PROBLEM SET 7 – 18.725 FALL 2017

GIULIA SACCÀ

Exercise 1. Dual variety. (For the sake of this exercise we will say that an affine scheme \(Z = \text{Spec}(k[x_1, \ldots, x_N]/(f_1, \ldots, f_k)) \subset \mathbb{A}^N \) of dimension \(n \) is singular at a closed point \(x \in Z \) if the Jacobian matrix \((\frac{\partial f_i}{\partial x_j}) (x) \) has rank \(< N - n \).

1. Let \(X \subset \mathbb{A}^N \) be a smooth variety of dimension \(n \) and consider the tangent space \(T_xX \) of \(X \) at \(x \) (viewed naturally as an affine subspace in \(\mathbb{A}^n \), passing through \(x \)). Show that if \(X \) is not a linear space then the scheme theoretic intersection \(Y = X \cap T_xX \) is singular at \(x \).

2. Let \(W = \{ F = 0 \} \subset \mathbb{P}^n \) be a smooth hypersurface of degree \(d \geq 2 \) and let \(\mathbb{P}^n \) be the dual projective space (i.e. the projective space whose points parametrize hyperplanes \(H \subset \mathbb{P}^n \)). Show that

\[Z = \{(w, H) \mid w \in H \cap W \text{ is a singular point} \} \subset W \times \mathbb{P}^n \subset \mathbb{P}^n \times \mathbb{P}^n \]

is closed (find equations).

3. Let \(p : Z \to \mathbb{P}^n \) be the morphism induced by the second projection and set \(W^\vee := p(W) \). Show that \(W^\vee \) (which is called the dual variety of \(W \)) is also the image of the morphism \(\Phi : W \to \mathbb{P}^n \) defined by \(w \mapsto [\frac{\partial F}{\partial x_0}(w), \ldots, \frac{\partial F}{\partial x_n}(w)] \). Deduce that \(\dim W^\vee \leq \dim W \).

4. Let \([H] \in W^\vee \) be a point. What is \(\Phi^{-1}([H]) \)?

5. What happens to \(\Phi \) for \(d = 1 \)?

6. Describe \(W^\vee \), when \(W \subset \mathbb{P}^2 \) is a plane conic.

Exercise 2. The following problems are from Vakil’s notes (numbering refers to the June 4, 2017 Version, available online at http://math.stanford.edu/~vakil/216blog/FOAGjun0417public.pdf)

1. Ex. 3.2.Q
2. Ex. 3.6.J-K
3. Ex. 3.7.F

Mathematics Department, MIT, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307

E-mail address: gsacca@mit.edu