George Lusztig

Department of Mathematics
M.I.T.
Cambridge, MA 02139

1. The purpose of this paper is to discuss examples in which the intersection cohomology theory of Deligne-Goresky-MacPherson [4] enters in an essential way in the character formula for some irreducible representation of a semisimple group or Lie algebra. Thus, sections 3-5 are an exposition of the connection between singularities of Schubert varieties and multiplicities in Verma modules. In sections 6-11 we give an interpretation in terms of intersection cohomology for the multiplicities of weights in a finite dimensional representation of a simple Lie algebra. I wish to thank J. Bernstein for allowing me to use his unpublished results on the center of a Hecke algebra. (I learned about his results from D. Kazhdan.) These are used in the proof of Theorem 6.1; the original proof of that Theorem was based on [10] and on Macdonald's formulas for spherical functions.

2. Notations. For an irreducible complex algebraic variety X, we denote by $H^{\dot{\mathbf{I}}}(X)$ the i-th cohomology sheaf of the intersection cohomology complex of X.

Let \underline{g} be a simple complex Lie algebra, $\underline{b} \subset \underline{g}$ a Borel subalgebra, $\underline{h} \subset \underline{b}$ a Cartan subalgebra, \underline{h}^* its dual space. Let $W \subset \operatorname{Aut}(\underline{h}^*)$ be the Weyl group, and let $S \subset W$ be the set of simple reflections (with respect to \underline{b}). $Q \subset \underline{h}^*$ is the subgroup generated by the roots.

 $P \subset h^*$ is the subgroup consisting of those elements of \underline{h}^* which take integral values on any coroot. Then Q has finite index in P.

 $\widetilde{W}_{a} \subset \{affi$ (acting by transtransform of λ

 $\begin{array}{c} \textbf{W}_{a} \quad \text{is the} \\ \text{group. It is a C} \\ \text{with the reflect} \\ \textbf{Y}_{o} \in \underline{\textbf{h}} \quad \text{is the h} \\ \text{is a semi-direct} \end{array}$

For $\lambda \in$ the group law in $\lambda, \lambda' \in P$. 1 \widetilde{W}_a by $\ell(\gamma w) =$ corresponding sin

Let $P^{++} =$ ble cosets $W\widetilde{W}_{a'}$ in W, m_{λ} is maximal length of (q is an indetermal P_{a} the sum of a coroots.

The fundame by the fixed hype simplex in $P \otimes I$ (left) action of $= (A_0)yw$. For eathe standard partitions $s_1s_2...\hat{s_i}...$ $1 \le i \le n$. We ext $w \le w'$ $(\gamma, \gamma' \in \Omega)$

Supported in part by the National Science Foundation.

 $\widetilde{W}_a \subset \{\text{affine transformations of } \underline{h}^*\}$ is the semidirect of W and of P (acting by translations). We shall regard \widetilde{W}_a as acting on the <u>right</u> on \underline{h}^* . The transform of $\lambda \in \underline{h}^*$ under $w \in \widetilde{W}_a$ will be denoted $(\lambda)w$.

 W_a is the subgroup of \widetilde{W}_a generated by W and Q. This is the affine Weyl group. It is a Coxeter group whose set S_a of simple reflections is S together with the reflection in W_a whose fixed point set is $\{x \in \underline{h}^* | \langle x, \overset{\vee}{\alpha}_0 \rangle = 1\}$; here $\overset{\vee}{\alpha}_0 \in \underline{h}$ is the highest coroot. Let Ω be the normalizer of S_a in \widetilde{W}_a . Then \widetilde{W}_a is a semi-direct product $\Omega \cdot W_a$.

For $\lambda \in P$, we denote by p_{λ} the same element, regarded in \widetilde{W}_a . Since the group law in \widetilde{W}_a is written multiplicatively, we have $p_{\lambda+\lambda} = p_{\lambda} p_{\lambda}$, for $\lambda, \lambda' \in P$. ℓ is the length function on the Coxeter group ℓ . We extend it to \widetilde{W}_a by $\ell(\gamma w) = \ell(w\gamma) = \ell(w)$, $w \in W_a$, $\gamma \in \Omega$. For $s \in S$, let $\alpha_s \in Q$ be the corresponding simple root and let $\alpha_s' \in \underline{h}$ be the corresponding simple coroot.

Let $P^{++} = \{p \in P \mid < p, \overset{\vee}{\Delta}_S > \geq 0, \ \forall s \in S\}$. Then P^{++} parametrizes the double cosets $W \widetilde{W}_a / W : \lambda \leftrightarrow W p_{\lambda} W$. For $\lambda \in P^{++}$, W_{λ} denotes the stabilizer of λ in W, m_{λ} is the element of minimal length of $W p_{\lambda} W$, n_{λ} is the element of maximal length of $W p_{\lambda} W$, v_{λ} is the number of reflections in W_{λ} , $P_{\lambda} = \sum\limits_{w \in W_{\lambda}} q^{\ell(w)}$ (q is an indeterminate). For $\lambda = 0$, we set $v_0 = v$, $P_0 = P$; $\rho \in P$ denotes half the sum of all positive roots; $v_0 \in P$ denotes half the sum of all positive coroots.

The fundamental alcove A_o is the open simplex in $P \otimes \mathbb{R}$ (embedded in \underline{h}^*) bounded by the fixed hyperplanes of the various reflections in S_a . An alcove is an open simplex in $P \otimes \mathbb{R}$ of the form $(A_o)w$, $w \in W_a$ (which is unique). Define a new (left) action of W_a on the set of alcoves (denotes $A \to yA$) by the rule $y((A_o)w) = (A_o)yw$. For each $\lambda \in P$, we denote $A_\lambda^+ = (A_o)p_\lambda$, $A_\lambda^- = (-A_o)p_\lambda$. Let $\underline{\leq}$ be the standard partial order on the Coxeter group W_a . It is generated by the relations $s_1s_2...s_1...s_n \leq s_1s_2...s_n$ for any reduced expression $s_1...s_n$ ($s_i \in S_a$), $1 \leq i \leq n$. We extend it to a partial order $\underline{\leq}$ on \widetilde{W}_a by $\gamma w \leq \gamma' w \Leftrightarrow \gamma = \gamma'$ and $w \leq w'$ ($\gamma, \gamma' \in \Omega$, $w, w' \in W_a$). Let $\underline{\leq}$ be the partial order on P defined by

iplicities

rsection coho
l way in the

roup or Lie

singularities

6-11 we give

ities of

I wish to

e center of

re used in

on [10] and

note by κ of X.

1, $\underline{h} \subset \underline{b}$ group, and \underline{h}^* is the

take inte-

 $\lambda \leq \lambda' \Leftrightarrow \lambda' - \lambda$ is a linear combination of positive roots, with ≥ 0 integral coefficients. If $\lambda, \lambda' \in P^{++}$, we have $\lambda \leq \lambda'$ if and only if $n_{\lambda} \leq n_{\lambda'}$ (in \widetilde{W}_a). For $\lambda \in \underline{h}^*$, M_{λ} denotes the Verma module for \underline{g} with highest weight λ (with respect to \underline{b}) and L_{λ} denotes the unique irreducible quotient \underline{g} -module of M_{λ} .

3. We will restrict our attention to the Verma modules $M_{-\rho w-\rho}$ ($w \in W$). In the Grothendieck group of g-modules, $L_{-\rho w-\rho}$ is a linear combination with integral coefficients of the g-modules $M_{-\rho y-\rho}$ ($y \le w$). The g-module $M_{-\rho w-\rho}$ appears with coefficient 1, but the other coefficients were rather mysterious. A study of representations of Hecke algebras has led Kazhdan and the author [7] to give a (conjectural) algorithm for these coefficients and to interpret them in terms of singularities of Schubert varieties. Let us define the Schubert varieties. Consider the adjoint group G of g, and let g0 be the Borel subgroup corresponding to g0, g0. The g1 be a double coset of g2 containing a representative of g3. The Zariski closure g4 of g6 in g7 in g8 is said to be a Schubert variety. It is the union of the various g9 for g1 in g2 in g3.

The following result was conjectured by D. Kazhdan and the author [7],[8] and was proved by J.L. Brylinski and M. Kashiwara [3] and independently by A.A. Beilinson and J.N. Bernstein [1], using the theory of holonomic systems.

Theorem 3.1. In the Grothendieck group of g-modules, we have, for any w ∈ W:

(3.2)
$$L_{-\rho w-\rho} = \sum_{\mathbf{y} \leq \mathbf{w}} (-1)^{\ell(\mathbf{w})-\ell(\mathbf{y})} (\sum_{\mathbf{i}} (-1)^{\mathbf{i}} \dim H_{O_{\mathbf{y}}}^{\mathbf{i}} (\overline{O}_{\mathbf{w}})) M_{-\rho \mathbf{y}-\rho}$$

where dim $H^{i}_{\mathcal{O}_{y}}(\overline{\mathcal{O}_{w}})$ is the dimension of the stalk of $H^{i}(\overline{\mathcal{O}_{w}})$ at a point in \mathcal{O}_{y} .

4. We shall now describe the integers $\dim H^1_{O_y}(\overline{O_w})$ following [7],[8]. Let us recall the definition of the Hecke algebra H associated to (W,S). It consists of all formal linear combinations Σ a T_w with a $\mathbb{Z}[q^{1/2},q^{-1/2}]$ with multiplication defined by the rules $T_w^T_w = T_w$ if $\mathbb{Z}[w] = \mathbb{Z}[w] + \mathbb{Z}[w]$ and $\mathbb{Z}[w] = \mathbb{Z}[w] + \mathbb{Z}[w]$ and $\mathbb{Z}[w] = \mathbb{Z}[w] + \mathbb{Z}[w]$ and $\mathbb{Z}[w] = \mathbb{Z}[w]$ is an indeterminate. There is a unique ring involution $\mathbb{Z}[w] = \mathbb{Z}[w]$ and $\mathbb{Z}[w] = \mathbb{Z}[w]$ is an indeterminate.

It is semilinean According to [7] form $C_{\mathbf{w}}^{!} = q^{-\ell}$ [7] form $C_{\mathbf{w}}^{!} = q^{-\ell}$ [8] P_{w,w} = 1 and The uniqueness lynomial in quallowed to occur The proof in [7] applies to an a word by word to function and the and results.)

Theorem 4.1. L

We can no

(4.2)

(4.3)

Besides the original advantage that:

a K-orbit on (

plays a role in make use of reduced to the combining Theorem

where $P_{y,w}(1)$ 3.1] for the ma

(4.5)

(4.4)

It is semilinear with respect to the ring involution $q^{1/2} \rightarrow q^{-1/2}$ of $\mathbb{Z}[q^{1/2},q^{-1/2}]$. According to [7,1.1], for each $w \in W$, there is a unique element $C_w' \in H$ of the form $C_w' = q^{-\ell(w)/2}$ $\sum_{y \leq w} P_{y,w} T_y$, where $P_{y,w}$ are polynomials in q satisfying $P_{w,w} = 1$ and $\deg P_{y,w} \leq 1/2(\ell(w)-\ell(y)-1)$ for y < w, and such that $\overline{C}' = C'_w$. The uniqueness of C_w' holds also if $P_{y,w}$ for y < w is only assumed to be a polynomial in q and q^{-1} in which only powers q^1 with $1 \leq 1/2(\ell(w)-\ell(y)-1)$ are allowed to occur. It follows automatically that the $P_{y,w}$ are polynomials in q. The proof in [7] applies without change. (The discussion so far in this section, applies to an arbitrary Coxeter group and in particular to (W_a, S_a) . It also applies word by word to (\widetilde{W}_a, S_a) which although is not a Coxeter group, possesses the length function and the partial order \leq which give a sense to the previous definitions and results.)

We can now state

Theorem 4.1. Let y < w be two elements in the Weyl group W . Then

(4.2)
$$\dim H_{O_{\mathbf{y}}}^{\mathbf{i}}(O_{\mathbf{w}}) = 0 \quad \underline{\text{if}} \quad \underline{\text{is odd}}$$

(4.3)
$$\sum_{i} \dim H_{O_{\mathbf{y}}}^{2i}(\overline{O}_{\mathbf{w}})q^{i} = P_{\mathbf{y},\mathbf{w}}.$$

Besides the original proof in [8], there is another proof in [12] which has the advantage that it also applies in the case where $\overline{\mathcal{Q}}_{W}$ is replaced by the closure of a K-orbit on G/B, where K is the centralizer of an involution in G. (This plays a role in a character formula for real semisimple Lie groups.) Both proofs make use of reduction to characteristic > 1 and of a form of Weil's conjectures. Combining Theorems 3.1, 4.1, we can rewrite (3.2) in the form

(4.4)
$$L_{-\rho w-\rho} = \sum_{\mathbf{y} \leq \mathbf{w}} (-1)^{\ell(\mathbf{w})-\ell(\mathbf{y})} P_{\mathbf{y},\mathbf{w}}(1) M_{-\rho \mathbf{y}-\rho}$$

where $P_{y,w}(1)$ is the value of $P_{y,w}$ at q=1. Using the inversion formula [7 3.1] for the matrix $(P_{y,w})$, this can be also written as

$$M_{\rho w-\rho} = \sum_{w \leq y} P_{w,y}(1)L_{\rho y-\rho}$$

0 integral ${}^1{}_{\lambda^!}$ (in $\widetilde{\mathbb{W}}_a$). ${}^1{}_{\lambda}$ (with the of \mathbb{M}_{λ} .

f) . In the h integral appears with dy of represe a (conjector singulation of the light to \underline{b} , $\theta_{w} = G_{w}/B \subset 0$; the variety.

[7],[8] and

.A. Beilinson

 $w \in W$:

it in Oy .

Let us rensists of multipli-

unique $T_{w-1}^{-1}(w \in W).$

- 5. Remarks. (a) In the case where y,w $\in W_a$, the polynomials $P_{y,w}$ have been interpreted in [7] in terms analogous to (4.3), as intersection cohomology of certain generalized Schubert varieties. (In particular, they have ≥ 0 coefficients).
- (b) There is a (conjectural) formula analogous to (3.2) for the characters of irreducible rational representations of a semisimple group over an algebraically closed field of characteristic > 1. It involves the polynomials $P_{y,w}$ for y,w in an affine Weyl group. (See [9] for a precise statement).
- 6. If $\lambda \in P^{++}$, the <u>g</u>-module L_{λ} is finite dimensional. With respect to the action of h, it decomposes into direct sum of weight spaces parametrized by elements $\mu \in P$. For $\mu \in P^{++}$, we denote $d_{\mu}(L_{\lambda})$ the dimension of the μ -weight space in L_{λ} . It is well known that $d_{\mu}(L_{\lambda}) = 0$ unless $\mu \leq \lambda$. The remainder of this paper is mainly concerned with the proof of the following result.

Theorem 6.1. If
$$\mu, \lambda \in P^{++}$$
, $\mu \leq \lambda$, then $d_{\mu}(L_{\lambda}) = P_{n_{\mu}, n_{\lambda}}(1)$.

Here, $P_{n_{\mu},n_{\lambda}}$ is defined in terms of the Hecke algebra of \widetilde{W}_a , see section 4. (This Hecke algebra will be denoted \widetilde{H} ; from now on, we shall reserve the letter H to denote the Hecke algebra of W_a . It is a subalgebra of \widetilde{H} .) Note that $P_{\gamma y,\gamma w} = P_{y,w}$ ($\gamma \in \Omega$, $y,w \in W_a$) so that the polynomials $P_{y',w'}$, for $y',w' \in \widetilde{W}_a$, have ≥ 0 coefficients. For type A, Theorem 6.1 follows from the results of [11], where $P_{n_{\mu},n_{\lambda}}$ are interpreted as Green-Foulkes polynomials. In general, 6.1 would be a consequence of the conjecture 5(b) together with the Steinberg tensor product theorem. The integers $d_{\mu}(L_{\lambda})$ are given by Weyl's character formula. To state the formula, we consider the elements

$$(6.2) \qquad \qquad k_{\lambda} = \frac{1}{|\mathbb{W}|} \sum_{w \in \mathbb{W} p_{\lambda} W} w, (\lambda \in \mathbb{P}^{++}), j_{\lambda} = (\sum_{w \in \mathbb{W}} (-1)^{\ell(w)} w^{-1}) p_{\lambda} (\sum_{w \in \mathbb{W}} w), (\lambda \in \mathbb{P}^{++} + \rho)$$
 of the group algebra $\mathbb{Q}[\widetilde{W}_{a}]$. Then $k_{\lambda} (\lambda \in \mathbb{P}^{++})$ form a \mathbb{Z} -basis for the subgroup
$$K^{1} = \{x \in \frac{1}{|\mathbb{W}|} \mathbb{Z}[\widetilde{W}_{a}] : (\sum_{w \in \mathbb{W}} w) = x(\sum_{w \in \mathbb{W}} w) = |\mathbb{W}| \cdot x\} \subset \mathbb{Q}[\widetilde{W}_{a}] \quad \text{and} \quad j_{\lambda} (\lambda \in \mathbb{P}^{++} + \rho)$$
 form a \mathbb{Z} -basis for the subgroup

$$J^1 = \{ y \in \mathbb{Z} \left[\widetilde{\mathbb{W}}_a \right] : \left(\sum_{w \in \mathbb{W}} \left(-1 \right)^{\ell \left(w \right)} w^{-1} \right) y = y \left(\sum_{w \in \mathbb{W}} w \right) = \left| \mathbb{W} \right| \cdot y \} .$$

It follow and that, with a sa right K^{1} -1 isomorphism of a Prop. 2(iii)].

element in K¹
(This is equival

(6.3) For λ €

We wish t

as a quotient of

(6.4)

(6.5) and therefore

Then $K_{\lambda}(\lambda \in P^{++})$

and $J_{\lambda}(\lambda \in P^{++})$

Note that K is with respect to K-module.

In the st for arbitrary $J_{\lambda} = (-1)^{\ell(w)} J_{(\lambda}$

It follows that K^1 is a subring of $\mathbb{Q}[\widetilde{\mathbb{W}}_a]$ with unit element $\frac{1}{|\mathbb{W}|}\sum_{w\in\mathbb{W}} w$ and that, with respect to the product in $\mathbb{Q}[\widetilde{\mathbb{W}}_a]$, we have $J^1 \cdot K^1 \subset J^1$, i.e. J^1 is a right K^1 -module. Moreover, the map $K^1 \longrightarrow J^1$ given by $k \to j_\rho$ 'k is an isomorphism of right K^1 -modules. (This is a reformulation of [2, Ch. VI, 3.3, Prop. 2(iii)]. We can now stat Weyl's character formula as follows

(6.3) For
$$\lambda \in P^{++}$$
, let $C_{\lambda}^{1} = \sum_{\mu \in P^{++}} d_{\mu}(L_{\lambda})k_{\mu} \in K^{1}$. Then C_{λ}^{1} is the unique element in K^{1} such that $j_{\rho}C_{\lambda}^{1} = j_{\lambda+\rho}$.

(This is equivalent to the usual formulation in which the character of $\,L_{\lambda}\,$ appears as a quotient of two alternating expressions.)

We wish to consider a q-analog of the multiplicity $d_{\mu}(L_{\lambda})$. The q-analogs of the elements (6.2) are the following elements of the Hecke algebra \widetilde{H} :

(6.4)
$$K_{\lambda} = \frac{1}{P} \sum_{w \in W_{P_{\lambda}} W} T_{w} = \frac{q^{-\nu + \nu}}{P \cdot P_{\lambda}} (\sum_{w \in W} T_{w}) T_{P_{\lambda}} (\sum_{w \in W} T_{w}) , (\lambda \in P^{++})$$

(6.5)
$$J_{\lambda} = \left(\sum_{\mathbf{w} \in \mathbf{W}} (-\mathbf{q})^{\ell(\mathbf{w})} \mathbf{T}_{\mathbf{w}}^{-1} \right) \mathbf{q}^{-\ell(\mathbf{m}_{\lambda})/2} \mathbf{T}_{\mathbf{m}_{\lambda}} \left(\sum_{\mathbf{w} \in \mathbf{W}} \mathbf{T}_{\mathbf{w}} \right)$$

and therefore

$$J_{\lambda} = q^{-\nu/2} \left(\sum_{w \in W} (-q)^{\ell(w)} T_w^{-1} \right) q^{-\ell(p_{\lambda})/2} T_{p_{\lambda}} \left(\sum_{w \in W} T_w \right) \text{ for } \lambda \in P^{++} + \rho$$

Then $K_{\lambda}(\lambda \in P^{++})$ form a $\mathbb{Z}[q^{1/2}, q^{-1/2}]$ -basis for

$$K = \{x \in \frac{1}{P} \cdot \widetilde{H} : (\sum_{w \in W} T_w) x = x(\sum_{w \in W} T_w) = P \cdot x\} \subset \widetilde{H} \otimes \mathbb{Q}(q^{1/2})$$

and $J_{\lambda}(\lambda \in P^{++}+\rho)$ form a $Z[q^{1/2},q^{-1/2}]$ -basis for

$$J = \{ y \in \widetilde{H} : (\sum_{w \in W} (-q)^{\ell(w)} T_w^{-1}) y = y(\sum_{w \in W} T_w) = P \cdot y \} .$$

Note that K is a subring of $\widetilde{H} \otimes \mathbb{Q}(q^{1/2})$ with unit element $\frac{1}{p} \sum_{w \in W} T_w$ and that, with respect to the product in $\widetilde{H} \otimes \mathbb{Q}(q^{1/2})$, we have $J \cdot K \subset J$, i.e. J is a right K-module.

In the statement of the following theorem, we shall give a meaning to $J_{\lambda} \in J$ for arbitrary $\lambda \in P$: if $(\lambda)w \neq \lambda$ for all $w \in W$, $w \neq e$, we set $J_{\lambda} = (-1)^{\ell(w)} J_{(\lambda)w}$ where w is the unique element of W such that $(\lambda)w \in P^{++}+\rho$.

have been intergy of certain ficients).

acters of irreaically closed y,w in an

ect to the
rized by elene µ-weight
The remainder

ection 4.

the letter

te that

or $y',w' \in \widetilde{W}_a$,

ts of [11],

, 6.1 would

sor product

o state the

 $(\lambda \in P^{++}+\rho)$

he subgroup $(\lambda \in P^{++}_{+\rho})$

·y} .

For the remaining $\lambda \in P$, we set $J_{\lambda} = 0$.

Theorem 6.6. For any $\lambda \in P^{++}$, we have

(6.7)
$$J_{\mathbf{p}} \cdot (q^{-\ell(p_{\lambda})/2} K_{\lambda}) = \frac{1}{\overline{p}_{\lambda}} \sum_{\mathbf{r}} (-q)^{-|\mathbf{r}|} J_{\lambda + \rho - \alpha_{\mathbf{r}}}$$

(sum over all subsets I of the set of positive roots); here $\alpha_{\rm I}$ denotes the sum of the roots in I .

The proof will be given in Section 7 .

If I is as in the previous sum and if $w \in W$ is such that $\lambda + \rho - \alpha_I = (\lambda' + \rho)w$, $\lambda' \in P^{++}$, then $\lambda - \lambda' = \lambda - (\lambda)w^{-1} - (\rho)w^{-1} + \rho + (\alpha_I)w^{-1} = \lambda - (\lambda)w^{-1} + \alpha_J$ where J is the set of positive roots β such that $(\beta)w \in I$ or such that $-(\beta)w$ is positive, $(\beta)w \in I$ or such that $(\beta)w \in I$ or

Since a triangular matrix with 1's on diagonal has an inverse of the same form, we see that for any $\lambda \in P^{++}$, the element $J_{\lambda+\rho}$ is a linear combination of elements $J_{\rho}(q^{-\ell(p_{\lambda}')/2}K_{\lambda'})$, $\lambda' \leq \lambda$, with coefficients polynomials in q^{-1} (without constant term, if $\lambda' < \lambda$ and $\equiv 1$, if $\lambda' = \lambda$). Hence we have Corollary 6.8. For any $\lambda \in P^{++}$, there is a unique element $C_{\lambda}' \in K$ such that

$$(6.9) J_{\rho} \cdot C_{\lambda}' = J_{\lambda + \rho}$$

It is of the form

(6.10)

where $d_{\mu}(L_{\lambda};q)$ over, the powers
and $d_{\lambda}(L_{\lambda};q) \equiv$ right K-modules

Note that known [5] that,

(6.11)

Hence $\frac{1}{2}(\ell(p_{\lambda})-\ell)$ $\lambda - \mu \in Q$

We shall coefficients.

Theorem 6.12. C

We have

(6.13)

 $\underline{\text{hence}}$ $d_{\mu}(L_{\lambda};q)$

For the proof of

Lemma 6.14. If

In the case wher

The defir tended to a ring From (6.9) it th $C_{\lambda}^{\dagger} - \overline{C}_{\lambda}^{\dagger} \in K$, we The element q^{-1}

denotes the sum

t $\lambda + \rho - \alpha_I =$ $\lambda)w^{-1} + \alpha_J$ where J $-(\beta)w$ is positive that $\lambda \geq \lambda'$.

Into $J_{\lambda'} + \rho$ $(\lambda' \leq \lambda)$ as coefficients;

Into the other

that $\lambda \geq \lambda'$ is the polymore λ' (without λ') λ' is the polymore λ' (without λ'); this follows

e of the same

combination of

ls in q (with-

such that

(6.10)
$$C_{\lambda}^{\dagger} = q^{-\ell(p_{\lambda})/2} \sum_{\mu \in P_{\lambda}^{++}} d_{\mu}(L_{\lambda};q) K_{\mu}$$

where $d_{\mu}(L_{\lambda};q)$ are polynomials in q and q^{-1} with integer coefficients; moreover, the powers q^{i} appearing in $d_{\mu}(L_{\lambda};q)$ satisfy $i < \frac{1}{2}(\ell(p_{\lambda}) - \ell(p_{\mu}))$ if $\mu < \lambda$ and $d_{\lambda}(L_{\lambda};q) \equiv 1$. In particular, the map $h \to J_{\rho}h$ defines an isomorphism of
right K-modules of K onto J.

Note that, if $\mu \leq \lambda$, then $\frac{1}{2}(\ell(p_{\lambda})-\ell(p_{\mu}))$ is an integer. Indeed, it is known [5] that, for $\lambda \in P^{++}$,

(6.11)
$$\ell(p_{\lambda}) = \langle \lambda, 2_{\rho}^{V} \rangle$$

Hence $\frac{1}{2}(\ell(p_{\lambda})-\ell(p_{\mu})) = \frac{1}{2}(\langle \lambda, 2 \rangle - \langle \mu, 2 \rangle) = \langle \lambda - \mu, \rho \rangle$ and this is an integer since $\lambda - \mu \in Q$.

We shall now show that $\ d_{\mu}(L_{\lambda};q)$ are actually polynomials in $\ q$ with $_{\geq}$ 0 coefficients.

We have

Theorem 6.12. $C_{\lambda}' = q^{\nu/2} p^{-1} C_{n_{\lambda}}'$ $(\lambda \in P^{++})$. In particular, for $\mu \leq \lambda$ in P^{++} , we have

(6.13)
$$d_{\mu}(L_{\lambda};q) = P_{n_{\mu},n_{\lambda}}$$

 $\underline{\text{hence}} \quad d_{\mu}(L_{\lambda};q) \quad \underline{\text{is a polynomial in}} \quad q \quad \underline{\text{with}} \quad \geq \quad 0 \quad \underline{\text{coefficients}}.$

For the proof of 6.12, we need the following result.

Lemma 6.14. If
$$\lambda \in P^{++}$$
, then $\overline{J}_{\lambda+p} = J_{\lambda+p}$

In the case where $\lambda \in Q \cap P^{++}$, this is just Lemma 11.7 of [10]. The general case is proved in the same way.

The definition of K shows that K is stable under $h \to \overline{h}$ (which is extended to a ring involution of $\widetilde{H} \otimes \mathbb{Q}(q^{1/2})$. (Note that $\overline{p^{-1}} \sum_{w \in W} T_w = p^{-1} \sum_{w \in W} T_w$.) From (6.9) it then follows that $J_{\rho}\overline{C}_{\lambda}' = J_{\rho + \lambda}$. Thus $J_{\rho}(C_{\lambda}' - \overline{C}_{\lambda}') = 0$ and, since $C_{\lambda}' - \overline{C}_{\lambda}' \in K$, we have $C_{\lambda}' = \overline{C}_{\lambda}'$, by the last sentence in Corollary 6.8.

The element $q^{-\nu/2}PC_{\lambda}$ is also fixed by $h\to \overline{h}$, since $q^{-\nu/2}P=q^{-\nu/2}P$. This element

ment is equal to

$$q^{-\ell(n_{\hat{\lambda}})/2} \sum_{\substack{y \leq n_{\hat{\lambda}}}} d_{\mu(y)}(L_{\hat{\lambda}};q)T_{y}$$

where $\mu(y) \in P^{++}$ is defined by $y \in W P_{\mu(y)} W$.

We now use the bounds on the powers of q appearing in $d_{\mu}(L_{\lambda};q)$ given in Corollary 6.8. If follows that $q^{-\nu/2}PC_{\lambda}'$ satisfies the defining property of $C_{n_{\lambda}}'$, hence is equal to it. Thus Theorem 6.12 follows from Theorem 6.6. On the other hand, it implies Theorem 6.1. Indeed, under the specialization $\mathbb{Z}\left[q^{1/2},q^{-1/2}\right]\to\mathbb{Z}$, given by $q^{1/2}\to 1$, \widetilde{H} becomes the group ring $\mathbb{Z}\left[\widetilde{W}_{a}\right]$, K_{λ} becomes $k_{\lambda}(\lambda\in P^{++})$, J_{λ} becomes j_{λ} $(\lambda\in P^{++}+\rho)$ and (6.9) becomes (6.3). It follows that for $\mu,\lambda\in P^{++}$, $\mu\le\lambda$, $d_{\mu}(L_{\lambda})$ is the value of $d_{\mu}(L_{\lambda};q)$ at q=1 and theorem 6.1 follows.

7. For the proof of Theorem 6.6 we shall need several preliminary steps. We shall begin with a definition (due to J. Bernstein) of a large commutative subalgebra of $\widetilde{\mathbb{H}}$, which is a q-analogue of the subring $\mathbb{Z}[P]$ of $\mathbb{Z}[\widetilde{\mathbb{W}}_a]$. To each $\lambda \in P$, Bernstein associates an element $\widetilde{\mathbb{T}}_p \in \widetilde{\mathbb{H}}$ defined by $\widetilde{\mathbb{T}}_p = (q \quad T_p)^{-2(p_{\lambda_1})/2}$ (q $T_{p_{\lambda_2}})^{-1}$ where λ_1, λ_2 are elements of P^{++} such that $\lambda = \lambda_1^{-1} - \lambda_2$. This is independent of the choice of λ_1, λ_2 , since for $\lambda', \lambda'' \in P^{++}$ we have the identity $T_{p_{\lambda'}} T_{p_{\lambda''}} T_{p_{$

<u>Lemma 7.1</u>. (J. Bernstein) <u>Let</u> $\lambda \in P$ <u>and let</u> $s \in S$. <u>We have</u>

$$T_s(\widetilde{T}_{p_{\lambda}} + \widetilde{T}_{p_{(\lambda)s}}) = (\widetilde{T}_{p_{\lambda}} + \widetilde{T}_{p_{(\lambda)s}})T_s$$

 $\begin{array}{lll} \underline{Proof}: \mbox{ We may clearly assume that } &<\lambda,\overset{\mbox{\vee}}{\alpha_{\rm S}}>\geq 0 \mbox{ . Assume first that } &<\lambda,\overset{\mbox{\vee}}{\alpha_{\rm S}}>=0 \mbox{ .} \\ \mbox{We can write } &\lambda=\lambda_1^{-\lambda}{}_2 &\mbox{with } &\lambda_1,\lambda_2\in P^{++} \mbox{ , } &<\lambda_1,\alpha_{\rm S}>=<\lambda_2,\overset{\mbox{\vee}}{\alpha_{\rm S}}>=0 \mbox{ . To prove the identity } &T^{\mbox{\uparrow}}_{\mbox{S^{-p}_{λ}}}=\widetilde{T}_{\mbox{p}}\cdot T_{\mbox{S}} \mbox{ , we are thus reduced to the case where } &\lambda\in P^{++} \mbox{ , } \\ &<\lambda_3\overset{\mbox{\vee}}{\alpha_{\rm S}}>=0 \mbox{ . But then } &\ell(\mbox{$\rm sp$}_{\lambda})=\ell(\mbox{$\rm p$}_{\lambda})=\ell(\mbox{$\rm p$}_{\lambda})+1 \mbox{ hence } &T^{\mbox{$\rm T$}}_{\mbox{$\rm S$}}=T_{\mbox{$\rm p$}_{\lambda}}=T_{\mbox{$\rm p$}_$

Next, we case, the resul integrable repr

Next, we when d is represented to λ_1, λ_2 and λ_1, λ_2 commutes with

We now c

where $\theta = \Sigma$ $\widetilde{J}_{\lambda} = J_{\lambda} . \text{ In}$

Lemma 7.3. \tilde{J}

Proof : We may

Thus, $\widetilde{J}_{\lambda} + \widetilde{J}_{(\lambda)}$ s

Lemma 7.4. The satisfying properties.

- (i) $f(\rho) = q^{\nu}$
- (ii) $f(\lambda) \neq 0 =$

Next, we consider the case where $<\lambda,\alpha_s^{\rm V}>=1$, i.e. $(\lambda)s=\lambda-\alpha_s$. In this case, the result follows from Lemma 4.4.(b) in (G. Lusztig, Some examples of square integrable representations of semisimple p-adic groups, preprint IHES, 1982).

We now define, for any $\lambda \in P$ an element $\widetilde{J}_{\lambda} \in J$ by the formula

$$\tilde{J}_{\lambda} = q^{-\nu/2} \theta \cdot \tilde{T}_{p_{\lambda}} \theta$$

where $\theta = \sum\limits_{w \in W} T_w$, $\theta' = \sum\limits_{w \in W} (-q)^{\ell} T_w^{-1}$. When $\lambda \in P^{++} + \rho$, we have clearly $T_{\lambda} = J_{\lambda}$. In general, we have

Lemma 7.3. $\widetilde{J}_{(\lambda)w} = (-1)^{\ell(w)}\widetilde{J}_{\lambda}$ for any $\lambda \in P$, $w \in W$; hence, $\widetilde{J}_{\lambda} = J_{\lambda}$ for all $\lambda \in P$.

<u>Proof</u>: We may assume that $w = s \in S$. Note that $T_S \theta = q\theta$, $\theta'T_S^{-1} = -\theta'$, hence

$$\begin{split} \widetilde{J}_{\lambda} + \widetilde{J}_{(\lambda)s} &= q^{-\nu/2} \theta' (\widetilde{T}_{\lambda} + \widetilde{T}_{(\lambda)s}) \theta \\ &= q^{-\nu/2} \theta' T_{s}^{-1} (\widetilde{T}_{\lambda} + \widetilde{T}_{(\lambda)s}) T_{s} \theta \\ &= -q \cdot q^{-\nu/2} \theta' (\widetilde{T}_{\lambda} + \widetilde{T}_{(\lambda)s}) \theta \qquad \text{by lemma (7.1)} \\ &= -q (\widetilde{J}_{\lambda} + \widetilde{J}_{(\lambda)s}) \end{split}$$

Thus, $\tilde{J}_{\lambda} + \tilde{J}_{(\lambda)s} = 0$, as required.

Lemma 7.4. There is a unique function $f: Q+\rho \rightarrow \mathbb{Z}[q,q^{-1}]$ with finite support satisfying properties (i), (ii), (iii) below:

- (i) $f(\rho) = q^{V}$
- (ii) $f(\lambda) \neq 0 \Rightarrow \lambda \leq \rho$

(q) given in erty of $C'_{n_{\lambda}}$, the other hand, $(^{2}] + \mathbb{Z}$, given $\lambda \in P^{++}$, J_{λ} for $\mu, \lambda \in P^{++}$, follows.

: T_{p,}T'_{p,''} =

 $\langle \lambda, \overset{\vee}{\alpha}_{S} \rangle = 0$. 0. To prove $\lambda \in P^{++}$, $sp_{\lambda} = T_{p_{\lambda}} s = T_{p_{\lambda}} T_{S}$ (iii) Let $X \subset Q + \rho$ be an α_S -string: $X = \{x + n\alpha_S, n \in \mathbb{Z}\}$, where x is any fixed element of $Q + \rho$ and α_S is any fixed simple root. Let a > 0 be an integer such that $< \lambda, \alpha_S > \equiv a \pmod{2}$ for all $\lambda \in X$. Then

$$\begin{array}{cccc} \Sigma & f(\lambda) = -q^{-(a-1)} & \Sigma & f(\lambda) \\ \lambda \in X & & \lambda \in X \\ <\lambda, \alpha_S^{\vee} > \geq a & <\lambda, \alpha_S^{\vee} < -a \end{array}$$

This function is given by the formula

(7.5)
$$f(\lambda) = (-1)^{\nu} \sum_{\substack{\Gamma \\ \alpha_{\underline{I}} = \lambda + \rho}} (-q)^{|\underline{I}|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle},$$

where I runs through the subsets of the set of positive roots, and $\alpha_{\rm I}$ is defined as in 6.6.

<u>Proof</u>: The function f defined by (7.5) clearly satisfies (i) and (ii). We now verify that it satisfies (iii). We shall set $\alpha_s = \alpha, \alpha_s = \alpha'$. We have, with the notations of (iii):

$$\Sigma f(\lambda) = (-1)^{\nu} \Sigma (-q)^{|I|} q^{-\langle \lambda-\rho, \stackrel{\vee}{\rho} \rangle}$$

$$\lambda \in X \qquad \lambda \in X \qquad \qquad \lambda \in X \qquad \qquad 1$$

$$\alpha I = \lambda^{+\rho} \\
\langle \lambda, \alpha \rangle > a$$

$$= (-1)^{\nu} \Sigma \qquad (-q)^{|I|} q^{-\langle \lambda-\rho, \stackrel{\vee}{\rho} \rangle} + \Sigma'$$

$$\lambda \in X \qquad \qquad \lambda \in$$

where

$$\begin{split} \Sigma' &= (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \ni \alpha \\ < \lambda, \ \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \chi, \ \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda, \ \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ \alpha \\ \alpha \mid z \mid \lambda \mid \rho \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ \alpha \mid z \mid \lambda \mid \rho \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \lambda \mid + \alpha, \alpha > \geq a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \alpha, \alpha \mid + \alpha, \alpha > a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \alpha, \alpha \mid + \alpha, \alpha > a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \alpha, \alpha \mid + \alpha, \alpha > a}} (-q)^{\left|I\right|} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum\limits_{\substack{\lambda \in X \\ I \not \ni \alpha \\ < \alpha, \alpha \mid + \alpha, \alpha > a}} (-q)^{\vee} q^{\vee} = (-1)^{\vee} q^{\vee} = (-1)^{\vee}$$

Hence

(7.6)

A similar c

Now the sim

Comparing w

To p with finite with f re an element invariant s through x Let a be

A.

is any fixed

nteger such

is defined

we now

th the no-

<λ-ρ, γ'>

| -<\-p, γ>

Hence

(7.6)
$$\sum_{\substack{\lambda \in X \\ \langle \lambda, \alpha \rangle \geq a}} f(\lambda) = -(-1)^{\nu} \sum_{\substack{\lambda \in X \\ \lambda \neq a \\ \langle \lambda, \alpha \rangle = a-2}} (-q)^{|I|} q^{-\langle \lambda - \rho, \rho \rangle}$$

A similar computation shows that

$$\sum_{\substack{\lambda \in X \\ \langle \lambda, \alpha \rangle \leq -a}} f(\lambda) = (-1)^{\nu} \sum_{\substack{\lambda \in X \\ \exists \beta \alpha \\ \alpha \text{ if } \forall \alpha \\ \langle \lambda, \alpha \rangle = -a}} (-q)^{\lceil i \rceil} q^{-\langle \lambda - \rho, \rho \rangle}$$

Now the simple reflection s maps the set of positive roots $\neq \alpha$ onto itself. Hence the last sum is equal to

$$(-1)^{\vee} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \langle \lambda, \alpha \rangle = -\alpha}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha \\ \alpha \mid = \lambda \mid + \rho \\ \langle \lambda \mid - (\alpha - 1)\alpha, \stackrel{\vee}{\alpha} \rangle = -\alpha}} = (-1)^{\vee} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha \mid = \lambda \mid + \rho \\ \langle \lambda \mid - (\alpha - 1)\alpha, \stackrel{\vee}{\alpha} \rangle = -\alpha}} (-q)^{\mid I \mid} q^{-\langle \lambda \mid - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha \mid = \lambda \mid + \rho \\ \langle \lambda \mid, \stackrel{\vee}{\alpha} \rangle = \alpha - 2}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha \mid = \lambda \mid + \rho \\ \langle \lambda \mid, \stackrel{\vee}{\alpha} \rangle = \alpha - 2}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha \mid = \lambda \mid + \rho \\ \langle \lambda \mid, \stackrel{\vee}{\alpha} \rangle = \alpha - 2}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha \mid = \alpha - 1}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha \mid = \alpha - 1}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \\ \alpha \mid = \alpha - 1}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \in X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \alpha \in X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \beta \cap X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \beta \cap X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \beta \cap X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \beta \cap X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \beta \cap X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \beta \cap X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \beta \cap X}} (-q)^{\mid I \mid} q^{-\langle \lambda - \rho, \stackrel{\vee}{\rho} \rangle} = (-1)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\ni \beta \cap X}} (-q)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\searrow \beta \cap X}} (-q)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\searrow \beta \cap X}} (-q)^{\vee} q^{\alpha - 1} \sum_{\substack{\lambda \in X \\ I \not\searrow \beta \cap X}} (-q)^{\vee} q^{$$

Comparing with the right hand side of (7.6), we conclude that f satisfies (iii).

To prove the converse it is enough to show that if a function $g:Q+\rho+\mathbb{Z}[q,q^{-1}]$ with finite support satisfies $g(\rho)=0$, $g(\lambda)\neq 0 \Rightarrow \lambda \leq \rho$ and the identity (iii) with f replaced by g, then $g\equiv 0$. Assume that $g\not\equiv 0$, and let $x\in Q+\rho$ be an element of maximal possible length (with respect to some positive definite, Winvariant scalar product on $P\otimes R$) such that $g(x)\neq 0$. Let X be the string through x corresponding to the simple root α_g . Then x'=(x)s is also in X. Let a be the absolute value of $\langle x,\alpha_g\rangle = \langle x',\alpha_g\rangle$. If $y\in X$ satisfies

(ii) In gener be an integer

<u>Proof</u>: (i) For applied to the Corollary 7.8.

(7.9)

where, for λ that $h_{\lambda}A_{0}^{-} = A$ Proof: In our
(ii), (iii) of A_{λ}^{-} appears wi
follows.

Since t (7.9) and we o $\gamma \in \Omega \text{ be such}$ left by T_{γ} . we have

 $|\langle y, \alpha_s^{\vee} \rangle| > a$ then clearly the length of y is strictly bigger than that of x hence g(y) = 0. Hence the identity (iii) for g, and X, a, as above, reduces to $g(x) = -q^{\pm a-1}g(x')$. It follows that $g(x') \neq 0$. Note also that x,x' have the same length. Iterating this, we see that $g((x)w) \neq 0$ for all $w \in W$; moreover, (x)w has the same length as x . For suitable $w \in W$, we have $\langle (x)w, \alpha_e^{\vee} \rangle \geq 0$ for all simple roots α_s . Replacing x by (x)w , we may thus assume that $\langle x, \overset{\mathsf{V}}{\alpha}_s \rangle \geq 0$ for all simple roots α_s . If we had $< x-\rho, \overset{\mathsf{V}}{\alpha}_s>$ ≥ 0 for all simple roots α_s then it would follow that $\langle x-\rho, \stackrel{\mathsf{V}}{\rho} \rangle \geq 0$; since $g(x) \neq 0$, we would have $\rho-x \geq 0$, hence $\rho-x = \Sigma \ n_{_{\bf S}}\alpha_{_{\bf S}} \quad (\alpha_{_{\bf S}} \ \ {\rm simple}, \ \ n_{_{\bf S}} \geq 0 \ \ {\rm integers}), \ {\rm hence} \ \ < -\Sigma \ n_{_{\bf S}}\alpha_{_{\bf S}}, \stackrel{{\bf V}}{\rho}> \geq 0 \ . \ {\rm Thus}$ $-\Sigma$ $n_s^{}$ = 0 , hence $n_s^{}$ = 0 for all simple roots $\alpha_s^{}$, hence x = ρ . But $g(\rho)$ = 0 and this is a contradiction with $g(x) \neq 0$. Thus, there exists a simple root α_{g} such that $\langle x-\rho, \overset{\lor}{\alpha}_{s} \rangle < 0$; since $\langle x, \overset{\lor}{\alpha}_{s} \rangle \geq 0$, it follows that $\langle x, \overset{\lor}{\alpha}_{s} \rangle = 0$. Consider the string X through x corresponding to the simple root $\alpha_{_{\mbox{\scriptsize S}}}$. The equality $\langle x, \alpha_s \rangle = 0$ shows that among the elements of X, the element x has minimal length. It follows that g(y) = 0 for all $y \in X$, $y \neq x$. Let us now write the identity (iii) for g , this X , and a = 0 . We get $g(x) = -q^{-1}g(x)$ hence g(x) = 0 . This contradiction shows that $g \equiv 0$ and the Lemma is proved.

We shall now introduce as in [10] an H-module M as follows. M is the free Z [$q^{1/2}, q^{-1/2}$] module with basis (A) where A are the various alcoves in $P \otimes \mathbb{R}$. For each $s \in S_a$, we define an endomorphism T_s of this Z[$q^{1/2}, q^{-1/2}$]-module by

$$T_{s}(A) = \begin{cases} sA \text{ , if } & \exists \text{ positive coroot } \overset{\vee}{\alpha} \text{ with } \langle x, \overset{\vee}{\alpha} \rangle > n \text{ for } \\ & x \in sA \text{ , } \langle x, \overset{\vee}{\alpha} \rangle < n \text{ for } x \in A \end{cases}$$

$$q \cdot sA + (q-1)A \text{ , otherwise.}$$

These endomorphisms make M into an H-module.

Let W' be the subgroup of W_a generated by those $s \in S_a$ for which $s(A_\rho^+)$ contains ρ in its closure. (This is a parabolic subgroup of W_a conjugate to W under an element in Ω .)

<u>Lemma 7.7.</u> <u>Let</u> $y \in W_a$. <u>We define a function</u> $f : Q+\rho \longrightarrow \mathbb{Z}[q^{1/2}, q^{-1/2}]$ <u>as follows:</u> $f(\lambda)$ is the coefficient with which A_{λ} appears in

$$(\Sigma_{w \in W'} (-q)^{\ell(w)} T_w^{-1}) T_y (\Sigma_{w \in W} T_w) A_o^- \in M$$

Then

- (i) If $y(A_0^+) = A_\lambda^-$, $\lambda \in P^{++}$, $\lambda \in Q+p$, then $f(\lambda) = q^{\nu}$; moreover $\lambda' \in Q+\rho$, $f(\lambda') \neq 0$ implies $\lambda' \leq \lambda$.
- (ii) In general, let $X \subset Q+\rho$ be an α_s -string (α_s a simple root) and let $a \ge 0$ be an integer such that $\langle \lambda, {}^{\vee}_{S} \rangle \equiv a \pmod{2}$ for all $\lambda \in X$. Then

$$\begin{array}{cccc} \Sigma & f(\lambda) = -q^{-(a-1)} & \Sigma & f(\lambda) \\ \lambda \in X & \lambda \in X \\ \langle \lambda, \alpha_s \rangle \geq a & \langle \lambda, \alpha_s \rangle \leq -a \end{array}$$

Proof: (i) Follows from [10, 4.2 (a)] and (ii) is a consequence of [10, 9.2] applied to the element $T_y(\Sigma T_w)A_o$.

Corollary 7.8. If y in the previous lemma is such that $y(A_0^+) = A_0^-$, then

$$(7.9) \qquad \qquad \cdot (\sum_{w \in W'} (-q)^{\ell(w)} T_w^{-1}) T_w (\sum_{w \in W} T_w) A_o^- = q^{-v} (\sum_{w \in W'} (-q)^{\ell(w)} T_w^{-1}) \sum_{\lambda \in Q+p} f(\lambda) h_{\lambda} A_o^-,$$

where, for $\lambda \in Q+p$, $f(\lambda)$ is given by (7.5), and h_{λ} is an element of H such that $h_{\lambda}A_{0} = A_{\lambda}$.

Proof: In our case, the function f of Lemma 7.7 satisfies the conditions (i), (ii), (iii) of Lemma 7.4, hence is given by (7.5). It follows that for any $\lambda \in \mathbb{Q}+p$, A_{λ}^{-} appears with the same coefficient in the two sides of (7.9) and the corollary follows.

Since the H-module M is faithful, we can erase A from the two sides of (7.9) and we obtain an identity in H . We can rewrite this identity as follows. Let $\gamma \in \Omega$ be such that $\gamma W' \gamma^{-1} = W$. We multiply both sides of our identity on the left by T_{γ} . Note that $T_{\gamma}T_{y} = T_{\gamma y} = T_{m_{\gamma}}$. Moreover $T_{\gamma}h_{\lambda} = q^{\ell(p\lambda)/2}\widetilde{T}_{p_{\gamma}}$. Thus, we have

at of x ove, reduces

x' have the moreover,

 $\alpha_{s} > 0$ for $\langle x, \alpha_{e}^{\vee} \rangle \geq 0$

 α_s then

-x > 0 , hence

ut $g(\rho) = 0$

. Thus

e root a

> = 0 . Con-

The equality

inimal length.

: identity

g(x) = 0.

M is the alcoves in $[1/2, q^{-1/2}]$

for

which a conjugate

$$\begin{array}{ll} \theta^{\,\prime} T_{m}^{} \theta &=& (\sum\limits_{w \in W} (-q)^{\ell \, (w)} T_{w}^{-1}) T_{m}^{} \sum\limits_{\rho \in W} T_{w}^{} = \\ \\ &=& q^{-1} (\sum\limits_{w \in W} (-q)^{\ell \, (w)} T_{w}^{-1}) \sum\limits_{\lambda \in Q + \rho} f(\lambda) q^{\ell \, (p_{\lambda})/2} \widetilde{T}_{p_{\lambda}} \end{array}$$

We can now compute for $\lambda \in P^{++}$:

$$\begin{split} J_{\rho}(\mathbf{q}^{-\ell(\mathbf{p}_{\lambda})/2}K_{\lambda}) &= \mathbf{q}^{-\ell(\mathbf{m}_{\lambda})/2}\theta^{\mathsf{T}}\mathbf{T}_{\mathbf{m}_{\rho}}\theta\cdot\frac{1}{p\cdot p_{\lambda}}\theta\cdot\mathbf{q}^{-\ell(\mathbf{p}_{\lambda})/2}\mathbf{q}^{-\nu+\nu_{\lambda}}\mathbf{T}_{\mathbf{p}_{\lambda}}\theta \\ &= \frac{1}{p_{\lambda}}\mathbf{q}^{-\ell(\mathbf{m}_{\rho})/2}\cdot\mathbf{q}^{-2\nu+\nu_{\lambda}}\cdot\sum_{\mu\in\mathbb{Q}+\rho}\mathbf{f}(\mu)\mathbf{q}^{<\mu},\overset{\mathsf{p}}{\rho}>}\theta^{\mathsf{T}}\mathbf{T}_{\mathbf{p}_{\lambda}}\overset{\mathsf{T}}{\mathbf{p}}_{\mu}\theta \\ &= \frac{1}{\overline{p}_{\lambda}}\mathbf{q}^{-<\rho},\overset{\mathsf{p}}{\rho}>+\nu/2}\cdot\mathbf{q}^{-2\nu}(-1)^{\nu}\sum_{\mathbf{I}}(-\mathbf{q})^{|\mathbf{I}|}\cdot\mathbf{q}^{<\rho},\overset{\mathsf{p}}{\rho}>}\mathbf{q}^{\nu/2}J_{\lambda+\alpha_{\mathbf{I}}p} \\ &= \frac{1}{\overline{p}_{\lambda}}\sum_{\mathbf{I}}(-\mathbf{q})^{|\mathbf{I}|}-\nu_{J_{\lambda}+\alpha_{\mathbf{I}}-\rho} \end{split}$$

Here I runs through the subsets of the set of positive roots. We make a change of variable I \longrightarrow I' = complement of I . Then $\alpha_I + \alpha_I' = 2\rho$, $|I| + |I'| = \nu$ hence

$$\frac{1}{\overline{p}_{\lambda}} \ \sum_{\mathbf{I}} (-\mathbf{q})^{\left|\mathbf{I}\right| - \nu} \ \mathbf{J}_{\lambda + \alpha_{\mathbf{I}} - \rho} = \frac{1}{\overline{p}_{\lambda}} \ \sum_{\mathbf{I}'} (-\mathbf{q})^{-\left|\mathbf{I}'\right|} \ \mathbf{J}_{\lambda + \rho - \alpha_{\mathbf{I}'}}$$

and Theorem 6.6 is proved.

8. The following result describes the centre Z of $\widetilde{\mathrm{H}}$.

Theorem 8.1. (J. Bernstein). Let $\lambda \in P^{++}$ and let $(\lambda)W$ be its W-orbit in P. Then $z_{\lambda} = \sum_{\lambda' \in (\lambda)W} \widetilde{T}_{P_{\lambda'}}$ is in Z. Moreover, Z is the free $\mathbb{Z}[q^{1/2}, q^{-1/2}]$ module with basis z_{λ} $(\lambda \in P^{++})$.

Let z_{λ}^1 be the specializations of z_{λ} under the homomorphism $H \to \mathbb{Z}\left[\widetilde{W}_a\right]$ given by $q^{1/2} \to 1$. Then clearly z_{λ}^1 form a set of \mathbb{Z} -generators for the centre of $\mathbb{Z}\left[\widetilde{W}_a\right]$: the elements of P are the only elements of \widetilde{W}_a whose conjugacy class is finite. Using a version of Nakayama's lemma it follows that any element z of Z

is a linear c in the locali $z \in H$, these the elements

Let us

(8.2)

It is clear th

(8.3)

where the ≥ 0 of g-modules

(8.4)

By Weyl's char

It follows tha

The identity (8.5)

is a linear combination of the elements z_{λ} with coefficients being allowed to be in the localization of $\mathbb{Z}\left[q^{1/2},q^{-1/2}\right]$ at the ideal generated by $q^{1/2}-1$. Since $z\in H$, these coefficients must automatically be in $\mathbb{Z}\left[q^{1/2},q^{-1/2}\right]$. The fact that the elements z_{λ} are linearly independent is obvious. The Theorem is proved.

Let us now define, for $\lambda \in P^{++}$, an element

(8.2)
$$S_{\lambda} = \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} d_{\mu}(L_{\lambda}) z_{\mu} \in Z$$

It is clear that for $\lambda, \lambda' \in P^{++}$, we have

(8.3)
$$S_{\lambda}S_{\lambda} = \sum_{\lambda'' \in P^{++}} m(\lambda, \lambda'; \lambda'')S_{\lambda''}$$

where the ≥ 0 integers $m(\lambda, \lambda'; \lambda'')$ are the multiplicaties in the tensor product of g-modules :

(8.4)
$$L_{\lambda} \otimes L_{\lambda'} = \sum_{\lambda'' \in P^{++}} m(\lambda, \lambda'; \lambda'') L_{\lambda''}$$

By Weyl's character formula (6.3) we have

$$(\mathop{\Sigma}_{\mathsf{w} \in \mathsf{W}} (-1)^{\ell(\mathsf{w})} \widetilde{\mathsf{T}}_{(\rho)\mathsf{w}}) \mathop{S}_{\lambda} = \mathop{\Sigma}_{\mathsf{w} \in \mathsf{W}} (-1)^{\ell(\mathsf{w})} \widetilde{\mathsf{T}}_{(\lambda + \rho)\mathsf{w}}$$

It follows that

$$\begin{split} J_{\rho}S_{\lambda} &= |W|^{-1} \sum_{w \in W} (-1)^{\ell(w)} J_{(\rho)(w)}S_{\lambda} \\ &= |W|^{-1} \sum_{w \in W} q^{-\nu/2} (-1)^{\ell(w)} \theta' \widetilde{T}_{(\rho)w}\theta S_{\lambda} \quad \text{by lemma (7.3)} \\ &= |W|^{-1} \theta' \sum_{w \in W} q^{-\nu/2} (-1)^{\ell(w)} \widetilde{T}_{(\rho)w}S_{\lambda}\theta \\ &= |W|^{-1} \theta' \sum_{w \in W} q^{-\nu/2} (-1)^{\ell(w)} \widetilde{T}_{(\lambda+\rho)w}\theta \\ &= |W|^{-1} \sum_{w \in W} (-1)^{\ell(w)} J_{(\lambda+\rho)w} \\ &= J_{\lambda+\rho} \quad . \end{split}$$

The identity

(8.5)
$$J_{\rho} \cdot S_{\lambda} = J_{\lambda+\rho} \qquad (\lambda \in P^{++})$$

/2~ T_p_λ

e change of

<u>rbit in</u> P .

 $z_{\lambda}^{T}_{w}$ for z_{λ} . But

bra. Hence

 $I \to \mathbb{Z} \left[\widetilde{W}_{a}\right]$

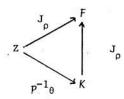
he centre

ugacy class

z of Z

shows that the map $Z\longrightarrow J$ given by $x\longrightarrow J_{\rho}z$ is an isomorphism of $Z[q^{1/2},q^{-1/2}]$ -modules. From this we shall deduce

Proposition 8.6: The map $z \longrightarrow K$ given by $z \longrightarrow (\frac{1}{P}\sum_{w \in W} T_w)z = P^{-1}\theta z$ is an isomorphism of $\mathbb{Z}[q^{1/2},q^{-1/2}]$ -algebras preserving the unit element. Under this isomorphism $S_{\lambda} \in \mathbb{Z}$ correspond to $C_{\lambda}' \in K$, i.e. $C_{\lambda}' = P^{-1}\theta S_{\lambda}$. Indeed, we have a commutative diagram



(since $P^{-1}J_{\rho}\theta = J_{\rho}$) and the maps $Z \longrightarrow J$, $K \longrightarrow J$ given by multiplication by J_{ρ} are known to be isomorphisms (see 6.8). Our map $Z \longrightarrow K$ preserves multiplication: $P^{-1}\theta z \cdot P^{-1}\theta z' = P^{-2}\theta^2 zz' = P^{-1}\theta zz'$. Finally $S_{\lambda} \in Z$ corresponds to $C_{\lambda}' \in K$, since both correspond to $J_{\lambda+\rho} \in J$ (see (6.9), (8.5)). The isomorphism $Z \longrightarrow K$ is a version of the Satake isomorphism. It shows in particular that K is a commutative algebra.

Corollary 8.7. If $\lambda, \lambda' \in P^{++}$, we have

$$G'_{\lambda} \cdot C'_{\lambda} = \sum_{\lambda'' \in P^{++}} m(\lambda, \lambda'; \lambda'') C'_{\lambda''}$$

where $m(\lambda, \lambda'; \lambda'')$ are defined by (8.4).

(The remarkable fact in (8.7) is that the coefficients with which C_{λ}^{\dagger} , appears in the decomposition of $C_{\lambda}^{\dagger} \cdot C_{\lambda}^{\dagger}$, are independent of q.)

Corollary 8.8. For any $\lambda \in P^{++}$, we have $z_1 = z_2$.

Indeed, the isormophism given in 8.6 is compatible with $h \longrightarrow \overline{h}$ (since $\overline{P^{-1}}\theta = P^{-1}\theta$). Since $\overline{C'_{\lambda}} = C'_{\lambda}$, it follows that $\overline{S}_{\lambda} = S_{\lambda}$. But z_{λ} is a \mathbb{Z} -linear combination of element S_{λ} , $(\lambda' \leq \lambda)$ hence $\overline{z}_{\lambda} = z_{\lambda}$.

Corollary 8.9. If $\lambda \in P^{++}$, we have

(8.10)

(product over

 $\frac{\text{Proof}}{\chi} : \widetilde{H} \longrightarrow \mathbb{Z} [$ $\forall w \in \widetilde{W}_a . \text{Note}$

and this is kn
Weyl's charact

 $\langle \tau, \overset{\lor}{\alpha}_{s} \rangle \gg 0$ fo the polynomial only depends of well defined for

9. Let μ <

such that for

(9.1)

for any $\tau \in P$ Proposition 9.3

(9.3)

of Z[q^{1/2},q^{-1/2}]-

 $P^{-1}\theta z$ is

. Under this

tiplication
rves multisponds to
he isomorticular that

appears in

$$\overline{p^{-1}}_{\theta} = \overline{p^{-1}}_{\theta}$$
).

:ombination

(8.10)
$$\sum_{\substack{\mu \in P \\ \mu \leq \lambda}}^{\Sigma} + \frac{P}{P_{\mu}} q^{<\mu}, 2\stackrel{\vee}{p} > -\nu + \nu_{\mu} d_{\mu}(L_{\lambda}; q) = \frac{\prod_{\alpha>0} (q^{<\lambda+\rho}, \stackrel{\vee}{\alpha} > -1)}{\prod_{\alpha>0} (q^{<\rho}, \stackrel{\vee}{\alpha} > -1)}$$

(product over all positive roots à)

 $\begin{array}{l} \underline{\text{Proof}} : \text{ The left hand side of (8.10) is } \chi(q^{\ell(p_{\lambda})/2}C_{\lambda}') \quad \text{(see 6.10) where} \\ \chi : \widetilde{\textbf{H}} \longrightarrow \mathbb{Z}\left[q^{1/2},q^{-1/2}\right] \quad \text{is the algebra homomorphism defined by } \chi(T_{w}) = q^{\ell(w)}, \\ \forall w \in \widetilde{\textbf{W}}_{a} \text{ . Note that } \chi(\widetilde{\textbf{T}}_{p_{11}}) = q^{<\mu,\stackrel{\textbf{V}}{\rho}>} \quad \text{for any } \mu \in \textbf{P}^{++} \text{ , (see (6.11)). We have} \end{array}$

$$\begin{split} \chi(q^{\ell(p_{\lambda})/2}C_{\lambda}^{\prime}) &= \chi(q^{\ell(p_{\lambda})/2}P^{-1}\theta S_{\lambda}) \\ &= q^{\ell(p_{\lambda})/2}\chi(S_{\lambda}) \\ &= q^{<\lambda}, \overset{\vee}{\rho}> \underset{\mu \in P^{++}}{\overset{d}{\underset{\mu \in P}{\downarrow}}} L_{\lambda}) \underset{\mu' \in (\mu)W}{\overset{\Sigma}{\underset{\mu \leftarrow \nu'}{\downarrow}}} q^{<\mu', \overset{\vee}{\rho}>} \end{split}$$

and this is known to be equal to the right hand side of (8.10). (See the proof of Weyl's character formula in [6]) .

9. Let $\mu \leq \lambda$ be two elements of P . According to [10] if $\tau \in P$ is such that $\langle \tau, \overset{\mathsf{V}}{\alpha}_{\mathsf{S}} \rangle \gg 0$ for all $s \in S$ (so that, in particular, $\mu + \tau \in P^{++}$, $\lambda + \tau \in P^{++}$), the polynomial $P_{\substack{n \\ \mu + \tau}}, \substack{n \\ \lambda + \tau}$ is independent of the choice of τ . In particular, it only depends on the difference $\lambda - \mu$. Using now (6.13), we see that there exists a well defined function

$$\hat{P}: \{\kappa \in \mathbb{Q} \mid \kappa > 0\} \longrightarrow \mathbb{Z}[q^{-1}]$$

such that for any $~\mu \leq \lambda~$ in ~P , with $~\lambda~-\mu$ = κ , we have

(9.1)
$$q^{-\langle \kappa, \rho \rangle} d_{u+\tau}(L_{\lambda+\tau}; q) = \hat{P}(\kappa)$$

for any $\tau \in P$ such that $\langle \tau, \alpha_s \rangle \gg 0$, for all $s \in S$.

Proposition 9.2.

(9.3)
$$\widehat{P}(\kappa) = \sum_{\substack{n_1, \dots, n_{v} \geq 0 \\ n_1 \alpha_1 + \dots + n_{v} \alpha_{v} = \kappa}} q^{-(n_1 + \dots + n_{v})}$$

Here $\alpha_1, \dots, \alpha_V$ is the list of all positive roots and $\alpha_1, \dots, \alpha_V$ are required to be integers. In particular for q = 1, $P(\kappa)$ reduces to the Kostant partition function.

<u>Proof</u>: The formulas (6.7), (6.9), (6.10) show that $\hat{p}(\kappa)$ satisfies the recurrence relation

$$\sum_{\mathbf{I}} (-q)^{-|\mathbf{I}|} \widehat{p}(\kappa^{-\alpha}\mathbf{I}) = \begin{cases} 1 & \text{if } \kappa = 0 \\ 0 & \text{if } \kappa > 0 \end{cases}$$

(sum over all subsets I of the set of positive roots), with the convention that $\hat{p}(\kappa) = 0$ if $\kappa \not \leq 0$. From this, the required formula for $\hat{p}(\kappa)$ follows immediately. It may be conjectured that, for any $\mu \leq \lambda$ in p^{++} , we have

$$q^{-\langle \lambda^{-\mu}, \rho \rangle} d_{\mu}(L_{\lambda}; q) = \sum_{w \in W} (-1)^{\ell(w)} \hat{P}((\lambda + \rho)w - (\mu + \rho))$$

For q = 1 this reduces to a well knwon formula of Kostant.

(Note added May 1982: Conjecture (9.4) has been recently proved by S. Kato, to appear in Inventiones Math.)

For type A, formula (9.4) follows from a statement in [13, p. 131]; indeed, in that case, the left hand side of (9.4) is a Green-Foulkes polynomial (cf. [11]).

The right hand side of (9.4), in the special case μ = 0, appears also in the work of D. Peterson, in connection with the <u>g</u>-module structure of the (graded) coordinate ring of the nilpotent variety of g.

10. If λ is the highest root, we have $d_{\mu}(L_{\lambda};q)=1$ for any $\mu\in P^{++}$, $0<\mu\leq\lambda$. Indeed, the multiplicity $d_{\mu}(L_{\lambda})$ is 1 in this case (it is a dimension of a root space in the adjoint representation of g). Since $d_{\mu}(L_{\lambda};q)$ has ≥ 0 coefficients and constant term 1, it must be identically 1. If we write the formula (8.10) for λ , the only unknown term is, therefore, $d_{0}(L_{\lambda};q)$. We can compute it from (8.10) and we find $d_{0}(L_{\lambda};q)=\sum_{i}q^{e_{i}-1}$ where e_{i} (i = 1,...,rk(\underline{e})) are the exponents of \underline{e} .

11. We shall the followir

- a) $\overline{\mathcal{O}}_{\lambda}$ is ε
- b) If μ,λ €
- c) Let $x \in$ the stalks

Let ing sense. T which carrie of g' with we denote by each $\lambda \in P$ vectors t^{<λ} submodule of under the Li a symmetric any lattice $y \in L$. It follows that Tits, it is vertex of th correspondin of roots of (whose Coxet hence L is Lie algebra X of all se is known tha joint and co

are required

he recurrence

ention that
ws immediately.

Kato, to

]; indeed, (cf. [11]).

rs also in

he (graded)

of a root efficients .10) for from (8.10)

ponents of

11. We shall now describe the (generalized) Schubert varieties $\overline{\mathcal{Q}}_{\lambda}$ ($\lambda \in P^{++}$) with the following properties :

- a) $\overline{\mathcal{O}}_{\lambda}$ is an irreducible, projective complex variety of dimension $<\lambda$, $2\stackrel{\mathsf{V}}{\rho}>$.
- b) If $\mu, \lambda \in P^{++}$, are such that $\mu \leq \lambda$ then $\overline{\mathcal{O}}_{\mu} \subset \overline{\mathcal{O}}_{\lambda}$
- c) Let $x \in \overline{\mathcal{O}}_{\lambda}$ be such that $x \in \overline{\mathcal{O}}_{\mu}$ $(\mu \leq \lambda)$ but $x \notin \overline{\mathcal{O}}_{\mu}$, for any $\mu' < \mu$. Then the stalks $H_{x}^{i}(\overline{\mathcal{O}}_{\lambda})$ are zero if i is odd and $\sum_{i} \dim H_{x}^{2i}(\overline{\mathcal{O}}_{\lambda})q^{i} = d_{\mu}(L_{\lambda};q) = P_{n_{\mu}}, n_{\lambda}$.

Let \underline{g}' be a simple complex Lie algebra which is dual to \underline{g} in the following sense. There is a Cartan subalgebra $\underline{h}' \subseteq \underline{g}'$ with a given isomorphism onto \underline{h}^* which carries the set of coroots of \underline{g}' with respect to \underline{h}' onto the set of roots of \underline{g}' with respect to \underline{h} . Let $\underline{\hat{g}}' = \underline{g}' \otimes \mathfrak{C}((t))$. For each coroot $\overset{\vee}{\alpha} \in \underline{h}$ of \underline{g} we denote by X_{α} a non-zero vector in the corresponding root space of \underline{g}' . For each $\lambda \in P^{++}$, we denote by L_{λ} the $\mathfrak{C}[[t]]$ -submodule of $\hat{\underline{g}}'$ generated by the vectors $t^{\langle \lambda, \overset{\checkmark}{\Delta} \rangle} X_{\alpha}$ and by $\underline{h} \otimes \mathbf{C}[[t]]$. This is a lattice in $\hat{\underline{g}}'$ (i.e. a $\mathbf{C}[[t]]$ submodule of maximal rank.) It is moreover an order in \hat{g}' (i.e. a lattice closed under the Lie bracket). Let (,) be the Killing form on \underline{g} ' ; we extend it to a symmetric bilinear form on $\hat{\underline{g}}$ ' with values in $\mathfrak{C}((t))$. Then $L_{\lambda} = L_{\lambda}^{\#}$ where for any lattice L we denote by $L^{\frac{H}{H}}$ the dual lattice $\{x \in \hat{\underline{g}}' \mid (x,y) \in \mathbb{C}[[t]]$ for all follows that any self dual order is a maximal order, hence, by a theorem of Bruhat-Tits, it is a "maximal parahoric" order. It moreover, must correspond to a special vertex of the extended diagram of g' . Indeed, if L is a maximal parahoric order corresponding to a non-special vertex v , then $\dim(L^{\bullet}/L)$ is equal to the number of roots of g' minus the number of roots in a proper semisimple subalgebra of g'(whose Coxeter diagram is obtained by removing v from the extended diagram of g'); hence L is not self-dual. It follows that the group G' of automorphisms of the Lie algebra $\hat{\underline{g}}'$ inducing identity on the Weyl group, acts transitively on the set X of all self dual orders in $\hat{\underline{g}}'$. Let G_0' be the stabilizer of L_0 in G' . It is known that the sets θ_{λ} (θ_{λ} = G_{0}^{t} - orbit of ℓ_{λ} in X) ($\lambda \in P^{++}$) are disjoint and cover the whole of $\, \, X \,$. For any integer $\, \, n \geq \, 0 \,$, we consider the subset

 $X_n \subset X$ defined by $X_n = \{L \in X \mid t^n L_o \subset L \subset t^{-n} L_o\}$. Then $X_0 \subset X_1 \subset X_2 \subset \ldots$ and their union is X: indeed for any lattice L we can find $n \geq 0$ such that $t^n L_o \subset L$ and we then have by duality $t^n \subset t^{-n} L_o$.

We will show that X_n is in a natural way a projective algebraic variety. To give a self-dual lattice L, $t^nL_0 \subset L \subset t^{-n}L_0$, is the same as to give a subspace T of $t^{-n}L_0/t^nL_0$ which is t-stable and is maximal isotropic for the symmetric C-bilinear form on $t^{-n}L_0/t^nL_0$ defined by $\operatorname{Res}(x,y)$. Moreover, L gives rise to a subspace $\widetilde{L} \subset t^{-n}L_0/t^2nL_0$ of codimension = $\dim L_0/t^nL_0$. Now $t^{-n}L_0/t^2nL_0$ carries a canonical alternating 3-form with values in C, defined by $\operatorname{Res}([x,y],z)$. The condition that L is an order (if we assume that L is already known to be a self-dual lattice) is that this 3-form is identically zero on \widetilde{L} .

Thus, we have a 1-1 correspondence $L \leftrightarrow \overline{L}$ between X_n and the set of maximal isotropic subspaces of $t^{-n}L_o/t^nL_o$, stable under the nilpotent endomorphism t, and whose inverse image in $t^{-n}L_o/t^{2n}L_o$ is such that the canonical alternating 3-form vanishes identically on it.

This is a subset of a Grassmannian, defined by algebraic equations, hence is a projective algebraic variety. Thus X can be regarded as an increasing union of projective varieties. If $\lambda \in P^{++}$ satisfies $\langle \lambda, \overset{\mathsf{V}}{\alpha} \rangle \leq n$ for all roots then $0^*_{\lambda} \subset X_n$. It is then a locally closed subset of X_n , since it can be regarded as an orbit of the algebraic group $G_0^{\mathsf{L}}/\{g^{\mathsf{L}} \in G_0^{\mathsf{L}} \mid g^{\mathsf{L}} \equiv 1 \text{ on } L_0/t^n L_0\}$ acting on X_n .

We then define $\overline{\mathcal{O}}_{\lambda}$ to be the Zariski closure of $\overline{\mathcal{O}}_{\lambda}$ in X_n . One could define similarly the varieties $\overline{\mathcal{O}}_{\lambda}$ over a finite field F_p (instead of over \mathfrak{C}). The number of rational points (over F) of $\overline{\mathcal{O}}_{\lambda}$ (in the sense of intersection cohomology) i.e., with each rational point x counted with a multiplicity equal to the trace of the Frobenius map on $\Sigma(-1)^iH^i_X(\overline{\mathcal{O}}_{\lambda})$ is the left hand side of (8.10), hence it is given by the right hand side of (8.10), with q replaced by p^S .

In particular, the Euler characteristic of $\overline{\mathcal{O}}_\lambda$ (in the sense of intersection cohomology) is equal to $\dim(L_\lambda)$.

- [1] A.A. Beil: Paris t. :
- [2] N. Bourbal
- [3] J.L. Bryli to appear.
- [4] M. Goresky
- [5] N. Iwahori the Hecke 280.
- [6] N. Jacobso
- [7] D. Kazhdan Invent. Ma
- [8] D. Kazhdan Pure Math.
- [9] G. Lusztig group, Pro 1980, 313-
- [10] G. Lusztig Advances i
- [11] G. Lusztig appear.
- [12] G. Lusztig to appear.
- [13] I.G. Macdo Oxford, 19

$X_1 \subset X_2 \subset \dots$ ≥ 0 such that

gebraic variety. To

give a subspace

the symmetric Cgives rise to a

Lo/t²ⁿLo carries

s([x,y],z). The

own to be a self-

nd the set of
otent endomorphism
nical alternating

ations, hence is reasing union of roots then be regarded as acting on X_n.

One could deli of over C).

of intersection

city equal to de of (8.10), d by p^{S} .

REFERENCES

- A.A. Beilinson, J. Bernstein: Localisation des g-modules, C.R.Acad. Sci. Paris t. 292 (1981), série I, 15-18.
- [2] N. Bourbaki : Groupes et algèbres de Lie, ch. IV, V, VI, Hermann, Paris 1968.
- [3] J.L. Brylinski, M. Kashiwara: Kazhdan-Lusztig conjecture and holonomic systems, to appear.
- [4] M. Goresky, R. MacPherson: Intersection homology II, to appear.
- [5] N. Iwahori, H. Matsumoto: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. IHES, 25 (1965),237-280.
- [6] N. Jacobson, Lie algebras, John Wiley & Sons, New York, London and Sydney.
- [7] D. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- [8] D. Kazhdan, G. Lusztig: Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. vol. 36, Amer. Math. Soc., Providence, R.I., 1980, 185-203.
- [9] G. Lusztig,: Some problems in the representation theory of a finite Chevalley group, Proc. Symp. Pure Math. vol. 37, Amer. Math. Soc., Providence, R.I., 1980, 313-317.
- [10] G. Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Advances in Math., vol. 37, n° 2 (1980), 121-164.
- [11] G. Lusztig, Green polynomials and singularities of unipotent classes, to appear.
- [12] G. Lusztig, D. Vogan, Singularities of closures of K-orbit on flag manifolds, to appear.
- [13] I.G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.