Problem set 1, due February 20

This homework is graded on 4 points; the two first exercises are graded on 1 point each and the last on 2 points.

Throughout this problem set we take $X_0 = 0$ and $\varepsilon_n = X_n - X_{n-1}, n \ge 1$ to be mutually independent, identically distributed random variables with values in \mathbb{R} . We assume $\mathbb{E}[|\varepsilon_1|] < \infty$ and denote $m = \mathbb{E}[\varepsilon_1]$.

•Exercise 1: The law of large numbers.

(1) Show the weak law of large numbers: for any $\delta > 0$

$$\lim_{n \to \infty} \mathbb{P}\left[\left|\frac{X_n}{n} - m\right| > \delta\right] = 0$$

Hint: Show that

$$\lim_{n \to \infty} \mathbb{E}\left[\left| \frac{X_n}{n} - m \right| \right] = 0$$

(a) Assume that $\mathbb{E}[\varepsilon_1^2] < \infty$ and show that

$$\lim_{n \to \infty} \mathbb{E}\left[\left|\frac{X_n}{n} - m\right|^2\right] = 0.$$

(b) Set $\varepsilon_i^R = \varepsilon_i 1_{|\varepsilon_i| \le R}$, that is $\varepsilon_i^R = \varepsilon_i$ if $|\varepsilon_i| \le R$, and $\varepsilon_i^R = 0$ otherwise, and $X_n^R = \sum_{i=1}^n \varepsilon_i^R$. Show that

$$\lim_{R \to \infty} \lim_{n \to \infty} \mathbb{E}\left[\left| \frac{X_n}{n} - \frac{X_n^R}{n} \right|\right] = 0$$

and conclude.

(2) Show the strong law of large numbers for bounded variables: Assume that ε_1 is bounded uniformly. Show that for any $\delta > 0$

$$\mathbb{P}(\cup_{p\geq 0}\cap_{n\geq p}\{|\frac{X_n}{n}-\mathbb{E}[\varepsilon_1]|\leq \delta\})=1$$

Hint:

(a) Show that for any $\kappa > 0$ there exists a finite constant C_{κ} such that for all $t \in [-\kappa n, \kappa n]$

$$\mathbb{E}[e^{t(\frac{X_n}{n}-m)}] < C_{\kappa}e^{C_{\kappa}\frac{t^2}{n}}$$

and conclude that there exists a positive constant c and a finite constant C such for any $x \in [0,1]$

$$\mathbb{P}(\frac{X_n}{n} - m \ge x) \le Ce^{-cnx^2}$$

- (b) Deduce that $\mathbb{P}(\bigcup_{n\geq p}\{\frac{X_n}{n}-\mathbb{E}[\varepsilon_1]>\delta\})$ goes to zero when p goes to infinity. Conclude. The strong law of large numbers extends to variables in L^1 , but this is more difficult to show.
- •Exercise 2: Recurrence for RW in \mathbb{Z}^d , $d \leq 2$ Assume that ε_i are symmetric (that is the law of $-\varepsilon$ is the same as the law of ε) and with values in \mathbb{Z}^2 . Assume that $\mathbb{E}[\varepsilon_1^2] < \infty$. Show that the arguments developed in the course (see section 1.2.3 in Stroock book) to prove recurrence (that is $\mathbb{P}(\exists n \geq 1 : X_n = 0) = 1$) generalize to this setting.
- •Exercise 3: Queuing problem We consider the case where ε_n belongs to $\{-1,+1\}$ as considered in the course, with probability p to be equal to +1. ε_n represents the number of people

who arrive minus those who can be served in time [n-1,n] (here assumed to be either +1 or -1 for simplicity). We consider the Markov chain which represents the number of people waiting

$$Q_0 = 0 \text{ and } Q_n = (Q_{n-1} + \varepsilon_n)^+$$

with $a^+ = \max\{x, 0\}.$

- (1) Show that $Q_n = \max_{m \le n} \{X_n X_m\}$ and conclude that Q_n has the same law as $M_n = \max_{0 \le m \le n} X_m$.
- (2) Show that

$$\lim_{n \to \infty} \mathbb{P}(Q_n = j) = \mathbb{P}(M_{\infty} = j) \quad \forall j \in \mathbb{N}$$

- (3) Show that $\mathbb{P}(M_{\infty} = \infty) = 1$ when m > 0 by using the first exercise. That is the number of people waiting blows up as time goes in probability as long as m > 0.
- (4) Assume m < 0. Using Exercise 1, show that M_{∞} is finite with probability one. That is the number of people waiting stays finite almost surely.
- (5) In the case m = 0, let $\eta_r = \inf\{n \ge 0; X_n \ge r\}$ and $\rho_0 = \inf\{n \ge 1 : X_n = 0\}$. Recall from the course that $\mathbb{P}(\rho_0 < \infty) = 1$. Show that

$$\delta := \mathbb{P}\left(\eta_1 > \rho_0\right) < 1$$

and deduce that $\mathbb{P}(\eta_1 < \infty) = 1$ Argue that $\mathbb{P}(\eta_{r+1} < \infty) \geq \mathbb{P}(\eta_r < \infty) \mathbb{P}(\eta_1 < \infty)$ and deduce that $\mathbb{P}(\eta_r < \infty) = 1$. Conclude that

$$\mathbb{P}(M_{\infty} = \infty) = 1.$$

(6) Use the computation of $\mathbb{P}(\zeta^a < \infty)$ done in the course to show that

$$\lim_{n \to \infty} \mathbb{P}(Q_n = j) = \begin{cases} \frac{q - p}{q} (\frac{p}{q})^j & \text{if } p < q \\ 0 & \text{otherwise.} \end{cases}$$