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1. The purpose of this paper is to discuss examples in which the intersection coho-
mology theory of Deligne—Coresky—MacPherson [4] enters in an essential way in the
character formula for some irreducible representation of a semisimple group or Lie
algebra. Thus, sections 3-5 are an exposition of the conmection between singularities
of Schubert varieties and multiplicities in Verma modules. In sections 6-11 we give
an interpretation in terms of intersection cohomology for the multiplicities of
weights in a finite dimensional representation of a simple Lie algebra. I wish to
thank J. Bernstein for allowing me to use his unpublished results on the center of

a Hecke algebra. (I learned about his results from D. Kazhdan.) These are used in

the proof of Theorem 6.1 ; the original proof of that Theorem was based on [10] and

on Macdonald's formulas for spherical functions.

2. Notations. For an irreducible complex algebraic variety X , we denote by

HL(X) the i-th cohomology sheaf of the intersection cohomology complex of X .

Let g be a simple complex Lie algebra, b c & a Borel subalgebra, h c b
a Cartan subalgebra, Q* its dual space. Let W c ﬁut(h*) be the Weyl group, and
let S'c W be the set of simple reflections (with respect to b). Qc Ef is the

Ssubgroup generated by the roots.

* i —
P < h is the subgroup consisting of those elements of hr which take inte-

gral values on any coroot. Then Q bhas finite index in P .

*
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ﬁ; c {affine transformations of Ef] is the semidirect of W and of P
~ 3 5 *
(acting by translations). We shall regard Wa as acting on the right on h . The

transform of ) € Df under w € ﬁa will be denoted (A)w

wa is the subgroup of ﬁa generated by W and Q . This is the affine Weyl
group. It is a Coxeter group whose set S, of simple reflections is S together
- . - - 3 3 *

with the reflection in W_ whose fixed point set is {(x€n | <x,§o > =1} ; here

go € h is the highest coroot. Let Q be the normalizer of Sa in ﬁ; . Then ﬁa

is a semi-direct product Q'Wa ‘
For ) € P , we denote by Py the same element, regarded in ﬁq . Since

the group law in Ha 1s written multiplicatively, we have Pyspt = Py Pye for

A,' € P . 2 is the length function on the Coxeter group W, . We extend it to

ﬁ; by 2(yw) = 2(wy) = 2(w) , w € wa s YER . For s ES , let L € 0 be the

; 5 v 2 .
corresponding simple root and let a, € h be the corresponding simple coroot.

Let P = {pep | < p;gs > >0, ¥s € S} . Then Pt parametrizes the dou-

ble cosets wxﬁ;fw : A+ Wp,W . For X € P » W, denotes the stabilizer of X

in W, my is the element of minimal length of wpkw > 0,y is the element of
i : 3 ) ; L
maximal length of Wp W , w is the number of reflections in W, , P, = I q )
A A A A wEW;,
(q 1is an indeterminate). For X =0 , we set Vo=V, Po = P : p EP denotes

half the sum of all positive roots ; H € h denotes half the sum of all positive

coroots.

*

The fundamental alcove Ao is the open simplex in P@R (erbedded in h ) bounded
by the fixed hyperplanes of the various reflections in 31 . An alcove is an open
simplex in P ® R of the form (Ao)w , W E Wa (which is unique). Define a new
(left) action of Wa on the set of alcoves (denotes A -+ yA) by the rule y((AO)w)

o + = = = —
= (Ao)yw . For each X € P , we denote AA = (Ao)pA 3 AA ( Ao)pA . Let < be

the standard partial order on the Coxeter group Wa . It is generated by the rela-

CIONE B, 8. ciiB. ase < Sk for a reduced expr io 8.8 8, €S
152 Ss sn 28,8, s or any reduced expression 1 4 ( i a} ,
1< i_f n . We extend it to a partial order < on ﬁa by yw < y'w'ey =vy' and

W < w' (v,v' € 9, w,w' € Wa) . Let < be the partial order on P defined by
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A <2'es 1" =1 is a linear combination of positive roots, with > 0 integral
: coefficients. If LM € Pt ,» we have X < X' if and only if n, <m

denotes the Verma module for g with highest weight A (with

A" (in Ha).
. *
For A €h » My

respect to b) and LA denotes the unique irreducible quotient g-module of MA

3. We will restrict our attention to the Verma modules H—pw—p (w EW) . In the
Grothendieck group of g-modules, L-pw‘D is a linear combination with integral
coefficients of the g-modules Mﬂpy—p (y <w) . The g-module M—pw—p appears with
coefficient 1, but the other coefficients were rather mysterious. A study of repre-
sentations of Hecke algebras has led Kazhdan and the author [7] to give a (conjec—
tural) algorithm for these coefficients and to interpret them in terms of singula-
rities of Schubert varieties. Let us define the Schubert varieties. Consider the
adjoint group G of & , and let B be the Borel subgroup corresponding to b,

Gw the B-B double coset of G containing a representative of w € W , Ow =waB oot

G/B . The Zariski closure Uw of Ow in G/B is said to be a Schubert variety.

It is the union of the various Oy for y <w .

The following result was conjectured by D. Kazhdan and the author [7],[8] and
was proved by J.L. Brylinski and M. Kashiwara [3] and independently by A.A. Beilinson

and J.N. Bernstein [1], using the theory of holonomic systems.

Theorem 3.1. In the Grothendieck group of g-modules, we have, for any w € W :
(3.2) L = DM cnylain b @)
v i 0, w " =py=p

where dim H"0 (U;) is the dimension of the stalk of Hl(a;) at a point in OY i
y

4. We shall now describe the integers dim Hs (U;) following [7],[8]. Let us re-

call the definition of the Hecke algebra H associated to (W,S) . It consists of

all formal linear combinations I awT"‘T with a € ZIqlfz,q_lxzj with multipli-
wEW

cation defined by the rules TwTw‘ = Tww' if 2(ww') = 2(w) +2(w') and
A /2 ., . i
(ts+l)(T5—q) =0 if s €S ; here g¢q / 1s an indeterminate. Thuere 1s a unique

ring .involutien h +h of H which takes ql‘;2 to q—l}? and T to T_ll(wEEHL
w -
W
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1/2 =172

::r
It is semilinear with respect to the ring involution q +q of . R[qlfz,q 1/2 y

1- !

According to [7,1.1] , for each w € W, there is a unique element C; € H of the

form C' = q_j?’(w:'f2 E P T , where P are polynomials in gq satisfying
W g YWY YW
- o " i 5 - '
Pw,w 1 and deg Py,w < L/2(a(w)-2(y)-1) for y <w , and such that Cw Cw i
The uniqueness of C& holds also if Py = for y <w is only assumed to be a po-
¥

lynomial in q and qﬂl in which only powers qi with 1 < 1/2(g(w)-g(y)-1) are
allowed to occur. It follows automatically that the Py,w are polynomials in gq .
The proof in [7] applies without change. (The discussion so far in this section,
applies to an arbitrary Coxeter group and in particular to (Wa,Sa) . It also applies
word by word to (ﬁa,sa) which although is not a Coxeter group, possesses the length

function and the partial order < which give a sense to the previous definitions

and results.)
We can now state

Theorem 4.1. Let y <w be two elements in the Weyl group W . Then

(4.2) dim HB @) =0 if i is odd
' ¥y
; iy i
(4.3) p dim Hf;.ycow)q =P,

Besides the original proof in [8], there is another proof in [12] which has the
advantage that it also applies in the case where Ew is replaced by the closure of
a K-orbit on G/B , where K 1is the centralizer of an involution in G . (This
plays a role in a character formula for real semisimple Lie groups.) Both proofs

make use of reduction to characteristic > 1 and of a form of Weil's conjectures.

Combining Theorems 3.1, 4.1, we can rewrite (3.2) in the form

b.b ) L = 1 (-7 SO
oW=p y<w ¥ pY=p
where P}r w(1) is the value of Py 2 at q =1 . Using the inversion formula [7
3.1] for the matrix (Py w) , this can be also written as
(4.5) M = ¢ P (DL _
pw=p w<y W,y Py—p

21
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5. Remarks. (a) In the case where y,w € Na . the polynomials Py  have been inter-

preted in [7] in terms analogous to (4.3), as intersection cohomology of certain

generalized Schubert varieties. (In particular, they have > 0 coefficients).

(b) There is a (conjectural) formula analogous to (3.2) for the characters of irre-
ducible rational representations of a semisimple group over an algebraically closed
field of characteristic > 1 . It involves the polynomials PY w for y,w in an

affine Weyl group. (See [9] for a precise statement).

4+
6. If A EP » the g-module LA is finite dimensional. With respect to the

action of h , it decomposes into direct sum of weight spaces parametrized by ele-
+ i .

ments M EP . For p€P , we denote du(LA) the dimension of the p-weight

space in LA . It is well known that du(LA) = 0 wunless <X . The remainder

of this paper is mainly concerned with the proof of the following result.

4
Theorem 6.1 If U, € P , M <X , them d (L,) =P (1)
—_— = - — Tu-A 0,y
Here, P is defined in terms of the Hecke algebra of ﬁa , see section 4 .

n, 0y

(This Hecke algebra will be denoted q ; from now on, we shall reserve the letter
H to denote the Hecke algebra of W. . It is a subalgebra of H .) Note that

= E P
PYy,Yw Py,w (Y Q, y,w € wa) so that the polynomials Py.,w

have > 0 coefficients. For type A, Theorem 6.1 follows from the results of [11],

where P o, are interpreted as Green-Foulkes polynomials. In general, 6.1 would
e §
be a consequence of the conjecture 5(b) together with the Steinberg tensor product

theorem. The integers du(Ll) are given by Weyl's character formula. To state the
formula, we consider the elements

+ 2 - ++
(6.2) b omer I w0 €5 = (2 (P (1w, et

w€WpAW wEW wEW

of the group algebra Q[ﬁa] . Then kA(A € P++) form a Z -basis for the subgroup
1 1 £ ~ i ++
K ={x€-|-ﬁ—f—23[wa]:(2 wx=x(I w) = INI'X}CQ[WS] and iy (A €EP +p)

wEW wEW
form a Z-basis for the subgroup

P hy =y w = Wy

| R OV zZW) : (L (1)
wEW wEW

212
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~ . . 1
It follows that Kl is a subring of @Q[W ] with unit element I w
" = =
and that, with respect to the product in m[ﬁa], we have Jlkl et , 1.e. J

1
is a right Kl—module. Moreover, the map g Jl given by k —4jp'k is an
isomorphism of right Kl—modules. (This is a reformulation of [2, Ch. VI, 3.3,

Prop. 2(iii)] . We can now stat Weyl's character formula as follows

(6.3) For X E Pt , let L L d (L,)k € K1 . Then C'l is the unigque
—_— A uEP++ u by u —_— by L
, 1 .
element in K~ such that ]ocl o

(This is equivalent to the usual formulation in which the character of L, appears

A

as a quotient of two alternating expressions.)

We wish to consider a q-analog of the multiplicity du(LA) . The q-analogs

of the elements (6.2) are the following elements of the Hecke algebra "

(6.4) : e T ( ), € P
: K, = r T =L %I THT (X T), (A€ P
: 3 TswEprw v PP ew VP e ¥
L(w) ~1, -2(m)/2 )
(6.5) 3 = (1 (™1l T (r T)
A wEW w o owew ¥

and therefore
- - - ++
3, = q V2 (1 (L2 T) for A€ P up
wEW = Py wew

Then K,(A € P'") forma z i W T

K=txepl: (1 TIx=x(z 1) =Pxciore’?

wEW wEW

+ -
and JA(A EP ++p) form a ZIqlfz,q liz)-basis for

=

W

J={y€W: (L (-

y=3y( £ T) =Py}
wEW

wEW

/2

Note that K is a subring of H g’@(ql ) with unit element % L Tw and that,
wEW

/2

with respect to the product in H @ ﬂ}(ql ) , we have J-K< J , i.e. J 1is a right

K-module.

In the statement of the following theorem, we shall give a meaning to JA €J

for arbitrary A € P : if (Mw # X for all wE W, w #e , we set

E(W)J(A}w

++
I, = (-1) where w is the unique element of W such that (A)w € P +p.

213



G. LUSZTIG

For the remaining ) € P , we set Jl =0 .

! ++
Theorem 6.6. For any A € P , we have

(-q)_illJ

Loy )/2 -
(6.7) JP (@ AR ) = Mp-ay

1
= L
PA I

(sum over all subsets I of the set of positive roots) ; here ag denotes the sum

of the roots in I .
The proof will be given in Section 7 .

If I 1is as in the previous sum and if w € W is such that Ap-op =

+ iy o = e
(\'tp)w , AT EP E , then A=A o= A-(00)w 1—(p)w 1+p+(ﬂI)W Lo A=) w ]+QJ where J

is the set of positive roots B such that (g)w € I or such that -(8)w is posi-
tive, ¢ I . Since 1> O)w ' (€ P'") and a; > 0, it follows that A > A’

Thus, the right hand side of (6.7) is a linear combination of elements J {A’g})

A+
; 5 3 =1 ; o L 5.8
with formal power series in gq without terms of form q (i > 0) as coefficients ;

moreover for X' < A , the coefficient doesn't have a constant term. On the other

hand, since the left hand side of (6.7) is in J , these coefficients must be poly-

i F 1 - . . - .
nomials in q /2 » 4 1/2 . It follows that they are polynomials in q % (without
constant term if X' < ) ) . The coefficient of Jl+p is equal to 1 ; this follows
from the identity e I (—q)"III =1,
Py 1
wEWl
ar =p=(pdw

Since a triangular matrix with 1's on diagonal has an inverse of the same

++ : 3 i
form, we see that for any ) € P , the element Jk+p is a linear combination of
— L s -—
elements Jp(q 2(p) )IZKA.) s Al <A , with coefficients polynomials in gq 1 (with-
out constant term, if ' <1 and =1, if 1" = A ) . Hence we have

++
Corollary 6.8. For any A € P , there is a unique element Ci € K such that

- 1 =
(6.9) Jp cA Jl+p

It is of the form

214
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v —(py)/2 ’
(6.10) cl =q A b du(LA’q)Ku

++

i 5 wi i 5 . .
where du(LA;q) are polynomials in q and q with integer coefficients ; more-

over, the powers ql appearing in du(LA;q) satisfy i < %{E(pA)—E(pu)J if p <2

and dA(LA;Q) =1 . In particular, the map h - Jph defines an isomorphism of

right K-modules of K onto J .

Note that, if y < A , then ‘%(Q(PA)"R(pU)) is an integer. Indeed, it is

+
]

known [5] that, for A € p¥

(6.11) 2(p,) = <, 2>

Hence %(R(pA)—E(pu)) = %{cx,23>—<u,2§>} = <A-u,g> and this is an integer since

A-pe€EQ

We shall now show that d (LA;Q) are actually polynomials in q with , 0
u .

coefficients.

We have

Theorem 6.12. Ci = qUIZP_ C; (€ P++) - In particular, for <

A
we have

(6.13) d (L,;q) =P
oA nu’nk

hence du(Ln;q) is a polynomial in q with > 0 coefficients.

For the proof of 6.12, we need the following result.

++
6. 5 =]
Lemma 6.14 If XEP , then Jl+p Ao

In the case where % € Qn Pt » this is just Lemma 11.7 of [10] . The general case

is proved in the same way.

The definition of K shows that K is stable under h -+ h (which is ex-

tended to a ring involution of W@ Ell(q“2 o
—_ WEH
From (6.9) it then follows that J C' = J
p A ptA

C!-C! € K , we have C! =¢C' » by the last sentence in Corollary 6.8.
AUA ATy R

- 7 r — ” - -u/2
The element q v/ZPCi is also fixed by h-+h , since q U/2P= q v/ P

215
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ment is equal to
q'u“:’\)/2 z du{y)(LA;q)Ty
y<n,

4+
where u(y) € P is defined by yEW P, (y)w i

We now use the bounds on the powers of q appearing in cl]'I {Ll;q) given in

Corollary 6.8, If follows that q_vIZPC‘{ satisfies the defining property of CT'“ 5

hence is equal to it. Thus Theorem 6.12 follows from Theorem 6.6. On the other hand,

it implies Theorem 6.1. Indeed, under the specialization Z I,'ql”,q_]'/2

by q1{2+ 1, H becomes the group ring Z?-[ﬁﬂ] » K, becomes k (A € P, 3

]+ 2Z ,given
A

. ++ . ++
becomes iy (A E P +p) and (6.9) becomes (6.3). It follows that for up,A € P ,

ME<A du(L ») is the value of d]J(L;\;‘-’t) at g=1 and theorem 6.1 follows.

7. For the proof of Theorem 6.6 we shall need several preliminary steps. We shall
begin with a definition (due to J. Bernstein) of a large commutative subalgebra of

H , which is a q-analogue of the subring Z [P] of Z[ﬁa] . To each 2 €P,

) i "'f.(‘Pll)/Z
Bernstein associates an element T € H defined by T = (q T h
~2(py )/2 P Py X PA
(q 2 Tp ) where 11,A2 are elements of P such that ) = AI—;\Z . This
A
is independent of the choice of J\l,Az , since for A',2" € p't we have the iden-
tity T T =T T = 1F =T (Indeed, we have 2(p ,)+i(p. ) =
p)\' pAII P:\u D;\- PAuPAn PA LNl A A
i(p:\,‘px..) » by (6.11).) It follows also that if 1',1" € P , we have T’p 'T'p =
~F ~ ~ —— ~ ;\‘ )‘"
T T =T and T — T . We shall prove the following
PA| P)\" P_\|+)‘u P:\‘ p—l'

Lemma 7.1. (J. Bernstein) Let A € P and let s € S . We have

T (T +T ) = (T +% )T
TP Poys Py. P)s S

v

Proof : We may clearly assume that < ),& > > 0 . Assume first that < ;,?{s > =0.

s
. i ++ v
We can write ) = A;7A, with Apsh, € P »<Apsag > =<dgal > = 0 . To prove

the identity Ts‘;l_‘p___= "'i‘lp -Ts » We are thus reduced to the case where X € P++ ’
A A

d_‘l-g\]’ > =0 . But then g2(sp. ) = g(p.s) = o(p.)+1 hence T T =T =T =T T

: s b A A S Py A s

as required.
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7 v 5 .
Next, we consider the case where < J,a_ > = 1, i.e. (Q)s = e e In this

case, the result follows from Lemma 4.4.(b) in (G. Lusztig, Some examples of square

integrable representations of semisimple p-adic groups, preprint THES, 1982).

Next, we assume that < }\,gs > =d3> 2 and that the result is already known

when d is replaced by d' , 0 < d' < d . We can write X} = A *A, where <11,§S>=
d=1. ; <)\2,§S > =1 . Then <11+(:\2)s,§5 > = d-2 . The induction hypothesis is appli-
cable to J\l,)\z and to X +(J\2)s . Hence T commutes with A = T +T 3
1 s P, POry)s
=T 4T c=T +T. But T +T = A'B-C  hence T
Pxq p()\z)s’ Pag(rp)s P(ap)st )y Py +A, p('\1+}‘2)5 s
commutes with T ﬁfp . The lemma is proved.
(\)s
We now define, for any A €P an element ?f;\ (] by the formula
~ -u/2 ~
J. =q p' T 6
A Py
- +
where 6 = ¢ T , 8' = E {-q)g‘(w)'[‘ 1 Vhen 3 EP *4+, , we have clearly
w W P
ra welW wEW
J:\ = 'I)\ . In general, we have
~ o o1y () : L
Lemma 7.3. J()L)W (-1) Jl for any X € P, w€ W ; hence, J:\ JJ\ for all
A E P.
Proof : We may assume that w = s € S . Note that Tp =a8 , © TH1 = -g' , hence
—_ s
To+7 = q V% G 4T
L Tys T a0 e ATy e
= q-vIZB'T_lﬁ" +T )T @
s a (W)s''s
-—q-q_v{zﬂ‘ﬁ +T )8 by lemma (7.1)
A Qs
- —q(J. +3
10,9 4)s)

Thus, JlfJ(A)s = 0 , as required.

Lemma 7.4. There is a unique function £ : Qtp = Z{q,q_ll with finite support

satisfying properties (i), (ii), (iii) below :

1) £6) =4
(ii) £Q) #0= 12 <p

217




(iii) Let X =Q+p be an as-string:

G. LUSZTIG

X = {x+na5,n € Z} , where x 1is any fixed

that < As gs »>=a (mod 2) for all

L EX

This function is given by the formula

(7.5) £(N) = (-1)"

element of Q+p and ag is any fixed simple root. Let a > 0 be an integer such

. Then

T f(X)

<), qa ><—a
5 —

v
-q) |I 1q-<?\—p, p>

I
a1=.7\+p

as in 6.6.

tations of (iii)

verify that it satisfies (iii). We shall set

where I runs through the subsets of the set of positive roots, and o, is defined

Proof : The function f defined by (7.5) clearly satisfies (i) and (ii). We now

v v 5
t!s =x Cts = @ ., We have, with the no-

»

(-q) |1 |q— <X-p, §>

o f)=¢-D"
Al AEX
<A, a>>0 1
G
<A, a>>a
v
N A S S L Pt L g
LEX
I3
y S
<), a>>a
where
v v
I| —<x- —<)-
N COOME S SN L Pap TG I § gy LR
AEX AEX
I3a I'2a
=)l+p a_=A~atp
<), g)_:»a £1,§>§1
v v
v I'|+1 <X+opp> v I| -<)p,p>
= (-1) T (_q)[ | q B P> (-1) % (_q)| |q P,pP
L] Aa
AT ex 1
Lo o 3;‘+o
a_[ =)"+p
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4).’ a>>g-2

Hence

(7.6)

A similar ¢

Now the sim

the last su

Comparing %

To ¢
with finite
with f re
an element
invariant ¢
through x

Let a be

&,




¥

is any fixed
nteger such

is defined

We now

th the no-

a-p,§>

Wq-<l-p,g>
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Hence
v
(7.6) b £ = (=Y & {_q}1llq-<k—p,o>
AG% AEX
<X,a>>a I3a
=)\+p
<A?&>=a—2

A similar computation shows that

v
T,y
o =)’ ot gl
AEX AEX
<h,a><-a I3a
a.=h+p
A ¥>=a

Now the simple reflection s maps the set of positive roots # @ onto itself. Hence

the last sum is equal to

v ' v
I| ~<Ap, I'| —<A—p,
-1V L ol o ¥ ¢ (-q)| lq gy
XEX AEX
IFa I'%a
a(1)5=(a+p)s ape=At a-1)a+p
<) ,a>=—a
<A,a>=-a
¢ ¥ I '~ (a=1)a-p,p
-’ ol EDee
A'EX
I'#a
ﬂIr=1I+O

<A '-(a-1)a,d>=-a

= %" 1 (q

2'EX
I'#a

GI|=3I+D

)JI'Jq<A‘—p,g>

<A‘.§>=a—2
Comparing with the right hand side of (7.6), we conclude that f satisfies (iii).
To prove the converse it is enough to show that if a function g: Q4P+ Eﬁ]ﬂ{ﬁ

with finite support satisfies g(p) =0, g()) #0 = A < p and the identity (iii)

with f replaced by g , then g = 0 . Assume that g £0 , and let x € Q+p be

an element of maximal possible length (with respect to some positive definite, W-

invariant scalar product on P® R) such that g(x) # 0 . Let X be the string

through x corresponding to the simple root a - Then x' = (x)s 1is also in X .
v

v 2, vy
Let a be the absolute value of < X,ag >=-4x',us > . If v € X satisfies
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]<y,gs>f >a  then clearly the length of y is strictly bigger than that of x
hence g(y) = 0 . Hence the identity (iii) for g, and X, a , as above, reduces
to g(x) = —qtamlg(x'). It follows that g(x') # O . Note also that x,x' have the
same length. Iterating this, we see that g((x)w) # 0 for all w € W ; moreover,
(x)w has the same length as x . For suitable w € W , we have <(x}w,gs> > 0 for
all simple roots ag - Replacing x by (x)w , we may thus assume that ‘x,gs> >0
for all simple roots a - If we had <x—p,§5> > 0 for all simple roots @, then
it would follow that <xrp,g >> 0 ; since g(x) # 0 , we would have p-x > 0 , hence
p=x = & na (as simple, n_ > 0 integers), hence < -I nsas,g> > 0 . Thus
-z n = 0 , hence n = 0 for all simple roots as , hence x=p . But g(p) =0
and this is a contradiction with g(x) # 0 . Thus, there exists a simple root a
such that < x-o,§5 >< 0 ; simce < x,§5 >> 0, it follows that <x,§s > =0 . Con-
sider the string X through x corresponding to the simple root ag . The equality
<x,§s> = 0 shows that among the elements of X , the element x has minimal length.
It follows that g(y) =0 for all y € X , y # x . Let us now write the identity
(iii) for g, this X , and ‘a=0. We'get g(x) = —q-lg(x) hence g(x) =0

This contradiction shows that g = 0 and the Lemma is proved.

We shall now introduce as in [10] an H-module M as follows. M 1is the

1 - J ; 2 Z
;Z,q 1/2] module with basis (A) where A are the various alcoves in

P®R . For each s € S, » we define an endomorphism T, of this Z?.[q”z,q_”z]—

free Z [q

module by

TS(A) =(sA , if 3 positive coroot & sith <x,8> > n for

v
X € sA, <x,a> <n for x € A

q'sA+(q-1)A , otherwise.

These endomorphisms make M into an H-module.

Let W' be the subgroup of Wa generated by those s € Sa for which
+
s(Ap) cortains p in its closuref (This is a parabolic subgroup of Wa conjugate

to W under an element in @ .)
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Lemma 7.7. 1

f(A) 1is the

Then

@ If y@

A' € Q+p 3

(ii) In gener
be an integer

Proof : (i) Fc

applied to the

Corollary 7.8.

(7.9)

where, for

that hA = A
Proof :_In our
(ii), (iii) of
A; appears wi
follows.

Since t
(7.9) and we o
Yy € 2 be such
left by TY

we have



at of x
ove, reduces

' have the

X
moreover,

v

a>>0 for
5 —

v
a

<x
s

> >0
- then
s
-x > 0 , hence
. Thus
ut g(p) =0
2 root o
s
» =0 . Con-
The equality

inimal length.

: identity

M is the

alcoves in

/2 -1/2

»q ]_
for
which
| conjugate

a

Lemma 7.7. Let y € 'Na . We define a function £ : Q+p —> Zﬁ[q” |

A e e

SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLIC’ITIES

. —1{2] as follows

f£()) 1is the coefficient with which A; appears in

_Giw) -1 -
(L (-q) T, )Ty( b Tw)Ac EM

wEW' wEW
Then
(i) If y(A:} = A; ; AE Pt , A\ € Q+p, then £(1) = qu ; mMOTreover
A" € Q+p , £(A') # 0 implies A' <)

(ii) In general, let X < Q+p be an as—string (us a simple root) and let a >0

be an integer such that dk,gs > =a(mod 2) for all X € X . Then

r £ =-q @D L £(0)

AEX AEX
<A,a_>>a <A,§ ><=a

5 — 8 —

Proof : (i) Follows from [10, 4.2 (a)] and (ii) is a consequence of [10, 9.2]

applied to the element Tyi b Tw)A_

WEW 2
Corollary 7.8. If y in the previous lemma is such that y(A:) = A; , then
2 -1 - - 2(w). -1 -
7.9 (r CThr (1A =a Vs oMz ofona,
wEW' Y wew wEW' AEQH

where, for A € Q+tp , £(2) is given by (7.5), and hl is an element of H such

that hRAD = Al .

Proof : In our case, the function £ of Lemma 7.7 satisfies the conditions (i),
(ii), (iii) of Lemma 7.4, hence is given by (7.5). It follows that for any A€ Q+p,

A; appears with the same coefficient in the two sides of (7.9) and the corollary

follows.

Since the H-module M is faithful, we can erase A; from the two sides of

(7.9) and we obtain an identity in H . We can rewrite this identity as follows. Let

Yy € 2 be such that YW'Y_l =W . We multiply both sides of our identity on the

= qR(pA){Zf . Thus,

left b T . Note that T T =T =T . Moreover T h
= Yy ¢ Yy m Yy A Py

Yy 0

we have
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8'T_0 = (x (—q)E(w)T_l)Tm I T =
P wEW p wEW

=qt: '™ 1otV
wEW AEO+p Py

+4
We can now compute for ) € P 3

3 (q—E(pA)IZK) ___ q“E(Tﬂ,\)/28|T g 1 B_q“ﬂ(P)‘)/zq‘\«'*v_\T 6
p X m PP p
p 2 A
v
q R(mp)lrz'q_z\""‘“}\_ b f(u)qc'KJ:D')auT ‘T 8
uEQ+p Py 2

wrls
P
u
v v
—<p,p>+y/2 =2 I <p, 2
<P:p>*0/2 =20 1y o (_q)| |_q 020> v/2;
I

A
oo

l+afp

g

— Ty
(=q) JJ\"‘aI—p

ﬁWH

i
b I

Here "I runs through the subsetsof the set of positive roots. We make a change of

variable I —— I' = complement of I . Then aptey, = 2o, |I]#+|1'| = v hence
Ly el L
VI Aar=p Py 1 A*p=aq.

and Theorem 6.6 is proved.

8. The following result describes the centre Z of H

Theorem 8.1. (J. Bernstein). Let A€ P++ and let (A)W be its W-orbit in P .
Then 2z, = ¥ ?? is in Z . Moreover, Z 1is the free 2 [qliz,q_liz]—
Nemw fv T

+
module with basis z, (LEP )

Proof : Let s € S . Then T z, =2z T by 7.1. It follows that T z = 2. T for

——— s A A's woA Aw

all w€ W . It is obvious that, for any u € et 5 TD commutes with z, - But
M

the elements Tw (w € W) and TP (p € P++) generate H as an algebra. Hence

zh EZ.

Let zi be the specializations of z under the homomorphism H — Zi[ﬁ;]

given by qlfz — 1 . Then clearly z: form a set of Z -generators for the centre

of Zl[ﬁa] : the elements of P are the only elements of ﬁa whose conjugacy class

is finite. Using a version of Nakayama's lemma it follows that any element z of 2
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——— S

SIp

is a linear c
in the locali
z € H, these

the elements

Let us

(8.2)

It is clear tt

(8.3)

where the > (

of g-modiules

(8.4)

By Weyl's char

It follows 'tha

The identity

(8.5)




‘T 8
P
T T g
Py Py

D&g> \-’."‘2
.\*(}.l—p

1 change of

= v hence

tbit in P .

-1/2
q 1-
lew for
zl . But

bra. Hence

1— Z[W
— [a]

che centre
ugacy class

z of 2

—_— LM e
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is a linear combination of the elements z, with coefficients being allowed to be

in the localization of Z [qllz,q_llz] at the ideal generated by q1/2"1

. Since
i ; . 1/2 -1/2
z € H , these coefficients must automatically be in Z [q »q 1 . The fact that

the elements EN are linearly independent is obvigus. The Theorem is proved.

, ++
Let us now define, for X € P , an element

(8.2) S. = % d (L)z €z
A uEP++ ¥TAT
us<h
: +4
It is clear that for A,A" € P , we have
8.3 8,5, = I n(A, A4S, ,
@ ViR ™ gt 8 %)

where the > 0 integers "m(A\,A';A") are the multiplicities in the tensor product
of g-modules :
(8.4) L ®L, = & n(A, A" AL,

A A IIEP++ l
By Weyl's character formula (6.3) we have

~ 2wy
(t (-1)9‘(“’)T(p)w)sA = I (-1) (")T(Hp)w
wEW wEW

It follows that

=]

TS = ¥l . D305 0%
- Juy™2 x q“"”(-i)““)e'?ﬁ(p)wnsA by lemma (7.3)
= [w ter wéw q'“lz(-l)ﬁ(“)?(n)wsle
- !w[_le' wéw q_v/Z('l)E(w)¥(A+p)we
- i SR RE TV
s
The identity
(8.5) 3,08y =y (er
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1/2 —1!2]_

shows that the map Z — J given by Xk Jpz is an isomorphism of Zq7'F
modules. From this we shall deduce
G 1 =1 4
t 8.6 : T K 1 ] T = 3]
Proposition he map Z ——— given by z —* (P z w)z P "8z is

/2 -1/2 ; =y :
»q l-algebras preserving the unit element. Under this

an isomorﬁhism of Z [q1

isomorphism §, € Z correspond to Ci EK , i.e. Ci = P_lﬂsx

Indeed, we have a commutative diagram

(since P_lJpe = JD) and the maps Z +»J, K + J given by multiplication

'by Jp are known to be isomorphisms (see 6.8). Our map Z ——K preserves multi-

plication : P_lez'P_laz‘ = szezzz' = P_lazz' . Finally SA € Z corresponds to

Ci € K , since both correspond to JR+0 € 7 (see (6.9), (8.5)). The isomor-

phsim Z — K is a version of the Satake. isomorphism. It shows in particular that

K is a commutative algebra.
++
Corollary 8.7. If A,A' € P , we have

g *C!, = E m(A,A"32")C],
A by AIIEP++

where m(A,A";1") are defined by (8.4).

(The remarndble fact in (8.7) is that the coefficients with which C' appears in

:\Il

the decomposition of Ci-Ci, are independent of q .)

Corollary 8.8. For any XA € P++ , we have ;1 =z

Indeed, the isormophism given in 8.6 is compatible with h — h (since P_lﬂ =P_%].

, it follows that S. =S_ . But =z is a Z -linear combination

. T oo
Since C; =C A A A

A A

of element S

(A"i A) hence z =z

A A A

Corollary 8.9. If 1 € g , we have
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(8.10)

(Ercduct over

Proof : The le
x : i—r 2z

Vo eﬁa . Note

and this is kn

Weyl's charact

9. Let yu <

<T,§ >»0 fo
s

the polynomial

only depends o

well defined £

such that for .
(9.1)

for any Tt €P
Proposition 9.:

(9.3)




of Z{qm‘q-lf%_

Phlﬂz is

. Under this

tiplication
rves multi-
sponds to

he isomor-

ticular that

appears in

1 -1

v P e =P

:ombination

8).
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€A+p,§>“1)

G T (q
P -
(8.10) P . qcu,Zpb u+vud {LA;Q) - a>»0 >
WEP u u I ( <d,a>_1)
H<A 9

a>0

(product over all positive roots & )

Proof : The left hand side of (8.10) is x(qi(pl)fzci) (see 6.10) where
1/2,q_1/2}

“ o (w)

x: H— z [q is the algebra homomorphism defined by X(Tw) =q \

. v
Vo €W, . Note that x(T ) = q™™®” for any u € P, (see (6.11)). We have
n

x(qi{p*)fzci} - X(qE(PA)IZP"leSA)

o ql(p“)fzx(sk)

<) g) <p’ g>
=q Lo, du(L ) b q d
ueP w'eE(uwW
u<A

and this is known to be equal to the right hand side of (8.10). (See the proof of

Weyl's character formula in [6])

9. Let u <X be two elements of P . According to [10] if 1 € P is such that

. 4+ ++
<T,§s>:»0 for all s € S (so that, in particular, u+t € P , AT EP ),

the polynomial P . is independent of the choice of 1 . In particular, it
pHET? OAET

only depends on the difference XA-y . Using now (6.13), we see that there exists a

well defined function

; : (kEQ | k >0} >71,[q_l]

such that for any w<X in P, with A -u =k, we have

q‘(K,pb

9-1) d, (@, sa) = P

utT

for any t € P such that <T,a > > 0O, for all s €S .

Proposition 9.2.

% -(n,+...+n )
(9.3) P(x) = £ q ! v
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Here apseeoa is the list of all positive roots and Nyseeesm are required
= v

to be integers. In particular for q =1, P(x) reduces to the Kostant partition

function .

Proof : The formulas (6.7), (6.9), (ﬁ.lé) show that ﬁ(u) satisfies the recurrence

relation

<[p|a 1 if k =0
r (-q) P(K'GI) =
T 0 5 3 k>0

(sum over all subsets I of the set of positive roots), with the convention that
Pl) =0 if 4 0 . From this, the required formula for P(x) follows immediately.

. x +4
It may be conjectured that, for any p<Xi in P , we have

-— — V -
(9.4) AP L g) = 1 CDEDB(Qup)u- Gito))
uooA wEW
For q =1 this reduces to a well knwon formula of Kostant.
(Note added May 1982 : Conjecture (9.4) has been recently proved by S. Kato, to

appear in Inventiones Math.)

For type A, formula (9.4) follows from a statement in [13, p. 131]; indeed,

in that case, the left hand side of (9.4) is a Green-Foulkes polynomial (cf. [11]).

The right hand side of (9.4), in the special case 1y = 0 , appears also in
the work of D. Peterson, in connection with the g-module structure of the (graded)

coordinate ring of the nilpotent variety of g .

10. If ) 1is the highest root, we have du(Ll;q) =1 for any y € e y O<p <.
Indeed, the multiplicity du(LA) is 1 1in this case (it is a dimension of a root
space in the adjoint representation of g). Since du(LA;Q) has > 0 coefficients
and constant term 1, it must be identically 1. If we write the formula (8.10) for

by , the only unknown term is, therefore, do(LA;q) . We can compute it from (8.10)
and we find do(Lx;q) =I qei_l where e, (i =1,...,rk(g)) are the exponents of

g -
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3 - ++
11. We shall now describe the (generalized) Schubert varieties OA (L € P ) with

the following properties
3 i i f % . . . v
a) a& 1s an 1rreducible, projective complex variety of dimension <\,20 >
+4
b) If u,A EP » are such that u < A then a; = Ei =

c) Let x € UA be such that x € 5; (M <X) but x¢ Eﬁ , for any u' < u . Then

i— y . 4 2i = i
the stalks Hx(OA) are zero if 1 is odd and ? dim Hx (Ol)q = du(Ll;q) = Pn

1y
1 urrA

Let g' be a simple complex Lie algebra which is dual to g in the follow-
. . P . . . *
ing sense. There is a Cartan subalgebra h' < g' with a given isomorphism onto h

which carries the set of coroots of g' with respect to h' onto the set of roots

of g' with respect to h . Let é‘ =g' @ a((t)) . For each coroot M3 h of g

we denote by X, a non-zero vector in the corresponding root space of g' . For
++ ~
each A € P , we denote by LA the @[[t]]-submodule of g' generated by the

v
(A,u>
vectors t

X, and by h @ cllt]] . This is a lattice in ﬁ' (i.e. a e[[t]]-
submodule of maximal rank.) It is moreover an order in é' (i.e. a lattice closed
under the Lie bracket). Let (, ) be the Killing form on g' ; we extend it to

a symmetric bilinear form on g' with values in C((t)) . Then LA = Lf where for

any lattice L we denote by L#.the dual lattice {x € Ej | (x,y) € €[le]] for all
y € L} . It is easy to check that if L is any order in _ﬁ' , then Lc ™. 1¢

follows that any self dual order is a maximal order, hence, by a theorem of Bruhat-
Tits, it is a "maximal parahoric" order. It moreover, must correspond to a special
vertex of the extended diagram of 8" . Indeed, if L is a maximal parahoric order
corresponding to a non-special vertex v , then dim([#?L) is equal to the number
of roots of g' minus the number of roots in a proper semisimple subalgebra of g'
(whose Coxeter diagram is obtained by removing v from the extended diagram of g');
hence L is not self-dual. It follows that the group G' of automorphisms of the
Lie algebra éf inducing identity on the Weyl group, acts transitively on the set

Ll

X of all self dual orders in é . Let G; be the stabilizer of Lo in G' . It

++ .
is known that the sets Ol (OA = Gé ~ orbit of IA in X) (A € P ) are dis-

joint and cover the whole of X . For any integer n > 0 , we consider the subset
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: _ n -n :
Xn < X defined by Kn-{LEXJI:LOCLCt LQ} . Then !%c)(lcxzt:
and their union is X : indeed for any lattice L we can find n > 0 such that

tnLo © L and we then have by duality fﬁc t_nLo

We will show that X, is in a natural way a projective algebraic variety. To
give a self-dual lattice L l:nLD ] L s t_nLo ,1s the same as to give a subspace
T of t_nLoitnLo which is t-stable and is maximal isotropic for the symmetric -
bilinear form on t_nLoltnL0 defined by Res(x,y) . Moreover, L gives rise to a
subspace Tee™ /tan of codimension = dim L /"L . Now t "L /tan carries

o o o o o o
a canonical alternating 3-form with values in & , defined by Res([x,y],2z) . The
condition that L is an order (if we assume that L is already known to be a self-

dual lattice) is that this 3-form is identically zero on T

Thus, we have a 1-1 correspondence L ++ [ between Xn and the set of
maximal isotropic subspaces of t_nloftnLc » stable under the nilpotent endomorphism
t , and whose inverse image in t_nLOftanD is such that the canonical alternating

3-form vanishes identically on it.

This is a subset of a Grassmannian, defined by algebraic equations, hence is
a projective algebraic variety. Thus X can be regarded as an increasing union of
projective varieties. If X € P++ satisfies < A,H > <n for all roots then
Oi < X, - It is then a locally closed subset of X, since it can be regarded as

an orbit of the algebraic group Géf{g' € G; | 8" =1 on Lo/tnLo} acting on Xn

We then define EA to be the Zariski closure of Ei in X, - One could de-
fine similarly the varieties ai over a finite field Fps (instead of over ).
The number of rational points (over F S) of 5i (in the sense of intersection co-
homology) i.e., with each rational pciEt %X counted with a multiplicity equal to

the trace of the Frobenius map on E(ﬂl)lH;(aA) is the left hand side of (8.10),

hence it is given by the right hand side of (8.10), with q replaced by p°

In particular, the Euler characteristic of 5? (in the sense of intersection

cohomology) is equal to dim(LA)
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