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Abstract

So much of mathematics is involved with the representation of functions. A central example
in pure and applied mathematics is the Fourier series. Its discrete version is computed by the
Fast Fourier Transform, which is the most important algorithm of the last century (and we
report briefly on its approximation by a ”shift and add” binary transform). The Fourier basis
is terrific — but imperfect. The basis functions are global instead of local, and they give poor
approximation at a discontinuity (Gibbs phenomenon). New functions are being developed for
interpolation and approximation and compression and many other applications.

Four properties we want are: local basis, easily refined, fast to compute, good approximation
by a few terms. Splines and finite elements achieve the first three, but they don’t allow com-
pression; if we remove terms the approximation fails. So we turn to the wavelet construction to
permit compression of data — which is needed in so many modern applications where the volume
of data is overwhelming. Wavelets have two types of basis functions, one for averages and the
other (the wavelets themselves) for details at all scales. When the details are not necessary they
can be compressed away to leave a smoothed signal. That construction has entered the new
IEEE standards for signal processing. We will explain how the construction is achieved with
two filters (where one filter would fail). In matrix terms we get a banded block-Toeplitz matrix
with a banded inverse.

Finally we discuss the localized eigenvectors that appear when a few entries are changed in
a familiar tridiagonal Toeplitz matrix.
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1 Introduction

This talk is for people who like matrices. I don’t mean every matrix in the world. If you like all
matrices indiscriminately, that might be too much. I really mean structured matrices — the kind
that appear in solving PDEs, and the kind that appear in signal processing, and the kind that appear
in control theory. These are IMACS matrices!

Many of those matrices are Toeplitz, or nearly Toeplitz (affected by boundary conditions), or
even circulant (from periodic boundary conditions). Their eigenvectors are often oscillatory. For
circulants, the eigenvectors are the columns of the Fourier matrix (DFT matrix) — which is the one
overwhelmingly important complex matrix. The eigenvectors of simple second difference matrices
are discrete sines or discrete cosines. They go into the DST and DCT; these are very useful bases.
Those eigenvector matrices are often orthogonal, and not sparse but full. Since a lot of applied
mathematics is about choosing and also changing bases, we need to multiply by these matrices.

Let me pause a moment. I have touched on several of the themes of this lecture, and it may be
useful to list them:

1. One small part is to report new “shift and add” developments in the implementation of the
DFT and DCT. A new matrix problem appears: Approximation by binary matrices.

2. A larger part is the discussion of good bases — and particularly to explain wavelet bases. I
would like to demystify the wavelet construction. The Discrete Wavelet Transform comes from
a simple idea, that block Toeplitz matrices and their inverses can both be banded (and therefore
very fast to compute).

3. The third part is to discuss the eigenvalues and eigenvectors of nearly Toeplitz matrices. In
this talk, “nearly” does not refer to slow variation down the diagonal, produced by variable
coefficients in a differential equation. We allow large changes in a Toeplitz matrix, but those
modifications must be widely spaced (and low rank). What is the form of the eigenvectors that
appear when a few entries of a structured matrix are modified? Our answer will be: Those
new eigenvectors are highly localized.

Note the use of the word “modification”. A perturbation is usually something small. A
modification can be large. Physicists are interested in random changes along the diagonal
of a structured matrix, but our changes are most often in the interior.

We devote a section to each of these three topics. The first reports on work in the signal
processing literature. The second is adapted from the textbook [6] and lecture notes [9] on
wavelets. The third comes from a joint paper [10] with my students Xiangwei Liu and Susan
Ott that is being prepared for publication.

2 Transforms by Shifts and Adds

This brief section is included to call attention to recent results on “low power matrix multiplication”.
A possible application is to execute signal processing on board a satellite. The available power is very
limited, but the advantages of compression before relaying images to the Earth are highly significant.
There are other applications to computing in a mobile environment.



Two immediate choices for a “fast binary transform” are the DFT and the DCT. The Discrete
Cosine Transform is extremely useful in image processing, where its Neumann boundary conditions [6,
7] offer an extra level of continuity in comparison with a periodic (circular or cyclic) transform. The
DFT matrix is complex, the DCT is real, and both matrices are full:

1
Fj, = exp(2mijk/N) and Cjj, = cos(mj(k + 5)/N) 4, k=0,...,N -1

(with the exception that Cpz = 1/4/2). We concentrate here on the DCT. Very accurate matrix
approximations have been developed by Tran [11, 12] and by Chen, Oraintara and Nguyen [1, 2].
The result announced in [1] is a surprising 8 by 8 integer DCT with a complexity of 45 adds and 18
shifts.

Their construction begins with an exact factorization of the DCT matrix into a product that
involves simpler orthogonal matrices (and especially plane rotations). Normally, an N by N orthog-
onal matrix can be factored into N(N — 1)/2 rotations, but the special structure of the DCT matrix
allows a much shorter and more efficient factorization:

C = (5 rotations) (permutation) (Hadamard matrix)

The permutation matrix is a bit-reversal that reorders the components to 0,4,2,6,1,5,3,7. The
Hadamard matrix requires only additions, because its entries are +1. Then each rotation (the
angles are — /8, 37/8, 3w /8, 7r /16, and 37/16) is approximated by a binary (shift and add) matrix
transform, starting from this factorization:

: COSh-—1 COsh—1
COSG — SmH _ 1 W 1 0 1 W
sinf cosf 0 1 sinf 1 0 1

Breaking each rotation into these three “lifting steps”, we have a total of 15 off-diagonal multi-
pliers. Those are floating-point numbers. To reach a pure “shift and add” implementation, those
numbers are quantized into the form k/2°. The papers [1, 2] give careful descriptions of the whole con-
struction. (The multiplier % exceeds 1 in magnitude when § < 6 < . A different factorization
is used in this range.)

My purpose here is to call your attention to this family of new and interesting questions about
matrices. We have bases that we know to be good (DFT and DCT). They are important enough to
be optimized for very fast and accurate implementation.

3 Wavelets and Good Bases

In the past, signal processing was a topic that stayed almost exclusively in electrical engineering. It
was only the specialists who applied lowpass filters to remove high frequencies from digital signals.
The experts could cancel unwanted noise. They could compress the signal and then reconstruct. It
took two-dimensional experts to do the same for images.

The truth is that everyone now deals with digital signals and images (involving large amounts of
data). We all need to understand signal processing — sampling, transforming, and filtering.



A filter is the most important operation in signal processing. It acts on a signal to produce a
modified signal. Usually some frequency components of the input signal are reduced; it is remarkable
how simply this can be done. When the filter is FIR (finite impulse response), each output sample
y(n) is just a linear combination of a finite number of input samples.

The simplest example is a moving average

y(n) = l:E(n) + 1ﬂv(n —1).
2 2

This filter combines each sample z(n) with the previous sample z(n — 1). The weights in the linear
combination are the filter coefficients 1 and 3. The filter is time-invariant because those coefficients
are constant for all time. The filter is causal because it involves no future samples like z(n + 1).
The effect y(n) never comes earlier than its causes z(n) and z(n — 1). Thus we have a causal linear
time-invariant FIR system.

A causal FIR filter of higher order N has coefficients h(0),h(1),...,A(N). Notice that there are
N +1 coefficients; this is the length of the filter. These coefficients stay fixed for all time so the filter
is time-invariant.

At each time step, the NV + 1 coefficients multiply N + 1 samples from the input signal — the
current sample z(n), the previous sample z(n — 1), continuing back to the sample x(n — N). This
weighted combination of input values produces the output y(n):

y(n) = h(0)z(n) + h(1)z(n —1) +---+ hA(N)z(n — N).

This is the action of the filter in the time domain. We may write it compactly as a sum from £ =0
to k= N:

y(n) =>_ h(k)z(n—k).

A filter is a discrete convolution! It is the fundamental operation for discrete time-invariant systems.
To implement this convolution in hardware, we only need three building blocks: unit delay, multiplier,
and adder.

How does a filter look in the frequency domain? The basic rule is that a convolution becomes
a multiplication. We multiply the Fourier series H (w) with coefficients h(k) and the Fourier series
X (w) with coefficients z(m).The result is the series Y (w) with coefficients y(n). In the frequency
domain, the output Y is the input X multiplied by the response function H:

Yy(n)em™ = (3 h(k)e™™) (S z(m)e=™)
Y(w) = Hw)X(w)

To get e~ in the product of e ** with e "™, we must have k+m = n. That is exactly what we
see in the convolution. The indices k and n — k add to n. The products e *“ and e “* %« multiply
to give e .

This “convolution rule” is more than just algebra because Y = HX has a valuable scientific
meaning:

Each component X (w) of the input is amplified by the
filter response H(w) (or H(e™)) at that frequency w.



Now filter the input signal §(n), an impulse. In the time domain, the convolution has only one

term k£ = n:
y(n) =Y h(k)s(n — k) = h(n).

In the frequency domain, the rule Y (w) = H(w)X (w) reduces to Y (w) = H(w). As predicted, this
matches y(n) = h(n) in the time domain. The transform of the impulse response {h(n)}
i8 the frequency response H(w). This is the function that describes the filter in the frequency

domain:
N

H(w) = h(k)e * = h(0) + h(1)e ™ + --- + h(N)e .

A filter is lowpass when low frequencies have H(w) & 1. They pass through the filter. High
frequencies have H(w) =~ 0, so H(w)X(w) is very small at these frequencies. The output is a
smoothed version of the input. If we want to keep high frequencies, we use a highpass filter.

3.1 Wavelet Transforms

A lowpass filter greatly reduces the high frequency components, which often represent noise in the
signal. For some purposes that is exactly right. But suppose we want to reconstruct the signal. We
may be storing it or transmitting it or operating on it, but we don’t want to lose it. In this case we
can use two filters, highpass as well as lowpass. That generates a “filter bank,” which sends the
signal through two or more filters.

The filter bank structure leads to a Discrete Wawvelet Transform. This has become a guiding idea
for so many problems in signal analysis and synthesis. In itself the transform is lossless! Its inverse
(the synthesis step) is another transform of the same type — two filters that are fast to compute.
Between the DWT and the inverse DW'T we may compress and transmit the signal. This sequence
of steps, transform then compress then reconstruct, is the key to more and more applications.

The word wawvelet is properly associated with a multiresolution into different scales. The simplest
change of scale comes from downsampling a signal — keeping only its even-numbered components
y(2n). This sampling operation is denoted by the symbol | 2:

) o

y(1) | _ | y(0

21 ) ‘[y@)]'
y(3)

Information is lost. But you will see how doubling the length by using two filters, then halving
each output by ({ 2), can give a lossless transform. The input is at one time scale and the two
half-length outputs are at another scale (an octave lower).

lowpass filter |—{| 2 }——averages
Input

highpass filter —|] 21— details
The discrete wavelet transform: averages and details.

Note that an input of even length L produces two outputs of length L/2, after downsampling.
The lowpass filter Hy and the highpass filter H; originally maintain length L, when we deal suitably



with the samples at the ends (possibly by extending the signal to produce the extra components that
the filter needs). When the redundancy from 2L outputs is removed by ({2), the overall filter bank
is L by L. It is a change of basis!

To simplify the theory we often pretend that L = oo. This avoids any difficulty with the samples
at the ends. In reality signals have finite length.

The wavelet idea is to repeat the filter bank. The lowpass output becomes the input to a second
filter bank. The computation is cut in half because this input is half length. Typical applications of
the wavelet transform go to four or five levels. We could interpret this multiscale transform as (quite
long) filters acting on the very first inputs. But that would miss the valuable information stored in
the outputs (averages and details) along the way. Those outputs are the coefficients of the input
when expressed in the wavelet basis.

3.2 The Haar Transform

We now choose one specific example of a filter bank. At first there is no iteration (two scales only).
Then we iterate to multiple scales. The example is associated with the name of Alfred Haar. It uses
the averaging filter (moving average) and the differencing filter (moving difference). They combine
naturally into the most basic example of a filter bank.

The two filters are denoted by Hy (lowpass) and H; (highpass):
Yo = Hox is the averaging filter  yo(n) = (z(n — 1) + z(n))
y1 = Hiz is the differencing filter y;(n) = L(z(n — 1) — z(n)).

Suppose the input signal is zero except for four samples z(1) = 6, z(2) =4, z(3) = 5, z(4) = 1. This
input vector is z = (6,4,5,1). We are looking for its coefficients in the Haar wavelet basis. Those
will be four numbers, yo(2) and yo(4) from subsampling the lowpass output together with y;(2) and
y1(4) from highpass.

In reality we would not compute the odd-numbered components y(1) and y(3) since they are

immediately destroyed by (| 2). But we do it here to see the complete picture. Take averages and
differences of z = (6,4, 5, 1):

Yo(l) = 3 yi(1) = -3
Y(2) = 5 n2) = 1
Averages yo(3) = 4.5 5 (Differences) y1(3) = —0.5
Yo(4) = 3 y(4) = 2
y() = 05 () = 05

You might notice that the sum of the y, vector and the y; vector is the input x = (6,4, 5,1) with
a unit delay (to z(n — 1)). This comes from a simple relation (average + difference) that is special
to Haar:

%(x(n —1)+2z(n)) + %(Ji(n —1)—z(n)) =z(n—1).

It is more important to notice that the differences tend to be smaller than the averages. For a
smooth input this would be even more true. So in a compression step, when we often lose information



in the highpass coefficients, the loss is small using the wavelet basis. Here is a first look at the whole
compression algorithm:

wavelet compressed compressed, .
coefficients coefficients signal
[lossless] [lossy] [lossless]

signal x

At this point we have eight or even ten coefficients in yo and y;. They are redundant! They came from
only four samples in z. Subsample by |2 to keep only the even-numbered components:

(2 = 5 y(2) = 1
yo(4) = 3 yi(4) = 2.

Those are the four “first-level wavelet coefficients” of the signal. The inverse transform (which is coming in
the next section) will use those coefficients to reconstruct x. That will be the synthesis step. Computing
the coeflicients was the analysis step:

Analysis:  Find the wavelet coefficients (separate the signal into wavelets)
Synthesis:  Add up wavelets times coefficients (to reconstruct the signal).

It is like computing Fourier coefficients, and then summing the Fourier series. For wavelets, the analysis
filter bank (Hy and H; followed by | 2) computes the coefficients. The synthesis filter bank (this inverse
wavelet transform will involve upsampling by 12 and two filters) sums the wavelet series.

Now go from the lowpass y0(2) = 5 and y¢(4) = 3 to the next scale by computing averages of averages
and differences of averages:
5+3 5—3
W) =1t =1 m@)=-"=1.
This completes the iteration of the Haar analysis bank. We can see the three scales (fine, medium, and
coarse) in a block diagram that shows the tree of filters with subsampling:

yo(n) yo(2n : o(2n)
’ y1(n) M ::1 (n) z1(2n)
y1(2n)

Effectively, z comes from downsampling by 4. The vector z;(2n) contains the low-low coefficients, averages
of averages. The high-low vector z;1(2n) is also i the length of the original signal. The highpass vector
y1(2n) is half the original length, and % + i + % =1 (this is critical length sampling).

You will ask, why not take averages and differences also of this first highpass output y;(2n)? That is
certainly possible. A “wavelet packet” might choose to do it. But the basic wavelet tree assumes that the
highpass coefficients are small and not worth the additional effort. They are candidates for compression.
For a typical long smooth signal, iteration to four or five scale levels will further decorrelate the samples.

Iterations beyond that are generally not worthwhile.

Summary: The input is z = (6,4,5,1). The wavelet coefficients are
(low-low zg, high-low 21, high 1) = (4,1,1,2).

The special point of the wavelet basis is that you can pick off the highpass details (1 and 2 in y;), before
the coarse details in z; and the overall average in zp.



3.3 Reconstruction by the Synthesis Bank

Other analysis banks don’t have this simple “two at a time” block structure, but the basic principle still
applies. We will show how filtering followed by downsampling is inverted by upsampling followed by
filtering. This sequence of inverse operations (and the notation) is displayed in the following diagram. This
is the synthesis bank:

Lowpass channel: yo(2n) —
+ z(n) =z(n—4).
Highpass channel: y;(2n) —
The goal is to recover the input exactly, when no compression has been applied to the wavelet transform
z(n). The synthesis bank does recover z but with £ delays (¢ depends on the filter bank). Long delays are
not desirable, but causal filters cannot avoid some delay. The filter only looks backward.

First, we show how the combination of upsampling and filtering recovers the input to the Haar filter
(with one delay!).

40(0) yogog
_ 0 sum y(0) |
(129 = o) | 7 |stter 7| | w0(2) z(=1)
0 Y0(2) | . z(0)
y1(0) ylgog _ ig;
B 0 difference —41(0
(12) y1(2n) = y1(1) - filter Fy - yi(Z) -
0 —y1(2) |

The choice of synthesis filters Fy and F; is directly tied to the analysis filters Hy and H; (since the two
filter banks are inverses). We will write down the rule for Fy and Fj, and show that it succeeds (perfect
reconstruction). Fy comes from alternating the signs in H;. This takes the highpass H; into a lowpass
filter Fy. Similarly, the highpass F; comes from alternating the signs of the coefficients in Hy. An example
will make the point more clearly:

1 1
hO:_(_laZ’GaZa_l) fOZ_(laQal)

8 >§ 2

1 1
hi1 = E(la_Qal) fi= Z(la2a_6a27 1)

The coefficients of h; and f; add to zero; a zero-frequency signal (a constant DC signal) is killed by these
highpass filters. The coefficients of hg add to 1 and the coefficients of fy add to 2. The filters hy = (%, %)
and fy = (1,1) in the Haar example followed these rules.

Since you like matrices, let me express the analysis bank (the filters hg and h1) as a matrix multiplication:

-1 2 6 2 -1




The double shift comes from the downsampling step (the matrix for an ordinary filter has rows shifted
by one, so it is a constant-diagonal “Toeplitz matrix”). In the usual model, the input and output vectors
are infinite, with —oo < n < 00, so the matrix A is doubly infinite. The lowpass filter (normalized by % or
not) produces half of A and the highpass filter produces the other half.

To deal with a finite-length input we will assume periodicity. If z(n + 6) = z(n), then the last three
columns of A are moved back into the first three columns. The 6 x 6 matrix becomes finite and square:

-1 2 6 2 -1 0
-1 0 -1 2 6 2

6 2 -1 0 -1 2

Ag = 1 -2 1 0 0 0
0 0 1 -2 1 0

1 0 0 0 1 -2

We have double shifts and wraparound in the rows of Ag. Periodicity allows this finite matrix to display
the crucial properties of the wavelet transform. In practice we might be dealing with 1024 samples z(n),
and the matrix becomes A1p24. The rows still only have five or three nonzeros. Az is computed in 8 x 1024
operations (multiplications and additions).

To display the synthesis filters we put their coefficients into the columns of a matrix Sg or Sig24, again
with the double shifts. Alternating signs will turn 1, —2, 1 into a lowpass filter 1,2,1. Similarly —1,2,6,2,—1
becomes a highpass filter 1,2, —6,2,1 (with coefficients adding to zero).

002 1 1 —6
101 2 0 2
g_1]|200 6 1 1
=% |1 10 1 -6 1
020 1 -6 1
(o011 0 2 2]

This matrix produces the inverse wavelet transform. A direct calculation verifies that AS = I. This is
true for 6 x 6 matrices, and it will remain true for N by N. Notice a remarkable fact: Both matrices A and
S have only AN nonzeros. The inverse transform (the synthesis step using S) is as fast as the analysis step
using A. It is not usual for a sparse matrix to have a sparse inverse, but the wavelet construction makes
this happen.

The wavelet basis vectors appear in the columns of S. Any matrix-vector multiplication Sv yields a
combination of these columns. If the original input is a vector z, then the analysis step produces the
coefficients v = Az in the wavelet expansion. The synthesis is:

z = S(Az) = sum of (basis vectors) times (wavelet coefficients)

We are using the all-important fact for square matrices that AS = I implies SA = I.

The above equation can be interpreted as an ordinary matrix multiplication (combination of the columns
of S) or equivalently as a change of basis. The columns gives the wavelet basis and Az gives the coefficients
of z in this basis. These coeflicients are the numbers produced by the analysis bank.

We can verify that this analysis-synthesis filter bank gives perfect reconstruction with £ = 3 delays: The
output is z(n — 3). Suppose the input is a sinusoid z(n) = ¢ at frequency w. Then Hy and H; become
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multiplications by their response functions Hy(e™) and H;(e*’). The combination of (|2) followed by (12)
introduces zeros in the odd-numbered components, which means that the alias frequency w + 7w appears
together with w:

inw

(12 (12) (e = | P00 | = L [y + enermy]
0(oddn)

The factor e™™ is +1 for even n and —1 for odd n. This aliased frequency w + 7 is appearing in both
channels of the filter bank. It has to be cancelled at the last step by Fy and F;. This was the reason behind
the alternating signs (between hy and f; and between h; and f;). Those alternations introduce powers of
e'™ in the frequency response functions:

. 1 . :
Fo(elw) — 5(1 ) P 6—22w)
_ %(1 _ 9eilwtm) 4 g=2ilwtm)
= 2H, (ei(w+7r)) )
Similarly, F; (¢) = —2Hy(e " «*™). Now follow the pure exponential signal through analysis and synthesis,

substituting these expressions for Fj and F; when they multiply the signal (the last step in the filter bank):

o 1 o o
Hy(e)en — _) 5 [Ho(ezu,v)emw+H0(_ezw)ezn(w+7r)]

— _) Hl(_eiw)HO(eiw)einw +Hl(_eiw)HO(_eiw)ein(w+7r)

Hy(e™)e™ — — 5 [Hl(e“")em“’ + Hl(_eW)em(erﬂ)]
— N _HO(_eiw)Hl (eiw)einw _ HO(_eiuJ)Hl(_eiw)ein(w-i—w) )

These are the outputs from the low and high channels. When we add, the alias terms with frequency w + 7
cancel out. The choice of Fy and F; gave “alias cancellation.”

The condition for perfect reconstruction comes from the terms involving ™. Those don’t cancel! The
sum of these terms should be €/®~9%  which produces the

PR Condition:  H(—e™)Hy(e™) — Ho(—e™)Hy(e™) = e "

coefficient of this lowpass filter P(w) = H;(—e™)Hy(e*) is nonzero. That nonzero coefficient is the
/. We now verify that the example satisfies this PR condition:

) 1 . 1 . . ) .
P(ezw) — Z(1 + e W + 672zw)§(_1 + e W + 66721141 + 267310.1 - 674zw)
1 . . . .
— 3_2(_1 + 96—21w + 16e—3zw + 96—4zw _ e—6zw) .
The coefficients of the product filter P are —1,0,9,16,9,0, —1 divided by 32. The middle coefficient
is é—g = % The zeros in the other odd-numbered coefficients give perfect reconstruction. And it is the

particular coefficients in —1,0,9, 16, 9,0, —1 that make P a powerful lowpass filter, because it has a
fourth-order zero at the top frequency w = 7. Factoring this special polynomial produces

1 + e—iw

P(e") = (TY (=1 +4e™™ — 7).
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Roughly speaking, the power (1 + e )% makes P a good lowpass filter. The final factor is needed
to produce zeros in the first and fifth coefficients of P.

The PR condition applies to the product P and not the separate filters Hy and H;. So any
other factorization of P(e*) into H;(—e™)Hy(e™) gives perfect reconstruction. Here are two other
analysis-synthesis pairs that share the same product P(e):

1
Biorthogonal 0 = 15" LL&8L-D) fo = (11
6/2 . )
hy = 5(1,-1) fi = =(-1,1,-8,8,-1,1)
2 8
1
hy = §(1+\/§,3+\/§,3_\/§,1_\/§)
1
Orthogonal fo = 1(1_\/573_\/5,3+\/§,1+\/§>
4/4 1
1
ho= 1(—1—\/?7,3+\/§,—3+\/§,1_\/§)

The second one is orthogonal because the synthesis filters are just transposes (time-reversed flips)
of the analysis filters. When the inverse is the same as the transpose, a matrix or a transform or a
filter bank is called orthogonal. If we wrote out the infinite matrix Hy,y for this analysis pair, we
would discover that Fy,nx is essentially the transpose. (There will be a factor of 2 and also a shift by
3 diagonals to make the matrix lower triangular and causal again. These shifts are responsible for
the £ = 3 system delays.)

The algebra of PR filter banks was developed by  Smith-Barnwell and
iteration of those filter banks led to wavelets in the 1980s. The great paper of Ingrid Daubechies [3]
gave the theory of orthogonal wavelets, and the first wavelets she constructed came from the coeffi-
cients (1 + V3,3+3,3—3,1— \/3) given above.

The other filter banks, not orthogonal, are called biorthogonal. Synthesis is biorthogonal to
analysis. The rows of Hyanx are orthogonal to the columns of Fy,an—except that (row k)-(column k) =
1. This is always true for a matrix and its inverse:

HF =1 means (rowj of H)- (columnk of F)=46(j — k).
The rows of H and columns of H~! are biorthogonal. The analysis and synthesis wavelets that
come from infinite iteration will also be biorthogonal.
3.4 Scaling Functions and Refinement Equation

May I write down immediately the most important equation in wavelet theory? It is an equation
in continuous time, and its solution ¢(¢) is the “scaling function.” This fundamentally new and
fascinating equation is the refinement equation or dilation equation:

o(t) =23 h(k)$(2t — k)
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The factor 2 gives the right side the same integral as the left side, because each ¢(2¢ — k) has half
the area (from compression to 2t) and ) h(k) = 1. It is the inner factor 2, the one that rescales ¢ to
2t, that makes this equation so remarkable.

If ¢(t) is a solution, so is any multiple of ¢(¢). The usual normalization is [ ¢(t)dt = 1. That
integral extends over all time, —oco < ¢t < oo, but we actually find that the solution ¢(t) is zero
outside the interval 0 < ¢ < N. The scaling function has compact support. This localization
of the function is one of its most useful properties.

Example 1 Suppose h(0) = h(1) = % as in the averaging filter. Then the refinement equation for
the scaling function ¢(t) is

o(t) = o(2t) + p(2t —1).

The solution is the unit box function, which equals 1 on the interval 0 < t < 1 (and elsewhere
¢(t) = 0). The function ¢(2t) on the right side of the equation is a half-box, reaching only to t = 3.
The function ¢(2t—1) is a shifted half-box, reaching fromt = % tot = 1. Together, the two half-bozes
make up the whole box, and the refinement equation is satisfied.

Notice in this example the two key operations of classical wavelet theory:

Dilation of the time scale by 2 or 2:
The graph of ¢(2t) is compressed by 2.

Translation of the time scale by 1 or &:
The graph of ¢(t — k) is shifted by k.

The combination of those operations, from ¢ to 27t to 2/t — k, will produce a family of wavelets
w(27t — k) from a single wavelet w(t). That wavelet comes from the coefficients of the highpass filter:

(1) =2 hi(k)(2t — k).

Solution of the refinement equation. Suppose the lowpass output goes back in as input. The
original input is a box function, and we get ¢*+1(t) from ¢ (¢):

N
Filter and rescale: ¢tV (¢ Z (k)pD (2t — k).
k=0

This is the cascade algorithm. If it converges (see [8]), so that ¢()(¢) approaches ¢(t) as i — oo,
then that limit satisfies the refinement equation.

We can explicitly solve the refinement equation in the frequency domain, for each separate w.
The equation connects the scales t and 2¢, so its Fourier transform connects the frequencies w and
w/2:

The transform of ¢(2t — k) is [ (2t — k)e ™' dt = % _""k/%(%).

Then the refinement equation ¢(t) = 2> h(k)p(2t — k) transforms to

= (Sre)3 () -1 ()7 (5)
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By iteration (which is the cascade algorithm!), the next step gives the factor H(w/4), and (Z(w) =

H($)H (%)a(%) Infinite iteration gives the infinite product formula

d(w) = ﬁH (;"—J) (since $(0) = 1).

J=1

3.5 Good Basis Functions

This section returns to one of the fundamental ideas of linear algebra — a basis. It often happens that
one basis is more suitable than another for a specific application like compression. The whole idea
of a transform (this paper concentrates on the Fourier transform and wavelet transform) is exactly
a change of basis. Each term in a Fourier series or a wavelet series is a basis vector, a sinusoid or a
wavelet, times its coefficient. A change of basis gives a new representation of the same function.

Remember what it means for the vectors wy, ws, ..., w, to be a basis for an n-dimensional space
R™

1. The w’s are linearly independent.
2. The n x n matrix W with these column vectors is invertible.
3. Every vector x in R™ can be written in exactly one way as a combination of the w’s:

T = Cclwi + cwo + - - - + cLw, .

Here is the key point: those coefficients c;, - - -, ¢,, completely describe the vector. In the original
basis (standard basis), the coefficients are just the samples z(1),...,z(n). In the new basis of w’s,
the same z is described by cy, ..., c,. It takes n numbers to describe each vector and it also takes a
choice of basis:

(1) 20(2)
T = z(2) and z=|" (2)
z(3) y1(2)
z(4) standard basis y1(4) Haar basis

The point of wavelets is that both steps, analysis and synthesis, are executed quickly by filtering
and subsampling. Let me extend this to repeat a more general comment on good bases. Orthogonality
gives a simple relation between the transform and the inverse transform (they are “transposes” of each
other). But I regard two other properties of a basis as more important in practice than orthogonality:

Speed: The coefficients ¢y, ..., ¢, are fast to compute.

Accuracy: A small number of basis vectors and their coefficients can represent the
signal very accurately.

For the Fourier and wavelet bases, the speed comes from the FFT and FWT: Fast Fourier Transform
and Fast Wavelet Transform. The FWT is exactly the filter bank tree that we just illustrated for
the Haar wavelets.

The accuracy depends on the signal! We want to choose a basis appropriate for the class of signals

we expect. (It is usually too expensive to choose a basis adapted to each individual signal.) Here is
a rough guideline:
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For smooth signals with no jumps, the Fourier basis is hard to beat.
For piecewise smooth signals with jumps, a wavelet basis can be better.

The clearest example is a step function. The Fourier basis suffers from the Gibbs phenomenon:
oscillations (ringing) near the jump, and very slow % decay of the Fourier coefficients c,. The wavelet
basis is much more localized, and only the wavelets crossing the jump will have large coefficients. Of
course the Haar basis could be perfect for a step function, but it has slow decay for a simple linear
ramp. Other wavelets of higher order can successfully capture a jump discontinuity in the function
or its derivatives.

To emphasize the importance of a good basis (an efficient representation of the data), we will list
some important choices. Each example is associated with a major algorithm in applied mathematics.

1. Fourier series (sinusoidal basis)
2. Finite Element Method (piecewise polynomial basis)
3. Spline Interpolation (smooth piecewise polynomials)

4. Radial Basis Functions (functions of the distance ||z — z;|| to interpolation points z; in d
dimensions)

5. Legendre polynomials, Bessel functions, Hermite functions, ... (these are orthogonal solutions
of differential equations)

6. Wavelet series (functions w(2/z — k) from dilation and translation of a wavelet).

The next good basis to be invented will be another significant step in applied mathematics.

4 Localized Eigenvectors from Widely Spaced Matrix Mod-
ifications

This section is about the eigenvalues and eigenvectors of familiar structured matrices, after changes in
a small number of entries. The actual changes need not be small, so we refer to them as modifications
rather than perturbations. The number of changes is small relative to the size of the matrix, because
the modifications are required to be “widely spaced”. They occur in entries that are far apart. They
produce new eigenvectors that are localized near the components that correspond to the modified
rows. By knowing the approximate form of those eigenvectors, we also determine a very close (and
simple) approximation to the eigenvalues.

Imagine a large number of nodes around a circle. Edges go only to the two neighbors of every
node. Each row of the adjacency matrix A of this cyclic graph has two 1’s. The matrix is a circulant
with 1’s on the first subdiagonal and superdiagonal, coming from the neighbors to the left and right.
Now add a few edges going “across” the circle, so that the nodes involved are widely spaced. The
modified graph has an adjacency matrix (symmetric if the added edges are undirected, but this is
not required) with 1 in the 7,j entry when an edge connects node 7 to node j. A typical example of
our work is to find the “new” eigenvalues and eigenvectors of this modified matrix.
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The author mentioned in STAM News (April 2000) the simplest case of this example. Only one
undirected edge crosses the circle, from node 7 to a distant node j. This added edge modifies A by
a;; = aj; = 1, in other words by a widely spaced submatrix with entries from

0 1
o= 11 0]
The two new 1’s in the modified matrix are far from the main diagonal. The two new eigenvalues

are almost exactly v/5 and —/5. The corresponding eigenvectors show a sum or difference of two
spikes, as in Figure 1, centered at the positions ¢ and j connected by the “shortcut edge”. The

0.5

0.4 b

0.3 B
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0 " 1 n b ) ! " " "
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Figure 1. The eigenvectors for the maximal and minimal eigenvalues of the adjacency matrix of a
200-node cycle with an edge added between nodes 7 = 45 and j = 120

remaining eigenvalues stay in the interval [—2,2] that contains all eigenvalues of the original A.
Their eigenvectors still oscillate like the original eigenvectors, but orthogonality to the new ones
produces the pinching that is illustrated by Figure 2.

This brief report in SIAM News brought suggested proofs from three friends, Beresford Parlett
and Bill Trench and Jackie Shen. All four approaches are different! Shen connected the problem to
the theory of perturbed Schrodinger operators, and we believe that our work can be seen as a small
contribution (possibly not new) to that established theory. We stay with this example, to find the
following formula linking the (nearly exact) new eigenvalues A to the eigenvalues p of B:

A =sign(p) /4 + p?

The rank two perturbation from one undirected edge and the matrix B above has =1 and —1,
confirming that A = /5 and —+/5. In the two localized eigenvectors, the heights of the “spikes” are
given by the eigenvectors (1,1) and (—1,1) of B. We also determine the ratio ¢ between neighboring
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Figure 2: A typical eigenvector corresponding to an eigenvalue in the range of [—2, 2] for the perturbed
adjacency matrix.

entries near the spikes (a smaller ¢ means a sharper spike and a more localized eigenvector). This
pattern extends to any widely spaced modification by a nonsingular B.

Later sections of the full paper [10] will extend the theory beyond the circle of nodes and its
particular adjacency matrix A. We mention that an infinite string of nodes would give the same
results, or even a finite string with a tridiagonal matrix A, provided the modifications occur far from
the ends of the string (the first and last rows of A). The Laplacian matrix of a graph (a circle or a
tree or an N-dimensional grid) is another important source of examples.

4.1 The Model Problem

We start with an infinite line of nodes (the graph has a node at every integer). Its adjacency matrix
A has 1’s on the first subdiagonal and first superdiagonal: a;; 1 = @;;4+1 = 1 for —0o < @ < oc.
The modification of A will be governed by an M by M matrix B, which need not be symmetric.
We choose M widely spaced indices r; < ... < rps; the differences between these indices all exceed
a number L >> 1. Then the 7, j entry of B is added to the r;,r; entry of A. By a terrible abuse of
notation, we call the modified matrix A + B. Our problem is to estimate the “new” eigenvalues and
eigenvectors after the modification:

(A+B)z = Az
The key is that we expect each eigenvector z to be a sum of M spikes. For a given eigenvector,

suppose the spike centered at the r; entry of z has height h;. The “spike ratio” between neighboring
entries is denoted by ¢. Then the j-th component of this eigenvector has the form
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M

k=1

When j = ri, the k-th term reduces to hy as desired. The ratio ¢ will be different for different
eigenvectors ( t will depend on \ ).

Now substitute this form for z into (A+ B)z = Az. We distinguish the special rows j = 71, ..., 75/
from the other rows (ordinary unmodified rows). In those ordinary rows there is no contribution
from B. The matrix A has 1’s to the left and right of the diagonal, which produce an extra factor of
t and 1/t in every spike. The eigenvalue equation in the ordinary rows becomes:

(t+ %)mj = \z;
In each special row 7 = r;, where B has an effect, the equation is
2thy, + (Bh)x = My, + O(t")
You see the change. For the k-th spike, centered on this special row, both 1’s in A produce a

factor ¢ (thus 2t). All the other spikes in z are of order t* in this entry, because the special rows are
far apart. For the same reason z; on the right side equals hy + O(t").

Suppose we ignore the error O(tF). Then the previous equation says that the vector h of spike
heights is an eigenvector of B. If that eigenvector has an eigenvalue p, we have

1
Rtp=A=t+-

Compare the left side with the right side, to find ¢t + p = 1/t. This quadratic equation yields

1
tzi(—ﬂi VA + p?)

Choose the plus-minus sign to agree with the sign of u, so that ¢ also has that sign and |¢| < 1.
Then substitute ¢ into A to find

A =2t + p =sign(p) /4 + p?

This is the (approximate) relation between the new eigenvalue A of A+ B and the eigenvalue p of
B. We want to prove that the error in ) is of the same order O(t%) as the terms that were dropped.

Theorem 1 If i is a non-repeated non-zero eigenvalue of the M by M matriz B, with eigenvector h
of norm one, then X\ and = are within O(tY) of an exact eigenvalue-eigenvector pair for the (infinite)
modified matriz A + B.

This applies to every x > 0, including our z above. We need to do all eigenvalues and to allow
negative entries in B.
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Example 1 Suppose we change only a single entry on the main diagonal from 0 to 1. The modifying
matrix is just B = [1]. For the (infinite) modified matrix, the localized eigenvector is exact! The
eigenvalue is v/5 and the spike ratio is the golden mean ¢ = 1/2(—14+/5). If the single 1 is the (0, 0)
entry, the j-th component of the eigenvector is ¢!,

For a finite matrix, this eigenvalue-eigenvector pair is only approximate. The approximation is
very accurate as soon as the modified entry moves a few positions from the ends of the diagonal.

Example 2 Connect three widely spaced nodes 7,7,k by three undirected edges. In this case the
modifying matrix is

011
B=1]101
110

Its eigenvalues are y = 2,—1,—1. The elgenvalues of the large matrix A + B are approximately
=4+ 22 = \/gand)\— \/4+ = \/_ (twice).

The eigenvector h = (1,1,1) of the small matrix is correctly reflected in the eigenvector of A+ B
for A = v/8. It is very nearly a sum of three equal spikes.

The other eigenvalue y = —1 is repeated. The eigenvalue A = —/5 is nearly but not exactly
repeated. Theorem 1 cannot apply as it stands to the eigenvectors, because the small matrix has a
plane of eigenvectors for 4 = —1. Since A = —+/5 is not exactly repeated, there is no corresponding
plane for A + B.

To extend this example, suppose the modification adds a complete graph on M nodes to the
starting graph (which is still an infinite line of nodes connected only to their neighbors). The
M by M matrix B has 0’s on the diagonal and 1’s everywhere else. Its largest eigenvalue y =
M — 1 has eigenvector h = (1,1,...,1). Then the modified matrix A + B has largest eigenvalue

= /4+ (M — 1) with = sum of equal spikes.

By including three separate applications of matrices in one lecture, we hope that every reader
will have found an IMACS matrix to like.
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