of GY,). Let 77 : T — T, 7 : 2% x T — T be the restrictions
of 7,1. Let 5(T)! be the category whose objects are the local systems &£’ in s(T)
which satisfy one of the following four equivalent conditions:

(i) for some & € s(Z22,) we have ¥5& = & @ Qu;

(ii) & is a direct summand of the local system 7 (€ ® Q;);

(iil) 738" = Qu;

(iv) for any coroot f : k* — T we have f*& = Q.

From the definitions we see that

(d) € — E := h*E is an equivalence of categories 5(G°) — s(T)!.

Let s(T)! be the category whose objects are the local systems £’ in 5(T) such that
&*&' =2 Q for any a € R (see 28.3). We identify T = T as in 28.5. Then s(T)*
becomes s(T)*.

45.2. Let d € Np(B*)NNp(T). There is a unique automorphism &y : G%. — GY,
such that 7(80(g)) = d=17(g)d for all g € GY.. Define an automorphism ¢ : GO —
G° by §(z,9) = (d7t2d,d0(g)). Then w( (y)) = d~19(y)d for all y € GO.

Let & € 5(GY). Note that Ad(d~1)*€ € 5(GY). Define Ly-—1 : D — G° by
g dlg. Weset Ep = L% . &, alocal system of rank 1 on D. We show that the
following three conditions are equivalent:

(i) Ad(d~1H)*€ =2 &;

(i) Ad(d~YHY*Ep = Er;
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(iii) the local system £p on D is G°-equivariant for the conjugation action of
G° on D.
Now (i), (ii) are equivalent by 45.1(d); moreover if (i) or (iii) holds for some
d € Np(B*) N Np(T) then it holds for any d € Np(B*) N Np(T) (by the G°-
equivariance of &, see 45.1(a)).

Assume first that (i) holds. Let D = {(y,2') € D x GO d1ly = w(x')}. Let
L':D — GO, ¢/ : D — D be the obvious projections. Let & € s(Z20) be such
that ¥*€ =2 & X Q;. Then

Ad(d) E R Q= 6% (6 R Q) = 6" E 2y Ad(d )" E 2 Y e 25 RQ,,

(&)

hence Ad(d=1)*&y = &. By 28.2, & is ZGO equivariant for the ZGO -action on

Zgo given by 20t 2 d 120dzzy 1

Hence & X Q; is GO- -equivariant for the
GO action on GO given by z : x — §(x)a’z"!. Define a GO-action on D by

(y, ") — (p(z)y(z) L, 6(z)x’x~t). This action is compatible under ¢’ with
the GP-action on D given by x:y — P(z)y(x)~! and is compatible under L/
with the GO-action on GO given by x : 2’ — &(z)z'z 1. Tt follows that L'*(£,XQ;)
is GO-equivariant and {L'*(Eg W Q;) = L% 11 (Eo W Q;) is GO-equivariant. Since
L%, € is a direct summand of L7, (EoXQ;), we see that Ly _, & is GO-equivariant.
Since GO acts on D through its quotient G°, we see that kere acts naturally on
the stalk of L7 ,& at y € D through a character x which is independent of y.
To show that L} ,& is GC-equivariant it is enough to show that y = 1. Let
T = ¢~Y(T), a maximal torus of GO. Then L} ,&|4r is T-equivariant (for the
restriction of the GO-action to T ). Since kervy C T, x is determined by the T-
equivariant structure of L}, &[4r. To show that x = 1 it is then enough to show
that L;_,E|q4r is T-equivariant for the conjugation T-action on dT. From (i) we
deduce Ad(d=1)*Er = Er. By 28.2, &r is T-equivariant for the T-action on T
given by tg : t — d~ 1t0dttal. Also A\ : dT' — T,dt — t is compatible with the
T-action on T (as above) and the T-action on dT' given by conjugation. Hence
N*Er is T-equivariant. Hence L;_,E|qr is T-equivariant. We see that (iii) holds.

Conversely, assume that (iii) holds. Then m*L}_,& = m'*L}_, £ where m,m’ :
G° x D — D are given by m(g,y) = gyg~t,m'(g,y) = y. Define j : G° — G x D
by j(g) = (g9,dg). Then Lg1mj = Ad(d™'),Lg—1m’j = 1 hence Ad(d™1)*¢€ =
mr L € =2 *m/* LY € = £. We see that (i) holds.

45.3. Let £ € 5(G°) and let £ = &r € (T)'. Then D € W%. Moreover, for any
w € W we have w € W1 (see 45.1(iv) and 28.3(a)); hence wD € W.. Hence the
local system £ on Z§’; , is defined as in 28.7. From the definitions we see that

L = 7 Ep where 7, : Zyy p — D is the map (B, B', g) = g. Hence

K}S" = TuTép =Ep @M Q1 = Ep @ 1w Q1 = Ep ® Ky € D(D),
(notation of 28.19).
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45.4. Now let I' be a closed normal subgroup of G contained in Z50. Then G' =
G /T is a reductive group and the image D’ of D under the obvious homomorphism
w: G — G is a connected component D’ of G’ that generates G’. We may regard
naturally I' as a subgroup of the canonical torus T of G° and we may identify
naturally T/I" with T’, the canonical torus of G’. Let W'’ be the Weyl group of
G'Y and let T’ be its set of simple reflections (see 26.1). We identify W/ = W,
I’ =TI in an obvious way. Then W acts on T, T’ compatibly with the canonical
map T — T’. Let wp : D — D’ be the restriction of w.
Let w € W. Then K%, K% € D(D), K%,,K%, € D(D’) are defined. We show

(a) K%~ wiKY € D(D), K% =~ whKY, € D(D).

Define Zyy p in terms of G’ in the same way that Zyyp 18 defined in terms
of G. Let my : Zy’t b — D be as in 45.3 and let m, : Zy’; 5, — D’ be the
analogous map defined in terms of G’. Define ' : Zy1p = Zy1p by (B, B’,g) —
(w(B),w(B’"),w(g)). We have a cartesian diagram

!
Y L, gw

Z’LU

0.1,D 0.1,D’
WwJ/ W,ZUJ/
D 22, D

Hence
W*DKg’ = W*DW:U!QZ = 71-w!(:zl = K%?

as required. The second statement in (a) is proved similarly. We set r = dim(T).
From (a) we deduce for any i € Z:

(b) H'(K) = wp,(H ™" (KP)r], H'(KR) = wp (H' " (KE)[r);

(c) if A" € D'"™ then the perverse sheaf wi)(A")[r] is a direct sum of finitely
many objects of D*™.
45.5. In the setup of 45.4 we assume that I' = Zgo. Then wp : D — D’ is a
a fibration with smooth, connected fibres. Using this and 45.4(c) we see that if
A’ € D'"" then w}(A")[r] € D* and (in the setup of 45.4(b)):

(A" H'™"(Kp)) = (wp(A)[r] - H'(K])),
(a) (A" H™"(K) = (wp(A)[r] : H'(KT)).

Now let A € D"". We show that A = wk(A)[r] for some A’ € D"“". We
can find w € W and i € Z such that (A : H(K%)) > 0. By 45.4(b) we then
have (A : wi(H"(K%))[r]) > 0. Hence there exists A’ € D'*" such that (A :
wh(A)[r]) > 0, as required. Note that if A’, A” are objects of D'*" such that
wh(AN[r] 2 wj(A”)[r] then A’ =2 A” (a standard property of wj,). We see that

A~ UN

A" — w} (A")[r] defines a bijection D'vn = D
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Let E € Irr(W). Let R € K§'(D) be as in 44.6(b) and let Ry € K§'(D") be

the analogous object defined in terms of G. From (a) we see that for A’ € D'“"
we have

(b) (A": Rpp) = (wp(A)[r] : Ri).

Moreover, since dim supp(wj,A[r]) = dimsupp(A) + r, we see from (a) that:

(¢) if D’ has property 2 then D has property 2.
45.6. In the setup of 45.4 we assume that Z2, = {1} so that I is a finite abelian
group. Then Z2,, = {1}. Let I'* = Hom(I', Q}). For x € I'* define Px € I'* by
x +— x(ded™1) (with d € Np(B*) N Np(T)). Let PT* = {x € T*;Px = x}. Let
wp : G° — G'° be the restriction of w. Since I' is abelian, we have

(a) w1 Q = Byer-EX

where £X is a local system of rank 1 on G'%, equivariant for the G%-action g : ¢’
wo(g)g’ of G on G’°, which induces an action of I' on any stalk of £X through .

Let £F, be the restriction of £X to T". Let 1’ be the composition G2, Y, GO 0, o
(¢ as in 45.1). For x € I'* we have wiEX =2 Q; hence ¢'*EX = Q; and £X € 5(G").
Let ' = w(d) € D'. Define L', , : D' = G'° by ¢’ — d'~'¢. For x € I'* we set
E5 =L, _1*EX, alocal system of rank 1 on D’. From (a) we deduce

(b) wp1 Qi X Byer-EX .

It follows that ®yer+EF, is GC-equivariant for the G%-action

(c) 9:9 + wolg)g'wolg)™
on D’. Hence for any x, £5 is G%-equivariant for the action (c). Since the
restriction of the action (c) to I' is trivial, we see that (c¢) induces an action of T’
on the stalk of £), at y € D’ through a character x which is independent of y.
Moreover, we have ¥ = 1 if and only if £, is G'°-equivariant for the conjugation
action of G’° on D'. By 45.2 (for G’ instead of G), this last condition is equivalent
to the condition that Ad(d'~1)*£X = £X that is, to the condition that Py = x.
Thus we have ¥ = 1 if and only if Py = x. We show:

(d) if A € D’ and x € I'* satisfies Px # x then the simple perverse sheaf
Al = EX, @ A is not in D'.
Indeed, A’ is a G'Y-equivariant simple perverse sheaf (for the conjugation action
of G'%) and A} is G%-equivariant for the action (c) in such a way that the induced
action of I' on stalks is via the non-trivial character x. We see that A is not
G'%-equivariant for the conjugation action of G'%; (d) follows.

Let w € W. We show:

X
w w,EX, X w
(e) (UDIKD — @XEF*§DX:XKD/ T @ @XGF*;DX75X€D’ ® KD/.
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Using the cartesian diagram in 45.4 we have

wpiKP = wpimQr = 7l wiQ = 7yl wpiQr = wpiQr & (7l 7, Q1)

=wpQ @7, QI =wpiQI @ KP = Syer-EY @ K.

It remains to use 45.3 (for G’, 7" instead of G,T).

We show:

(£) if A € D' and x e T*, Px =, x # 1 then A" ¢ DES
Indeed, if A’ € D'€7 then by 32.24 there exists a € W such that Q; = a*Q; = &,
as local systems on 77 = T’. Using 45.1(d) (for G’ instead of G) it follows that
EX = &' hence x = 1, a contradiction.

We show that for any A’ € D" and i € Z we have

(8) (A":wp H'(K)) = (A" : H'(KP)).

We use that wp H (K%) = H(wp1K%) which holds since wp is a finite covering.
Hence the left hand side of (g) can be rewritten using (e) as

i wygéi/ / 7 w
Z@XGF*;DX:X(A/ N H (KD/ )) + Z (A . 5;%/ ® H (KD/))

XEr*;Px#x

The term corresponding to x such that Py # x is 0 by (d); the term corresponding
to x such that Py = x, x # 1 is 0 by (f) and (g) follows.
Using 45.4(b) we can reformulate (g) as follows:

(h) (A" wpwp (H'(K) = (A" H'(KT)).

In K“*(D') we have H'(KY,) = ijl m; A} where Af, As, ..., Ay are mutually
non-isomorphic objects in D'“" and mj € Zso. Applying (h) with A’ = A} we
obtain Y7, m;(Aj, : wpiwp (A})) = my, hence 337 m;(wh(A4},) 1 wh(AL)) = my,
for h € [1, s]. Since (wp(A},) 1 wp(A})) > dp,; it follows that (w},(A}) : wh(A))) =
On,j for h,j € [1,s]. It follows that the perverse sheaf w}, A’ is simple. Since any
A € D'un appears in some H'(K%,) we see that in our case we have the following
refinement of 45.4(c):

(i) if A’ € D" then wi(A') € D",
Now let A € D*". Let w%, A be the sum of all simple summands of the semisimple
perverse sheaf wpiA which are in D'“n We show that:

(j) w9, A € D',
We can find w € W and i € Z such that A appears in H*(K%). Using 45.4(b) we
see that A appears in wi (H?(K%,)). Hence there exists C' € D’*" which appears
in H'(K},) such that (A : w}C) > 0. By (i), w},C is a simple perverse sheaf. It
follows that A = w}C. Thus C appears in wpiA. In particular, w4 # 0. Now
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assume that C,C" are two objects in D’“" such that both C' and C’ appear in
wptA. Then A = w},C; similarly, A = w},C’. Thus the simple objects w},C,w},C’
are isomorphic. It follows that dim Hom(C’, wpiw},C) = 1. We have

ngw*DC =C ®ngw}‘)Ql =C ®wD!Ql = @xef*c ®EX,.

It follows that for some x € I'* we have dim Hom(C’,C ® £§) = 1 hence ¢’ =
C ® EX,. This forces Px = x, by (d). Then &Y, is defined and from 45.3 we

see that C @ £, € D'®1 so that €’ € D'®7/. Using (f) we deduce that x = 1
and C’ = C. Thus, the semisimple perverse sheaf w?%, A is nonzero and isotypic.
If C € D' appears in w?, A then, as we have seen, we have A = w}C hence
dim Hom(C,wp14) = 1 so that dim Hom(C,w?%,4) = 1. Thus w$,A is simple.
This proves (j).

From (i),(j) and the proof of (j) we see that:

(k) A" — wi(A’) defines a bijection 2/“" = D" the inverse bijection is
induced by A — wh A.
We define W’ in terms of G/, D’ in the same way as W was defined in terms of
G,D. We may assume that W/ = W. Let E € Irr(W). Let Rp € K& (D) be as
in 44.6(b) and let R}y € K§'(D') be the analogous object defined in terms of G'.

From (g) we see that for A’ € D’'“" we have
(1) (A": Rp) = (wp(A) : Rp).
If Ae D", we W, i€ Z then
(A: HI(RE) = (A: whHH(ER)) = (wpr A : H(KE)) = (WA HI(EE).
Since A = w})(whA) we have dimsupp(A) = dim§upp(wD,A) We see that
(m) if D' has property 2 then D has property 2.

45.7. In the setup of 45.4 assume that I' = Zgo. Then A’ — wi,(A’)[r] defines a

~ ~ A ~ .
bijection D " — Qun. Moreover, for any w € W, any A’ € D'*" and any i € Z
we have

(a) (A" H™"(Kp))) = (wp(A)[r] : H'(Kp))-
Note that G/Zgo can be obtained from G in two steps: we first form G; = G/Z2,

which has Zg? = {1} and then we have G/ Zgo = G1/Zgo. We use 45.5 to compare

G to G and 45.6(k),(h) to compare G1 to G/Zgo. The statements above follow.
We define W’ in terms of G’, D’ in the same way as W was defined in terms of

G,D. We may assume that W/ = W. Let E € Irr(W). Let Rp € K& (D) be as

in 44.6(b) and let R}y € K§'(D') be the analogous object defined in terms of G'.

From (a) we see that for A’ € D'*" we have

(b) (A": Ry) = (wp(A') : Rp).
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Combining 45.5(c), 45.6(m) we see that )

(¢) if D' has property A then D has property 2.
Now if A" € D’*™ then A’ is cuspidal if and only if w},(A’)[r] is cuspidal. It follows
that

(d) if D" has property Ao then D has property .

45.8. Assume now that Zgo = {1}. Let A = Z5. Let G' = G/A.

If g € G satisfies gg1 = g19 mod Zq for any g; € G then for any g; € G we have
9919 g7 " € GO (since G/GP is abelian) hence gg19~ g7+ € G°NZg C Zgo = {1};
thus, g € Z5. We see that Z¢ = {1}.

Let 7 : G — G’ be the obvious map. Then 7 induces an isomorphism G° = G’°
and an isomorphism of D onto a connected component D’ of G’ which generates
G’. We identify the canonical tori and Weyl groups of G°, G’ in the obvious way.

Let w € W. From the definitions it is clear that

(a) Kg - W*Kg/, Kg - W*Kg/.

It follows that N - un
(b) A" +— 7* A’ induces a bijection D “"* = D ;
moreover, if w € W, A’ € D'*" and i € Z then

() (A" H'(Kp)) = (7" A" - H'(KT)).

Let B € Irr(W). Let Rp € K§'(D) be as in 44.6(b) and let Ry, € K§'(D’) be the

analogous object defined in terms of G’. From (c) we see that for A’ € D'*" we
have

(d) (A" : Ry) = (n*A": RE).

From the definitions we see that 3
(e) if D' has property A then D has property U;
(f) if D" has property Ao then D has property Ag.

45.9. Assume now that Zg = {1} with G° adjoint. We have G° = [l;ez G
where § is a finite set and G¢ (f € §) are the maximal connected simple closed
subgroups of G°. There is a well defined permutation ¢ : § — F such that
gGrg~! = G,y forallge D, f € §. Let T be the set of orbits of ¢ on §. For any
O € § weset Go =[] feo G¢. Then Go is a closed connected normal subgroup
of G; hence we have a well defined homomorphism 0y : G — Aut(Gp) given by
g : x — grg~t. The image of Ao is denoted by Go. Since Go is adjoint, Go
is a reductive grup with identity component Gp; it is generated by its connected
component Dy := 0o (D).

Let g € Z5,. We have g = 0o(g) with g € G and ygrg ty~! = gyry~lg~
(that is y g tygr = 2y~ tg~tyg) for any y € Go. Thus y~1g~lyg (an element

1 1
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of Gp) is in the centre of Gp so that y~1g~lyg = 1 for any y € Gp. We see that
0o(g~") =1 that is g~' = 1. Thus, Z5_ = {1}.

Note that the homomorphism G — []yc3 Go given by (fo)pez is an imbed-
ding of reductive groups by which we can identify the identity components G° =
[loez Go and the component D with the component [[c3 Do-

We can identify W = H(’)e@ W where Wp is the Weyl group of Gp. Let
w € W and let wp be the W p-component of w. From the definitions we have

(a) Kp = @O@K%a Kg = @06§Kgg'
Hence for i € Z we have

HY(KP) = ®io):3 io=i Roez H' (KB2)
(b) H'(KD) = ®(i0):> io=i Mocz H'° (Kpg)-

Assume that Ap € ﬁ%” is given for each O € §. Let A = MopezAo, a simple
perverse sheaf on D. We can find w = (wp) € W and (ip) € NS such that
(Ao : H'®(Kp2)) > 0 for all O hence (A : Moz H'™ (Kgg))? 0. Using (b) we
deduce that (A: H*(K})) > 0 where i = ), i0. Hence A € D"".

Conversely, let A € D", We can find w = (wp) € W and (ip) € N¥ such that
(A: H'(K7)) > 0. Using (b) we deduce that (A : Koz H'©(KpT)) > 0 for some
(i0) € NS such that i = > o to. Hence there exist Ap € DY (O € F) such that
(Ao : H'°(Kp2)) >0 and A = KpezAo. We see that

A UN  ~

(c) (Ap) — Mpez Ao induces a bijection H Do — D",

0cF

Moreover if (Ap) < A under this bijection then

(d) (A:H(EB) = Y [](Ao:H(ER)).

(i0);2 "0 lo=1 O€F

For O € § we define W, Irr(Wp) in terms of G in the same way as W, Irr(W)
were defined in terms of G (see 43.1). For each O € § we assume given an object
Eo € Irr(Wp). Then the vector space E = @ Eo can be naturally regarded as

an object of Irr(W). (Any object of Irr(W) can be obtained in this way.) Define
R, € K§'(Do) in terms of Go in the same way as Rp was defined in terms of

G. Let (Ap) < A be as above. From (d) we see that for A’ € D" we have
() (A:Rp) =[] (4o : RE,).
Oe¥

From the definitions we see that .
(f) if Do has property 2 for any O then D has property 2;
(g) if Do has property gy for any O then D has property 2.
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45.10. Let x,2’,y € W be such that 2’ = yxe(y) . We show

(a) gri(Kp) = gri(K) € K" (D).

The proof is similar to that in [DL, 1.6]. Arguing by induction on [(y) we see that
we may assume that y = s € L

Assume first that I(x) = I(2’) = l(sx) + 1. Define an isomorphism Zgl D —
ZOQJC,/I,D by (B, B’,g) — (B1, B}, g) where By, B} € B are given by pos(B, By) =
pos(B1, B") = sz, B} = gB1g~'. (We then have pos(Bj, B}) = (sx)e(s) = )
follows that K% = K% .

The case where I(x) = I(z") = I(s2’) + 1 can be reduced to the previous case by
exchanging x, x’.

Assume next that [(2') = l(z) + 2. If (B,B',q) € Zg:LD then there are well
defined By, Bj in B such that pos(B, B1) = s, pos(Bi1, B]) = z, pos(B1, B') = €(s).
We partition Zg:I’ p into two pieces Z’, Z" (one closed, one open) defined respec-
tively by the conditions B = ¢gB1g~!, B} # gB1g~'. Let K', K" be the di-
rect image with compact support of Q; under the maps Z' — D, Z" — D,
(B, B',g) — g. Then gri(K},) = gri(K')+gr1(K"). Now (B, B',g) — (B1, B}, 9)
defines an affine line bundle Z" — Z§; ,,. Hence gri(K’) = gri(Kp). It remains
to show that gri(K”) = 0. Let Z be the set of all (B,BO,B(’),B’,g) in B* x D
such that pos(B, Bg) = s, pos(Bo, By) = ze(s), gBg™! = B, gBog~! = Bj.
If (B, By, B{,B',g) € Z there is a “unique B € B such that pos(By, B) = =,
pos(B, B)) = €(s). We partition Z into two subsets Zi,Z, (one closed, one
open) defined respectively by the conditions B = B/, B # B'. Let K K1, K>
be the direct image with compact support of Q; under the maps Z —D, 7 —
D, Zy — D, (B, By, By, B',g) — g. We have gri(K) = gri(K)) +97“1(K2>

Now (B, By, B{,B’,g9) — (Bo, B, g) is an isomorphism 7, — del(‘g and an

affine line bundle Z — del(jj), hence K = K; and gr1(K2) = 0. Moreover,

(B, By, By, B',g) — (B, B', g) is an isomorphism Z, — Z”. Hence Ky = K" and
gri(K") =0, as required.

The case where [(x) = I(x') 4+ 2 can be reduced to the previous case by exchang-
ing x, z’. It remains to consider the case where [(x) = I(2') = l(sz)—1 = [(sx’)—1.
In this case we have z = 2’ (see [DL, 1.6.4]) and there is nothing to prove.

45.11. Assume now that Zg = {1}, that G° is adjoint # {1} and that G has no
closed connected normal subgroups other than G° and {1}. Let e be a pinning (or
épinglage, see 1.6) of G which projects to (B*,T) under the map p in 1.6. By
the adjointness of G there is a unique element d € D such that Ad(d) : G° — G°
stabilizes e under the action 1.6(i). We have G° = [Tfcz Gy as in 45.9. Let
L:F — T, & beasin 45.9. If O € § then Go (as in 45.9) is a closed connected
normal subgroup of G other than {1} hence it is equal to G°. Thus, we have O = §
that is, ¢ : § — § has a single orbit. Let k = |§|. We can identify § = Z/kZ in
such a way that «(j) = 7+ 1 for any j € Z/kZ.
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For j € Z/kZ let B; be the variety of Borel subgroups of G;. We can iden-
tify B = [[;cz/xzBj by B < (Bo, Bi,...,Bi_1) where B € B, B; € B; satisty
B = [l,cz/xz B;- In particular we have B* = []. 7 17 Bj where B’ is a Borel
subgroup of G;. We also have T' = [] jez/kz Li» where T} is a maximal torus of
B}. We can view e as a collection (e;);cz/rz Where e; is a pinning of G; which
projects to (B, T;). Note that Ad(d) carries e; to e;4; for any j € Z/kZ.

We can identify W = HjeZ/kZ W, where W is the Weyl group of G; and I =
Ujez/rzl; where I is the set of simple reflections in W;. Recall that e : W — W
is the automorphism induced by Ad(d) : G — G°. We have e(W;) = W, for
JjE€Z/KZ.

Now d* normalizes Gy and Ad(d*) : Gy — Gy stabilizes ey. Let G’ be the
subgroup of G generated by Gy and d*. Since d has finite order, G’ is closed,
G'° = Gy and D’ = d*Gy is a connected component of G’ that generates G'.

We show that Zgr = {1}. If ¢’ € Zg then we have ¢’ = d*"x for some
reZ,x e Gyand Ad(¢') : Gy — Gy is the identity map hence Ad(g’) stabilizes
eg. Since Ad(dF") also stabilizes ey we see that Ad(x) stabilizes eg. Since Gy is
adjoint we must have 2 = 1 hence ¢’ = d*". Thus ¢’ commutes with d. Since ¢’
also centralizes Gy and d, Gy generate G we see that ¢’ centralizes G hence ¢’ = 1
(by our assumption that Z5 = {1}). This verifies our assertion.

Define § : D — D' by 5(dgogi .. .9k—1) = dgr—1dgr—2 . ..dgo where g; € G;
or equivalently by the requirement that (¥ € 3(¢)G1G>...Gr_1 for ¢ € D. This
is a principal {1} x G7 x G3 X ... x Gi_1-bundle where this group acts on D by
restriction of the conjugation action of G°. Moreover, 3 is compatible with the
conjugation action of G° on D and the conjugation action of Gy on D’ via the
homomorphism G® — G which takes go to go if go € Go and g; to 1if i € [1,k—1].
We see that (setting ¢t = (k — 1) dim G):

(a) A" — [*A'[t] is an equivalence between the category of Go-equivariant per-
verse sheaves on D' and the category of G°-equivariant perverse sheaves on D.
Let w € Wy C W. The variety Zé‘jl’ p may be identified with

{((Bo, By, ..., Bx-1),(By, B, ..., Bi_1),dgog1 - - - gr—1); By, B; € By, g; € Gj,
Bj = Ad(dg;—1)Bj-1)(j € Z/kZ),
pos(Bo, BY) = w, Bj = B(j # 0)}
or with
{(Bo, By, dgogs - - - gr—1);
By, Bj) € By, g; € Gj, B{, = Ad(dgi_1dgr—2 . . . dgo)Bo, pos(Bo, B}) = w}.

We see that we have a cartesian diagram

B
Zéle’D Zéljl(hD/

l l

B

D — D
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where

B :(Bo,By,...,Br_1),(By,Bl,...,By_1),dgog1 - - . gr—1)
= (Bo, B(l), dgk_ldgk_g .. .dg()).

Using this cartesian diagram we see that K = 5" K,. Similarly we have K% =
B*KF,. Since 3 is smooth with connected fibres we see that for any ¢ € Z we have

H'(Kp) = 8 H''(Kp)[t], H'(Kp) = g H'" (K} [t]

and

(b) (B*A'lt) - H'(Kp)) = (A" - HT'(K]))

for any simple perverse sheaf A" on D’. From (b) we see that, if A’ € D’vn then
B*A'[t] € Dun,

Conversely, assume that A € Dun. Let X be the set of sequences
s = (s1,82,...,5:) in I such that (A : H'(K%)) > 0 for some i. Let X, be
the set of all s = (s1,892,...,8,) € & such that s, € Iy for all h. Note that
X # (0. Let N be the minimum value of Ng := Zje[ﬂ,k—l],he[l,r];sheljj where
s = (s1,$2,...,5.) runs through X.

Assume that N > 0. We choose s € X such that Ny = N. We can find
h € [1,r] such that s, € I; for some j € [1,k — 1]; moreover we can assume that
h is maximum possible with this property. Then s, € Iy for ' € [h+ 1,r|. Let
8" = (81,82« Sh—1,S8htl,---,Sr,Sh). Since spsp = sp'sp for K’ € [h 4+ 1,r] we
see using the definitions that K%, = KIS)/. Thus s’ € X. Note that Ng = N.
Let s = (e 1(s1),51,52,-+,8h—1,5hi1,---,5r). By 28.16 we have KS = KSD”.
Thus s” € X. Since s, € I; with j € [1,k — 1] we have ¢ !(s,) € I;_;. Thus
Ng» = Ny —1 = N — 1. This contradicts the minimality of N. We have shown
that V = 0. We choose s € X such that Ng = 0. We then have s € &A,;. Thus we
have Xy # 0.

By the proof of the implication (iii) = (i) in 28.13 we deduce that there
exists w € Wy and i € Z such that (4 : H(K%)) > 0. Using (a) we can write

= [* A’[t] where A’ is a well defined simple G-equivariant perverse sheaf on D’.
Using (b) we see that (A’ : H"/(K%,)) > 0. Hence A’ € D'“". Thus:

(c) A"+ B~ A'[t] induces a bijection Drun =, pun
We define W’ in terms of G/, D’ in the same way as W was defined in terms of
G, D; let w’ be the element of W’ which plays the same role for W' as w for W.
We can assume that the order of @’ in W' is the same as the order of w in W.
Let E' € Trr(W'). Then the vector space E = E' @ E' ® ...® E’ (k factors) can
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be regarded as an object of Irr(W) with x = (2o, z1,...,25-1) (x; € W) acting
by

e ... ®e_y — xoleg) ®e H(w)(e) ® ... @ T (wp1)(ef_y)
and w acting by ey ® e} ®...®e}_; — w'(€)_;) Qe ®...Qe;_,. (Note that any

object of Irr(W) can be obtained in this way.) Define Rp € K§'(D’) in terms of

G’ in the same way as Rr was defined in terms of G. We show that for A’ € D'un
we have

Let A = 3*A’[t]. Using (b) we see that the right hand side of (d) equals
(Wol™h > () (e, B (A H(KE))

mGWQ,iEZ
= Wol™" Y (=)™ Tr(ew’, E)(A: H'(KD))
IEWO,iGZ
=[Wo|™" > ()™ hr(aw, E)(A: H'(KD)).
IEWO,iGZ

(We have used that tr(zw, ) = tr(zw’, E’) for x € Wy, which follows from
definitions.) Let W, = [[,cz /17,0 Wj. We note that the map W, x Wy — W,
(y,z) — yxe(y) ™! is a bijection. Using 45.10(a) we see that the left hand side of
(d) equals

. . . Te —1
W S (It (yae(y) Lw, E) (A HI(KEY )
yeEW..,ceWy,icZ

= [W|! > (=1)3M G+t (g, B)(A: HY(KE)).
YyEW..,.z€Wo,icZ

Thus the two sides of (d) are equal.

Using (b) and the definitions we see that

() if D’ has property 2 then D has property .
Note that if O is a G%-orbit on D then 5(0O) is a G'%-orbit on D’. Moreover, if O’
is a G'%-orbit on D’ then 371(0’) is a G%-orbit on D. We see that

(f) the map O — B(O) is a bijection between the set of G°-orbits on D and
the set of G'°-orbits on D’; the inverse bijection takes a G'°-orbit O’ on D’ to
p=HO).
We show:

(g) if D’ has property Ay then D has property .
Let A € D“"¢. Then supp(A) is the closure of a single G%-orbit O in D. We have
A = B*A'[t] where A’ € D'"". Hence supp(A4’) = 3! (supp(A)). From (f) we see
that supp(A’) is the closure of a single G’°-orbit O’ in D’. Hence A’ is cuspidal.
By the assumption of (g) we see that A’ is zero outside O’. Hence A is zero outside
B71(0’) which is a single G%-orbit necessarily equal to O. Thus D has property
Ap.
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46. CLASSIFICATION OF UNIPOTENT CHARACTER SHEAVES

46.1. Let p > 1 be the characteristic exponent of k. In this section we extend
the results of [L3, IV, V] on the classification of unipotent character sheaves on D
from the case G = GV to the general case.

In the remainder of this subsection we assume that D = G° and that (a) below
holds:

(a) if G° has a factor of type Eg or Fy then p # 2.
We note that:

(b) any character sheaf on D is clean;

(¢) any admissible complex (see 6.7) on D is a character sheaf.
This is reduced to the case where G is almost simple as in [L3, V, 23.21]. In that
case, (b) is proved in [L3, IV,V] assuming in addition that: if G° has a factor Fjg
then p # 3,p # 5; if G° has a factor E7 or Fy then p # 3; if G° has a factor Eg
then p # 2; if GV has a factor G then p # 2,p # 3. In the remaining cases an
additional argument (given by Shoji [Sh, Sec.5] and Ostrik [Os]) is needed. The
fact that (b) implies (c) is proved as in [L3, IV,V].

46.2. Assume that G° is semisimple and that for any proper parabolic subgroup
P of GY such that NpP # () the following condition is satisfied: any irreducible
cuspidal admissible complex on NpP/Up whose support contains some unipotent
element is a character sheaf. Let A € D“"¢ be such that for some unipotent G°-
orbit S in D and some irreducible cuspidal local system £ on S we have A =
IC(S,€)[dim S] extended by 0 on D — S. We assume that for any G%-orbit C' C
S — S there is no irreducible cuspidal local system on C. We show:
(a) A is clean.

The proof is along the lines of that of [L3, II, 7.9]. Assume that A is not clean.
Let C C S — S be a G°-orbit of minimum possible dimension such that H(4) is
nonzero on C for some i; let iy be the largest i such that H*(A) is nonzero on C.
Let £ be an irreducible local system on C which is a direct summand of H (A)|c.
By our assumption, £ is not a cuspidal local system on C. By 8.8, 8.3, 8.2(b) we
can find (L', S") € A (see 3.5) such that S’ contains unipotent elements and an
irreducible cuspidal local system £’ on S’ such that, setting & = IC (YL/,S/,mg’ )
extended by 0 outside Y, ¢ (£ as in 5.6), there exists a direct summand A,
of & whose restriction to the unipotent variety of D is (up to shift) IC(C, L)
extended to the unipotent variety by zero outside C. Let (L”,S”) = (G°,S). Our
assumption implies that L’ # GY so that L', L” are not G°-conjugate. Hence 23.7
is applicable and yields H? (D, & ® A) = 0 for any j. Hence HJ(D,A; ® A) =0
for any j. Since supp(A4) C S we have supp(A; ® A) C S so that HJ (D, A ® A) =
HJ(S,A; ® A). Since supp(A41) NS C supp(R)NS C C we have HI(S, A1 ® A) =
HI(C,A; ® A). Since A is zero on C' — C (by the minimality of C') we have
HI(C,A; ® A) = HI(C, A; ® A). We see that H}(C, Ay ® A) =0 for all j. Since
Aylc is £ up to shift, it follows that HI(C,£ ® A) = 0 for all j. In particular
we have H2'+(C, L ® A) = 0 where b = dim C. Consider the spectral sequence
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EY® = HI(C,HS(A) @ L) = H!*(C,A® L). Then Ey* = 0if s > ig (by
our choice of ig) or if r > 2b. It follows that E;b’io = Egb’io = ... = E2bio,
But E?%% is a subquotient of H2T%(C, A® L) hence it is zero. It follows that
0= B2 = H2(C, H*(A) ® £). Since L is a direct summand of H(A)|¢ it
follows that H2*(C, £ ® L) = 0. This is a contradiction. This proves (a).

46.3. In this subsection we assume that GV is almost simple, that m := |G/G°| >
1, and that Z¢ C GO Let A € D", Let S be the stratum of D such that
supp(A) is the closure of S. Now A|g is (up to shift) an irreducible cuspidal local
system £. Note that m is 2 or 3. Let s € G be a semisimple element and let ©w € G
be a unipotent element such that su = us € S. Let G' = Zg(s). Let 6 be the
connected component of G’ that contains u. Let S’ be the (isolated) stratum of
0 that contains u. Let £ be the inverse image of £ under S’ — S, g — sg. Let
A’ =IC(8',&")[dim §’] extended by 0 on § — S”. By 23.4(c), A’ is a direct sum of
cuspidal admissible complexes A’ on G’ 0,

We show:

(a) If p # m then A is clean.
By our assumption, the image of u in G/G° is 1. Thus u € Zgo(s). Since
Zgo(8)/Zgo(s)? has order prime to p we see that u € Zgo(s)?. Hence § =
Zeo(s)? = G'Y. By 23.4(a) it is enough to show that each A’ is clean with respect
to G’. This follows from 46.1(b),(c) applied to G’, G'°. (Note that G’° does not
have a factor Eg; it can have a factor Fy only if GV is of type Eg and p # 2, in
which case 46.1(b),(c) are applicable.) This proves (a).

We show:

(b) Assume that G° is of type Ap_1 (n > 3) or D,, (n > 2). Assume that
p =m = 2 and that for any proper parabolic subgroup P of G° such that NpP # ()
the following condition is satisfied: any irreducible cuspidal admissible complex on
NpP/Up is a character sheaf on NpP/Up. Then A is clean.
In this case the image of s in G/G° is 1. Hence s € G and u € D. There is at
most one cuspidal admissible complex on D. (See 12.9.) This complex must be
isomorphic to A. Now the conclusion follows from 46.2(a).

46.4. In this subsection we assume that G is simple of type A, _1 (n > 3), that
|G/G°| = 2, that Z5 = {1} and that D # G°. In this case ¢ : W — W is given
by w — wowwg . In particular we have Irr(W) = Irr(W) (see 43.1). We show:
(a) D has property 2A;
(b) D has property U;
(c) if p =2 then any irreducible cuspidal admissible complex on D is in Dune.
(d) for any Ey € Irr(W) there is a unique object Ag, € D" (up to isomor-
phism) which satisfies Rp = spAg, in K§'(D) for any E € Irr(W) such that
E|lqw) = Eo (here sp = £1); moreover, Ey — Ag, is a bijection from the set of
isomorphism classes in Irr(W) to D"
We can assume that (a)-(d) hold when n is replaced by n’ where 3 < n’ < n. (This
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assumption is empty if n = 3.)

Note that if P is a proper parabolic subgroup of G° such that NpP # () and
such that (setting D’ = NpP/Up) either D'*"¢ £ () or (if p = 2) there is at least
one cuspidal admissible complex on D’ then P/Up is of type A, (or a torus) and
the induction hypothesis shows that D’ satisfies property 2y and (if p = 2) any
irreducible cuspidal admissible complex on D’ is in Drune,

Using 46.3(a) (if p # 2) and 46.3(b) (if p = 2) we see that (a) holds.

Now let Ey € Irr(W). We can extend Ej to a W-module E in which @ acts as
wy € W. We set e = (—1)%Bo@sentl(wo) ol — (_1)%80, From [L14, (7.6.6)] we
see that there exists x € cg, such that R, = epdp, (—1)"®) 72 = ege’,. Using
44.15(c) (which is applicable in view of (a)) we deduce that egRp is a Z-linear
combination of objects A € Dun such that e = egey. Since (Rg : Rg) = 1 we
deduce that Rp = spAp, for a well defined Ag, € Dun and s g = £1; moreover,
e4P = epely. Since any A € D" satisfies (A : Rgp) # 0 for some E as above
we see that A = Ap, for some Fy. Also if Fy, E{ are non-isomorphic objects of
Irr(W) and E,E’ are the corresponding extension to W then (Rg : Rg/) = 0
hence (Ag, : Ag;) = 0 so that Ag, # Ag;. We see that (d) holds.

Let Ey, E be as above. For w € W, we have

(Ag, : g1 (KP)) = £(REg : gr1(K})) = ttr(ww, E) = £tr(wwg, Ey)

(see 44.7(p)). Hence, by 44.14(a), the condition that Ag, is cuspidal is that
tr(wwo, Ep) = 0 whenever w € W is not D-anisotropic. Now w € W is not
D-anisotropic if and only if wwy has even order. Thus the condition that Ag,
is cuspidal is that tr(w’, Ey) = 0 whenever w’ € W has even order. The last
condition holds if and only if n is of the form 1+ 2+ ---+ s and Ey corresponds
to the partition of n with parts 1,2,...,s. (See [L7, 9.2, 9.3, 9.4].) In this case we
have ap, = ag,gsgn hence efo = (—1)Hwo) = (—1)le = (—1)codimsupp(4o))  (For
the last equality see 44.8(a).) Thus the equality e? = (—1)cedim(supp(4)) holds for
any cuspidal A € D", The analogous equality holds for non-cuspidal A in view
of the induction hypothesis and 44.15(a). We see that (b) holds.

Now assume that p = 2. Let X} be the set of isomorphism classes of irreducible
cuspidal admissible complexes on D. Let X5 be the set of isomorphism classes of
objects in D*"¢. Using 12.9 we see that |X;| = 1if n € {3,6,10,...} and |X;| =0
otherwise. By the arguments above we see that |X3| = 1 if n € {3,6,10,...}.
Clearly, Xy C A;. It follows that X5 = X;. This proves (c).

This completes the inductive proof of (a)-(d).

Let Ey, E,x be as above. By 44.17(d) (which is applicable in view of (a),(b))
we have (Ag, : Rx,_) € N hence (Ag, : egRg) € N hence (sgRg : egRg) € N
hence sgep € N hence s = eg. Thus we have

(e) AEO = eERE.

46.5. Assume that G is semisimple and that A is a cuspidal admissible sheaf on
D such that supp(A) is contained in the unipotent variety of D. Assume also that
GO is of type A, x A, x ... x A, (r factors, n = 1 or n = 2). We show:



CHARACTER SHEAVES ON DISCONNECTED GROUPS, X 53

(a) A is clean.
By arguments in 12.3-12.6 we are reduced to the case where GV is almost simple
and Zg C GV. If G = G°, the conclusion follows from 46.1. Thus we can assume
that G # G°. As in 12.7 we see that we must have n = 2, p = 2, |G/G°| = 2. By
46.4(c), we have A € D*"; using this and 46.4(a), we see that A is clean. This
proves (a).

46.6. In the setup of 46.3 we assume that GV is of type D4y and p = m = 3 or of
type Fg and p=m = 2. Let A € Dune. We show:
(a) A is clean.

By 12.9 there is exactly one cuspidal admissible complex on D (say A’) whose
support is contained in the variety of unipotent elements in D. If A = A’ then A
is clean by 46.2(a). Hence we may assume that supp(A) is not contained in the
variety of unipotent elements in D. In this case G’° is of type A; x A; x A; x A;
(if G is of type Dy) and of type Ay x Ay X Ay (if G is of type Fg). By 23.4(a) it is
enough to show that each A (as in 46.3) is clean with respect to G’. This follows
from 46.5(a) with r = 4,n =1 or r = 3,n = 2. This proves (a).

46.7. In this subsection we assume that GV is simple of type Dy, that |G/G°| = 3,
that Zg = {1}, hence D # G°. We show:

(a) D has property 2.

Note that if P is a proper parabolic subgroup of G° such that NpP # () and such
that (setting D’ = NpP/Up) we have D'""¢ % () then P is a Borel subgroup so
that D’ satisfies property 24p. Using 46.3(a) (if p # 3) and 46.6(a) (if p = 3) we
see that (a) holds.

The objects of Irr€(W) can be listed as: 1,4,1’,4’,2,6,8 (each number repre-
sents an object of the corresponding degree; moreover, 1 is the unit representation,
1’ is the sign representation, 4 is the reflection representation, 4’ = 4 ® 1’). Each
of these objects is naturally defined over Q and it can be viewed as an object of
Irr(W) which is also defined over Q with w® = 1 on it; we denote this object
of Irr(W) in the same way as the corresponding object in Irr(W). From [L14,
(7.6.5)] we see that each of the elements

¢17¢47¢1’7¢4’7¢8 + ¢27¢8 - ¢27¢8 + ¢67¢8 - ¢6

is of the form N, for some z € W such that I(z) —a(z) = 0 mod 2. From this
we deduce using 44.15(c) that each of the elements

(b) Ri,R4, Ry, Ry, Rg + Ro, Ry — Ro, Rg + Rg, Rg — Rg

is a Z-linear combination of objects A € D“" such that e* = 1. Since the elements
(b) span over Q the same vector space as that spanned by the R with E € Irr(W)
and since each each A € D" satisfies (A : Rg) # 0 for some E € Irr(W) we see

that each A € D" has non-zero inner product with some element in (b) hence
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it satisfies e = 1. If A € D" then codim(supp(A4)) = |I| mod 2; we have
II.| = 2 hence codim(supp(A4)) = 0 mod 2. Thus e? = (—1)codim(supp(4) jf
A € D¢, The analogous equality holds for non-cuspidal A in view of 44.15(a)
since it trivially holds on D’ as above. We see that
(¢) D has property 2.

By 44.17(d) (which is applicable in view of (a),(b)), the inner product of any A €
DU with any element in (b) is in N. Since the inner product of any two elements
in (b) is known (it is 0,1 or 2) we see that there exist mutually nonisomorphic
objects

(d) A17A47A1’7A4’7a7 b7 C7d
of D" such that

Ry =A1,Ry= A4, Ry = Ay, Ry = Ay, Rg + Ry = a+ b,
Rs— Ry =c+d,Rs+ Rg¢ =a+c,Rg — Rg = b+ d.

The list (d) exhausts the isomorphism classes in D“" since any A € D“" has
nonzero inner product with some element in (b). Note that Rg = (a+b+c+d)/2,
Ry=(a+b—c—d)/2, Re=(a—b+c—d)/2.

46.8. In this subsection we assume that G is simple of type Eg, that |G/G°| = 2,
that Zg = {1}, hence D # G". We show:

(a) D has property 2.
Note that if P is a proper parabolic subgroup of G° such that NpP # () and such
that (setting D’ = NpP/Up) there is at least one cuspidal admissible complex on
D’ then P/Up is either of type As or a torus. (The case where P/Up is of type
Dy is excluded using 23.4(a) when p # 2 and 12.9(b) when p = 2.) In either case
D’ satistfies property 2. Using 46.3(a) (if p # 2) and 46.6(a) (if p = 2) we see
that (a) holds.

In our case e : W — W is given by w +— wowwo_l. The objects of Irr(W) (up
to isomorphism) can be listed as

107 617 2027 3037 1537 1~537 6447 6057 8]-67 2467 8077 6077 9077 1077
207, 8110, 6011, 2412, 6413, 3015, 1515, 1515, 2020, 625, 136

where N,, or Nn denotes an object Ey € Irr(W) such that dim £y = N, ag, = n.

Each object of Irr(W) can be regarded as an object of Irr(W) on which w acts as
wp; this object of Irr(VV) is denoted in the same way as the corresponding object
in Irr(W). From [L14, 7.10] we see that each of the elements

P10 — P61 P205s —P6055 P2465 P8165 P81105 24125 —P60115 P20205 — P65 5 Plag

—®305 — D155, —P305 + P155, —P305 — Pr5,, —P305 T P15,

— 03015 — P15150 —P3015 T P15155 —P3015 — Pr5,00 —P3015 T P15,
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—®s0; + P60, T P1075 — P80, — P60, + D107, —2Ps0; — D104

—®s0; + P60, T 9075 — P80, — P60, + D907, —2P80; — D905 —Ps0, — P20,
is of the form N, (z € W,[(z) = a(x) mod 2) and that each of the elements

— P64, P64y
is of the form N, (x € W,l(x) # a(x) mod 2). From this we deduce using
44.15(c) that each of the elements

(b) Ri,, —Rs,, Roo,, —Reos, R2ag, Rs1g: Rs1105 R24155 —R60,, 5 R2040, =655 R

—R30, — Ris5, —Rs0, + Ri55, —Rs0; — Ry5,, —Rsos + Ry5,,

_R3015 - R15157 _R3015 + R15157 _R3015 - R1~5157 _R3015 + R1~5157

—Rso, + Reo, + Ri0,, —Rso, — Reo, + Ri0,, —2Rs0, — Rio;,

—Rso, + Reo, + Roo,, —Rso, — Reo, + Roo,, —2Rgo, — Roo,, —Rso, — Rao,
is a Z-linear combination of objects A € D*" such that e* = 1 and that each of
the elements

(¢) —Rea,, Roa,s A
is a Z-linear combination of objects A € D*" such that e* = —1. Since the
elements in (c) have self-inner product 1, we have Rgy, = +A, Rga,, = £A’ where
A A" € D", Since (Res, : Res,,) = 0 we see that A 2 A’. By 44.8(c) we have
d(Re4,) = Rea,, hence d(A) = £A’. If A were cuspidal we would have d(A4) = A.
Thus A is not cuspidal. Similarly A’ is not cuspidal. If A; € Dun¢ then A; must
have non-zero inner product with some Rg hence with at least one of the elements
in (b),(c). But we have just seen that its inner product with any element in (c) is
zero. Thus, A; must have non-zero inner product with at least one of the elements
in (b). It follows that et = 1. We have codim(supp(4;)) = |I| mod 2; moreover
II.| = 4 hence codim(supp(A4;)) = 0 mod 2. Thus, e = (—1)cdim(upp(4)) jf
A € D¢, The analogous equality holds for non-cuspidal A in view of 44.15(a)
since it holds on D’ as above, by 46.4(b). We see that:

(d) D has property 2.
By 44.17(d) (which is applicable in view of (a),(d)), the inner product of any
A € D" with any element in (b) or (c) is in N. Since the inner products of any two
elements in (b) or (c) are known we see that there exist mutually nonisomorphic
objects

A1y, Agy s A20,, A60s, A244, As1e, A1, A24155 460415 A20005 Abasy Alse)

as, bz, c3,ds, ais, b1s, c15,dis, a,b, ¢, d, e, f, g, h
of D" such that

Ry, = Ay, —Re, = As,, Roo, = A20,, —Reo; = As0s, Roas = Ao,

Rg1, = Agig, Rg1,0 = A1,y Roa,y = A4y, —R30, — Ri5, = a3 + b3,

—R30, + Ri5, = c3 +d3, —R30, — R1~53 = a3+ c3, —R3p, + R1~53 = bs + d3,

—R30,,—R15,; = a15+b15, —Rs0,;+Ri5,5 = c15+dis, —Rao0,; —Ry5,, = a15+c1s,

—R30,; + Ry5,. = b15 + dis,

—R807 +R607 +R107 =a—+b+d, —R807 —R607 +R107 =d+e+ f,

—2R807 —R107 =b+c+ f+g+h, —R807 +R607 +R907 =a+b+c,

—Rgo, — Reo, + Roo, =c+e+ f, ,—2Rgp, — Rogo, =b+d+ f+ g+ h,
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—Rso, — Roo, =0+ f.

(We use [L14, 7.7(iii)].) Hence we have
—Rgo, = (a+3b+2c+2d+e+3f+2g+2h)/6, Reop, = (a+b—e— f)/2,
Ryy, =(a+2c—d+e—g—h)/3, Rip, =(a—c+2d+e—g—h)/3,
—Roo, = (a—3b+2c+2d+e—3f+ 29+ 2h)/6.

46.9. We fix an integer n > 1. Let W,, be the group of all permutations of
{1,2,...,n,n/,...,2',1'"} which commute with the involution ¢ < i’. For each
j € [I,n —1] let s; € W, be the involution which interchanges j,j + 1 and
also 7/, (7 + 1)’ and leaves the other elements unchanged. Let s,, € W,, be the
permutation which interchanges n,n’ and leaves the other elements unchanged.
Define a homomorphism x : W,, — {£1} by the condition x(s;) = 1ifj € [1,n—1],
X(sn) = —1.

We now assume that n > 2. Then W/ := ker x is a Coxeter group on the
generators s;(j € [1,n — 1]) and $,5,—15n.

For h € [2,n—1] let W,, j, be the subgroup of W,, consisting of the permutations
in W,, which carry each of

{1,2,...,n—h}, {In—h+1,n—h+2,....n,0n',....,(n—h+2),(n—h+1)},

{1,2,...,(n—h)"}
into itself. We may identify in an obvious way W, ;, with &,,_;, x W}, where &,,_j,
is the symmetric group in n — A letters.

46.10. Let m € N. Let X be the set of all ordered pairs (S,T) (”symbols”) of
distinct subsets of N (with |S| = |T'| = m) such that

Zmesx+2m€Tx = n+m2 - m.
We define a ”shift” map X™ — X™+! by (S,T) — ({0} U (S +1),{0}uU (T +1)).
Using the shift maps we can form the direct limit X,, = lim,, . X*. We have an
obvious map X — X,,. If m > n then any (S,T) € X! satisfies 0 € 5,0 € T..
Hence if m > n, the shift map X™ — X™%! is a bijection. We shall sometimes
identify X,, with X" with some fixed m > n. But some elements of X, can be
represented by elements of X" where m < n.

Note that if (S,7) € X" then SUT C [0,n + m — 1]. Thus X" is finite for
any m so that X, is finite.

Let X™ be the set of all pairs (M, N) of disjoint subsets of N such that M # 0,
|M| + 2|N| = 2m and

Swem T 2> T =n+m*—m.
We define a ”shift” map X™ — X™! by (M,N) — (M + 1,{0} U (N + 1)).
Using the shift maps we can form the direct limit X,, = lim,,—oc X;Z’L. We have
an obvious map X™ — X,,. If m > n, then any (M, N) € X™*! satisfies 0 € N
(hence 0 ¢ M). Hence if m > n, the shift map X™ — X™*! is a bijection. We
shall sometimes identify X,, with X;” with some fixed m > n.

For (M,N) € X™ let Vi (resp. Vi) be the set of all subsets of M with
cardinal |M|/2 (resp. with even cardinal); we regard V), as an Fa-vector space
with addition E,E' — ExE' = (EUE') — (ENE'). Let
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Viy ={n: Vy — Fa-linear, n(M) = 1};
here M is viewed as an element of V).

Define tpr : M — Fg by ty(x) = {2/ € M;2’ < z}| mod 2. Define an
injective map Vy; — Vis by

Hw— HY :=t,} (1) * H;
the image of this map is denoted by V.

We define a (surjective) map ¢ : X™ — X™ by (S,T) — (S*T,SNT); if
(M,N) € X™, then H— (NUH,NU(M — H)) is a bijection Vs < ¢~}(M, N).

46.11. An irreducible Q[W,,]-module is said to be nondegenerate if its restriction
to W), is irreducible. To a nondegenerate irreducible Q[W,,]-module we associate
an element (S,7T) of X,, as in [L7, 2.7(ii)]. We obtain a bijection [[S,T]] < (S,T)
between the set of nondegenerate irreducible Q[WW,,]-modules (up to isomorphism)
and X,. Note that [[S,T]] and [[T, S]] have the same restriction to W}

46.12. In 46.12-46.24 we assume that G° is adjoint of type D, (n > 2), that
|G/G°| = 2, that Zg = {1} hence D # G°. We choose an isomorphism of W
with W/ as Coxeter groups and we use it to identify the two groups. We define
a surjective homomorphism W — W,,: it takes @ to s, and its restriction to
W is the obvious imbedding W = W/ — W,. Via this homomorphism any

nondegenerate irreducible Q[WW,,]-module can be viewed as an object of Irr(W)
so that the set of isomorphism classes of objects of Irr(W) can be identified with
the set of isomorphism classes of nondegenerate irreducible Q[W,,]-modules, hence
with the set {[[S,T1]]; (S,T) € X,,}. Note that for (S,7T), (S’,7') in X,, we have
¢(S,T) = ¢(S",T") if and only if the two sided cells attached to [[S,T]] and to
[[S’, T"]] coincide. Thus X,, may be viewed as as indexing set for the two-sided cells
of W which are e-stable. We write s, n for the two-sided cell of W corresponding

to (M,N) € X,,.

46.13. For any two-clement subset C' of N let [C] be the closed interval in R
with extremities in C. Let M be a finite non-empty subset of N of even cardinal.
An admissible arrangement of M is a set ® of two-element subsets of M forming
a partition of M with the following property: for any four element subset of M
of the form C' U C" where C € ®, C’ € ®, we have [C] C [C'] or [C'] C [C] or
[C] N [C'] = 0. (This agrees with the definition in [L14, p.164].) For example the
admissible arrangements of {0,1,2,3,4,5} are

¢, = {(07 1)7 (27 3)7 (47 5)}7 ¢y = {(07 5)7 (17 2)7 (37 4)}7 3 = {(07 3)7 (17 2)7 (47 5)}7I
¢y = {(07 1)7 (27 5)7 (374)}7 Q5 = {(Oa 5)a (1’ 4)v (25 3)}
If ¥ is a subset of ® and i € Fy we denote by ¥’ the set of all x € t;; (i) such
that x belongs to some pair in W.

Now let (M,N) € X™. Let ® be an admissible arrangement of M and let
® C ® be a subset such that |®] is odd. We set

L1 ; .
(M, N, ®, &) = - > (=DM gou@—wyun,viu@—w)ouny € R(W).

vCo
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The last inclusion holds since for any ¥ C ® we have (—1)|‘i’ﬂ‘1’| = _(_1)|<i>m(q>—\1/)|'

From [L14, (5.18.1)] we see that

(a) there exists x € W such that ¢(M, N, ®, ®) = R, and I[(z) = a(z) mod 2.
From [L15, 1.19] we see that

(b) if H € V) then there exists an admissible arrangement ® of M and ¥ C @
such that H = WO U (® — U)! that is,

[NUH,NU(M — H)]] = [[$°Uu(® - V)L UN, U (® - V)" UN]|;

moreover,

ONUH,NU(M—H))] = 2~ IM/2I+1 Z (—1)|<i>m‘1’/‘c(M, N, ®, D).
dCd;|P|=0dd

46.14. We now state some properties (a)-(d) of D.

(a) D has property 2A;

(b) D has property 2.
In view of (a),(b), the results in 44.17-44.21 are applicable to D. In particular for
any e-stable two-sided cell ¢ of W, the subcategory [)g” of D" is defined as in
44.19. We shall write ﬁuM”;N, QXZN instead of lA?ZjZ’N, QS;N where (M, N) € X,,.

(c) }iognany m > n and any (M,N) € X there exists a bijection n — A,,
Viar < Dy n such that

(A Rynum, Nu(M—H))) = 2—|M|/2+1(_1)n(t1741(1)*H)
foranyn e Vy,, H € Vy;

(d) if p =2 then any irreducible cuspidal admissible complex on D is in Dune
moreover, Dune g empty unless n = s2 with s odd, s > 3, in which case Dune
has exactly one object up to isomorphism; its support is contained in the set of
unipotent elements of D.

The proofs for (a)-(d) are given in 46.15-46.23 under the induction hypothesis that
(a)-(d) hold when n is replaced by n’ with 2 < n’ < n. (This assumption is empty
if n =2.)

46.15. If P is a proper parabolic subgroup of G° such that NpP # () and such
that (setting D’ = NpP/Up) either D' = ) or (if p = 2) there is at least one
cuspidal admissible complex on D', then P/Up is of type D, (or a torus) and
the induction hypothesis shows that D’ satisfies property 2y and (if p = 2) any
irreducible cuspidal admissible complex on D’ is in D'u"¢.

Using 46.3(a) (if p # 2) and 46.3(b) (if p = 2) we see that 46.14(a) holds.

Using 46.13(a) and 44.15(c) (which is applicable in view of 46.14(a)) we see that
for any M, N, ®, ® as in 46.13(a), Rc(M,N,@,&) is a Z-linear combination of objects
A € D" such that e* = 1. Using 46.13(b) we deduce that for any E € Irr(W),
Rp is a Z-linear combination of objects A € D" such that e* = 1. Since any
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A € DU appears with non-zero coefficient in R for some E € Irr(W), we see
that any A € Dun satisfies e = 1.

We show:

(a) if D¥"¢ £ () then n is odd.

If p = 2 this follows from 12.9(b). If p # 2 then we can find an isolated semisimple
element s € D such that Zg(s)? carries a cuspidal admissible complex supported
on the unipotent variety of Zg(s)? (see 23.4(b)). Now Zg(s)? is either semisimple
of type B,,_1 (and then n — 1 must be even by the known theory for connected
classical groups) or is semisimple of type B, X By witha > 1,b>1l,a+b=n—1
(and then a,b must be even and n — 1 must be even). Thus (a) holds.

Now if A € D“"¢ we have (—1)codim@upp(4)) — (1)l = (—1)7=1 and this
equals 1 by (a). Thus we have e? = (—1)cdimGupr(4) for any cuspidal A €
D", The analogous equality holds for non-cuspidal A in view of the induction
hypothesis and 44.15(a). We see that 46.14(b) holds.

46.16. For h € [2,n—1]let P" be the parabolic subgroup of G° which contains B*
and is such that the Weyl group of P"/Upx is the subgroup of Wy := W, NW,, 5,
of W =1W/. Then W ;n (the subgroup of W generated by Wi and w, see 43.8)
is the inverse image under W — W,, of W, and Irr(VVIh) can be identified
under W n — Wy, with the set of isomorphism classes of irreducible Q[W,, p]-
modules of the form E X E’ where E is an irreducible Q[&,,_;]-module and E’ is
an irreducible nondegenerate Q[W},]-module. Let G" = NgP"/Upn. Then D" =

NpP"/Upny is a connected component of G". We have G"/Z" = PGL,_j x G"

where Z" is a one dimensional torus in the centre of (G")? and G" is a group like
G (with n replaced by h). Hence 46.14(a)-46.14(d) hold for D" instead of D (by
the induction hypothesis) and the objects in (D")%" can be written in the form

———un ~h
AR A’ with A € PGL, _, and A’ € (D )*" (where D" = D"/Z").

46.17. Using 46.13(a) and 44.17(d) (which is applicable in view of 46.14(a),
46.14(b)) we see that for any (M,N) € X", any admissible arrangement ¢ of

n

M and any ® C ® with |®| = odd we have that R,y ) 18 @ N-linear combi-

nation of objects in Dun or equivalently that

S Z 1)l®nv |Rjjgou(@—w)un wiu(@—w)ouN
2 ice

is an N-linear combination of objects in D*™.

46.18. We prove 46.14(c) assuming that |[M| = 2. We have M = {z,y} with
r < y. From 46.17 we see that Rnu{y},Nu({z})] 18 an N-linear combination of

objects in D%N Since R|nufy}, Nu({=}))) has self inner product 1 it must be equal

to a single object of D}\‘f n and the desired result follows.
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46.19. We prove 46.14(c) assuming that |M| = 4. We have M = {z,y, z,u} with
r<y<z<u. From 46.17 we see that

() Riivugy,up, Nu(a,=Dl] £ BiNO{zub, Ny Dl»

Rinugy,up Nu(e 2l F BINU(zuh MU0
are N-linear combinations of objects in Dy y. Since the inner products of any
two elements in (a) are known (they are 0,1 or 2) we see that there exist four
mutually non-isomorphic objects a, b, ¢, d of ﬁ}(} ~ such that

Rivugy,uy, Nu(apn T Bivuge,wy, vud.epn = o + 0,

Riinugy,ub NU(e, sl ~ BINUfe,a) N2 = €+ d,

Riinugy,up Nu(e,2pll T BINU(zup Nu(a gl = @+ 6

Riinugy,up Nu(e,2hll — Bivugzup, Nudayhy = b+ d-
Hence we have

Rinugyu Nudaap) = (@ +b+ct+d)/2,

RinugeupNu(yep) = (@ +b—c—d)/2,

Rinugzup, Nudegi) = (@ —b+c—d)/2.
There are well defined elements 7,, 7, 7c, 4 of V;; such that

na({xvy}) - Oana({yvz}) - Ovnb({xvy}) - Oanb({yvz}) = 17
nc({xvy}) = 1anc({yvz}) - Oand({xvy}) = 1777d({y7 Z}) =1L

The assignment 1, — a, np — b, nc — ¢, Ng — d is a bijection V, < QX;N which
establishes 46.14(c) in our case.

46.20. We now assume that |M| > 4 and that (M, N) has the following property:
there exists k € [0, max(M U N)| such that k ¢ M U N. We set
h=n—|{x>kze M} —2{x>kxecN}.
Clearly, h < n. Let
M ={x<kjzeM}iu{z>kz+1ec M},
N ={z<kzxeNjlu{z>kx+1eN}.
Note that M’ N’ are disjoint subsets of N such that |M’| = |M|,|N’| = |N| and

Z :L'—|—2Za:: Zx—i—QZx—(n—h):h—l—mQ—m.

xeM’ reN'’ xeM zeN

In particular, h > 0. If h < 1 we see that |M’| = 2h hence |M| = 2h < 4, a
contradiction. Thus we have h € [2,n — 1]. We see also that (M', N') € X;,. We
define a bijection M’ = M by x — z if x < k and = +— x+1 if > k. This induces
a bijection Vi — V)r hence a bijection Vy, — V{,,. Consider the two-sided cell
¢’ =cy N X cg of Wi (see 46.16) where cg is the two-sided cell associated to
the sign representation sgny, of &,,_j. We have ¢’ C ¢ where ¢ = ¢, n. Moreover,
¢/, c satisfy the assumptions (i),(ii) of 44.21. Consider the composite bijection

~ ~ ~h ~h ~
V]\IJ — Vz(m — (D )%,N’ — (D )" — QM,J\H
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here the first bijection is as above; the second bijection comes from the induction
hypothesis; the third bijection is A’ — AK A" where A = Rggn, , € P/G\Lzrih; the
fourth bijection comes from 44.21(h). Using 44.21(h) we see that this composite
bijection has the required properties. This proves 46.14(c) in our case.

46.21. We now assume that |[M| > 4 and that there exists y > 0 such that
y€ N,y—1¢ N. Recall that M UN C [0,m+n —1]. We can assume that m =n
so that M UN C [0,t] where t = 2n — 1. Let

M ={x;t—xeM}CN, N ={xe€|0,t];t—x¢ MUN} CN.
We have M' N N' =0, |M'| + 2|N'| = |M| +2(t + 1) — 2|M U N| = 2n,

Z T+ 2 Z Zt—x —I—QZx—Q Z (t—x)
xit—xeM me[O,t};t—wéMuN xeM x€10,t] r€EMUN
= [M[t— > s+t +t—2Mt-2IN[t+2> z+2) =z
xeM zeEM zEN
=t +t—|M[t—2[N[t+ > z+2) z=n’
zeM reN

We see that (M’, N') € X". We have a bijection M’ — M, x + t — x. This
induces a bijection Vy;» — Vi and a bijection Vi, — VJ,,. Since y € N, we have
y ¢ M hencet—y ¢ M’'. Sincey € N, we havet —y ¢ N’. Thus, t—y ¢ M'UN’.
Ify—1e M,thent—y+1€ M andt—y <t—y+1. Ify—1¢ M, then
y—1¢ MUN (sincey—1¢ N) hencet—y+1€ N andt—y <t—y+1. In any
case we have t —y+1 € M'UN’ and t —y € [0, max(M'UN")]. By 46.20, 46.14(c)
holds when (M, N) is replaced by (M’, N’). Consider the composite bijection

A UN

VM_>VM/ _>DM/N/ —>DMN7

here the first bijection is as above; the second bijection is as in 46.14(c) for
(M, N'); the third bijection is A — A°, see 44.19(a). (Note that for A € D" we
have A° = d(A) since e? = 1 by 46.15.) The composite bijection above is denoted
by n +— A,. We have A, = d(A, ) where n € Vj, corresponds to ' € V},;, and
A,y is attached to n’ by 46.14(c) for (M’,N’). For any J C M, let J' C M’ be
the image of J under z — t — . Let H € V). Using 44.8(c) and [L15, (1.4.1)] we
have

(Ay : Ryvua,voi—my)) = (d(Ay) « AR v — a0, Nom))-
(We have [NUH,NU(M — H)||®sgn = [[N'U(M'—H’), N'UH']].) This equals

/ ! I rr/ * —1
(An/ . R[[N’U(M'—H'),N’UH']]) — 2_|M |/2+1(_1)77 ((M H ) tM’(l)).

(We have used 46.14(c) for (M’, N').) By definition we have
W (M= H') sty (1) =0/ (M = H) x5, (0)) = 0/ (M — H) %3, (0))")
=n((M — H) x 1y (0) = n(H =t (1))
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so that 46.14(c) holds in our case. For the last equality we note that

(M — H) + 3/ (0)) + 77(H wtyy (1) = 1((M — H) 7 (0) « H = 3 (1))
= (M« M) =n(0) =

46.22. We now assume that (M, N) € X" does not satisfy the assumptions of
46.18, 46.19, 46.20 or 46.21. Then |M| > 6 and there exist r > 0, s > 3 such that

N ={0,1,. 1}, M={rr+1,r+2,...,7+2s—1}.

Note that (M, N) has the same image in X, as (M’ "y =({0,1 ., 2s—1},0).
Since the statements of 46.14(c) for (M, N) and (M’,N’) are equivalent, it is
enough to prove 46.14(c) for (M’, N') instead of (M, N). Thus we may assume
that (M, N) = ({0,1,2,...,2s — 1},0) with s > 3. We have (M,N) € X2,

If ® is an admissible arrangement of M let Cg be the set of all subsets £ of M
with the following property: if (z,y) is a pair in ® then = € F if and only if y € E.
Note that Cs is a subspace of the vector space Vj; of dimension s and containing
M. Clearly, ¥ +— (U0 U (® — ¥)!))* is a bijection between the sets of subsets of ®
and Cg. Via this bijection the function ¥ — [®N¥| mod 2 (for  C ® that |P| is
odd) can be viewed as a linear function C4 — F5. This gives a bijection between
{®;® C ®,|P| = odd} and the set of linear functions Cy — Fo which take the
value 1 on M. Using the notation (E) instead of [[S, T] where (S5, T) € ¢~ (M, N)
and E = S¥ € Vs we see that the elements ¢(M, N, ®, ) (see 46.13) are the same
as the elements

oM, N,8:6) = 2 3 (-1 g5 € R(W)

EcCs

for various linear functions ¢ : C4 — F5 such that (M) = 1.
Now let ® be another admissible arrangement of M and let £ : Co» — Fo be
a linear form such that ¢'(M) = 1. We have

1 / !/
(Re(u,n,m56) t Bequv,enen) = > () ENR gy - Ripyy)

E€Cq,E'€Cyy
1 : 1 o
=3 Z (—1)EE)+E(E) _ 1 Z (—1)8(E)+E (M- E)
EGCq,ﬂCq,/ EECcpﬂCq,/
1 /
) > (—D)HEEE = [y € Hom(Viy, Fa)ile, = & nle,, = &'}
EEC@HC,;)/

Now let k € [0,2s—2] and let M/ ={0,1,2,...,k—1,k+1,...,2s—2}, N' = {k}.
We have Y @+ > o @ = h+s* —s where h = s* — (25 — k — 1). Since
s >3 and k € [0,2s — 2], we have h € [4,s* — 1] and (M', N') € X;.

Consider the two-sided cell ¢’ = cpr N X ¢g of Win (see 46.16) where ¢ is the
two-sided cell associated to the sign representation sgnj, of &,,_;. We have ¢’ C ¢
where ¢ = ¢y N
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Define an imbedding j : M/ — M by j(x) =z if x € [0,k — 1], j(z) =2z + 1 if

€ [k+1,25s—2]. Let V) ={F € Viy; |[EN{k,k+ 1}| = even}, a hyperplane in
Vu. If E € VAO4 then j_l(E> e V.

Let 71, n2 be two elements of V}, such that

(a) m(E)+n2(F) = |EN{k,k+1}| mod 2 for all E € Vj; and n;({k,k+1}) =
n2({k, k+1}) = 0.
We define a linear function n’ : Viyr — Fo by n'(E') = m (§(E')) = n2(5(E")) for
E'" € V. (The last equality follows from (a) and the fact that j(E’ ﬁ{k’ k+1} =
(.) We have n'(M') = 1. (We use that

L=m (M) =mG(M')«{k k+1}) =m(5(M'))
which follows from (a).) Thus we have ' € Vj,,. Let A, be the object of
(Dh)}(?,’ N associated to n’ by the induction hypothesis applied to (M’, N’). Then
Reugn, A, € (D" is defined. We set oy, ., = tindB, (Rsgn, M A, ) (see 44.20).
By definition, this is an element of ""(D) which is an N-linear combination
of objects in Dy} . Now let (S,T) € (7'(M,N). Using 44.20(h) we see that
(Ozm’n2 : R[[S,T]}) is 0if [SN{k,k+1}| #1, while if |SN{k,k+ 1} =1, it is

(b) (Ay : Rysr,7))
where (S’,T") € (~*(M’, N') is given by

S'={z<kzeStu{ktu{r>kz+1ecS},

T ={x<kixzeT}ul{ktu{er>kx+1eT}.
By the induction hypothesis, the expression (b) is equal to

2—\M'\/2+1(_1)n'(t;41/(1)*(5'—{k})) — 2—s+2(_1)n1(5”) — 2—S+2(_1)n2(5”)‘

Hence if ® is an admissible arrangement of M and £ : C4 — F5 is a linear function
such that £(M) =1 then

1

(Qnyma * Reqa,n,2:6) = 5 > (D) ap, my  Ripy)
EcCqs
1 —s
=3 Z (_1)€(E)2 +2(_1)771(E)
EcCs;
|[EN{k,k+1}|=even
_ Z 2—s+1(_1)n1(E)+E(E)'
E€eCs;

|En{k,k+1}|=even

This is equal to the number of elements in {7, 72} whose restriction to Cs is equal

to &. (It is 2,1 or 0.) We now apply [L14, 9.2] to Y = Vs with its basis
{{0,1},{1,2},...,{2s — 2,25 — 1}}

and to the family of elements R,y N &) for various @, as above and the family

of elements «,, n, for various n,1m2,k as above. (These elements are N-linear

combinations of objects in 15}(4” ~-) We see that there exists a bijection Vj, <
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) M. 1 < Ay such that for any n € Vi we have Re(yn,,6) = ZWEVM;HI% —¢ Ay
for any ®, & as above and o), 5, = A, + Ay, for any 11,72, k as above.
Now let E € Vj;. We can rephrase 46.13(b) as follows: there exists an admis-

sible arrangement ® of M such that E € Cg; moreover,

Pumy =275 > (—1)5F) (M, N, ;).
£cHom (Ca Fa)ié(M)=1

For n € V;, we then have

(Ag: Remy) =270 3 (=D (Ay: R nvag) = 2771 (-1)75).
£€Hom(Cop ,Fa2);
§(M)=1
We see that 46.14(c) holds in our case. This completes the proof of 46.14(c).

46.23. In this subsection we assume that p = 2. Let P be a proper parabolic
subgroup of G such that NpP # () and such that (setting G’ = NgP/Up, D’ =
NpP/Up) we have D'“"¢ £ (. Let D', G’ be the quotient of D', G’ by the trans-
lation action of Zg,o. Let 7 : D' — D’ be the obvious map. From the induction
hypothesis we see that P/Up is of type D, (with r an odd square > 9) or a
torus, that D’“"¢ has exactly one object A up to isomorphism and that supp(A)
is contained in the inverse image under m of the variety of unipotent elements of
G’ contained in D’. Let D“»P be the subcategory of Dun consisting of objects
which are isomorphic to direct summands of indB,(A). From 27.2 and 11.9 we
see that the set of isomorphism classes in D*™F is in bijection with the set of
isomorphism classes of simple modules of Q[W,,_,]. Since any noncuspidal object
of Dun belongs to DunP for a P as above (unique up to GY-conjugacy) we see
that the number of non-cuspidal objects of Qun is equal to

(a) > p2(k)

k>0,5>0,s odd, s2+k=n

where py (k) is the number of irreducible representations of W} up to isomorphism.

Now let z,, = |Qun| From 46.14(c) we see that x,, = |X,,|. Since |X,,| is known
from [L7] we see that

Ty = | Xn| = Z p2(k)

k>0,5s>0,s odd, s2+k=n

where p2(0) = 1. Comparing with (a) we see that the number of cuspidal objects
of Qun is 1 if n = s? for some odd s > 3 and is 0 otherwise. From 12.9 we see that
the set of irreducible cuspidal admissible complexes on D (up to isomorphism) is
empty unless n = s? for some odd s > 3 in which case it has exactly one object
(whose support is necessarily contained in the unipotent variety). Since any object
of D™ is an admissible complex on D we see that 46.14(d) holds for D.

This completes the inductive proof of the statements 46.14(a)-(d).
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46.24. Let (M,N) = ({0,1,2,...,2s — 1},0) € X3,
Define a linear function n : Va3y — Fo by
n(E) = |ENty;(0)] mod2=|ENty;(1)] mod 2.
Since s is odd we have (M) =1 hence n € V},. In the setup of 46.22 we show:
(a) A, € Dve,
For w € W, we have (in view of 46.22 and 44.7(i)):

n = s2 with s odd, s > 3.

(Ay : gri(KB) = (-1 C 3™ tr(ws, (B)(Ay: Risy)
E€Vy

= (—l)dimG% Z tr(weo, ()25 (=1)7(F),
EEVNy

By 44.14(a), the condition that A, is cuspidal is that (A, : gr1 (K7)) = 0 whenever
w € W is not D-anisotropic. Thus it is enough to show that

(b) S tr(we, (B))(=1)/ 0 O = g

EecVy

whenever w € W = W/ satisfies the condition: w is not D-anisotropic or equiva-
lently, the condition: ws,, € W, has no eigenvalue 1 in the reflection representation
of W,,. Note that (b) holds by [L3, V, (22.5.2)]. (In that reference the words: ”el-
ements of W’ should be replaced by: ”elements of W/ — W?.)

Theorem 46.25. Assume that p satisfies the following condition: if G° has a
factor of type Eg or Fy then p # 2. Then:
(a) if A is a unipotent cuspidal character sheaf on D then A is clean (see 44.7);
(b) if A is a unipotent character sheaf on D then for any w € W, i € Z

such that (A : HY(K%)) # 0 we have i = dimsupp(A4) mod 2 (or equivalently
el — (_1)codim(supp(A)))'

By the results in §45 we are reduced to the case where G is simple and Zg =
{1}. If D = G°, (a) is a special case of 46.1(b); the fact that (a) implies (b)
is proved in this case as in [L3, IV,V]. If D # G° then (a) and (b) follow from
46.4(a),(b); 46.7(a),(c); 46.8(a),(d); 46.14(a),(b). This completes the proof.

46.26. Let e be a pinning (see 1.6) of GV which projects to (B*,T) (see 28.5)
under the map p in 1.6. We can find d € D such that 8 := Ad(d) : G° — G°
preserves e. Moreover 3 depends only on D (not on d). Note that 3 has finite
order, say r.

Let G be a connected reductive algebraic group over C with a fixed Borel
subgroup B, a fixed maximal torus T C B and a fixed pinning e which projects to
(B, T) such that G is a Langlands dual of G°. In particular, T, T are Langlands
dual tori. There is a unique automorphism v : G — G preserving e such that the
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restriction of v to T corresponds to (is ”contragredient of”) the restriction of 3 to
T under the Langlands duality between 1" and T. Note that + has order r.

A G-conjugacy class C in G is said to be special if some/any g € C is such
that g, has finite order not divisible by p, g, is a special unipotent element of the
connected reductive group Zg(gs)? (see [L14, (13.1.1)]).

Let C' be a special G-conjugacy class in G which is vy-stable. For g € C' let
A(g.) be the group of components of the centralizer of g, in Zg(gs)?, let A(gy)
be the canonical quotient of A(g,) defined in [L14, p.343] (in terms of g,,, Zg(gs)°
instead of u,G;1) and let I(g,) be the kernel of the canonical homomorphism
A(gu) — A(gu). Let

Alg) = {(a,5) € G x Z/rZ;av (9)a™" = g}/Zs(9)°,

a group with multiplication (a,j)(a’,j’) = (ay’(a’),j + j'). We identify Zg(g)°
with a (normal) subgroup of A(g) by a — (a,0) and we set A(g) = A(g)/Zg(g)°
(a finite group). Let A(g) — Z/rZ be the (surjective) homomorphism induced by
(a,j)+— j. Since ZZG(gs)o(gu)O = Zg(g)? we see that I(g,) is naturally a subgroup
of A(g). From the definitions we see that that in fact I(g,) is normal in A(g).
Let G4 = A(g)/1(9,). The homomorphism A(g) — Z/rZ induces a surjective a
homomorphism G, — Z/rZ. For j € Z/rZ let gg be the inverse image of 7 under
this homomorphism. Let Go = UgecGy. Now G acts on Go: if v € G, g € C,
then Ad(z) induces an isomorphism Gy — G,4,—1. Let G5 = ugecg;, a G-stable
subset of Go. For any g € C, the set of G-orbits on G}, is in natural bijection with
the (finite) set of G4-conjugacy classes in Q;. Thus G acts on G}, with finitely many
orbits. This makes G}, into an algebraic variety (a finite union of homogeneous
spaces for G).

Let B, be the set of all triples (C,X,E) where C' is a ~y-stable special G-
conjugacy class in G, X is a G-orbit in G}, and £ is an irreducible G-equivariant
local system on X (up to isomorphism). Let P2" be the set of all (C, X, &) € B,
such that C'is a unipotent G-conjugacy class in G.

46.27. We have PI" = UcPL" where C runs over the set of y-stable special
unipotent classes in G and 4c is the set of triples in " whose first component
is C'. Under the Springer correspondence, the set of y-stable special unipotent
classes in G is in bijection with the set of special irreducible representations FEj
(up to isomorphism) of the Weyl group of G or of G° whose character is fixed
by € : W — W and hence in bijection (via Ey — cg,, see 43.6) with the set of
e-stable two-sided cells of W let C. be the special unipotent class corresponding
to the two-sided cell c. Assume that p is as in 46.25. We have the following result:

(a) For any e-stable two-sided cell ¢ in W' there is a natural bijection ﬁ}jn -
un

7,Cc”
By the results in §45 we are reduced to the case where G is simple and Zg = {1}.
If D = G, (a) is established in [L3, IV,V]. If D # G° then (a) follows from 46.4(d),
46.7, 46.8, 46.14(c).

By taking disjoint union over the various ¢ we obtain a bijection Dun PUSS
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We will show elsewhere that this extends to a natural bijection D « PBo. (See
[L3, IV,V] for the case where G = G°.)
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