
INTRODUCTION TO LINEAR ALGEBRA

Sixth Edition

SOLUTIONS TO PROBLEM SETS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/weborder.php (orders)

math.mit.edu/linearalgebra (book website)

math.mit.edu/∼gs (author website)

www.wellesleycambridge.com (all books)

Wellesley - Cambridge Press

Box 812060

Wellesley, Massachusetts 02482



Solutions to Problem Sets 1

Three Questions at the End of the Preface

Gilbert Strang, Introduction to Linear Algebra, 6th Editio n (2023)

1. When can lines of lengthsr, s, t form a triangle ?

They must satisfy the strict triangle inequalities

r < s+ t s < r + t t < r + s

If we allow equality, the triangle will have angles of0, 0 and180 degrees.

If r > s+ t, then one segmentr is too long to complete a triangle.

2. If those lines have different fixed directions with adjustable lengths, then a triangle

is always possible.

3. With 4 lines in different directions in3-dimensional space, we are in trouble if some

plane contains three of the lines. Their combinations will always lie in that plane. If

the4th line is not in that plane, thenau+ bv+ cw+dz = 0 is impossible if all four

terms are required to be nonzero.



2 Solutions to Problem Sets

Problem Set 1.1, page 6

1 c = ma andd = mb lead toad = amb = bc. With no zeros,ad = bc is the equation

for a2× 2 matrix to have rank1.

2 The three edges going around the triangle areu = (5, 0),v = (−5, 12),w = (0,−12).
Their sum isu + v + w = (0, 0). Their lengths are||u|| = 5, ||v|| = 13, ||w|| = 12.

This is a5− 12− 13 right triangle with52 + 122 = 25 + 144 = 169 = 132—the best

numbers after the3− 4− 5 right triangle if we don’t count6− 8− 10.

3 The combinations give (a) a line inR3 (b) a plane inR3 (c) all ofR3.

4 v +w = (2, 3) andv −w = (6,−1) will be the diagonals of the parallelogram with

v andw as two sides going out from(0, 0).

w =

[
−2
2

] v +w =

[
2

3

]

v =

[
4

1

]

v −w =

[
6

−1

]

−w

5 This problem gives the diagonalsv + w = (5, 1) andv − w = (1, 5) of the paral-

lelogram and asks for the sidesv andw : The opposite of Problem 4. In this example

v = (3, 3) andw = (2,−2). Those come fromv = 1
2 (v + w) + 1

2 (v − w) and

w = 1
2 (v +w)− 1

2 (v −w).

v −w

v

v +w

w
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6 3v +w = (7, 5) andcv + dw = (2c+ d, c+ 2d).

7 u+v = (−2, 3, 1) andu+v+w = (0, 0, 0) and2u+2v+w = ( add first answers) =

(−2, 3, 1). The vectorsu,v,w are in the same plane because a combinationu+v+w

gives(0, 0, 0). Stated another way :u = −v −w is in the plane ofv andw.

8 The components of everycv+dw add to zero because the components ofv = (1,−2, 1)
and ofw = (0, 1,−1) add to zero.c = 3 andd = 9 give3v+9w = (3, 3,−6). There

is no solution tocv + dw = (3, 3, 6) because3 + 3 + 6 is not zero.

9 The nine combinationsc(2, 1) + d(0, 1) with c = 0, 1, 2 andd = 0, 1, 2 will lie on a

lattice. If we took all whole numbersc andd, the lattice would lie over the whole plane.

c = 2, d = 2

c = 2, d = 0c = 0, d = 2

c = 0, d = 1

c = 0, d = 0

10 The question is whether(a, b, c) is a combinationx1u+ x2v. Can we solve

x1




1

1

0


+ x2




0

1

1


 =




a

b

c


 ?

Certainlyx1 has to bea. Certainlyx2 has to bec. So the middle components give the

requirement a + c = b.

11 The fourth corner can be(4, 4) or (4, 0) or (−2, 2). Draw3 possible parallelograms !

12 Four more corners(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is
(
1
2 ,

1
2 ,

1
2

)
.

Centers of6 faces :
(
1
2 ,

1
2 , 0
)
,
(
1
2 ,

1
2 , 1
)
&
(
0, 12 ,

1
2

)
,
(
1, 1

2 ,
1
2

)
&
(
1
2 , 0,

1
2

)
,
(
1
2 , 1,

1
2

)
.12 edges.

13 The combinations ofi = (1, 0, 0) andi+ j = (1, 1, 0) fill the xy plane in xyz space.

14 (a) Sum= zero vector. (b) Sum= −2:00 vector= 8:00 vector.

(c) 2:00 is 30◦ from horizontal= (cos π
6 , sin

π
6 ) = (

√
3/2, 1/2).
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15 Moving the origin to6:00 addsj = (0, 1) to every vector. So the sum of twelve vectors

changes from0 to 12j = (0, 12).

16 First part :u,v,w are all in the same direction.

Second part : Some combination ofu,v,w gives the zero vector but those3 vectors

are not on a line. Then their combinations fill a plane in3D.

17 The two equations arec+ 3d = 14 and2c+ d = 8. The solution isc = 2 andd = 4.

18 The point
3

4
v +

1

4
w is three-fourths of the way tov starting fromw. The vector

1

4
v +

1

4
w is halfway tou =

1

2
v +

1

2
w. The vectorv +w is 2u (the far corner of the

parallelogram).

19 The combinationscv + dw with 0 ≤ c ≤ 1 and0 ≤ d ≤ 1 fill the parallelogramwith

sidesv andw. For example, ifv = (1, 0) andw = (0, 1) thencv + dw fills the unit

square. In a special case likev = (a, 0) andw = (b, 0) these combinations only fill a

segment of a line.

With c ≥ 0 and d ≥ 0 we get the infinite “cone” or “wedge” betweenv andw.

For example, ifv = (1, 0) andw = (0, 1), then the cone is the whole first quadrant

x ≥ 0, y ≥ 0. Question: What if w = −v? The cone opens to a half-space. But the

combinations ofv = (1, 0) andw = (−1, 0) only fill a line.

20 (a) 1
3u + 1

3v + 1
3w is the center of the triangle betweenu,v andw; 1

2u + 1
2w lies

halfway betweenu andw (b) To fill the triangle keepc ≥ 0, d ≥ 0, e ≥ 0, and

c+ d+ e = 1.

21 The sum is(v−u)+(w−v)+(u−w) = zero vector. Those three sides of a triangle

are in the same plane !

22 The vector12 (u+ v+w) is outsidethe pyramid becausec+ d+ e = 1
2 +

1
2 + 1

2 > 1.

23 All vectors in3D are combinations ofu,v,w as drawn (not in the same plane). Start by

seeing thatcu+dv fills a plane, then adding all the vectorsew fills all of R3. Different

answer whenu,v,w are in the same plane.
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24 A four-dimensional cube has24 = 16 corners and2 · 4 = 8 three-dimensional faces

and24 two-dimensional faces and32 edges.

25 Fact : For any three vectorsu,v,w in the plane, some combinationcu + dv + ew is

the zero vector (beyond the obviousc = d = e = 0). So if there is one combination

Cu+Dv+Ew that producesb, there will be many more—just addc, d, e or 2c, 2d, 2e

to the particular solutionC,D,E.

The example has3u − 2v + w = 3(1, 3) − 2(2, 7) + 1(1, 5) = (0, 0). It also has

−2u+ 1v + 0w = b = (0, 1). Adding givesu − v +w = (0, 1). In this casec, d, e

equal3,−2, 1 andC,D,E = −2, 1, 0.

Could another example haveu,v,w that could NOT combine to produceb? Yes. The

vectors(1, 1), (2, 2), (3, 3) are on a line and no combination producesb. We can easily

solvecu+ dv + ew = 0 but notCu+Dv + Ew = b.

26 The combinations ofv andw fill the planeunlessv andw lie on the same line through

(0, 0). Four vectors whose combinations fill4-dimensional space: one example is the

“standard basis”(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and(0, 0, 0, 1).

27 The equationscu+ dv + ew = b are

2c −d = 1

−c +2d −e = 0

−d+2e = 0

Sod = 2e

thenc = 3e

then4e = 1

c = 3/4

d = 2/4

e = 1/4
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Problem Set 1.2, page 15

1 u · v = −2.4 + 2.4 = 0, u ·w = −.6 + 1.6 = 1, u · (v + w) = u · v + u · w =

0 + 1,w · v = 4 + 6 = 10 = v ·w.

2 The lengths are‖u‖ = 1 and‖v‖ = 5 and‖w‖ =
√
5. Then|u · v| = 0 < (1)(5) and

|v ·w| = 10 < 5
√
5, confirming the Schwarz inequality.

3 Unit vectorsv/‖v‖ = (45 ,
3
5 ) = (0.8, 0.6) andw/‖w‖ = (1/

√
5, 2/
√
5). The vectors

w, (2,−1), and−w make0 ◦, 90 ◦, 180 ◦ angles withw. The cosine ofθ is v
‖v‖ ·

w
‖w‖ = 10/5

√
5 = 2/

√
5.

4 For unit vectorsu,v,w : (a) v · (−v) = −1 (b) (v +w) · (v −w) = v · v +

w · v − v ·w −w ·w = 1+ ( )− ( )− 1 = 0 soθ = 90◦ (noticev ·w = w · v)

(c) (v − 2w) · (v + 2w) = v · v − 4w ·w = 1− 4 = −3.

5 u1 = v/‖v‖ = (1, 3)/
√
10 andu2 = w/‖w‖ = (2, 1, 2)/3. U1 = (3,−1)/

√
10 is

perpendicular tou1 (and so is(−3, 1)/
√
10). U2 could be(1,−2, 0)/

√
5: There is a

whole plane of vectors perpendicular tou2, and a whole circle of unit vectors in that

plane.

6 All vectorsw = (c, 2c) are perpendicular tov = (2,−1). They lie on a line. All

vectors(x, y, z) with x + y + z = 0 lie on aplane. All vectors perpendicular to both

(1, 1, 1) and(1, 2, 3) lie on aline in 3-dimensional space.

7 (a) cos θ = v · w/‖v‖‖w‖ = 1/(2)(1) so θ = 60◦ or π/3 radians (b)cos θ =

0 so θ = 90◦ or π/2 radians (c)cos θ = 2/(2)(2) = 1/2 so θ = 60◦ or π/3

(d) cos θ = −5/
√
10
√
5 = −1/

√
2 soθ = 135◦ or 3π/4 radians.

8 (a) False: v and w are any vectors in the plane perpendicular tou (b) True :

u · (v + 2w) = u · v + 2u · w = 0 (c) True,‖u − v‖2 = (u − v) · (u − v)

splits intou · u+ v · v = 2 whenu · v = v · u = 0.

9 If v2w2/v1w1 = −1 thenv2w2 = −v1w1 orv1w1+v2w2 = v ·w = 0: perpendicular !

The vectors(1, 4) and(1,− 1
4 ) are perpendicular because1− 1 = 0.
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10 Slopes2/1 and−1/2 multiply to give−1. Thenv · w = 0 and the two vectors

(the arrow directions) are perpendicular.

11 v · w < 0 means angle> 90◦; thesew’s fill half of 3-dimensional space. Draw a

picture to showv and thew’s.

12 (1, 1) is perpendicular to(1, 5)− c(1, 1) if (1, 1) · (1, 5)− c(1, 1) · (1, 1) = 6− 2c = 0

(thenc = 3). v · (w − cv) = 0 if c = v · w/v · v. Subtractingcv is the key to

constructing a perpendicular vectorw − cv.

13 One possibility among many:u = (1,−1, 0, 0),v = (0, 0, 1,−1),w = (1, 1,−1,−1)
and(1, 1, 1, 1) are perpendicular to each other. “We can rotate thoseu,v,w in their

3D hyperplane and they will stay perpendicular.”

14 1
2 (x + y) = (2 + 8)/2 = 5 and5 > 4; cos θ = 2

√
16/
√
10
√
10 = 8/10.

15 ‖v‖2 = 1+1+ · · ·+1 = 9 so‖v‖ = 3;u = v/3 = (13 , . . . ,
1
3 ) is a unit vector in9D;

w = (1,−1, 0, . . . , 0)/
√
2 is a unit vector in the8D hyperplane perpendicular tov.

16 cosα = 1/
√
2, cosβ = 0, cos γ = −1/

√
2. For any vectorv = (v1,v2,v3) the

cosines with the3 axes arecos2 α+ cos2 β + cos2 γ=(v21 + v22 + v23)/‖v‖2= 1.

17 ‖v‖2 = 42 + 22 = 20 and‖w‖2 = (−1)2 + 22 = 5. Pythagoras is‖(3, 4)‖2 = 25 =

20 + 5 for the length of the hypotenusev +w = (3, 4).

18 ||v + w||2 = (v + w) · (v + w) = v · (v + w) + w · (v + w). This expands to

v · v + 2v ·w +w ·w = ||v||2 + 2||v|| ||w|| cos θ + ||w||2.

19 We know that(v−w) · (v−w) = v ·v− 2v ·w+w ·w. The Law of Cosines writes

‖v‖‖w‖ cos θ for v · w. Hereθ is the angle betweenv andw. Whenθ < 90◦ this

v ·w is positive, so in this casev · v +w ·w is larger than‖v −w‖2.

Pythagoras changes from equalitya2+b2 = c2 to inequalitywhenθ < 90 ◦ orθ > 90 ◦.

20 2v ·w ≤ 2‖v‖‖w‖ leads to‖v+w‖2 = v ·v+2v ·w+w ·w ≤ ‖v‖2+2‖v‖‖w‖+
‖w‖2. This is(‖v‖+ ‖w‖)2. Taking square roots gives‖v +w‖ ≤ ‖v‖+ ‖w‖.

21 v21w
2
1 + 2v1w1v2w2 + v22w

2
2 ≤ v21w

2
1 + v21w

2
2 + v22w

2
1 + v22w

2
2 is true (cancel4 terms)

because the difference isv21w
2
2 + v22w

2
1 − 2v1w1v2w2 which is(v1w2 − v2w1)

2 ≥ 0.
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22 Example 6 gives|u1||U1| ≤ 1
2 (u

2
1 + U2

1 ) and|u2||U2| ≤ 1
2 (u

2
2 + U2

2 ). The whole line

becomes.96 ≤ (.6)(.8) + (.8)(.6) ≤ 1
2 (.6

2 + .82) + 1
2 (.8

2 + .62) = 1. True : .96 < 1.

23 The cosine ofθ isx/
√
x2 + y2, near side over hypotenuse. Then| cos θ|2 is not greater

than 1 :x2/(x2 + y2) ≤ 1.

24 These two lines add to2||v||2 + 2||w||2 :

||v +w||2 = (v +w) · (v +w) = v · v + v ·w +w · v +w ·w

||v −w||2 = (v −w) · (v −w) = v · v − v ·w −w · v +w ·w

25 The length‖v−w‖ is between2 and8 (triangle inequality when‖v‖ = 5 and‖w‖ =
3). The dot productv ·w is between−15 and15 by the Schwarz inequality.

26 Three vectors in the plane could make angles greater than90◦ with each other: for

example(1, 0), (−1, 4), (−1,−4). Four vectors couldnot do this (360◦ total angle).

How many can can be perpendicular to each other inR3 or Rn? Ben Harris and Greg

Marks showed me that the answer isn + 1. The vectors from the center of a regular

simplex inRn to itsn+1 vertices all have negative dot products. Ifn+2 vectors inRn

had negative dot products, project them onto the plane orthogonal to the last one. Now

you haven+1 vectors inRn−1 with negative dot products. Keep going to 4 vectors in

R2 : no way!

27 The columns of the 4 by 4 “Hadamard matrix” (times12 ) are perpendicular unit

vectors:

1

2
H =

1

2




1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




The columns have

1
4 + 1

4 + 1
4 + 1

4 = 1.

Their dot products

are all zero.

.

28 The commandsV = randn (3, 30);D = sqrt (diag (V ′ ∗ V )); U = V \D; will give

30 random unit vectors in the columns ofU . Thenu ′ ∗ U is a row matrix of 30 dot

products whose average absolute value should be close to2/π.
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29 The four vectorsv1,v2,v3,v4 must add to zero. Then the four corners of the quadri-

lateral could be0 andv1 andv1 + v2 andv1 + v2 + v3. We are allowing the side

vectorsv to cross each other—can you answer if that is not allowed ?
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Problem Set 1.3, page 24

1 The column spaceC(A1) is a plane inR3 : the two columns ofA1 are independent

The column spaceC(A2) is all of R3

The column spaceC(A3) is a line inR3

2 The combinationAx = column1−2 (column2) + column3 is zero for both matrices.

This leaves2 independent columns. SoC(A) is a (2-dimensional) plane inR3.

3 B has2 independent columns so its column space is a plane. The matrix C has the

same2 independent columns and the same column space asB.

4 Ax =




14

28

2




Typical dot product is

2(1) + 1(2) + 2(5) = 14
By =




4

8

18


 Iz = z =




z1

z2

z3




5 Ax = 1




2

4

0


+ 2




1

2

1


+ 5




2

4

0


 =




14

28

2




By = 4




1

1

1


+ 4




0

1

1


+ 10




0

0

1


 =




4

8

18




Iz = z1




1

0

0


+ z2




0

1

0


+ z3




0

0

1


 =




z1

z2

z3




6 A has2 independent columns,B has3, andA+B has3. These are the ranks ofA and

B andA+B. The rule is that rank(A+B) ≤ rank(A) + rank(B).

7 (a)A =


 1 3

2 4


 B =


 3 1

4 2


 A+B =


 4 4

6 6


 = rank1

(b)A =


 1 3

2 4


 B =


 −1 −3

−2 −4


 A+B =


 0 0

0 0


 = rank0
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(c)A =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




B =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




A+B = I = rank4

8 The column space ofA is all of R3. The column space ofB is a line in R3. The

column space ofC is a2-dimensional plane inR3. If C had an additional row of zeros,

its column space would be a2-dimensional planein R4.

9 A =




1 1 2

1 1 1

1 2 1




Seven onesis the maximum for

rank3. With eight ones, two

columns will be equal

10 A =


 3 9

5 15


 has rank1 : 1 independent column,

1 independent row

B =


 1 2 −5

4 8 −20


 has1 independent column inR2,

1 independent row inR3

11 (a) If B has an extra zero column,A andB have thesamecolumn space. Different row

spaces because of different row lengths !

(b) If column3 = column2− column1, A andB have the same column spaces.

(c) If the new column3 in B is (1, 1, 1), then the column space is not changed or

changed depending whether(1, 1, 1) was already inC(A).

12 If b is in the column space ofA, thenb is a combination of the columns ofA and

the numbers in that combinationgive a solutionx toAx = b. The examples are solved

by (x1, x2) = (1, 1) and(1,−1) and
(
− 1

2 ,
1
2

)
.

13 A =




1 0

−1 1

0 −1


 B =




1 0

0 2

−1 −2


 A + B =




2 0

−1 3

−1 −3


 has the

same column space asA andB (other examples could have a smaller column space :

for example ifB = −A in which caseA+B = zero matrix).
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14 A =




1 0 2

3 1 9

5 0 10


 has column3 = 2 (column1) +3 (column2)

A =




1 4 7

2 5 8

3 6 9


 has column3 = −1 (column1) +2 (column2)

A =




1 1 2

2 2 4

0 0 q


 has2 independent columns ifq 6= 0

15 If Ax = b then the extra columnb in
[
A b

]
is a combination of the first columns,

so the column space and the rank are not changed by including theb column.

16 (a)False: B could be−A, thenA+B has rank zero.

(b) True: If the n columns ofA are independent, they could not be in a spaceRm with

m < n. Thereforem ≥ n.

(c) True: If the entries are random and the matrix hasm = n (or m ≥ n), then the

columns are almost surely independent.

17 rank 2 :


 1 0

0 0


+


 0 0

0 1


 rank 1 :


 1 0

0 0


+


 1 0

0 0




rank 0 :


 1 0

0 0


−


 1 0

0 0




18 3




1

1

1


+ 4




0

1

1


+ 5




0

0

1


 =




3

7

12


 = Sx = b

S =




1 0 0

1 1 0

1 1 1


 and the3 dot products inSx are3, 7, 12
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19 Supposea = mc andb = md (all nonzero). Thenamd = bmc. Thena/b = c/d.

If those ratios areM , then(a, c) = M(b, d).

20 Sy =




1 0 0

1 1 0

1 1 1







y1

y2

y3


 =




c1

c2

c3


 is solved byy =




c1

c2 − c1

c3 − c2


. This is

y = S−1c =




1 0 0

−1 1 0

1 −1 1







c1

c2

c3


. S is square with independent columns. SoS

has an inverse withSS−1 = S−1S = I.

21 To solveAx = 0 we can simplify the3 equations (this is the subject of Chapter2).

Start fromAx = 0

x1 +2x2+3x3= 0

3x1 +5x2+6x3= 0

4x1 +7x2+9x3= 0

Row2− 3(row 1)

row 3− 4(row 1)

x1 +2x2+3x3 = 0

− x2− 3x3 = 0

− x2− 3x3 = 0

If x3 = 1 thenx2 = −3 andx1 = 3. Any answerx = (3c,−3c, c) is correct.

22




1 1 0

3 2 1

7 4 c = 3







1 0 c = −1

1 1 0

0 1 1







0 0 0

2 1 5

3 3 6





 2 −1
−4 2





 −2 1

4 −2




have

dependent

columns

23 The equationAx = 0 says thatx is perpendicular to each row ofA (three dot products

are zero). Sox is perpendicular to all combinations of those rows. In otherwords,x is

perpendicular to the row space (here a plane).

An important fact for linear algebra : Everyx in the nullspace ofA (meaningAx = 0)

is perpendicular to every vector in the row space.
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Problem Set 1.4, page 35

1 Here are the4 ways to multiplyAB and the operation counts.A ism byn, B is n by p.

Row i times columnk mp dot products,n multiplications each

Matrix A times columnk p columns,mn multiplications each

Row i times matrixB m rows,np multiplications each

Columnj of A times rowj of B n (columns) (rows),mp multiplications each

2 A =
[
a a a

]
factors intoCR =

[
a
][

1 1 1
]

3




1 0 0

1 1 0

1 1 1







1 0 0

−1 1 0

1 −1 1


 =




1 0 0

0 1 0

1 0 1




[
1 2 3

]


4

5

6


 =

[
32
]




4

5

6




[
1 2 3

]

=




4 8 12

5 10 15

6 12 18




4 (a)
[
1 1

]
 1

1



[
1 1 1

]

= 2
[
1 1 1

]
=
[
2 2 2

]

[
1 1

]


1

1

1




[
1 1 1

]

=
[
1 1

]



1 1 1

1 1 1

1 1 1


=

[
2 2 2

]

(b)


 1 2

0 1




 1 3

0 1




 1 4

0 1


 =


 1 5

0 1




 1 4

0 1


 =


 1 9

0 1





 1 2

0 1




 1 3

0 1




 1 4

0 1


 =


 1 2

0 1




 1 7

0 1


 =


 1 9

0 1




5 A has7 columns and4 rows. Those columns are vectors in4-dimensional space. We

cannot have5 independent column vectors because we cannot have5 independent vec-

tors in4-dimensional space. (This is really just a restatement of the problem. The proof



Solutions to Problem Sets 15

comes in Section3.2 : Everym by n matrixC, with m < n has a nonzero solution to

Cx = 0. Herem = 4 andn = 5 and5 columns ofC cannot be independent.)

6 A =




2 −2 1 6 0

1 −1 0 2 0

3 −3 0 6 1


 C =




2 1 0

1 0 0

3 0 1




7 CR =




2 1 0

1 0 0

3 0 1







1 −1 0 2 0

0 0 1 2 0

0 0 0 0 1


 = A in Problem6.

8 A =




2 2 2

0 4 4

0 0 6


 =




2 2 2

0 4 4

0 0 6







1

1

1


 = AI

A = C

and

R = I

B =




2 2 2

0 0 4

0 0 6


 =




2 2

0 4

0 6





 1 1 0

0 0 1



= CR

9 A random4 by4 matrix has independent columns (C=A andR=I) with probability1.

(We could be choosing the16 entries ofA between0 and1 with uniform probability

by A = rand(4, 4). We could be choosing those16 entries ofA from a “bell-shaped”

normal distribution byA = rand(4, 4). If we were choosing those16 entries from

a finite list of numbers, then there is a nonzero probability that the columns ofA are

dependent. In fact a nonzero probability that all16 numbers are the same.)

10 If A is a random4 by 5 matrix, then (usingrand or randn as above) with probability1

the first4 columns are independent and go intoC. With probability zero (this does not

mean it can’t happen !) the first4 columns will be dependent andC will be different

(C will haver columns withr ≤ 4).

11 A=




1 0 a c

0 1 b d

0 0 0 0

0 0 0 0



=




1 0

0 1

0 0

0 0





 1 0 a c

0 1 b d




= CR. Many other possibilities !
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12 A1 =


 1 2

1 3




 1 0 1

0 1 1


 A2 =


 1 2

1 3




 0 1 0 −1

0 0 1 2




A3 =


 2

6



[
1 0.5 1.5

]

A4 =


 1 0

0 2




 1 0 0 4

0 1 1 0




13 C =


 1

3


 andR =

[
2 4

]
haveCR =


 2 4

6 12


 andRC =

[
14
]

andCRC =


 14

42


 andRCR =

[
28 56

]
.

Here is an interesting fact whenA is m by n andB is n by m. Them numbers on

the main diagonal ofAB have the same total as then numbers on the main diagonal of

BA. Example :

A =


 1 2 3

4 5 6


 B =




0 3

1 4

2 5


 AB =


 8 26

17 62


 BA =




12 15 18

17 22 27

22 29 36




8 + 62 = 12 + 22 + 36

14


 3 6

5 10





 6 −7

7 6





 2 0

3 6





 3 4

−2 −3




rank one orthogonal columns rank2 A2 = I

15 1. Columnj of A equals the matrixC times columnj of R.

This is a combination of thecolumnsof C.

2. Rowi of A is row i of C times the matrixR.

This is a combination of therows of R.

3. (rowi of C) · (columnj of R) givesAij

That dot product requires the number of columns ofC to equal the number of

rows ofR.
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4. C hasr columns soR hasr rows (to multiplyCR). Those columns ofC are

independent (by construction). Those rows ofR are independent (becauseR

contains ther by r identity matrix).

16 (a) The vectorABx is the matrixA times the vectorBx. So it is a combination of the

columns ofA. ThereforeC(AB) ⊆ C(A).

(b)A=


 1 0

0 0


 B=


 0 0

0 1


 giveAB = zero matrix andC(AB)= zero vectors.

17 (a) If A andB have rank1, thenAB has rank1 or 0. A = uvT andB = xyT give

AB = u(vTx)yT soAB = zero matrix if the dot productvTx happens to be zero.

(b) If A andB are 3 by 3 matrices of rank3, then it is true that AB has rank3.

One approach: If ABx = 0 thenBx = 0 becauseA has3 independent columns.

But Bx = 0 only whenx = 0, becauseB has3 independent columns.

(c) SupposeAB = BA for all 2 by 2 matricesB. ChooseB =


 1 0

0 0


 so that

AB=


 c d

e f




 1 0

0 0


=


 1 0

0 0




 c d

e f


. This tells us that


 c 0

e 0


=


 c d

0 0




and therefored = e = 0. Now chooseB =


 0 1

0 0


 so thatAB =


 c 0

0 f




 0 1

0 0




=


 0 1

0 0




 c 0

0 f


. This tells us that


 0 c

0 0


=


 0 f

0 0


andc = f andA = cI.

18 (a)AB =


 3 4

1 2


 andBC =


 2 1

4 3


.

(b) (AB)C = column exchange ofAB =


 4 3

2 1




A(BC) = row exchange ofBC =


 4 3

2 1


 = same resultABC.



18 Solutions to Problem Sets

19 AB =




1 0 0

1 1 0

1 1 1







1 1 1

0 1 1

0 0 1


 =




1

1

1




[
1 1 1

]

+




0

1

1




[
0 1 1

]

+




0

0

1




[
0 0 1

]

=




1 1 1

1 1 1

1 1 1


+




0 0 0

0 1 1

0 1 1


+




0 0 0

0 0 0

0 0 1


 =




1 1 1

1 2 2

1 2 3




BA =




1

0

0




[
1 0 0

]

+




1

1

0




[
1 1 0

]

+




1

1

1




[
1 1 1

]

=




3 2 1

2 2 1

1 1 1




20 AB = (4× 3) (3× 2) needsmnp = (4) (3) (2) = 24 multiples.

Then(AB)C = (4× 2) (2× 1) needs(4) (2) (1) = 8 more : TOTAL32.

BC = (3× 2) (2× 1) needsmnp = (3) (2) (1) = 6 multiplies.

ThenA(BC) = (4× 3) (3× 1) needs(4) (3) (1) = 12 more : TOTAL18.

Best to start with C = vector. Multiply byB to get the vectorBC, and then the vector

A(BC). Vectors need less computing time than matrices !
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Problem Set 2.1, page 46

1 Multiply equation1 by ℓ21 = 10
2 = 5 and subtract from equation2 to find2x+3y = 1

(unchanged) and−6y = 6. The pivots to circle are 2 and−6. Back substitution in

−6y = 6 givesy = −1. Then2x+ 3y = 1 givesx = 2.

2 The row picture and column picture and coefficient matrix arechanged. The solution

has not changed.

3 Subtract− 1
2 (or add 1

2 ) times equation 1. The new second equation is3y=3. Then

y=1 andx=5. If the right sides change sign, so does the solution:(x, y)=(−5,−1).

4 Subtractℓ = c
a times equation1 from equation2. The new second pivot multiplyingy

is d− (cb/a) or (ad− bc)/a. Theny = (ag− cf)/(ad− bc). Notice the “determinant

of A” = ad− bc. It must be nonzero for this division.

5 6x + 4y is 2 times3x + 2y. There is no solution unless the right side is2 · 10 = 20.

Then all the points on the line3x+2y = 10 are solutions, including(0, 5) and(4,−1).
The two lines in the row picture are the same line, containingall solutions.

6 Singular system ifb = 4, because4x+ 8y is 2 times2x+ 4y. Theng = 32 makes the

lines2x+4y = 16 and4x+ 8y = 32 become thesame: infinitely many solutions like

(8, 0) and(0, 4).

7 If a = 2 elimination must fail (two parallel lines in the row picture). The equations

have no solution. Witha = 0, elimination will stop for a row exchange. Then3y = −3
givesy = −1 and4x+ 6y = 6 givesx = 3.

8 If k = 3 elimination must fail: no solution. Ifk = −3, elimination gives0 = 0 in

equation 2: infinitely many solutions. Ifk = 0 a row exchange is needed: one solution.

9 On the left side,6x− 4y is 2 times(3x− 2y). Therefore we needb2 = 2b1 on the right

side. Then there will be infinitely many solutions (two parallel lines become one single

line in the row picture). The column picture has both columnsalong the same line.



20 Solutions to Problem Sets

10 The equationy = 1 comes from elimination (subtractx + y = 5 from x + 2y = 6).

Thenx = 4 and5x− 4y = 20− 4 = c = 16.

11 (a) Another solution is12 (x+X, y+Y, z+Z). (b) If 25 planes meet at two points,

they meet along the whole line through those two points.

12 Elimination leads to an upper triangular system; then comesback substitution.

2x + 3y + z = 8

y + 3z = 4

8z = 8

gives

x = 2

y = 1 If a zero is at the start of row 2 or row 3,

z = 1 that avoids a row operation.

2x − 3y = 3

4x − 5y + z = 7

2x − y − 3z = 5

gives

2x − 3y = 3

y + z = 1

2y + 3z = 2

and

2x − 3y = 3

y + z = 1

− 5z = 0

and

x = 3

y = 1

z = 0

13 Subtract2 times row 1 from row 2 to reach(d − 10)y − z = 2 along withy − z = 3.

If d = 10 exchange rows 2 and 3. Ifd = 11 the system becomes singular.

14 The second pivot position will contain−2 − b. If b = −2 we exchange with row 3.

If b = −1 (singular case) the second equation is−y − z = 0. But equation(3) is the

same so there is aline of solutions(x, y, z) = (1, 1,−1) whenb = −1.

15 (a)

Example of

2 exchanges

0x + 0y + 2z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(exchange 1 and 2, then 2 and 3)

(b)

Exchange

but then

breakdown

0x + 3y + 4z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(rows 1 and 3 are not consistent)

16 If row 1 = row 2, then row2 is zero after the first step; exchange the zero row with row

3. The new row3 has no pivot. If column2 = column1, then column2 has no pivot.

17 Examplex + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different

coefficients but rows 2 and 3 become0 = 0: infinitely many solutions toAx = 0 but

almost surely no solution toAx = b for a randomb.
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18 Row 2 becomes3y − 4z = 5, then row 3 becomes(q + 4)z = t − 5. If q = −4 the

system is singular—no third pivot. Then ift = 5 the third equation is0 = 0 which

allows infinitely many solutions. Choosingz = 1 the equation3y−4z = 5 givesy = 3

and equation 1 givesx = −9.

19 Elimination fails on


a 2

a a


 if a = 2 ora = 0. (You could notice that the determinant

a2 − 2a is zero fora = 2 anda = 0.)

20 a = 2 gives equal columns,a = 4 gives equal rows,a = 0 gives a zero column.

21 Solvable fors = 10 (add the two pairs of equations to geta+b+c+d on the left sides,

12 and2+s on the right sides). So12 must agree with2+s, which makess = 10. The

four equations fora, b, c, d aresingular! Two solutions are


1 3

1 7


 and


0 4

2 6


,

A =




1 1 0 0

1 0 1 0

0 0 1 1

0 1 0 1




and b =




4

2

8

s




and U =




1 1 0 0

0 −1 1 0

0 0 1 1

0 0 0 0




.

22 A(2, :) = A(2, :)− 3 ∗A(1, :) subtracts3 times all of row1 from all of row2.

23 The average pivots for rand(3)withoutrow exchanges were12 , 5, 10 in one experiment—

but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite ! With

row exchangesin MATLAB’s lu code, the averages.75 and .50 and .365 are much

more stable (and should be predictable, also forrandn with normal instead of uniform

probability distribution for the numbers inA).

24 If A(5, 5) is 7 not11, then the last pivot will be0 not4.

25 Row j of U is a combination of rows1, . . . , j of A (when there are no row exchanges).

If Ax = 0 thenUx = 0 (not true ifb replaces0). U just keeps the diagonal ofA when

A is lower triangular,all entries below that diagonal go to zero.

26 The question deals with 100 equationsAx = 0 whenA is singular.
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(a) Some linear combination of the 100columns is the column of zeros.

(b) A very singular matrix has all ones:A = ones(100). A better example has 99

random rows (or the numbers1i, . . . , 100i in those rows). The 100th row could

be the sum of the first 99 rows (or any other combination of those rows with no

zeros).

(c) The row picture has 100 planesmeeting along a common line through0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.
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Problem Set 2.2, page 53

0 If columns1 and 2 of A are exchanged then rows1 and 2 of A−1 are exchanged.

To keepA−1A = I, we have to keep

(
row i of A−1

)
·
(
columni of A

)
=1

(
row i of A−1

)
·
(
columnj of A

)
=0 if i 6= j

1 E21 =




1 0 0

−5 1 0

0 0 1


 , E32 =




1 0 0

0 1 0

0 7 1


 , P =




1 0 0

0 0 1

0 1 0







0 1 0

1 0 0

0 0 1


 =




0 1 0

0 0 1

1 0 0


.

2 E32E21b = (1,−5,−35) but E21E32b = (1,−5, 0). WhenE32 comes first, row 3

feels no effect from row 1.

3




1 0 0

−4 1 0

0 0 1


 ,




1 0 0

0 1 0

2 0 1


 ,




1 0 0

0 1 0

0 −2 1




← E21, E31E32

E = E32E31E21 =




1 0 0

−4 1 0

10 −2 1


 .

ThoseE’s are in the right order to giveEA = U .

E−1 = E−1
21 E−1

31 E−1
32 = L =




1 0 0

4 1 0

−2 2 1




4 Elimination on column 4:b =




1

0

0




E21→




1

−4

0




E31→




1

−4

2




E32→




1

−4

10




. The

originalAx = b = (1, 0, 0) has becomeUx = c = (1,−4,10). Then back substitu-

tion givesz = −5, y = 1

2
, x = 1

2
. This solvesAx = (1, 0, 0).

5 Changinga33 from 7 to11 will change the third pivot from 5 to 9. Changinga33 from

7 to 2 will change the pivot from 5 tono pivot.
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6 Example:




2 3 7

2 3 7

2 3 7







1

3

−1



=




4

4

4




. If all columns are multiples of column1, there

is no second pivot.

7 To reverseE31, add 7 times row1 to row 3. The inverse of the elimination matrix

E =




1 0 0

0 1 0

−7 0 1




isE−1 =




1 0 0

0 1 0

7 0 1




. Multiplication confirmsEE−1 = I.

8 M =


a b

c d


 andM* =


 a b

c− ℓa d− ℓb


. detM* = a(d − ℓb) − b(c − ℓa)

reduces toad− bc ! Subtracting row1 from row2 doesn’t changedetM .

9 M=




1 0 0

0 0 1

−1 1 0




for both parts (a) and (b).

After the exchange, we needE31 (notE21) to act on the new row 3.

10 At the same time




1 0 1

0 1 0

1 0 1


 ;E31E13=




2 0 1

0 1 0

1 0 1


 . Test on the identity matrix!

11 An example with two negative pivots isA =




1 2 2

1 1 2

1 2 1


. The diagonal entries can

change sign during elimination.

12 For the first, a simple row exchange hasP 2 = I so P−1 = P . For the second,

P−1 =




0 0 1

1 0 0

0 1 0


. AlwaysP−1 = “transpose” ofP , coming in Section2.4.
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13


x

y


 =


 .5

−.2


 and


 t

z


 =


−.2

.1


 so A−1 =

1

10


 5 −2

−2 1


. This question

solvedAA−1 = I column by column, the main idea of Gauss-Jordan elimination.

14 An upper triangularU with U2 = I isU =


1 a

0 −1


 for anya. And also−U .

15 (a) Multiply AB = AC byA−1 to findB = C (sinceA is invertible) (b) As long as

B − C has the form


 x y

−x −y


, we haveAB = AC for A =


1 1

1 1


.

16 (a) If Ax = (0, 0, 1) then equation 1+ equation 2− equation 3 is0 = 1

(b) Right sides must satisfyb1 + b2 = b3

(c) In elimination, Row 3 becomes a row of zeros—no third pivot.

17 (a) The vectorx = (1, 1,−1) solvesAx = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does column3 = column1 + 2: no third pivot.

18 Yes,B is invertible (A was just multiplied by a permutation matrixP ). If you exchange

rows1 and2 of A to reachB, you exchangecolumns1 and2 of A−1 to reachB−1. In

matrix notation,B = PA hasB−1 = A−1P−1 = A−1P for thisP .

19 (a) If B = −A thenA,B can be invertible butA+B = zero matrix is not invertible.

(b) A =


1 0

0 0


 andB =


0 0

0 1


 are both singular butA+B = I is invertible.

20 Multiply C = AB on the left byA−1 and on the right byC−1. ThenA−1 = BC−1.

21 M−1 = C−1B−1A−1 so multiply on the left byC and the right byA : B−1 =

CM−1A.

22 B−1 = A−1


1 0

1 1



−1

= A−1


 1 0

−1 1


: subtractcolumn2 ofA−1 from column1.

23 If A has a column of zeros, so doesBA. ThenBA = I is impossible. There is noA−1.

24


a b

c d




 d −b
−c a


 =


ad− bc 0

0 ad− bc


.

The inverse of each matrix is

the other divided byad− bc
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25 E32E31E21 =




1

1

−1 1







1

1

−1 1







1

−1 1

1


 =




1

−1 1

0 −1 1


 = E.

Reverse the order and change−1 to+1 to get inversesE−1
21 E−1

31 E−1
32 =




1

1 1

1 1 1


 =

L = E−1. The off-diagonal1’s are unchanged by multiplying inverses in this order.

26 A2B = I can also be written asA(AB) = I. ThereforeA−1 isAB.

27 A ∗ ones(4, 1) =
[
4 4 4 4

]T
−
[
4 4 4 4

]T
=
[
0 0 0 0

]
soA

cannot be invertible.

28 Six of the sixteen0− 1 matrices are invertible :I andP and all four with three 1’s.

29


1 3 1 0

2 7 0 1


→


1 3 1 0

0 1 −2 1


→


1 0 7 −3

0 1 −2 1


 =

[
I A−1

]
;


1 4 1 0

3 9 0 1


→


1 4 1 0

0 −3 −3 1


→


1 0 −3 4/3

0 1 1 −1/3


 =

[
I A−1

]
.

30 A can be invertible with diagonal zeros (example to find).B is singular because each

row adds to zero. The all-ones vectorx = (1, 1, 1, 1) hasBx = 0.

31




2 1 1

1 2 1

1 1 2




−1

=
1

4




3 −1 −1
−1 3 −1
−1 −1 3


 ; B




1

1

1


 =




2 −1 −1
−1 2 −1
−1 −1 2







1

1

1


 =




0

0

0




soB−1 does not exist.

32
[
U I

]
=




1 a b 1 0 0

0 1 c 0 1 0

0 0 1 0 0 1


→




1 a 0 1 0 −b
0 1 0 0 1 −c
0 0 1 0 0 1




→




1 0 0 1 −a ac− b

0 1 0 0 1 −c

0 0 1 0 0 1


 =

[
I U−1

]
.
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33 (a) True (IfA has a row of zeros, then so does everyAB, andAB = I is impossible).

(b) False (the matrix of all ones is singular even with diagonal 1’s).

(c) True (the inverse ofA−1 isA and the inverse ofA2 is (A−1)2).

34 Elimination produces the pivotsa anda−b anda−b. A−1 =
1

a(a− b)




a 0 −b
−a a 0

0 −a a


.

The matrixC is not invertible ifc = 0 or c = 7 or c = 2.

35 A−1 =




1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1




andx = A−1




1

1

1

1



=




2

2

2

1




. When the triangularA alternates

1 and−1 on its diagonals,A−1 has1’s on the main diagonal and next diagonal.

36 x = (1, 1, . . . , 1) hasx = Px = Qx so(P −Q)x = 0. Permutations do not change

this all-ones vector. ThenP −Q is not invertible.

37 The block inverses are


 I 0

−C I


 and


 A−1 0

−D−1CA−1 D−1


 and


−D I

I 0


.

38 A is invertible when elimination (with row exchanges allowed) produces3 nonzero

pivots.

39
(
I − uvT

)(
I + uvT

(
I − vTu

)−1
)

= I − uvT + uvT
(
I − vTu

)−1 −
(
vTu

)
uvT

(
I − vTu

)−1

= I − uvT + uvT = I
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Problem Set 2.3, page 61

1 ℓ21 = 1 multiplied row 1 and subtracted from row 2;in reverseL =


1 0

1 1


 times

Ux =


1 0

1 1




x

y


 =


5

2


 = c is Ax = b =


1 1

1 2




x

y


 =


5

7


.

In letters,L multiplies Ux = c to giveAx = b.

2 Lc = b is


1 0

1 1




c1
c2


 =


5

7


, solved byc =


5

2


 as elimination goes forward.

Ux = c is


1 1

0 1




x

y


 =


5

2


, solved byx =


3

2


 in back substitution.

3 EA =




1

0 1

−3 0 1







2 1 0

0 4 2

6 3 5


 =




2 1 0

0 4 2

0 0 5


 = U .

With E−1 asL, A = LU =




1

0 1

3 0 1







2 1 0

0 4 2

0 0 5


 =




2 1 0

0 4 2

6 3 5


.

4




1

0 1

0 −2 1







1

−2 1

0 0 1


A =




1 1 1

0 2 3

0 0 −6


 = U . ThenA =




1 0 0

2 1 0

0 2 1


 U is

the same asE−1
21 E−1

32 U = LU . The multipliersℓ21 = ℓ32 = 2 fall into place inL.

5 E32E31E21 A =




1

1

−2 1







1

1

−3 1







1

−2 1

1







1 0 1

2 2 2

3 4 5


. This is




1 0 1

0 2 0

0 0 2


 = U . Put those multipliers2, 3, 2 intoL.ThenA =




1 0 0

2 1 0

3 2 1


U = LU .
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6 A =


2 4

4 11


 =


1 0

2 1




2 4

0 3


 =


1 0

2 1




2 0

0 3




1 2

0 1


=LDU ; U isLT




1

4 1

0 −1 1







1 4 0

0 −4 4

0 0 4


 =




1

4 1

0 −1 1







1

−4
4







1 4 0

0 1 −1

0 0 1


=LDLT.

7




a a a a

a b b b

a b c c

a b c d



=




1

1 1

1 1 1

1 1 1 1







a a a a

b− a b− a b− a

c− b c− b

d− c




. Need

a 6= 0 All of the

b 6= a multipliers

c 6= b areℓij = 1

d 6= c for thisA

8 Correction : Problem 8 has the sameL asProblem 7.


a r r r

a b s s

a b c t

a b c d



=




1

1 1

1 1 1

1 1 1 1







a r r r

b− r s− r s− r

c− s t− s

d− t




. Need

a 6= 0

b 6= r

c 6= s

d 6= t

9


1 0

4 1


 c =


 2

11


 givesc =


2

3


. Then


2 4

0 1


x =


2

3


 givesx =


−5

3


.

Ax = b is LUx =


2 4

8 17


 x =


 2

11


. Eliminate to


2 4

0 1


x =


2

3


 = c.

10




1 0 0

1 1 0

1 1 1


 c =




4

5

6


 givesc =




4

1

1


. Then




1 1 1

0 1 1

0 0 1


x =




4

1

1


 givesx =




3

0

1


.

Those are forward elimination and back substitution for




1 1 1

1 2 2

1 2 3


x =




4

5

6


.

11 (a)L goes toI (b)I goes toL−1 (c)LU goes toU .Elimination multiplies by L−1.

12 (a) Multiply LDU = L1D1U1 by inverses to getL−1
1 LD = D1U1U

−1. The left side

is lower triangular, the right side is upper triangular⇒ both sides are diagonal.

(b) L,U, L1, U1 have diagonal1’s soD = D1. ThenL−1
1 L andU1U

−1 are bothI.
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13




1

1 1

0 1 1







1 1 0

1 1

1


 = LIU ;




a a 0

a a+ b b

0 b b+ c


 = L




a

b

c


U .

A tridiagonal matrixA hasbidiagonal factorsL andU .

14 For the first matrixA,L keeps the 3 zeros at the start of rows. ButU may not have the

upper zero whereA24 = 0. For the second matrixB,L keeps the bottom left zero at

the start of row 4.U keeps the upper right zero at the start of column 4.One zero inA

and two zeros inB are filled in.

15 The 2 by 2 upper submatrixA2 has the first two pivots5, 9. Reason: Elimination onA

starts in the upper left corner with elimination onA2.

16




1 2 0

1 2 0

0 0 0


+




0 0 0

0 3 1

0 6 2


+




0 0 0

0 0 0

0 0 2


 = A =




1 2 0

1 5 1

0 6 4




17 LTL =




1 1 1

0 1 1

0 0 1







1 0 0

1 1 0

1 1 1


=




3 2 1

2 2 1

1 1 1


 andLLT =




1 0 0

1 1 0

1 1 1







1 1 0

0 1 1

0 0 1




=




1 1 1

1 2 2

1 2 3



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Problem Set 2.4, page 71

1 A =


1 0

9 3


 hasAT =


1 9

0 3


 , A−1 =


 1 0

−3 1/3


 , (A−1)T = (AT)−1 =


1 −3
0 1/3


; A =


1 c

c 0


 hasAT = A andA−1 =

1

c2


0 c

c −1


 = (A−1)T.

2 (AB)T =


1 2

3 7


 = BTAT. This answer is different fromATBT =


7 2

3 1




(except whenAB = BA). AAT =


1 0

2 1




2 1

0 1


=


1 2

2 5


 andATA =


5 2

2 1




3 (a) ((AB)−1)T = (B−1A−1)T = (A−1)T(B−1)T. This is also(AT)−1(BT)−1.

(b) If U is upper triangular, so isU−1: then(U−1)T is lower triangular.

4 A =


0 1

0 0


 hasA2 = 0. But the diagonal ofATA has dot products of columns ofA

with themselves. If ATA = 0, zero dot products⇒ zero columns⇒ A = zero matrix.

5 (a) xTAy=
[
0 1

]

1 2 3

4 5 6







0

1

0


=5

(b) This answer5 is the rowxTA =
[
4 5 6

]
timesy




0

1

0


.

(c) This is also the rowxT =
[
0 1

]
timesAy=


2

5


.

6 MT =


A

T CT

BT DT


; MT = M needsAT = A andBT = C andDT = D.
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7 (a) False:


 0 A

A 0


 is symmetric only ifA = AT.

(b) False: The transpose ofAB isBTAT = BA. So(AB)T = AB needsBA = AB.

(c) True: Invertible symmetric matrices have symmetric inverses ! Easiest proof is to

transposeAA−1 = I. So unsymmetricA has unsymmetricA−1.

(d) True:(ABC)T isCTBTAT(= CBA for symmetric matricesA,B, andC).

8 The1 in row 1 hasn choices; then the1 in row 2 hasn− 1 choices . . . (n! overall).

9 P1P2 =




0 1 0

0 0 1

1 0 0







1 0 0

0 0 1

0 1 0


 =




0 0 1

0 1 0

1 0 0


 but P2P1 =




0 1 0

1 0 0

0 0 1


.

If P3 andP4 exchangedifferentpairs of rows, thenP3P4 = P4P3 = both exchanges.

10 (3, 1, 2, 4) and(2, 3, 1, 4) keep4 in place;6 more evenP ’s keep 1 or 2 or 3 in place;

(2, 1, 4, 3) and(3, 4, 1, 2) and(4, 3, 2, 1) exchange 2 pairs.(1, 2, 3, 4) makes12 evens.

11 The “reverse identity”P takes(1, . . . , n) into (n, . . . , 1). When rows and also columns

are reversed, the1, 1 andn, n entries ofA change places inPAP . So do the1, n and

n, 1 entries. In general(PAP )ij is (A)n − i+ 1, n− j + 1.

12 (Px)T(Py)=xTPTPy=xTy sincePTP =I. In generalPx·y=x·PTy 6= x·Py:

Non-equality whereP 6= PT:




0 1 0

0 0 1

1 0 0







1

2

3


 ·




1

1

2


 6=




1

2

3


 ·




0 1 0

0 0 1

1 0 0







1

1

2


.

13 PA =




0 1 0

0 0 1

1 0 0







0 0 6

1 2 3

0 4 5


 =




1 2 3

0 4 5

0 0 6


 is upper triangular. MultiplyingA

on the rightby a permutation matrixP2 exchanges thecolumnsof A. To make thisA

lower triangular, we also needP1 to exchange rows 2 and 3:

P1AP2 =




1

1

1


A




1

1

1


 =




6 0 0

5 4 0

3 2 1


.
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14 A cyclic P =




0 1 0

0 0 1

1 0 0


 or its transpose will haveP 3 = I : (1, 2, 3)→ (2, 3, 1)→

(3, 1, 2)→ (1, 2, 3). The permutation̂P =


1 0

0 P


 for the sameP hasP̂ 4 = P̂ 6= I.

Simple row exchanges haveP 2 = I andP 3 = P .

15 (a) If P sends row1 to row4, thenPT sends row4 to row1 (b) P =


E 0

0 E


 =

PT with E =


0 1

1 0


moves all rows:1 and2 are exchanged,3 and4 are exchanged.

16 A2−B2 and alsoABA are symmetric ifA andB are symmetric. But(A+B)(A−B)

andABAB are generallynot symmetric. Transposes(A − B) (A + B) andBABA.

17 (a) 5+ 4+ 3+ 2+ 1 = 15 independent entries ifS = ST (b) L has 10 andD has 5;

total 15 inLDLT (c) Zero diagonal ifAT = −A, leaving4+3+2+1 = 10 choices.

(d) The diagonal ofATA contains||row 1||2, ||row 2||2, . . .⇒ never negative.

18


1 3

3 2


 =


1 0

3 1




1 0

0 −7




1 3

0 1


;


1 b

b c


 =


1 0

b 1




1 0

0 c− b2




1 b

0 1







2 −1 0

−1 2 −1
0 −1 2


 =




1

−
1

2
1

0 −
2

3
1







2

3

2

4

3







1 −
1

2
0

1 −
2

3

1


 = LDLT.

19




1

1

1


A =




1 0 1

0 1 1

2 3 4


 =




1

0 1

2 3 1







1 0 1

1 1

−1


;




1

1

1


A =




1 2 0

1 1 1

2 4 1


 =




1

1 1

2 0 1







1 2 0

−1 1

1



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20 A =




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



= P andL = U = I.

Elimination on thisA = P exchanges

rows1-2 then rows2-3 then rows3-4.

21 One way to decide even vs. odd is to count all pairs thatP has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange

always switches that count! Then 3 or 5 exchanges will leave that count odd.

22 A =




0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2




= AT has0, 1, 2, 3 in every row. I don’t know any rules for a

symmetric construction like this “Hankel matrix” with constant antidiagonals.

23 Reordering the rows and/or the columns of
[
a b

c d

]
will move the entrya. So the result

cannot be the transpose (which doesn’t movea).

24 (a) Total currents areATy =




1 0 1

−1 1 0

0 −1 −1







yBC

yCS

yBS


 =




yBC + yBS

−yBC + yCS

−yCS − yBS


.

(b) Either way(Ax)Ty = xT(ATy) = xByBC + xByBS − xCyBC + xCyCS −
xSyCS − xSyBS . Six terms.

25 P =




0 1 0

0 0 1

1 0 0


 andP 3 = I so three rotations for360◦; P rotates everyv around

the(1, 1, 1) line by120◦.

26 L(UT)−1 is lower triangular times lower triangular, solower triangular. The transpose

of UTDU is UTDTUT T = UTDU again, soUTDU is symmetric. The factorization

multiplies lower triangular by symmetric to getLDU which isA.

27 These are groups: Lower triangular with diagonal1’s, diagonal invertibleD, permuta-

tionsP , orthogonal matrices withQT = Q−1.
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28 There aren! permutation matrices of ordern. Eventuallytwo powers ofP must be

the same permutation. And if P r = P s thenP r − s = I. Certainlyr − s ≤ n!

P =


P2

P3


 is 5 by 5 with P2 =


0 1

1 0


 andP3 =




0 1 0

0 0 1

1 0 0


 andP 6 = I.

29 To split the matrixM into (symmetricS) + (anti-symmetricA), the only choice is

S = 1
2 (M +MT) andA = 1

2 (M −MT).

30 Start fromQTQ = I, as in




qT
1

qT
2





q1 q2


 =




1 0

0 1




(a) The diagonal entries giveqT
1 q1 = 1 andqT

2 q2 = 1: unit vectors

(b) The off-diagonal entry isqT
1 q2 = 0 (and in generalqT

i qj = 0)

(c) The leading example forQ is the rotation matrix


cos θ − sin θ

sin θ cos θ


.
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Problem Set 2.5, page 81

1 ∆y= y(x+ h)− y(x) = (x+ h)3 − x3

= x3 + 3x2h+ 3xh2 + h3 − x3

First order term= 3x2h matchesh dy/dx.

Second order term= 3xh2 matches12h
2d2y/dx2 = 1

2h
2(6x).

2 y = ex hasdy/dx = ex = 1 at the pointx = 0. The tangent line atx = 0 is y = 1+x.

3 y = ex hasd2y/dx2 = ex = 1 at x = 0. The tangent parabola atx = 0 is

y = 1 + x+ 1
2x

2. At x = h this parabola is1 + h+ 1
2 h

2 = eh to second order.

4 y = ex has alldny/dxn = ex = e0 = 1 atx = 0. So the Taylor series isy(h) = eh =

1 + h+ 1
2h

2 + · · ·+ 1
n!h

n + · · · .

5 sinh = h− 1
6h

3 + 1
5!h

5 − · · · so the error insinh− h is orderh3.

6 Separate the real and imaginary parts ofeix (even and odd powers ofi). Those two parts

are exactly the Taylor series forcosx andsinx. So comparing Taylor series produces

eix = cosx+ i sinx.

7 Centered
(1/10)3 − (−1/10)3

2/10
=

1

100
is approximating

dy

dx
= 3x2 = 0 atx = 0.

Forward
(1/10)3 − 0

1/10
=

1

100
Backward

0− (−1/10)3
1/10

=
1

100
.

By chance all three give the same answer.

8 Substitutey(h) and alsoy(−h) in the3 options of Problem 7,:

Centered gives
2h dy/dx(0)

2h
= exact through theh2 term.

Forward gives
dy

dx
(0) +

1

2
h
d2y

dx2
(0) = error of orderh.

Backward gives
dy

dx
(0)− 1

2
h
d2y

dx2
(0) = error of orderh.

9 Compare
e− e−1

2
and

e− 1

1
and

1− e−1

1
as approximations tody/dx(0) = e0 = 1.

Takinge ≈ 2.8 ande−1 ≈ .35, the first (centered) difference wins easily.
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10 (e − 2 + e−1) ≈ (2.78 − 2 + 0.36) = 1.14. The correct second derivative ofex at

x = 0 is 1.00 : 14% error.

11 The3rd difference uses numbers1,−3, 3,−1.

Test ony = x3 33−3(23)+3(13)− (03) = 27−24+3 = 0 = correct at x = 0.

Test ony = x4 34 − 3(24) + 3(14)− (04) = 81− 48 + 3 6= 0 at x = 0.

12
∞∑

−∞
fi gi+1 =

∞∑

−∞
fi−1 gi (just shiftingi by 1 in infinite series).

∞∑

−∞
fi gi−1 =

∞∑

−∞
fi+1 gi (same idea).

Summation by parts is true : Subtract second line from first line.

13 Testu = x2 − 4 + 8− 8 + 4 = 0 = correct derivative
du

dx
= 2x atx = 0.

Testu = x4 − 24 + 8 · 14 − 8(−1)4 + (−2)4 = 0 = also correct
du

dx
= 4x3 = 0

atx = 0.

14 The pattern of determinants indicatesdetK5 = 6 (correct !). The inverse is

K−1 =
1

6




5 4 3 2 1

4 2

3 3

2 4

1 2 3 4 5




=
1

6




5 4 3 2 1

4 8 6 4 2

3 6 6 3

2 4 6 8 4

1 2 3 4 5




=
1

6




5 4 3 2 1

4 8 6 4 2

3 6 9 6 3

2 4 6 8 4

1 2 3 4 5




15 Remove column1 of A0 to produceA1 with T = AT
1 A1. Remove columns1 and4

to produceA2 with K = AT
2 A2. Check :

AT
2 =


 1 −1 0

0 1 −1






1 0

−1 1

0 −1


 =


 2 −1
−1 2



.

16 D4D
T
4 =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1

−1 0 −1 2



=C4= periodic circulant matrix (not invertible)
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17 The solution to−d2u

dx2
= cos 4πx is u(x) =

(
1

4π

)2
cos 4πx+A+Bx.

The boundary conditionsu = 0 atx = 0 andx = 1 give

u(0) =

(
1

4π

)2
+A = 0 andu(1) =

(
1

4π

)2
+A+B = 0.

ThenA = −
(

1

4π

)2
andB = 0 andu(x) =

(
1

4π

)2
(cos 4πx− 1).

18 ∆3 =




0 1 0

−1 0 1

0 −1 0


 has column3 = − column1 : not invertible.

∆4 =




0 1 0 0

−1 0 1 0

0 −1 0 1

0 0 −1 0




has4 independent columns : invertible.
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Problem Set 3.1, page 79

NoteAn interesting “max-plus” vector space comes from the real numbersR combined

with −∞. Change addition to givex + y = max(x, y) and change multiplication to

xy=usualx+y. Whichy is the zero vector that givesx+0=max(x,0)=x for everyx?

1 x+ y 6= y + x andx+ (y + z) 6= (x+ y) + z and(c1 + c2)x 6= c1x+ c2x.

2 Whenc(x1, x2) = (cx1, 0), the only broken rule is 1 timesx equalsx. Rules (1)-(4)

for additionx+ y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no−x
(b) c(x+ y) is the usual(xy)c, while cx+ cy is the usual(xc)(yc). Those are equal.

With c = 3, x = 2, y = 1 this is3(2+ 1) = 8. The zero vector is the number 1.

4 The zero vector in matrix spaceM is


0 0

0 0


 ; 1

2A =


1 −1
1 −1


 and−A =


−2 2

−2 2


.

The smallest subspace ofM containing the matrixA consists of all matricescA.

5 (a) One possibility: The matricescA form a subspace not containingB (b) Yes: the

subspace must containA−B = I (c) Matrices whose main diagonal is all zero.

6 Whenf(x) = x2 andg(x) = 5x, the combination3f − 4g in function space is

h(x) = 3f(x) − 4g(x) = 3x2 − 20x.

7 Rule 8 is broken: Ifcf(x) is defined to be the usualf (cx) then (c1 + c2)f =

f ((c1 + c2)x) is not generally the same asc1f + c2f = f (c1x) + f (c2x).

8 (a) The vectors with integer components allow addition, butnot multiplication by1
2

(b) Remove thex axis from thexy plane (but leave the origin). Multiplication by any

c is allowed but not all vector additions :(1, 1) + (−1, 1) = (0, 2) is removed.

9 The only subspaces are (a) the plane withb1 = b2 (d) the linear combinations ofv

andw (e) the plane withb1 + b2 + b3 = 0.

10 (a) All matrices


a b

0 0


 (b) All matrices


a a

0 0


 (c) All diagonal matrices.
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11 For the planex+ y− 2z = 4, the sum of(4, 0, 0) and(0, 4, 0) is not on the plane. (The

key is that this plane does not go through(0, 0, 0).)

12 The parallel planeP0 has the equationx + y − 2z = 0. Pick two points, for example

(2, 0, 1) and(0, 2, 1), and their sum(2, 2, 2) is in P0.

13 The smallest subspace containing a planeP and a lineL is eitherP (when the lineL

is in the planeP) or R3 (whenL is not inP).

14 (a) The invertible matrices do not include the zero matrix, so they are not a subspace

(b) The sum of singular matrices


1 0

0 0


+


0 0

0 1


 is not singular: not a subspace.

15 (a) True: The symmetric matrices do form a subspace (b)True: The matrices with

AT = −A do form a subspace (c)True: Any set of vectors from a vector space will

span a subspace of that space.

16 The column space ofA is thex-axis= all vectors(x, 0, 0) : a line. The column space

of B is thexy plane= all vectors(x, y, 0). The column space ofC is the line of vectors

(x, 2x, 0).

17 (a) Elimination leads to0 = b2 − 2b1 and 0 = b1 + b3 in equations 2 and 3:

Solution only if b2 = 2b1 andb3 = −b1 (b) Elimination leads to0 = b1 + b3

in equation 3: Solution only ifb3 = −b1.

18 A combination of the columns ofC is also a combination of the columns ofA. Then

C =


1 3

2 6


 andA =


1 2

2 4


 have the same column space.B =


1 2

3 6


 has a

different column space. The key word is “space”.

19 (a) Solution for everyb (b) Solvable only ifb3 = 0 (c) Solvable only ifb3 = b2.

20 The extra columnb enlarges the column space unlessb is already inthe column space.

[A b ] =


1 0 1

0 0 1


 (larger column space)

(no solution toAx = b)


1 0 1

0 1 1


 (b is in column space)

(Ax = b has a solution)

21 The column space ofAB is contained in(possibly equal to) the column space ofA.

The exampleB = zero matrix andA 6= 0 is a case whenAB = zero matrix has a

smaller column space (it is just the zero spaceZ) thanA.
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22 The solution toAz = b+ b∗ is z = x+ y. If b andb∗ are inC(A) so isb+ b∗.

23 The column space of any invertible 5 by 5 matrix isR5. The equationAx = b is

always solvable (byx = A−1b) so everyb is in the column space of that invertible

matrix.

24 (a) False: Vectors that arenot in a column space don’t form a subspace.

(b) True: Only the zero matrix hasC(A) = {0}. (c) True: C(A) = C(2A).

(d) False: C(A− I) 6= C(A) whenA = I orA =


1 0

0 0


 (or other examples).

25 A =




1 1 0

1 0 0

0 1 0


 and




1 1 2

1 0 1

0 1 1


 do not have




1

1

1


 in C(A). A =




1 2 0

2 4 0

3 6 0


 has

C(A) = line in R3.

26 WhenAx = b is solvable for allb, everyb is in the column space ofA. So that space

is C(A) = R9.

27 (a) If u andv are both inS+ T, thenu = s1 + t1 andv = s2 + t2. Sou + v =

(s1 + s2)+ (t1 + t2) is also inS+T. And so iscu = cs1 + ct1 : S+T = subspace.

(b) If S andT are different lines, thenS∪ T is just the two lines (not a subspace) but

S+ T is the whole plane that they span.

28 If S= C(A) andT = C(B) thenS+ T is the column space ofM = [A B ].

29 The columns ofAB are combinations of the columns ofA. So all columns of[A AB ]

are already inC(A). ButA =


0 1

0 0


 has a larger column space thanA2 =


0 0

0 0


.

For square matrices, the column space isRn exactly whenA is invertible.

30 y − e−x andy = ex are independent solutions tod2y/dx2 = y. Also y = cosx and

y = sinx are independent solutions tod2y/dx2 = −y. The solution space contains all

combinationsA cosx+B sinx.

31 If x andy are in the vector spaceV ∩ W, then they are in bothV andW. So all

combinationscx+ dy are in bothV andW. So all combinations are inV ∩W.



42 Solutions to Problem Sets

Problem Set 3.2, page 100

1 If Ax = 0 thenEAx = 0. If EAx = 0, multiply by E−1 to find Ax = 0.

2 (a) If c = 4 thenA has rank1 and column1 is its pivot column and(−2, 1, 0) and

(−1, 0, 1) are special solutions toAx = 0. If c 6= 4 thenA has rank2 and columns1

and3 are pivot columns and(−2, 1, 0) is a special solution. Ifc = 0 thenB = zero

matrix with rank0 and(1, 0) and(0, 1) are special solutions toBx = 0. If c 6= 0 then

B has rank1 and column1 is its pivot column and(−1, 1) is the special solution to

Bx = 0.

3 R =


 1 3 0 2

0 0 1 6


. All matricesA = CR with C = 2 by 2 invertible matrix have

the same nullspace asR.

4 (a) R=


1 2 0 0 0

0 0 1 2 3


 Free variablesx2, x4, x5

Pivot variablesx1, x3

(b) R=


1 0 −1
0 1 1


Freex3

Pivotx1, x2

5 Free variablesx2, x4, x5 and solutions(−2, 1, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1).

6 (a) False: Any singular square matrix would have free variables (b)True: An in-

vertible square matrix hasno free variables. (c)True(onlyn columns to hold pivots)

(d) True(onlym rows to hold pivots)

7 A =
[
C
] [

I I
]

(notice thatF = I). Ther special solutions toAx = 0 are the

r columns of


 −I

I


.

8 R =




1 1 0 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




,




0 1 1 0 0 1 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0




.

Notice the identity matrix in the pivot columns of thesereducedrow echelon formsR.

9 If column 4 of a 3 by 5 matrix is all zero thenx4 is a freevariable. Its special solution

is x = (0, 0, 0, 1, 0), because 1 will multiply that zero column to giveAx = 0.
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10 If column 1= column 5 thenx5 is a free variable. Its special solution is(−1, 0, 0, 0, 1).

11 The nullspace contains onlyx = 0 whenA has 5 pivots. Also the column space isR5,

because we can always solveAx = b and everyb is in the column space.

12 If a matrix hasn columns andr pivots, there aren−r special solutions. The nullspace

contains onlyx = 0 whenr = n. The column space is all ofRm whenr = m. All

those statements are important!

13 Fill in 12 then3 then1 to get the complete solution inR3 to x − 3y − z = 12


x

y

z


 =




12

0

0


+ y




3

1

0


+ z




1

0

1


 = one particular solution+ all nullspace solutions.

14 Column 5 is sure to have no pivot since it is a combination of earlier columns. With

4 pivots in the other columns, the special solution iss = (1, 0, 1, 0, 1). The nullspace

contains all multiples of this vectors (this nullspace is a line inR5).

15 To produce special solutions(2, 2, 1, 0) and (3, 1, 0, 1) with free variablesx3, x4:

R =


1 0 −2 −3
0 1 −2 −1


 andA can be any invertible 2 by 2 matrix times thisR.

16 The nullspace ofA =




1 0 0 −4
0 1 0 −3

0 0 1 −2




The rank is3

is the line through the special solution




4

3

2

1




.

17 A =




1 0 −1/2
1 3 −2
5 1 −3


 has




1

1

5


 and




0

3

1


 in C(A) and




1

1

2


 in N(A). Which otherA’s?

18 A =




1 0 −1
1 1 −1
0 1 0




19 A =


0 1

0 0


 hasN(A) = C(A). Notice thatrref(AT)=


1 0

0 0


 is notAT.
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20 If nullspace= column space (withr pivots) thenn − r = r. If n = 3 then3 = 2r is

impossible. Only possible whenn is even.

21 If A times every column ofB is zero, the column space ofB is contained in thenullspace

of A. An example isA =


1 1

1 1


 andB =


 1 1

−1 −1


. HereC(B) equalsN(A).

ForB = 0,C(B) is smaller thanN(A).

22 ForA = random 3 by 3 matrix,R is almost sure to beI. For 4 by 3,R is most likely

to beI with a fourth row of zeros. What isR for a random 3 by 4 matrix?

23 If N(A) = line throughx = (2, 1, 0, 1), A hasthree pivots(4 columns and 1 special

solution). Its reduced echelon form can beR =




1 0 0 −2
0 1 0 −1
0 0 1 0


 (add any zero rows).

24 R = [ 1 −2 −3 ], R =


1 0 0

0 1 0


, R = I. Any zero rows come after those rows.

25 (a)


1 0

0 1


 ,


1 0

0 0


,


1 1

0 0


,


0 1

0 0


,


0 0

0 0


 (b) All 8 matrices areR’s !

26 The nullspace ofB = [A A ] contains all vectorsx =


 y

−y


 for y in R4.

One reason thatR is the same forA and−A: They have the same nullspace. (They

also have the same row space. They also have the same column space, but that is not

required for two matrices to share the sameR. R tells us the nullspace and row space.)

27 If Cx = 0 thenAx = 0 andBx = 0. SoN(C) = N(A) ∩ N(B) = intersection.

28 A hasR0 =


1 2 3

0 0 0


 andR =

[
1 2 3

]
. B andC haveR0 =




1 2 3 0 0 0

0 0 0 1 2 3

0 0 0 0 0 0

0 0 0 0 0 0




AndR =


1 2 3 0 0 0

0 0 0 1 2 3


.
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29 R =


0 1 0

0 0 1


 andN =




1

0

0




30 A andAT have the same rankr = number of pivots. But the pivot column is column2

for this matrixA and column1 for AT: A =




0 1 0

0 0 0

0 0 0


.

31 The new entries keep rank 1 :A =




a b c

d bd
a

cd
a

g bg
a

cg
a


 if a 6= 0, B =




3 9 −4.5
1 3 −1.5
2 6 −3


 ,

M =


a b

c bc/a


 if a 6= 0.

32 With rank1, the second row ofR does not exist !

33
Invertibler by r submatrices

Use pivot rows and columns
S =


1 3

1 4


 andS = [ 1 ] andS =


1 0

0 1


.

34 (a) A andB will both have the same nullspace and row space as theR they share.

(b) A equals aninvertiblematrix timesB, when they share the sameR. A key fact!

35 CORRECTED :ATy = 0 : y1 − y3 + y4 = −y1 + y2 + y5 = −y2 + y3 + y6 =

−y4 − y5 − y6 = 0.

These equations add to0 = 0. Free variablesy3, y5, y6: watch for flows around loops.

The solutions toATy = 0 are combinations of(−1, 0, 0, 1,−1, 0)and(0, 0,−1,−1, 0, 1)
and(0,−1, 0, 0, 1,−1). Those are flows around the3 small loops.

36 C =




1 3

2 6

2 7


CT has pivot columns


1 2

3 7


. The invertibleS insideC is


1 3

2 7




37 The column space ofAB contains all vectors(AB)x. Those vectors are the same as

A(Bx) so they are also in the column space ofA.
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38 By matrix multiplication, each column ofAB is A times the corresponding column of

B. So if columnj of B is a combination of earlier columns ofB, then columnj of AB

is the same combination of earlier columns ofAB. Then rank(AB) ≤ rank(B). No

new pivot columns !

39 We are givenAB = I which has rankn. Then rank(AB) ≤ rank(A) forces rank(A) =

n. This means thatA is invertible. The right-inverseB is also a left-inverse:BA = I

andB = A−1.

40 CertainlyA andB have at mostrank 2. Then their productAB has at mostrank 2.

SinceBA is 3 by 3, it cannot beI even if AB = I. ExampleA =


1 0 0

0 1 0


,

B =




1 0

0 1

0 0


, BA =




1 0 0

0 1 0

0 0 0


.

41 A =
[
I I

]
hasN =


 I

−I


 ;B =


I I

0 0


 has the sameN ; C =

[
I I I

]
has

N =




−I −I
I 0

0 I


.

42 Them by n matrixZ hasr ones to start its main diagonal. OtherwiseZ is all zeros.

43 R0 =


I F

0 0


=


 r by r r by n−r

m−r by r m−r byn−r


; (b) B =


I

0


 (c) C =

[
I 0

]

rref (RT
0 )=


I 0

0 0


; rref (RT

0 R0)=sameR0



Solutions to Problem Sets 47

44 R0 =


1 2 0

0 0 1


 hasRT

0 R0 =




1 2 0

2 4 0

0 0 1


 and this matrix row reduces to




1 2 0

0 0 1

0 0 0


 =


 R0

zero row


. AlwaysRT

0 R0 has the same nullspace asR0, so its row reduced form

must beR0 with n−m extra zero rows.R0 is determined by its nullspace and shape !

45 A =




1 4 7

2 5 8

3 6 9


 =




1 4

2 5

3 6





 1 0 −1

0 1 2



=




1 4

2 5

3 6





 1 4

2 5



−1
 1 4 7

2 5 8




Notice2 rows ofA are in the matrixB.

46 Multiply block row 1 by JW−1 to produce row2.
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Problem Set 3.3, page 111

1




2 4 6 4 b1

2 5 7 6 b2

2 3 5 2 b3


→




2 4 6 4 b1

0 1 1 2 b2 − b1

0 −1 −1 −2 b3 − b1


→




2 4 6 4 b1

0 1 1 2 b2 − b1

0 0 0 0 b3 + b2 − 2b1




4

−1

0

Ax = b has a solution whenb3 + b2 − 2b1 = 0; the column space contains all combi-

nations of(2, 2, 2) and(4, 5, 3). This is the planeb3+ b2− 2b1 = 0 (!). The nullspace

contains all combinations ofs1 = (−1,−1, 1, 0) ands2 = (2,−2, 0, 1);xcomplete =

xp + c1s1 + c2s2;

[
R0 d

]
=




1 0 1 −2 4

0 1 1 2 −1
0 0 0 0 0


 gives the particular solutionxp = (4,−1, 0, 0).

2




2 1 3 b1

6 3 9 b2

4 2 6 b3


→




2 1 3 b1

0 0 0 b2 − 3b1

0 0 0 b3 − 2b1


 Then[R0 d ] =




1 1/2 3/2 5

0 0 0 0

0 0 0 0




Ax = b has a solution whenb2 − 3b1 = 0 andb3 − 2b1 = 0; C(A) = line through

(2, 6, 4) which is the intersection of the planesb2 − 3b1 = 0 and b3 − 2b1 = 0;

the nullspace contains all combinations ofs1 = (−1/2, 1, 0) ands2 = (−3/2, 0, 1);
particular solutionxp = d = (5, 0, 0) and complete solutionxp + c1s1 + c2s2.

3 (a) x+ 3y = 7

2x+ 6y= 14

x+ 3y= 7

0= 0
xp =


 7

0


 xn = cs = c


 −3

1


 for anyc .

(b)x
complete

=


7

0


+ c


−3

1


; x

complete
=




−2

0

1


+ c




−3

1

0


.

4 x
complete

= xp + xn = (1
2
, 0, 1

2
, 0) + x2(−3, 1, 0, 0) + x4(0, 0,−2, 1).
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5




1 2 −2 b1

2 5 −4 b2

4 9 −8 b3


→




1 2 −2 b1

0 1 0 b2 − 2b1

0 0 0 b3 − 2b1 − b2


 solvable ifb3 − 2b1 − b2 = 0.

Back-substitution gives the particular solution toAx = b and the special solution to

Ax = 0: x =




5b1 − 2b2

b2 − 2b1

0


+x3




2

0

1


 .




2 0 2 b1

4 4 0 b2

8 8 0 b3


→




1 0 1 b1/2

0 1 −1 b2/4− b1/2

0 0 0 b3 − 2b2




is solvable ifb3 = 2b2. Thenx =




b1/2

b2/4− b1/2

0


+ x3




−1

1

1


.

6 (a) Solvable ifb2 = 2b1 and3b1 − 3b3 + b4 = 0. Thenx =


5b1 − 2b3

b3 − 2b1


 = xp

(b) Solvable ifb2 = 2b1 and3b1 − 3b3 + b4 = 0. x =




5b1 − 2b3

b3 − 2b1

0


+ x3




−1
−1

1


.

7




1 3 1 b1

3 8 2 b2

2 4 0 b3


→




1 3 1 b2

0 −1 −1 b2 − 3b1

0 −2 −2 b3 − 2b1




One more step gives[ 0 0 0 0 ] =

row 3− 2 (row 2)+ 4(row 1)

provided b3−2b2+4b1=0.

8 (a) Everyb is in C(A): independent rows, only the zero combination gives0.

(b) We needb3 = 2b2, because(row 3)− 2(row2) = 0.

9 (a)




x

y

z


 =




4

0

0


+ y




−1
1

0


 + z




−1
0

1


 (b)




x

y

z


 =




4

0

0


+ z




−1
0

1


. The second

equation in part (b) removed one special solution from the nullspace.

10


1 0 −1
0 1 −1


x =


2

4


 hasxp = (2, 4, 0) andxnull = (c, c, c). Many possibleA !

11 A 1 by 3 system has at leasttwo free variables. Butxnull in Problem 10 only hasone.

12 (a) If Ax1 = b andAx2 = b thenx = x1 − x2 and alsox = 0 solveAx = 0

(b) A(2x1 − 2x2) = 0, A(2x1 − x2) = b
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13 (a) The particular solutionxp is always multiplied by 1.2xp would solveAx = 2b

(b) Any solution can bexp. If A has rank= m, the onlyxp is 0.

(c)


3 3

3 3




x

y


 =


6

6


. Then


1

1


 is shorter (length

√
2) than


2

0


 (length 2)

(d) The only “homogeneous” solution in the nullspace isxn = 0 whenA is invertible.

14 If column 5 has no pivot,x5 is a freevariable. The zero vectoris not the only solution

to Ax = 0. If this systemAx = b has a solution, it hasinfinitely manysolutions.

15 If row 3 of U has no pivot, that is azero row. Ux = c is only solvable provided

c3 = 0. Ax = b might not be solvable, becauseU may have other zero rows needing

moreci = 0.

16 The largest rank is 3. Then there is a pivot in everyrow. The solutionalways exists.

The column space isR3. An example isA = [ I F ] for any3 by 2 matrixF .

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The

columns are independent. The solution isunique(if there is a solution). The nullspace

contains only thezero vector. ThenR0 = rref (A) =


 I (4 by 4)

0 (2 by 4)


.

18 Rank= 2; rank= 3 unlessq = 2 (then rank= 2). Transpose has the same rank!

19 If Ax1 = b and alsoAx2 = b thenA(x1 − x2) = 0 and we can addx1 − x2 to any

solution ofAx = B: the solutionx is not unique. But there will beno solution to

Ax = B if B is not in the column space.

20 ForA, q = 3 gives rank 1, every otherq gives rank 2. ForB, q = 6 gives rank 1, every

otherq gives rank 2. These matrices cannot have rank 3.

21 (a)


1

1


 [x ] =


b1
b2


 has 0 or 1 solutions, depending onb (b)

[
1 1

] 
x1

x2


 =

[ b ] has infinitely many solutions for everyb (c) There are 0 or∞ solutions whenA

has rankr < m andr < n: the simplest example is a zero matrix. (d)onesolution

for all b whenA is square and invertible (likeA = I).

22 (a) r < m, alwaysr ≤ n (b) r = m, r < n (c) r < m, r = n (d) r = m = n.
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23




2 4 4

0 3 6

0 0 0


→ R0 =




1 0 −2

0 1 2

0 0 0


 and




2 4 4

0 3 6

0 0 5


→ R0 = I = R and


0 0 4

0 1 0


→ R0 =


0 1 0

0 0 1


 = R.

24 R0 = I whenA is square and invertible—so for a triangular matrix, all diagonal entries

must be nonzero.

25


1 2 3 0

0 0 4 0


→


1 2 0 0

0 0 1 0


; xn =




−2
1

0


;


1 2 3 5

0 0 4 8


→


1 2 0 −1
0 0 1 2


.

Freex2 = 0 givesxp = (−1, 0, 2) because the pivot columns containI. Note :R0=R.

26 [R0 d ] =




1 0 0 0

0 0 1 0

0 0 0 0


 leads toxn =




0

1

0


; [R0 d ] =




1 0 0 −1
0 0 1 2

0 0 0 5




leads to no solution because of the 3rd equation0 = 5.

27




1 0 2 3 2

1 3 2 0 5

2 0 4 9 10


→




1 0 2 3 2

0 3 0−3 3

0 0 0 3 6


→




1 0 2 0 −4

0 1 0 0 3

0 0 0 1 2


;




−4
3

0

2




; xn = x3




−2
0

1

0




.

28 ForA =




1 1

0 2

0 3


, the only solution toAx =




1

2

3


 isx =


0

1


.

B cannot exist since 2 equations in 3 unknowns cannot have a unique solution.
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29 A =




1 3 1

1 2 3

2 4 6

1 1 5




factors intoLU =




1

1 1

2 2 1

1 2 0 1







1 3 1

0 −1 2

0 0 0

0 0 0




and the rank is

r = 2. The special solution toAx = 0 andUx = 0 is s = (−7, 2, 1). Since

b = (1, 3, 6, 5) is also the last column ofA, a particular solution toAx = b is

(0, 0, 1) and the complete solution isx = (0, 0, 1)+ cs. (Another particular solution is

xp = (7,−2, 0) with free variablex3 = 0.)

For b = (1, 0, 0, 0) elimination leads toUx = (1,−1, 0, 1) and the fourth equa-

tion is0 = 1. No solution for thisb.

30 If the complete solution toAx =


1

3


 isx =


1

0


+


0

c


 thenA =


1 0

3 0


.

31 (a) If s = (2, 3, 1, 0) is the only special solution toAx = 0, the complete solution is

x = cs (a line of solutions). The rank ofA must be4− 1 = 3.

(b) The fourth variablex4 is not freein s, andR0 must be




1 0 −2 0

0 1 −3 0

0 0 0 1


.

(c) Ax = b can be solved for allb, becauseA andR0 havefull row rank r = 3.

32 If Ax = b andCx = b have the same solutions,A andC have the same shape and

the same nullspace (takeb = 0). If b = column1 of A, x = (1, 0, . . . , 0) solves

Ax=b so it solvesCx=b. ThenA andC share column1. Other columns too:A=C!

33 The column space ofR0 (m by n with rankr) is spanned by itsr pivot columns (the

first r columns of anm by m identity matrix). The column space ofR (afterm − r

zero rows are removed fromR0) is r-dimensional spaceRr.
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Problem Set 3.4, page 124

1




1 1 1

0 1 1

0 0 1







c1

c2

c3



= 0 givesc3 = c2 = c1 = 0. So those3 column vectors are

independent : no other combination gives0




1 1 1 2

0 1 1 3

0 0 1 4


c=




0

0

0


 is solved byc=




1

1

−4
1




. Thenv1 + v2 − 4v3 + v4=0 (dependent).

2 v1,v2,v3 are independent (the−1’s are in different positions). All six vectors inR4

are on the plane(1, 1, 1, 1) · v = 0 so no four of these six vectors can be independent.

3 If a = 0 then column1 = 0; if d = 0 thenb(column1) − a(column2) = 0; if f = 0

then all columns end in zero (they are all in thexy plane, they must be dependent).

4 Ux =




a b c

0 d e

0 0 f







x

y

z


 =




0

0

0


 givesz = 0 theny = 0 thenx = 0 (by back

substitution). A square triangular matrix has independentcolumns (invertible matrix)

when its diagonal has no zeros.

5 (a)




1 2 3

3 1 2

2 3 1


→




1 2 3

0 −5 −7

0 −1 −5


→




1 2 3

0 −5 −7

0 0 −18/5




: invertible⇒ independent

columns.

(b)




1 2 −3
−3 1 2

2 −3 1


→




1 2 −3
0 7 −7

0 −7 7


→




1 2 −3
0 7 −7

0 0 0


 ;A




1

1

1


 =




0

0

0




columns

add to0.

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).

Same column numbers (not same columns!) forA. This is becauseEA = U for the

matrixE that subtracts2 times row1 from row4. SoA andU have the same nullspace

(same dependencies of columns).
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7 The sumv1−v2+v3 = 0 because(w2−w3)− (w1−w3)+(w1−w2) = 0. So the

differences aredependentand the difference matrix is singular:A =




0 1 1

1 0 −1
−1 −1 0


.

8 If c1(w2+w3)+c2(w1+w3)+c3(w1+w2) = 0 then(c2+c3)w1+(c1+c3)w2+

(c1 + c2)w3 = 0. Since thew’s are independent,c2 + c3 = c1 + c3 = c1 + c2 = 0.

The only solution isc1 = c2 = c3 = 0. Only this combination ofv1,v2,v3 gives0.

(changing−1’s to 1’s for the matrixA in solution7 above makesA invertible.)

9 (a) The four vectors inR3 are the columns of a 3 by 4 matrixA. There is a nonzero

solution toAx = 0 because there is at least one free variable (b) Two vectors are

dependent if[v1 v2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one

is a multiple of the other” butnot “v2 is a multiple ofv1” —since v1 might be0.)

(c) A nontrivial combination ofv1 and0 gives0: 0v1 + 3(0, 0, 0) = (0, 0, 0).

10 The plane is the nullspace ofA = [ 1 2 −3 −1 ]. Three free variables give three

independent solutions(x, y, z, t) = (−2, 1, 0, 0) and (3, 0, 1, 0) and (1, 0, 0, 1).

Combinations of those special solutions give more solutions (all solutions).

11 (a) Line inR3 (b) Plane inR3 (c) All of R3 (d) All of R3.

12 b is in the column space whenAx = b has a solution;c is in the row space when

ATy = c has a solution.Falsebecause the zero vector is always in the row space.

13 The column space and row space ofA and U all have the same dimension =2.

The row spaces ofA andU are the same, because the rows ofU are combinations of

the rows ofA (and vice versa !).

14 v = 1
2 (v +w) + 1

2 (v −w) andw = 1
2 (v +w)− 1

2 (v −w). The two pairsspanthe

same space. They are a basis for the same space whenv andw areindependent.

15 Then independent vectors span a space of dimensionn. They are abasisfor that space.

If they are the columns ofA thenm is not lessthann (m ≥ n). Invertible if m = n.
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16 These bases are not unique! (a)(1, 1, 1, 1) for the space of all constant vectors

(c, c, c, c) (b) (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1) for the space of vectors with

sum of components =0 (c) (1,−1,−1, 0), (1,−1, 0,−1) for the space perpendic-

ular to(1, 1, 0, 0) and(1, 0, 1, 1) (d) The columns ofI are a basis for its column

space, the empty set is a basis (by convention) forN(I) = Z = {zero vector}.

17 The column space ofU =


1 0 1 0 1

0 1 0 1 0


 is R2 so take any bases forR2;

(row 1 and row2) or (row 1 and row1+ row 2) or (row 1 and− row 2) are bases

for the row space ofU .

18 (a) The 6 vectorsmight notspanR4 (b) The 6 vectorsare notindependent

(c) Any fourmight bea basis.

19 n independent columns⇒ rankn. Columns spanRm ⇒ rankm. Columns are basis

for Rm ⇒ rank= m = n. The rank counts the number ofindependentcolumns.

20 One basis is(2, 1, 0), (−3, 0, 1). A basis for the intersection with thexy plane is

(2, 1, 0). The normal vector(1,−2, 3) is a basis for the line perpendicular to the plane.

21 (a) The only solution toAx = 0 is x = 0 becausethe columns are independent

(b) Ax = b is solvable becausethe columns spanR5. Their combinations give everyb.

Key point:A basis gives exactly one solution for everyb.

22 (a) True (b) False because the basis vectors forR6 might not be inS.

23 Columns1 and2 are bases for the (different ) column spaces ofA andU ; rows1 and

2 are bases for the (equal) row spaces ofA andU ; (1,−1, 1) is a basis for the (equal)

nullspaces.Row spaces and nullspacesstay fixed in elimination.

24 (a) FalseA = [ 1 1 ] has dependent columns, independent row (b)FalseColumn

space6= row space forA =


0 1

0 0


 (c) True: Both dimensions= 2 if A is

invertible, dimensions= 0 if A = 0, otherwise dimensions= 1 (d) False, columns

may be dependent, in that case not a basis forC(A).
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25 (a) Makev1, . . .vk the columns ofA. Then find the firstn independent columns (we

are told they spanRn).

(b) Makev1, . . .vj the rows ofA and then include then rows of the identity matrix.

Row elimination will keep the firstj independent rows and findn − j more rows to

form a basis forRn.

26 A has rank2 if c = 0 andd = 2; B =


 c d

d c


 has rank2 except whenc = d or

c = −d.

27 (a) Basis for all diagonal matrices :




1 0 0

0 0 0

0 0 0


 ,




0 0 0

0 1 0

0 0 0


 ,




0 0 0

0 0 0

0 0 1




(b) Add




0 1 0

1 0 0

0 0 0


 ,




0 0 1

0 0 0

1 0 0


,




0 0 0

0 0 1

0 1 0


 = basis for symmetric matrices.

(c)




0 1 0

−1 0 0

0 0 0


 ,




0 0 1

0 0 0

−1 0 0


 ,




0 0 0

0 0 1

0 −1 0


.

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric

matrices (c) skew-symmetric matrices. The dimensions are3, 6, 3.

28




1 0 0

0 1 0

0 0 1


,




1 0 0

0 1 0

0 0 2


,




1 0 0

0 2 0

0 0 1


,




1 1 0

0 1 0

0 0 1


,




1 0 1

0 1 0

0 0 1


,




1 0 0

0 1 1

0 0 1


;

Echelon matrices donot form a subspace; theyspan the upper triangular matrices (not

everyU is an echelon matrix).

29


 1 0 0

−1 0 0


,


0 1 0

0 −1 0


,


0 0 1

0 0 −1


;


 1 −1 0

−1 1 0


 and


 1 0 −1
−1 0 1


.

30 (a) The invertible matrices span the space of all3 by 3 matrices (b) The rank one

matrices also span the space of all3 by 3 matrices (c)I by itself spans the space of

all multiplescI.
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31


−1 2 0

0 0 0


,


−1 0 2

0 0 0


,


 0 0 0

−1 2 0


,


 0 0 0

−1 0 2


. Dimension= 4.

32 (a) y(x)= constantC (b) y(x)=3x. (c) y(x)=3x+C=yp + yn solvesy ′ = 3.

33 y(0) = 0 requiresA+B + C = 0. One basis iscosx− cos 2x andcosx− cos 3x.

34 (a) y(x) = e2x is a basis for all solutions toy′ = 2y (b) y = x is a basis for all

solutions tody/dx = y/x (First-order linear equation⇒ 1 basis function in solution

space).

35 y1(x), y2(x), y3(x) can bex, 2x, 3x (dim1) or x, 2x, x2 (dim2) or x, x2, x3 (dim3).

36 Basis1, x, x2, x3, for cubic polynomials; basisx− 1, x2 − 1, x3 − 1 for the subspace

with p(1) = 0. (4-dimensional space and3-dimensional subspace).

37 Basis forS: (1, 0,−1, 0), (0, 1, 0, 0), (1, 0, 0,−1); basis forT: (1,−1, 0, 0)and(0, 0, 2, 1);

S∩T= multiples of(3,−3, 2, 1)= nullspace for3 equations inR4 has dimension 1.

38 If the 5 by 5 matrix [A b ] is invertible,b is not a combination of the columns ofA :

no solution toAx = b. If [A b ] is singular, and the4 columns ofA are independent

(rank4), b is a combination of those columns. In this caseAx = b has a solution.

39 One basis fory ′′ = y is y = ex andy = e−x. One basis fory ′′ = −y is y = cosx and

y = sinx.

40 I =




1

1

1


 −




1

1

1


 +




1

1

1


 +




1

1

1


 −




1

1

1


.

The sixP ’s

are dependent
.

Those five are independent: The4th hasP11 = 1 and cannot be a combination of the

others. Then the3rd cannot be (fromP22 = 1) and also1st (P33 = 1). Continuing,

a nonzero combination of all five could not be zero. Further challenge: How many

independent4 by 4 permutation matrices?

41 The dimension ofS spanned by all rearrangements ofx is (a) zero whenx = 0

(b) one whenx = (1, 1, 1, 1) (c) three whenx = (1, 1,−1,−1) because all rear-

rangements of thisx are perpendicular to(1, 1, 1, 1) (d) four when thex’s are not
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equal and don’t add to zero.No x givesdim S = 2. I owe this nice problem to Mike

Artin—the answers are the same in higher dimensions:0 or 1 orn− 1 or n.

42 The problem is to show that theu’s, v’s, w’s together are independent. We know the

u’s andv’s together are a basis forV , and theu’s andw’s together are a basis forW .

Suppose a combination ofu’s, v’s, w’s gives0. To be proved: All coefficients= zero.

Key idea: In that combination giving0, the partx from theu’s andv’s is inV . So the

part from thew’s is−x. This part is now inV and also inW . But if −x is inV ∩W
it is a combination ofu’s only. Now the combination giving0 uses onlyu’s andv’s

(independent inV !) so all coefficients ofu’s andv’s must be zero. Thenx = 0 and

the coefficients of thew’s are also zero.

43 If the left side ofdim(V) + dim(W) = dim(V ∩W) + dim(V+W) is greater than

n, thendim(V ∩W) must be greater than zero. SoV ∩W contains nonzero vectors.

Here is a more basic approach : Put a basis forV and then a basis forW in the columns

of a matrixA. ThenA has more columns than rows and there is a nonzero solution

to Ax = 0. Thatx gives a combination of theV columns= a combination of the

W columns.

44 If A2 = zero matrix, this says that each column ofA is in the nullspace ofA. If the

column space has dimensionr, the nullspace has dimension10 − r by the Counting

Theorem. So we must haver ≤ 10− r and this leads tor ≤ 5.
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Problem Set 3.5, page 137

1 (a) Row and column space dimensions9−5 = 5, nullspace dimension= 4, dim(N(AT))

= 9− 7 = 2 sum5 + 5 + 4 + 2 = 16 = m+ n

(b) Column space isR3; left nullspace contains only0 (dimension zero).

2 A: Row space basis= row 1 = (1, 2, 4); nullspace(−2, 1, 0) and(−4, 0, 1); column

space basis= column1 = (1, 2); left nullspace(−2, 1). B: Row space basis=

both rows= (1, 2, 4) and(2, 5, 8); column space basis= two columns= (1, 2) and

(2, 5); nullspace(−4, 0, 1); left nullspace basis is empty because the space contains

only y = 0 : the rows ofB are independent.

3 Row space basis= first two rows ofR; column space basis= pivot columns (ofA notR)

= (1, 1, 0) and(3, 4, 1); nullspace basis(1, 0, 0, 0, 0), (0, 2,−1, 0, 0), (0, 2, 0,−2, 1);
left nullspace(1,−1, 1) = last row of the elimination matrixE−1 = L.

4 (a)




1 0

1 0

0 1


 (b) Impossible:r+(n−r) must be 3 (c)[ 1 1 ] (d)


9 −3

3 −1




(e) ImpossibleRow space= column space requiresm = n. Thenm − r = n − r;

nullspaces have the same dimension. Section 4.1 will proveN(A) and N(AT)

orthogonal to the row and column spaces respectively—here those are the same space.

5 A =


1 1 1

2 1 0


 has those rows spanning its row space.B =

[
1 −2 1

]
has the

same vectors spanning its nullspace andABT = zero matrix (notAB).

6 A: dim 2,2,2,1: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns(3, 0, 1) and (3, 0, 0);

nullspace(1, 0, 0, 0) and(0,−1, 0, 1); N(AT) (0, 1, 0). B: dim 1,1,0,2 Row space

(1), column space(1, 4, 5), nullspace: empty basis,N(AT) (−4, 1, 0) and(−5, 0, 1).
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7 Invertible3 by 3 matrixA: row space basis= column space basis= (1, 0, 0), (0, 1, 0),

(0, 0, 1); nullspace basis and left nullspace basis areempty. Matrix B =
[
A A

]
: row

space basis(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1); column space basis

(1, 0, 0), (0, 1, 0), (0, 0, 1); nullspace basis(−1, 0, 0, 1, 0, 0) and(0,−1, 0, 0, 1, 0) and

(0, 0,−1, 0, 0, 1); left nullspace basis is empty.

8
[
I 0

]
and

[
I I; 0T 0T

]
and

[
0
]
= 3 by2 haverow space dimensions= 3, 3, 0 =

column space dimensions;nullspace dimensions2, 3, 2; left nullspace dimensions0, 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same

(b) Same column space and left nullspace. Same rank (dimension of column space).

10 For rand(3), almost surely rank= 3, nullspace and left nullspace contain only(0, 0, 0).

For rand(3, 5) the rank is almost surely3 and the dimension of the nullspace is2.

11 (a) No solution means thatr < m. Always r ≤ n. Can’t comparem andn here.

(b) Sincem− r > 0, the left nullspace must contain a nonzero vector.

12 A neat choice is




1 1

0 2

1 0





1 0 1

1 2 0


 =




2 2 1

2 4 0

1 0 1


; r + (n − r) = n = 3 does

not match2 + 2 = 4. Onlyv = 0 is in bothN(A) andC(AT).

13 (a) False: Usually row space6= column space.

(b) True: A and−A have the same four subspaces

(c) False (chooseA andB same size and invertible: then they have the same four

subspaces)

14 Row space basis can be the nonzero rows ofU : (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2);

nullspace basis(0, 1,−2, 1) as forU ; column space basis(1, 0, 0), (0, 1, 0), (0, 0, 1)

(happen to haveC(A) = C(U) = R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the same; (2, 1, 3, 4) is in the

new left nullspace after the row exchange.

16 If Av = 0 andv is a row ofA thenv · v = 0. Sov is perpendicualr tov : v = 0.
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17 Row space ofA = yz plane; column space ofA = xy plane; nullspace= x axis; left

nullspace= z axis. ForI + A: Row space= column space= R3, both nullspaces

contain only the zero vector.

18 a11 = 1, a12 = 0, a13 = 1, a22 = 0, a32 = 1, a31 = 0, a23 = 1, a33 = 0, a21 = 1.

(Need to specify the five moves).

19 Row3−2 row 2+ row 1 = zero row so the vectorsc(1,−2, 1) are in the left nullspace.

The same vectors happen to be in the nullspace (an accident for this matrix).

20 The steps fromA to R0 are described on page 96 (Section 3.2). I don’t think I can

do better—but you could put those ideas into different words. By all means give an

example that needs row exchanges.

21 (a) u andw (b) v andz (c) rank< 2 if u andw are dependent or ifv andz

are dependent (d) The rank ofuvT +wzT is 2.

22 A =


u w





 vT

zT


 =




1 2

2 2

4 1





1 0

1 1


 =




3 2

4 2

5 1




u,w span column space;

v, z span row space

23 As in Problem 22: Row space basis(3, 0, 3), (1, 1, 2); column space basis(1, 4, 2),

(2, 5, 7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either

factor, so rank≤ 2 and the 3 by 3 product is not invertible.

24 ATy = d putsd in therow spaceof A; unique solution if theleft nullspace(nullspace

of AT) contains onlyy = 0.

25 (a) True(A andAT have the same rank) (b)FalseA = [ 1 0 ] andAT have very

different left nullspaces (c)False (A can be invertible and unsymmetric even if

C(A) = C(AT)) (d) True(The subspaces forA and−A are always the same. If

AT = A orAT = −A they are also the same forAT)

26 Choosed = bc/a to make
[
a b

c d

]
a rank-1 matrix. Then the row space has basis(a, b)

and the nullspace has basis(−b, a). Those two vectors are perpendicular !
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27 B andC (checkers and chess) both have rank 2 ifp 6= 0. Row 1 and 2 are a basis for the

row space ofC, BTy = 0 has 6 special solutions with−1 and 1 separated by a zero;

N(CT) has(−1, 0, 0, 0, 0, 0, 0, 1) and(0,−1, 0, 0, 0, 0, 1, 0) and columns3, 4, 5, 6 of

I; N(C) is a challenge : one vector inN(C) is (1, 0, . . . , 0,−1).

28 The subspaces forA = uvT are pairs of orthogonal lines (v andv⊥, u andu⊥).

If B has those same four subspaces thenB = cA with c 6= 0.

29 (a) AX = 0 if each column ofX is a multiple of(1, 1, 1); dim(nullspace) = 3.

(b) If AX = B then all columns ofB add to zero; dimension of theB’s = 6.

(c) 3 + 6 = dim(M3×3) = 9 entries in a3 by 3 matrix.

30 The key is equal row spaces. First row ofA = combination of the rows ofB : the

only possible combination (noticeI) is 1 (row 1 ofB). Same for each row soF = G.

31 A =




−1 1 0 0

−1 0 1 0

0 −1 1 0

0 −1 0 1

0 0 −1 1

−1 0 0 1




N(A)




1

1

1

1




Row spaceC(AT)




−1
1

0

0




C(A)




0

0

0

1

1

1




N(AT)




1

−1
1

0

0

0




32 (a)N(BA) containsN(A).

(b) C(AB) is contained inC(A).

33 (a)N(A) andN(B) containN(T ).

(b) Row spaces ofA andB are contained in the row space ofT .
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34 Fundamental subspaces forA (m× n).

Row spaceC(AT) perpendicular to NullspaceN(A) : Dimensionsr andn− r.

Column spaceC(A) perpendicular toN(AT) : Dimensionsr andm− r.

Subspaces forW =
[
A A

]
− same rankr.

Row space ofW contains all
[
v v

]
v in C(AT) (Dimensionr).

Nullspace ofW contains all


 y

z


 with y + z in N(W ) (Dimension2n− r).

Column space ofW = Column space ofA (Dimensionr).

Nullspace ofWT = Nullspace ofA (Dimensionm− r).

35 Please send a proof or counterexample. Thank you.
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Problem Set 4.1, page 148

1 Both nullspace vectors will be orthogonal to the row space vector inR3. The column

space ofA and the nullspace ofAT are perpendicular lines inR2 because rank= 1.

2 The nullspace of a 3 by 2 matrix with rank 2 isZ (only the zero vector because the2

columns are independent). Soxn = 0, and row space= R2. Column space= plane

perpendicular to left nullspace= line in R3 (because the rank is2).

3 (a) One way is to use these two columns directly

and make col3 = − col 1− col 2.

A =




1 2 −3
2 −3 1

−3 5 −2




(b)
Impossible becauseN(A) andC(AT)

are orthogonal subspaces :




2

−3

5


 is not orthogonal to




1

1

1




(c)




1

1

1


 and




1

0

0


 in C(A) andN(AT) is impossible: not perpendicular

(d) Rows orthogonal to columns makesA timesA = zero matrix. An example isA =
[
1 −1

1 −1

]

(e) (1, 1, 1) in the nullspace (columns add to the zero vector) and also(1, 1, 1) is in

the row space: no such matrix.

4 If AB = 0, the columns ofB are in thenullspaceof A and the rows ofA are in theleft

nullspaceof B. If rank= 2, all those four subspaces have dimension at least2 which

is impossible for3 by 3.

5 (a) If Ax = b has a solution andATy = 0, theny is perpendicular tob. bTy =

(Ax)Ty = xT(ATy) = 0. This says again thatC(A) is orthogonal toN(AT).

(b) If ATy = (1, 1, 1) has a solution,(1, 1, 1) is a combination of the rows ofA.

It is in therow spaceand is orthogonal to everyx in thenullspace.
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6 Multiply the equations byy1, y2, y3 = 1, 1,−1. Now the equations add to0 = 1 so

there is no solution. In subspace language,y = (1, 1,−1) is in the left nullspace.

Ax = b would need0 = (yTA)x = yTb but hereyTb = 1.

7 Multiply the 3 equations byy = (1, 1,−1). Thenx1−x2 = 1 plusx2−x3 = 1 minus

x1 − x3 = 1 is 0 = 1. Key point: Thisy in N(AT) is not orthogonal tob = (1, 1, 1)

sob is not in the column space andAx = b hasno solution.

8 Figure4.1 hasx = xr + xn, wherexr is in the row space andxn is in the nullspace.

ThenAxn = 0 andAx = Axr + Axn = Axr. The example hasx = (1, 0) and row

space= line through(1, 1) so the splitting isx = xr + xn =
(
1
2 ,

1
2

)
+
(
1
2 ,− 1

2

)
. All

Ax are inC(A).

9 Ax is always in thecolumn spaceof A. If ATAx = 0 thenAx is also in thenullspace

of AT. Those subspaces are perpendicular. SoAx is perpendicular to itself. Conclu-

sion:Ax = 0 if ATAx = 0.

10 (a) With AT = A, the column space and row space are thesame. The nullspace is

always perpendicular to the row space. (b)x is in the nullspace andz is in the

column space= row space: so these “eigenvectors”x andz havexTz = 0.

11 For A: The nullspace is spanned by(−2, 1), the row space is spanned by(1, 2). The

column space is the line through(1, 3) andN(AT) is the perpendicular line through

(3,−1). For B: The nullspace ofB is spanned by(0, 1), the row space is spanned by

(1, 0). The column space and left nullspace are the same as forA.

12 x = (2, 0) splits intoxr + xn = (1,−1) + (1, 1).

13 V TW = zero matrix makes each column ofV orthogonal to each column ofW . This

means : each basis vector forV is orthogonal to each basis vector forW. Thenevery

v in V (combinations of the basis vectors) is orthogonal toeveryw in W.
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14 Ax = Bx̂ means that[A B ]


 x

−x̂


 = 0. Three homogeneous equations (zero right

hand sides) in four unknowns always have a nonzero solution.Herex = (3, 1) and

x̂ = (1, 0) andAx = Bx̂ = (5, 6, 5) is in both column spaces. Two planes inR3 must

share a line.

15 A p-dimensional and aq-dimensional subspace ofRn share at least a line ifp + q > n.

(Thep + q basis vectors ofV andW cannot be independent, so some combination of

the basis vectors ofV is also a combination of the basis vectors ofW .)

16 ATy = 0 leads to(Ax)Ty = xTATy = 0. Theny ⊥ Ax andN(AT) ⊥ C(A).

17 If S is the subspace ofR3 containing only the zero vector, thenS⊥ is all of R3.

If S is spanned by(1, 1, 1), thenS⊥ is the plane spanned by(1,−1, 0) and(1, 0,−1).
If S is spanned by(1, 1, 1) and(1, 1,−1), thenS⊥ is the line spanned by(1,−1, 0).

18 S⊥ contains all vectors perpendicular to those two given vectors. SoS⊥ is the nullspace

of A =


1 5 1

2 2 2


. ThereforeS⊥ is asubspaceeven ifS is not.

19 L⊥ is the2-dimensional subspace(a plane) in R3 perpendicular toL . Then(L⊥)⊥ is

a 1-dimensional subspace(a line) perpendicular toL⊥. In fact(L⊥)⊥ is L .

20 If V is the whole spaceR4, thenV⊥ contains only thezero vector. Then(V⊥)⊥ =

all vectors perpendicular to the zero vector= R4 = V.

21 For example(−5, 0, 1, 1)and(0, 1,−1, 0) spanS⊥=nullspace ofA=


1 2 2 3

1 3 3 2


.

22 (1, 1, 1, 1) is a basis for the lineP⊥ orthogonal to the hyperplaneP.

A =
[
1 1 1 1

]
hasP as its nullspace andP⊥ as its row space.

23 x in V⊥ is perpendicular to every vector inV. SinceV contains all the vectors inS,

x is perpendicular to every vector inS. So everyx in V⊥ is also inS⊥.

24 AA−1 = I: Column1 of A−1 is orthogonal to rows2, 3, . . . , n of A and therefore it is

orthogonal to the space spanned by those rows.
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25 If the columns of A are unit vectors, all mutually perpendicular, thenATA = I. Simple

but important ! We writeQ for such a matrix.

26 A =




2 2 −1
−1 2 2

2 −1 2


,

This example shows a matrix with perpendicular columns.

ATA = 9I is diagonal: (ATA)ij = (columni of A) · (columnj of A).

When the columns areunit vectors, thenATA = I.

27 The lines3x + y = b1 and6x + 2y = b2 areparallel. They are the same line if

b2 = 2b1. In that case(b1, b2) is perpendicular to(−2, 1). The nullspace of the 2 by 2

matrix is the line3x+ y = 0. One particular vector in the nullspace is(−1, 3).

28 (a) (1,−1, 0) is in both planes. Normal vectors are perpendicular to each other,

but planes can still intersect ! Two planes inR3 can’t be orthogonal.

(b) Needthreeorthogonal vectors to span the whole orthogonal complementin R5.

(c) Lines inR3 can meet at the zero vector without being orthogonal.

29 A =




1 2 3

2 1 0

3 0 1


 , B =




1 1 −1
2 −1 0

3 0 −1


;

A hasv = (1, 2, 3) in row and column spaces

B hasv in its column space and nullspace.

v can notbe in the nullspace and row space,

or in the left nullspace and column space. These spaces are orthogonal andvTv 6= 0.

30 WhenAB = 0, every column ofB is multiplied byA to give zero. So the column

space ofB is contained in the nullspace ofA. Therefore the dimension ofC(B) ≤
dimension ofN(A). This means rank(B) ≤ 4 − rank(A).

31 null(N ′) produces a basis for therow spaceof A (perpendicular toN(A)).

32 We needrTn = 0 andcTℓ = 0. All possible examples have the formA = acrT with

a 6= 0.

33 Bothr’s must be orthogonal to bothn’s, bothc’s must be orthogonal to bothℓ’s, each

pair (r’s, n’s, c’s, andℓ’s) must be independent. Fact : AllA’s with these subspaces

have the form[c1 c2]M [r1 r2]
T for a2 by 2 invertibleM .
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Problem Set 4.2, page 159

0 (a)P 2 = P is true butPT 6= P . This question is about nonsymmetric projections (the

errore is no longer perpendicular to the projectionp). Same forI − P .

(b) v=


 1

1


 is in C(P ) andw=


 1

0


 is in C(I −P ). Butv is not perpendicular tow.

(c) If P 2 = P andPT = P , then the column spaces ofP andI−P are perpendicular :

(Pv)T(I − P )w = vTP (I − P )w = 0 sinceP − P 2 = 0.

1 (a) aTb/aTa = 5/3; projectionp = 5a/3 = (5/3, 5/3, 5/3); e = (−2, 1, 1)/3

(b) aTb/aTa=−1; projectionp=−a; e=0.

2 (a) The projection ofb = (cos θ, sin θ) onto a = (1, 0) is p = (cos θ, 0)

(b) The projection ofb = (1, 1) ontoa = (1,−1) is p = (0, 0) sinceaTb = 0.

The picture for part (a) has the vectorb at an angleθ with the horizontala. The picture

for part (b) has vectorsa andb at a90◦ angle.

3 P1 =
1

3




1 1 1

1 1 1

1 1 1


 andP1b =

1

3




5

5

5


. P2 =

1

11




1 3 1

3 9 3

1 3 1


 andP2b =




1

3

1


.

4 P1 =


1 0

0 0


,P2 =

aaT

aTa
=

1

2


 1 −1
−1 1


.

P1 projects onto(1, 0), P2 projects onto(1,−1)
P1P2 6= 0 andP1 + P2 is not a projection matrix.

(P1 + P2)
2 is different fromP1 + P2.

5 P1 =
1

9




1 −2 −2
−2 4 4

−2 4 4


 and P2 =

1

9




4 4 −2
4 4 −2
−2 −2 1


.

P1 andP2 are the projection matrices onto the lines througha1 = (−1, 2, 2) and

a2 = (2, 2,−1). P1P2 = zero matrix becausea1 ⊥ a2.

6 p1=(19 ,− 2
9 ,− 2

9 ) andp2=(49 ,
4
9 ,− 2

9 ) andp3 = (49 ,− 2
9 ,

4
9 ). Sop1 + p2 + p3 = b.
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7 P1 + P2 + P3 =
1

9




1 −2 −2

−2 4 4

−2 4 4


+

1

9




4 4 −2

4 4 −2
−2 −2 1


+

1

9




4 −2 4

−2 1 −2
4 −2 4


 = I.

We canadd projections ontoorthogonal vectorsto get the projection matrix onto the

larger space. This is important.

8 The projections of(1, 1) onto(1, 0) and(1, 2) arep1 = (1, 0) andp2 = 3
5 (1, 2). Then

p1 + p2 6= b. The sum of projections is not a projection onto the space spanned by

(1, 0) and(1, 2) because those vectors arenot orthogonal.

9 SinceA is invertible,P = A(ATA)−1AT separates intoAA−1(AT)−1AT = I. And

I is the projection matrix onto all ofR2.

10 P2 =
a2a

T
2

aT
2 a2

=


0.2 0.4

0.4 0.8


,P2a1 =


0.2

0.4


,P1 =

a1a
T
1

aT
1 a1

=


1 0

0 0


,P1P2a1 =


0.2

0


.

This is nota1 = (1, 0)

No, P1P2 6= (P1P2)
2.

11 HereP is the usual projection(P 2 = P = PT) of the whole spaceRm onto its

subspaceS.

S is the row space and column space ofP .

S⊥ is the nullspace ofP andPT.

12 (a) p=A(ATA)−1ATb=(2, 3, 0), e=(0, 0, 4), ATe=0

(b) p = (4, 4, 6) ande=0 becauseb is in the column space ofA.

13 P1 =




1 0 0

0 1 0

0 0 0


 = projection matrix onto the column space ofA (thexy plane)

P2 =




0.5 0.5 0

0.5 0.5 0

0 0 1


=

Projection matrixA(ATA)−1AT onto the second column space.

Certainly(P2)
2 = P2. A true projection matrix.
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14 A =




1 0 0

0 1 0

0 0 1

0 0 0




, P = square matrix=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




, p = P




1

2

3

4



=




1

2

3

0




.

15 The projection of thisb onto the column space ofA is b itself becauseb is in that

column space. ButP is not necessarilyI. Hereb = 2(column1 of A) :

A =




0 1

1 2

2 0


 givesP =

1

21




5 8 −4
8 17 2

−4 2 20


 andb = Pb = p =




0

2

4


.

16 2A has the same column space asA. ThenP is the same forA and2A, but x̂ for 2A

is half of x̂ for A.

17 1
2 (1, 2,−1) + 3

2 (1, 0, 1) = (2, 1, 1). Sob is in the plane. Projection showsPb = b.

18 If P 2 = P then(I − P )2 = (I −P )(I −P ) = I −PI − IP +P 2 = I − P . When

P projects onto the column space,I − P projects onto theleft nullspace.

19 (a) I − P is the projection matrix onto(1,−1) in the perpendicular direction to(1, 1)

(b) I − P projects onto the planex+ y + z = 0 perpendicular to(1, 1, 1).

20
For any basis vectors in the planex− y − 2z = 0,

say(1, 1, 0) and(2, 0, 1), the matrixP = A(ATA)−1AT is




5/6 1/6 1/3

1/6 5/6 −1/3
1/3 −1/3 1/3


.

21 e =




1

−1
−2


, Q = eeT

eTe =




1/6 −1/6 −1/3
−1/6 1/6 1/3

−1/3 1/3 2/3


, I −Q =




5/6 1/6 1/3

1/6 5/6 −1/3
1/3 −1/3 1/3


.

22
(
A(ATA)−1AT

)2
= A(ATA)−1(ATA)(ATA)−1AT = A(ATA)−1AT. SoP 2 = P .

Pb is in the column space (whereP projects). Then its projectionP (Pb) is alsoPb.

23 PT = (A(ATA)−1AT)T =A((ATA)−1)TAT =A(ATA)−1AT = P . (ATA is sym-

metric!)

24 If A is invertible then its column space is all ofRn. SoP = I ande = 0.
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25 The nullspace ofAT is orthogonalto the column spaceC(A). So ifATb = 0, the pro-

jection ofb ontoC(A) should bep = 0. CheckPb = A(ATA)−1ATb = A(ATA)−10.

26 The column space ofP is the space thatP projects onto. The column space ofA

always contains all outputsAx and here the outputsPx fill the subspaceS. Then rank

of P = dimension ofS = n.

27 A−1 exists since the rank isr = m. Multiply A2 = A byA−1 to getA = I.

28 If ATAx = 0 thenAx is in thenullspace ofAT. But Ax is always in thecolumn

space ofA. To be in both of those perpendicular spaces,Ax must be zero. SoA and

ATA have thesame nullspace: ATAx = 0 exactly whenAx = 0.

29 Start fromP 2 = P . The(2, 2) entry ofP 2 is the dot product (row2 of P ) · (column2 of P ).

SinceP is symmetric this is||row 2 of P ||2.

P =
1

2


 1 1

1 1


 hasP 2 = P andP22 =

1

2
and column2 =


 1/2

1/2


has||column2||2 =

1

2

30 If BBTx = 0 then0 = xTBBTx = ||BTx||2. But thenBTx = 0. SinceB has

independent rows, this only happens ifx = 0. SoBBT is invertible.
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Problem Set 4.3, page 161

1 A =




1 0

1 1

1 3

1 4




andb =




0

8

8

20




giveATA =


4 8

8 26


 andATb =


 36

112


.

ATAx̂ = ATb givesx̂ =


1

4


 andp = Ax̂ =




1

5

13

17




ande = b− p =

E = ‖e‖2 = 44




−1
3

−5
3




2




1 0

1 1

1 3

1 4





C

D


=




0

8

8

20




.
ThisAx = b is unsolvable

Projectb to p = Pb =




1

5

13

17




; Whenp replacesb,

x̂=


1

4


 exactly solvesAx̂ = p.

3 In Problem 2,p = A(ATA)−1ATb = (1, 5, 13, 17) ande = b − p = (−1, 3,−5, 3).

Thise is perpendicular to both columns ofA. This shortest distance‖e‖ is
√
44.

4 E = (C + 0D)2 + (C + 1D − 8)2 + (C + 3D − 8)2 + (C + 4D − 20)2. Then

∂E/∂C = 2C + 2(C + D − 8) + 2(C + 3D − 8) + 2(C + 4D − 20) = 0 and

∂E/∂D = 1 · 2(C + D − 8) + 3 · 2(C + 3D − 8) + 4 · 2(C + 4D − 20) = 0.

These two normal equations are again


4 8

8 26




C

D


 =


 36

112


.

5 E = (C−0)2+(C−8)2+(C−8)2+(C−20)2. AT = [ 1 1 1 1 ] andATA = [ 4 ].

ATb = [ 36 ] and (ATA)−1ATb = 9 = best heightC for the horizontal line.

Errorse = b− p = (−9,−1,−1, 11) still add to zero.
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6 a = (1, 1, 1, 1) andb = (0, 8, 8, 20) give x̂ = aTb/aTa = 9 and the projection is

x̂a = p = (9, 9, 9, 9). TheneTa = (−9,−1,−1, 11)T(1, 1, 1, 1) = 0 and the shortest

distance fromb to the line througha is ‖e‖ =
√
204.

7 Now the4 by 1 matrix in Ax = b is A = [ 0 1 3 4 ]
T. Then ATA = [ 26 ] and

ATb = [ 112 ]. BestD = 112/26 = 56/13.

8 x̂ = aTb/aTa = 56/13 andp = (56/13)(0, 1, 3, 4). (C,D) = (9, 56/13) don’t

match(C,D) = (1, 4) from Problems1-4. Columns ofA were not perpendicular so

we can’t project separately to findC andD.

9

Parabola

Projectb

4D to 3D




1 0 0

1 1 1

1 3 9

1 4 16







C

D

E


=




0

8

8

20




. ATAx̂=




4 8 26

8 26 92

26 92 338







C

D

E


=




36

112

400


.

Figure4.9 (a) is fitting4 points and4.9 (b) is a projection inR4: same problem!

10




1 0 0 0

1 1 1 1

1 3 9 27

1 4 16 64







C

D

E

F



=




0

8

8

20




. Then




C

D

E

F



=
1

3




0

47

−28
5




.

Exact cubic sop = b, e = 0.

This Vandermonde matrix

gives exact interpolation

by a cubic at0, 1, 3, 4

11 (a) The best linex = 1 + 4t gives the center point̂b = 9 at center time,̂t = 2.

(b) The first equationCm+D
∑

ti =
∑

bi divided bym givesC +Dt̂ = b̂. This

shows : The best line goes throughb̂ at timet̂.

12 (a) a = (1, . . . , 1) hasaTa = m, aTb = b1 + · · · + bm. Thereforêx = aTb/m is

themeanof theb’s (their average value)

(b) e = b − x̂a and‖e‖2 = (b1 − mean)2 + · · · + (bm − mean)2 = variance

(denoted byσ2).

(c) p = (3, 3, 3) ande = (−2,−1, 3) pTe = 0. Projection matrixP =
1

3




1 1 1

1 1 1

1 1 1


.
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13 (ATA)−1AT(b − Ax) = x̂− x. This tells us: When the components ofAx − b add

to zero, so do the components ofx̂− x : Unbiased.

14 The matrix(x̂− x)(x̂− x)T is (ATA)−1AT(b−Ax)(b −Ax)TA(ATA)−1. When

the average of(b−Ax)(b−Ax)T is σ2I, the average of(x̂−x)(x̂−x)T will be the

output covariance matrix(ATA)−1ATσ2A(ATA)−1 which simplifies toσ2(ATA)−1.

That gives the average of the squared output errorsx̂− x.

15 WhenA has1 column of4 ones, Problem14 gives the expected error(x̂ − x)2 as

σ2(ATA)−1=σ2/4.By takingm measurements, the variance drops fromσ2 to σ2/m.

16
1

10
b10 +

9

10
x̂9 =

1

10
(b1 + · · ·+ b10). Knowing x̂9 avoids adding all tenb’s.

17




1 −1

1 1

1 2





C

D


=




7

7

21


. The solution̂x =


9

4


 comes from


3 2

2 6




C

D


=


35

42


.

18 p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The vertical errors are

b− p = (2,−6, 4). This errore hasPe = Pb− Pp = p− p = 0.

19 If b = errore thenb is perpendicular to the column space ofA. Projectionp = 0.

20 The matrixA has columns1, 1, 1 and−1, 1, 2. If b = Ax̂ = (5, 13, 17) thenx̂ = (9, 4)

ande = 0 sinceb = 9 (column1) + 4 (column2) is in the column space ofA.

21 e is in N(AT); p is in C(A); x̂ is in C(AT); N(A) = {0} = zero vector only.

22 The least squares equation is


 5 0

0 10




C

D


=


 5

−10


. Solution:C = 1, D = −1.

The best line isb = 1− t. Symmetrict’s⇒ diagonalATA⇒ easy solution.

23 e is orthogonal top in Rm; then‖e‖2 = eT(b− p) = eTb = bTb− bTp.

24 The derivatives of‖Ax− b‖2 = xTATAx− 2bTAx+ bTb (this last term is constant)

are zero when2ATAx = 2ATb, orx = (ATA)−1ATb.

25 3 points on a line will giveequal slopes(b2 − b1)/(t2 − t1) = (b3 − b2)/(t3 − t2).

Linear algebra: Orthogonal to the columns(1, 1, 1) and(t1, t2, t3) isy = (t2− t3, t3−

t1, t1 − t2) in the left nullspace ofA. b is in the column space ! ThenyTb = 0 is the

same equal slopes condition written as(b2 − b1)(t3 − t2) = (b3 − b2)(t2 − t1).
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26 The unsolvable equations forC +Dx+ Ey = (0, 1, 3, 4) at the4 corners are




1 1 0

1 0 1

1 −1 0

1 0 −1







C

D

E


 =




0

1

3

4



. ATA =




4 0 0

0 2 0

0 0 2


 ;ATb =




8

−2
−3


 ;




C

D

E


=




2

−1
−3/2


 .

At x, y = 0, 0 the best plane2− x− 3
2y has heightC = 2 = average of0, 1, 3, 4.

27 The shortest link connecting two lines in space isperpendicular to those lines.

28 If A has dependent columns, thenATA is not invertable and the usual formulaP =

A(ATA)−1AT will fail. ReplaceA in that formula by the matrixB that keepsonly the

pivot columns ofA.

29 Only1 plane contains0,a1,a2 unlessa1,a2 aredependent. Same test fora1, . . . ,an−1.

If they are dependent, there is a vectorv perpendicular to all thea’s. Then they all

(including0) lie on the planevTx = 0 going throughx = (0, 0, . . . , 0).

30 When A has orthogonal columns(1, . . . , 1) and (T1, . . . , Tm), the matrixATA is

diagonalwith entriesm andT 2
1 + · · ·+ T 2

m. AlsoATb has entriesb1 + · · ·+ bm and

T1b1+ · · ·+Tmbm. The solution with that diagonalATA is just the given̂x = (C,D).
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Problem Set 4.4, page 186

1 (a) Independent(b) Independentand orthogonal(c) Independentandorthonormal.

For orthonormal vectors, (a) becomes(1, 0), (0, 1) and (b) is(.6, .8), (.8,−.6).

2
Divide by length 3 to get

q1 = (23 ,
2
3 ,− 1

3 ). q2 = (− 1
3 ,

2
3 ,

2
3 ).

QTQ =


1 0

0 1


 butQQT =




5/9 2/9 −4/9
2/9 8/9 2/9

−4/9 2/9 5/9


.

3 (a) ATA will be 16I (b) ATA will be diagonal with entries12, 22, 32 = 1, 4, 9.

4 (a) Q =




1 0

0 1

0 0


, QQT =




1 0 0

0 1 0

0 0 0


 6= I. Any Q with n < m hasQQT 6= I.

(b) (1, 0) and(0, 0) areorthogonal, not independent. Nonzero orthogonal vectorsare

independent. (c) Fromq1 = (1, 1, 1)/
√
3 my favorite isq2 = (1,−1, 0)/

√
2 and

q3 = (1, 1,−2)/
√
6.

5 Orthogonalvectors are(1,−1, 0) and(1, 1,−1). Orthonormalafter dividing by their

lengths :
(

1√
2
,− 1√

2
, 0
)

and
(

1√
3
, 1√

3
,− 1√

3

)
.

6 Q1Q2 is orthogonal because(Q1Q2)
TQ1Q2 = QT

2 Q
T
1 Q1Q2 = QT

2 Q2 = I. Another

approach is to see that(Q1Q1)
−1 = Q−1

2 Q−1
1 = QT

2 Q
T
1 = (Q1Q2)

T.

7 When Gram-Schmidt givesQ with orthonormal columns,QTQx̂ = QTb becomes

x̂ = QTb. No cost to solve the normal equations !

8 If q1 andq2 areorthonormalvectors inR5 thenp = (qT
1 b)q1+(qT

2 b)q2 is closest tob.

The errore = b− p is orthogonal toq1 andq2.

9 (a) Q =




.8 −.6

.6 .8

0 0


 hasP = QQT =




1 0 0

0 1 0

0 0 0


 = projection on thexy plane.

(b) (QQT)(QQT) = Q(QTQ)QT = QQT.
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10 (a) If q1, q2, q3 areorthonormalthen the dot product ofq1 with c1q1+c2q2+c3q3 =

0 givesc1 = 0. Similarly c2 = c3 = 0. This proves :Independentq’s

(b) Qx = 0 leads toQTQx = 0 which saysx = 0.

11 (a) Twoorthonormalvectors areq1 = 1
10 (1, 3, 4, 5, 7) andq2 = 1

10 (−7, 3, 4,−5, 1)
(b) Closest vector= projectionQQT(1, 0, 0, 0, 0) = (0.5,−0.18,−0.24, 0.4, 0).

12 Multiply b = x1a1 + x2a2 + x3a3 by axT
1 :

aT
1 b = x1a

T
1 a1 + x2a

T
1 a2 + x3a

T
1 a3 = 0 + 0 + x1a

T
1 a1

Divide byaT
1 a1 (not necessarily equal to1) to findx1 = aT

1 b/a
T
1 a1.

13 The multiple to subtract isa
Tb

aTa . ThenB = b− aTb
aTaa =


 4

0


−2


 1

1


=


 2

−2


.

14


1 4

1 0


 =

[
q1 q2

]
‖a‖ qT

1 b

0 ‖B‖


 =


1/
√
2 1/

√
2

1/
√
2 −1/

√
2





√
2 2
√
2

0 2
√
2


 = QR.

15 (a) Gram-Schmidt choosesq1 = a/||a|| = 1

3
(1, 2,−2) andq2 = 1

3 (2, 1, 2). Then

q3 = 1
3 (2,−2,−1).

(b) The nullspace ofAT containsq3

(c) x̂ = (ATA)−1AT(1, 2, 7) = (1, 2).

16 p = (aTb/aTa)a = 14a/49 = 2a/7 is the projection ofb ontoa. q1 = a/‖a‖ =
a/7 is (4, 5, 2, 2)/7. B = b− p = (−1, 4,−4,−4)/7 has‖B‖ = 1 soq2 = B.

17 p = (aTb/aTa)a = (3, 3, 3) ande = (−2, 0, 2). Then Gram-Schmidt will choose

q1 = (1, 1, 1)/
√
3 andq2 = (−1, 0, 1)/

√
2.

18 A = a = (1,−1, 0, 0);B = b−p = (12 ,
1
2 ,−1, 0);C = c−pA−pB = (13 ,

1
3 ,

1
3 ,−1).

Notice the pattern in those orthogonalA,B,C. In R5, D would be(14 ,
1
4 ,

1
4 ,

1
4 ,−1).

Gram-Schmidt would go on to normalizeq1 = A/||A||, q2 = B/||B||, q3 = C/||C||.
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19 If A = QR thenATA = RTQTQR = RTR = lower triangular timesuppertriangular

(this Cholesky factorization ofATA uses the sameR as Gram-Schmidt!). The example

hasA =




−1 1

2 1

2 4


 =

1

3




−1 2

2 −1

2 2





3 3

0 3


 = QR and the sameR appears in

ATA =


9 9

9 18


 =


3 0

3 3




3 3

0 3


 = RTR.

20 (a) True FromQT = Q−1 we find (QT)−1 = (Q−1)−1. And always(QT)−1 =

(Q−1)T.

(b) True So the transpose ofQ−1 = inverse ofQ−1. We are given orthonormal

columns :QTQ = I. Then||Qx||2 = xTQTQx = xTx = ||x||2.

Notice :Q might be rectangular (and then not an orthogonal matrix).

21 The orthonormal vectors areq1 = (1, 1, 1, 1)/2 andq2 = (−5,−1, 1, 5)/
√
52. Then

b = (−4,−3, 3, 0) projects top = (qT
1 b)q1 + (qT

2 b)q2 = (−7,−3,−1, 3)/2. And

b− p = (−1,−3, 7,−3)/2 is orthogonal to bothq1 andq2.

22 A = (1, 1, 2), B = (1,−1, 0), C = (−1,−1, 1). These are not yet unit vectors.

Gram-Schmidt will divide by||A|| =
√
6 and||B|| =

√
2 and||C|| =

√
3.

23 You can see whyq1 =




1

0

0


, q2 =




0

0

1


, q3 =




0

1

0


. A =




1 0 0

0 0 1

0 1 0







1 2 4

0 3 6

0 0 5


 =

QR. ThisQ is just a permutation matrix—certainly orthogonal.

24 (a) 1 equation,4 unknowns,3 independent solutions.

We could choose the solutions(1, 0, 0, 1), (0, 1, 0, 1), and(0, 0, 1, 1).

(b) Those vectors are orthogonal toS⊥ = line through(1, 1, 1− 1).

(c) The component ofb = (1, 1, 1, 1) in S⊥ is

b2 =
(1, 1, 1, 1)T(1, 1, 1,−1)
(1, 1, 1,−1)T(1, 1, 1,−1)(1, 1, 1,−1) =

2

4
(1, 1, 1,−1) = 1

2
(1, 1, 1,−1)

Thenb1 = b−b2 = (1, 1, 1, 1)−1

2
(1, 1, 1,−1) = 1

2
(1, 1, 1, 3). Check1+1+1−3 = 0.
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25


 2 1

1 1


 =


 2 −1

1 2




√
5


 5 3

0 1




√
5


 1 1

1 1


 =


 1 −1

1 1




√
2


 2 2

0 0




√
2

andR22 has become zero.A =


 1 1

1 1




had dependent columns.

26 (qT
2 C

∗)q2 = BTc
BTB

B becauseq2 = B
‖B‖ and the extraq1 in C∗ is orthogonal toq2.

27 Whena andb are not orthogonal, the projections onto these linesdo not addto the pro-

jection onto the plane ofa andb. We must use the orthogonalA andB (or orthonormal

q1 andq2) to be allowed to add projections on those lines.

28 There are12m
2n multiplications to find the numbersrkj and the same forvij .

29 q1 = 1
3 (2, 2,−1), q2 = 1

3 (2,−1, 2), q3 = 1
3 (1,−2,−2).

30 W has orthonormal columns soWTW = I andWT = W−1.

31 Choosec = 1
2 to give orthonormal columns. The projection ofb = (1, 1, 1, 1) onto the

first columnq1 = 1
2 (1,−1,−1,−1) is (qT

1 b)q1 = −q1.

The projection ofb onq2 is (qT
2 b)q2 = −q2.

Sinceq1 is orthogonal toq2, we add to find the projection−q1 − q2 onto the plane of

q1 andq2.

32 Q = I − 2uuT is a reflection matrix (Q2 = I) if u is a unit vector||u|| = 1.

u =


0

1


 givesQ =


1 0

0 −1


 u =




0
√
2/2
√
2/2


 givesQ =




1 0 0

0 0 −1
0 −1 0


.

33 Orthogonal and lower triangular⇒ ±1 on the main diagonal and zeros elsewhere.

34 (a) Qu = (I − 2uuT)u = u − 2uuTu. This is−u, provided thatuTu equals1

(b) Qv = (I − 2uuT)v = v − 2uuTv = v, provided thatuTv = 0.
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35 Starting fromA = (1,−1, 0, 0), the orthogonal (not orthonormal) vectorsB =

(1, 1,−2, 0)andC=(1, 1, 1,−3)andD=(1, 1, 1, 1)are in the directions ofq2, q3, q4.

The4 by 4 and5 by 5 matrices withinteger orthogonal columns(not orthogonal rows,

since not orthonormalQ!) are



A B C D



=




1 1 1 1

−1 1 1 1

0 −2 1 1

0 0 −3 1




and




1 1 1 1 1

−1 1 1 1 1

0 −2 1 1 1

0 0 −3 1 1

0 0 0 −4 1




36 [Q,R] = qr(A) produces fromA (m byn of rankn) a “full-size” squareQ=[Q1 Q2 ]

and


R

0


. The columns ofQ1 are the orthonormal basis from Gram-Schmidt of the

column spaceof A. Them − n columns ofQ2 are an orthonormal basis for theleft

nullspaceof A. Together the columns ofQ = [Q1 Q2 ] are an orthonormal basis

for Rm.

37 This question describes the nextqn+1 in Gram-Schmidt using the matrixQ with

the columnsq1, . . . , qn (instead of using thoseq’s separately). Start froma, subtract

its projectionp = QQTa onto the earlierq’s, divide by the lengthof e = a −QQTa

to get the nextqn+1 = e/‖e‖.
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Problem Set 4.5, page 196

1 A1 =


 1 1

1 1


 =


 1

1



[
1 1

]

= CR so A+
1 = RT(CTART)−1CT from

equation (7), page 195.

A+
1 =


 1

1


 1

4

[
1 1

]
=
1

4


 1 1

1 1


 A+

2 =


 1/2 0 0

0 1/4 0


 A+

3 =




1/2 0

0 1/4

0 0




2 A+A =
rcTcrT

(rTr) (cTc)
=

rrT

rTr
and AA+ =

ccT

cTc
are symmetric

The first two Penrose conditions are also easy to check :

AA+A = (crT)
rrT

rTr
= crT = A and A+AA+ =

rrT

rTr

rcT

(rTr) (cTc)
= A+

3 Problem : Check thatB =


 A

0


 hasB+ =

[
A+ 0

]
.

Solution : Start fromB+B = A+A. Then the Penrose conditions are satisfied byB+.

4 The column space ofA is R2. The row space is thex-y plane inR3. ThenA+ = AT.

5 A+ =




0 1

0 0

1/2 0


 and (AT)+ =


 0 0 1/2

1 0 0


.

It is always true that(AT)+ is the transpose ofA+. The straightforward proof quickly

checks the Penrose conditions. We are simply reversing the left side and right side of

the “Big Picture” of4 subspaces.

6 Given thatPT = P = P 2, the pseudoinverseP+ is the same asP . The first two

Penrose conditions becomeP 3 = P (true). The last two conditions become(P 2)T =

PT = P (true).
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7 We are asked to verify(AA+)2 = AA+. WatchCTART cancel its inverse !

(AA+)2=[ART(CTART)−1CT][ART(CTART)−1CT]=ART(CTART)−1CT=AA+

8 A+A = [RT(CTART)−1CT]CR = RT(CTC RRT)−1CTCR = RT(RRT)−1R is

symmetric.

9 Delete edgesd ande. The graph becomes a triangle with3 by 3 incidence matrix.

A =




−1 1 0

−1 0 1

0 −1 1


 = CR =




−1 1

−1 0

0 −1





 1 0 −1

0 1 −1



.

ThenCTART =


 −1 −1 0

1 0 −1







−1 1 0

−1 0 1

0 −1 1







1 0

0 1

−1 −1


 = 3I

From formula (7) :A+ = RT

(
1

3

)
CT =

1

3
AT =

1

3




−1 −1 0

1 0 −1

0 1 1


.

10 A =
[
1 0

]
andB =


 1

1


 giveAB =

[
1
]

andBA =


 1 0

1 0


. Certainly

(AB)+ =
[
1
]

is notB+A+ =

[
1

2

1

2

]
 1

0


, so pesudoinversesdon’t copy

true inverses(where(AB)−1 = B−1A−1). But they do copy inverses when ranks are

right—as they are for

(BA)+ =


 1 0

1 0



+

=


 1 1

0 0


 =


 1

0



[
1 1

]

= A+B+.

11 The four Penrose conditions for(A+)+ are all satisfied byA. (Also (A+)+ takes the

column space ofA+ to its row space. This means(A+)+ takes the row space ofA to

its column space—just likeA !)
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Problem Set 5.1, page 203

1 det(2A)= 24 detA = 8; det(−A) = (−1)4 detA = 1
2 ; det(A

2) = 1
4 ; det(A

−1)=2.

2 det(12A) = (12 )
3 detA = − 1

8 anddet(−A) = (−1)3 detA = 1; det(A2) = 1;

det(A−1) = −1. If detA = 0 thendetA/2 = det(−A) = detA2 = 0; noA−1.

3 (a) False: det(I + I) is not1 + 1 (except whenn = 1)

(b) False: det(4A) is 4n detA

(c) False: A =


0 0

0 1


, B =


0 1

1 0


, AB −BA =


0 −1

1 0


 is invertible.

4 Exchange rows 1 and 3 to showdetJ3 = −1. Exchange rows 1 and 4, then rows 2 and

3 to showdetJ4 = 1. Two exchanges= even permutation.

5 |J5| = 1 by exchanging row1 with 5 and row2 with 4. |J6| = −1, |J7| = −1.

Determinants1, 1,−1,−1 repeat in cycles of length4 so the determinant ofJ101 is+1.

6 detA = 4, detB = 0, detC = 0.

7 The6 terms becomea(q+ b)z− b(p+a)z+ · · · (4 more). The approach in the display

(using linearity to split up row2) is better. Result :det does not change if row2 is

added to row1.

8 detAT =




a p x

b q y

c r z


 =

aqz + cpy + brx

− ary − bpz − cqx
= same six terms asdetA

Key point : detPT = detP for every permutation, because the number of row

exchanges is the same (just done in reverse order). ThenP is even whenPT is even.

9 detA = 1 from two row exchanges .detB = 2 (subtract rows 1 and 2 from row 3,

then columns 1 and 2 from column 3).detC = 0 anddetD = 0 (equal rows).

10 If the entries in every row add to zero, then(1, 1, . . . , 1) is in the nullspace: singular

A hasdet = 0. (The columns add to the zero column so they are linearly dependent.)

If every row adds to one, then rows ofA − I add to zero (not necessarilydetA = 1).
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11 If P1 needsn exchanges to reachI andP2 needsN exchanges thenP1P2 reachesI after

thosen+N exchanges. Sodet(P1P2) = (−1)n+N = (−1)n(−1)N = (detP1) (detP2).

12 We can pair off even permutations with odd permutations : odd= even followed by

exchanging1 and2.Number of even permutations= 1
2n!=number of odd permutations.

13 A singular rank one matrix has determinant= 0. The skew-symmetricA also has

detA = 0. A skew-symmetric matrixA of odd order3 : Changing every sign will

multiply detA by (−1)3 but also keep the samedetA = detAT. SodetA = 0.

14 When thei, j entry isi timesj, row 2 = 2 times row 1 sodetA = 0.

When theij entry isi+ j, row3− row 2 = row2− row 1 soA is singular:detA = 0.

15 Fill a row (or column) by4 zeros to guaranteedet = 0. Leave only the main diagonal

(12 zeros) to allowdetA 6= 0.

16 The cofactor formuladetA = a11C11 + · · · + a1nC1n givesdet = 0 if all cofactors

are zero. The2 by 2 matrix of1’s hasdet = 0 even though no cofactors are zero.

17 Two equal rows implydet = 0. Proof for3× 3 if row 1= row 2. Thena = p, b = q,

c = r. Thenaqz+brx+cpy−ary−bpz−cqx = abz+bcx+cay−acy−baz−cbx= 0.

18 If A has two equal rows thenAT has two equal columns (say columnsj andk). Then

the columns are not independent. SodetAT = 0 anddetA = 0. Other proofs also

reach this conclusion.

19 Start fromACT = (detA)I. Take determinants of both sides :

(detA) (detC) = (detA)n and detC = (detA)n−1

Note : IfdetA = 0 (singular matrix) thenA is the limit of invertible matricesA1, A2, . . .

Apply detCi = (detAi)
n−1 and take the limit asi → ∞. (How would you defineC

for a1 by 1 matrix ??)

20 If you knowC and ifdetA=1 then you knowA−1=CT/1. Then invertA−1 to findA.
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Problem Set 5.2, page 209

1 If detA = 2 thendetA−1 = 1
2 , detA

n = 2n, anddetAT = 2.

2 detA = −2, independent columns;detB = 0, dependent columns;detC = 4,

independent columns butdetD = 0 because its submatrixB has dependent rows (and

dependent columns).Please omit the comment “A and B are 2 by 2”.

3 The problem suggests3 ways to see thatdetA = 0 : All cofactors of row1 are zero.

A has rank≤ 2. Each of the 6 terms indetA is zero. Notice also that column 2 has no

pivot.

4 (a) A =


 0.9 −0.9

0.9 0.9


 hasdetA = 1.62 anddetAn = (1.62)n →∞.

(b) A =


 2 2

2 2


 hasdetA = 0 anddetAn = 0 even ifAij = 2.

5 (a) |A| =

∣∣∣∣∣∣
2 5

1 4

∣∣∣∣∣∣
= 3, |B1| =

∣∣∣∣∣∣
1 5

2 4

∣∣∣∣∣∣
= −6, |B2| =

∣∣∣∣∣∣
2 1

1 2

∣∣∣∣∣∣
= 3 so

x1 = −6/3 = −2 andx2 = 3/3 = 1 (b) |A| = 4, |B1| = 3, |B2| = −2, |B3| = 1.

Thereforex1 = 3/4 andx2 = −1/2 andx3 = 1/4.

6 (a) y =
∣∣∣ a 1

c 0

∣∣∣ /
∣∣∣a b

c d

∣∣∣ = −c/(ad− bc) (b) y = detB2/ detA = (fg − id)/D.

That is becauseB2 with (1, 0, 0) in column2 hasdetB2 = fg − id.

7 (a) x1 = 3/0 andx2 = −2/0: no solution (b) x1 = x2 = 0/0: undetermined.

8 The determinant is linear in its first column so|x1 a1 + x2 a2 + x3 a3 a2 a3|

splits intox1|a1 a2 a3|+ x2|a2 a2 a3|+ x3|a3 a2 a3|. The last two determinants are

zero because of repeated columns, leavingx1|a1 a2 a3| which isx1 detA.

9 If the first column inA is also the right sideb thendetA = detB1. BothB2 andB3 are

singular since a column is repeated. Thereforex1 = |B1|/|A| = 1 andx2 = x3 = 0.

10 The patterndet = 1, 0,−1,−1, 0, 1 repeats as inEn+6 = En. SoE100 = E4 after16

repeats of length6. AndE4 = −1.
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11 If the entries are1 to 9, the maximum determinantmay be412 =

∣∣∣∣∣∣∣∣∣

9 3 5

4 8 1

2 6 7

∣∣∣∣∣∣∣∣∣
.

12 True. We know thatdetAB = (detA) (detB). And we knowdet(ABC) = (detAB) (detC).

Put these together to provedet(ABC) = (detA) (detB) (detC).

13 The combinations ofi = (1, 0, 0) andi+ j = (1, 1, 0) fill the xy plane in xyz space.

14 (a) Sum= zero vector. (b) Sum= −2:00 vector= 8:00 vector.

(c) 2:00 is 30◦ from horizontal= (cos π
6 , sin

π
6 ) = (

√
3/2, 1/2).

15 Moving the origin to6:00 addsj = (0, 1) to every vector. So the sum of twelve vectors

changes from0 to 12j = (0, 12).

16 (a) detP = 1 because columns2, 1, 4, 3 have two exchanges from1, 2, 3, 4.

(b) detP = −1 because columns3, 2, 1, 4 have only one exchange (of3 and1).

(c) detP = −1 because columns1, 2, 4, 3 have one exchange (3 and4).

17 The sum is(v−u)+(w−v)+(u−w) = zero vector. Those three sides of a triangle

are in the same plane !

18 All vectors in3D are combinations ofu,v,w as drawn (not in the same plane). Start by

seeing thatcu+dv fills a plane, then adding all the vectorsew fills all of R3. Different

answer whenu,v,w are in the same plane.

19 The only4× 4 column orders that start with3, 2 are3, 2, 1, 4 and3, 2, 4, 1 (so2 terms

in detA).
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Problem Set 5.3, page 214

1 Edge matrixE = identity matrixI for a unit cube. With edgese1, e2, e3 out from

(0, 0, 0), the other7 corners aree1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3.

2 Perpendiculare’s give an ordinary box with side lengths||e1||, ||e2||, ||e3||.

3 The largest box with edge lengths1, 2, 3 is the ordinary90-degree box with volume6.

This is Hadamard’s inequality (see Problem 4).

4 | detE| ≤ (||e1||) (||e2||) . . . (||en||) is “Hadamard’s inequality”. One proof starts

with E =
[
e1 . . . en

]
= QR from Section 4.4 (Gram-Schmidt producing

orthogonalq’s from independente’s). Eachej is a combination of orthogonalqi with

||qi|| = 1 :

aj =
∑

rijqi ||aj ||2 =
∑

r2ij ||qi||2 ≥ r2jj

| detE | = | detQ | | detR | = (r11) . . . (rnn) ≤ ||e1|| . . . ||en||.

Wikipedia proves Hadamard’s inequality from “geometric mean”≤ “arithmetic mean”.

5 (a) The parallelogram area with edges(3, 2) and(1, 4) is the determinant of


 3 2

1 4


 =

12− 2 = 10. (b) Triangle area= 1
2

(
parallelogram area

)
=

1

2

∣∣∣∣∣∣
3 2

4 6

∣∣∣∣∣∣
= 5.

(c) The triangle area is12
(
parallelogram area

)
=

1

2

∣∣∣∣∣∣
3 2

1 4

∣∣∣∣∣∣
= 5.

2

4

6

w = (1, 4)

v+w = (4, 6)

v = (3, 2)

2 4

(b)

2

4

6

w = (1, 4)

w− v = (−2, 2)

v = (3, 2)

2 4

(c)
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6 (a) Two sides are(3, 4) − (2, 1) = (1, 3) and(0, 5) − (2, 1) = (−2, 4). The triangle

area is half the parallelogram area=
1

2

∣∣∣∣∣∣
1 3

−2 4

∣∣∣∣∣∣
= 5.

(0, 5)

(2, 1)

(1
, 3
)

(−
2, 4)

(3, 4)

(−1, 0)

(b) has an additional triangle (dashed lines) of area
1

2

∣∣∣∣∣∣
3 1

1 5

∣∣∣∣∣∣
= 7.

7 The hypercube in4-dimensions has perpendicular sides of length
√
1 + 1 + 1 + 1 = 2.

So its volume is24 = 16. This must be| detH |.

8 An n-dimensional cube has2n corners. This is the casem = 0 in Wikipedia’s formula :

An n-dimensional cube has2n−m n!

m!(n−m)!
m-dimensional sides, edges, corners,. . .

For edges(m = 1) this rule gives2n−1 timesn. 12 edges for a3D cube (n = 3).

For faces of dimensionm = n− 1 this rule gives2n. Six faces for a3D cube.

The cube inRn whose edges come from2I has volumedet(2I) = 2n.

9 The3-dimensional “unit pyramid” inR3 has volume
1

3!
=

1

6
. I believe the4-dimensional

“unit pyramid” has volume
1

4!
=

1

24
.
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Problem Set 6.1, page 226

1 The eigenvalues ofA areλ = 1 and0.5
(
or 1

2

)
.

The eigenvalues ofAn areλ = 1 and
(
1
2

)n
.

The eigenvalues ofA∞ areλ = 1 and0.

(a) A row exchange leaves thisA with λ = 1 and−0.5
(
or − 1

2

)
.

(b) EveryA hasn− r zero eigenvalues (r = rank) : not changed by elimination.

2 A hasλ1 = −1 andλ2 = 5 with eigenvectorsx1 = (−2, 1) andx2 = (1, 1). The

matrixA + I has the same eigenvectors, with eigenvalues increased by1 to 0 and6.

That zero eigenvalue correctly indicates thatA+ I is singular.

3 A hasλ1 = 2 andλ2 = −1 (check trace and determinant) withx1 = (1, 1) and

x2 = (2,−1). A−1 has the same eigenvectors, with eigenvalues1/λ = 1
2 and−1.

4 det(A−λI) = λ2 +λ− 6 = (λ+3)(λ− 2). ThenA hasλ1 = −3 andλ2 = 2 (check

trace= −1 and determinant= −6) with x1 = (3,−2) andx2 = (1, 1). A2 has the

same eigenvectorsasA, with eigenvaluesλ2
1 = 9 andλ2

2 = 4.

5 A andB have eigenvalues1 and3 (their diagonal entries : triangular matrices).A+B

hasλ2 + 8λ + 15 = 0 andλ1 = 3, λ2 = 5. Eigenvalues ofA + B are not equalto

eigenvalues ofA plus eigenvalues ofB.

6 A andB haveλ1 = 1 andλ2 = 1. AB andBA haveλ2−4λ+1 = 0 and the quadratic

formula givesλ = 2±
√
3. Eigenvalues ofAB are not equalto eigenvalues ofA times

eigenvalues ofB. Eigenvalues of AB and BA are equal (this is proved at the end of

Section 6.2).

7 The eigenvalues ofU (on its diagonal) are thepivotsof A. The eigenvalues ofL (on its

diagonal) are all1’s. The eigenvalues ofA are notthe same as the pivots.

8 (a) Multiply Ax to seeλx which revealsλ (b) Solve(A− λI)x = 0 to findx.



90 Solutions to Problem Sets

9 (a) Multiply Ax = λx byA : A(Ax) = A(λx) = λAx givesA2x = λ2x

(b) Multiply by A−1 : x = A−1Ax = A−1λx = λA−1x givesA−1x = 1

λ
x

(c) Add Ix = x : (A+ I)x = (λ + 1)x.

10 det(A − λI) = λ2 − 1.4λ+ 0.4 soA hasλ1 = 1 andλ2 = 0.4 with x1 = (1, 2) and

x2 = (1,−1). A∞ hasλ1 = 1 andλ2 = 0 (same eigenvectors asA). A100 hasλ1 = 1

andλ2 = (0.4)100 which is near zero. SoA100 is very nearA∞: same eigenvectors

and close eigenvalues.

11 Proof 1. A − λ1I is singular so its two columns are in the same direction.

Also (A − λ1I)x2 = (λ2 − λ1)x2. Sox2 is in the column space and both columns

must be multiples ofx2. Here is also asecond proof: Columns ofA − λ1I are in the

nullspace ofA − λ2I becauseM = (A − λ2I)(A − λ1I) is the zero matrix[this is

the Cayley-Hamilton Theoremin Problem 6.2.30]. Notice thatM haszero eigenval-

ues(λ1 − λ2)(λ1 − λ1) = 0 and(λ2 − λ2)(λ2 − λ1) = 0. So those columns solve

(A− λ2I)x = 0, they are eigenvectors.

12 The projection matrixP hasλ = 1, 0, 1 with eigenvectors(1, 2, 0), (2,−1, 0), (0, 0, 1).
Add the first and last vectors:(1, 2, 1) also hasλ = 1. The whole column space ofP

contains eigenvectors withλ = 1 ! NoteP 2 = P leads toλ2 = λ soλ = 0 or 1.

13 (a) Pu=(uuT)u = u timesuTu=u times1. Soλ = 1.

(b) Pv=(uuT)v=u(uTv)= 0.

(c) x1 = (−1, 1, 0, 0), x2 = (−3, 0, 1, 0), x3 = (−5, 0, 0, 1) all havePx = 0x = 0.

14 det(Q−λI) = λ2− 2λ cos θ+1 = 0 whenλ = cos θ± i sin θ = eiθ ande−iθ. Check

λ1λ2 = cos2 θ + sin2 θ = 1 andλ1 + λ2 = 2 cos θ. Two eigenvectors of this rotation

matrix arex1 = (1, i) andx2 = (1,−i) (or cx1 anddx2 with cd 6= 0).

15 The other two eigenvalues areλ = 1
2 (−1 ± i

√
3). Those three eigenvalues add to

0 = trace ofP . The three eigenvalues of the secondP are1, 1,−1.

16 Setλ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to finddetA = (λ1)(λ2) · · · (λn).
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17 Comparingλ2−(a+d)λ+(ad−bc) with (λ−λ1) (λ−λ2) = λ2−(λ1+λ2)λ+λ1λ2

shows :
a+ d = λ1 + λ2 = trace ad− bc = λ1λ2 = determinant

If λ1 = 3 andλ2 = 4 thendet(A− λI) = λ2 − 7λ+ 12.

18 Trace= 9. Three possibilities areA =


 4 0

0 5


 ,


 10 −1

30 −1


 ,


 4 6

0 5


.

19 (a) rank= 2 (b) det(BTB) = 0 (d) eigenvalues of(B2 + I)−1 are1, 12 ,
1
5 .

20 A =


 0 1

−28 11


 has trace11 and determinant28, soλ = 4 and7. Moving to a3 by

3 companion matrix, for eigenvalues1, 2, 3 we wantdet(C − λI) = (1 − λ)(2 − λ)

(3 − λ). Multiply out to get−λ3 + 6λ2 − 11λ + 6. To get those numbers6,−11, 6
from a companion matrix you just put them into the last row :

C =




0 1 0

0 0 1

6 −11 6


 Notice the trace6 = 1 + 2 + 3 and determinant6 = (1)(2)(3).

21 (A − λI) has the same determinant as(A − λI)T because every square matrix has

detM = detMT. PickM = A− λI.


1 0

1 0


 and


1 1

0 0


havedifferent eigenvectors


1

1


 and


1

0


 .

22 We can chooseM =




.1 0 0

.2 .4 0

.7 .6 1


. Its eigenvaluesλ = .1, .4, 1.0 are on the

diagonal. ClearlyMT has rows adding to1 soMT times the columnv =
[
1 1 1

]T

equalsv. Challenge : A3 by3 singular Markov matrix with trace12 hasλ = 0, 1, −1

2
.

23


0 0

1 0


,


0 1

0 0


,


−1 1

−1 1


.

AlwaysA2 is the zero matrix ifλ = 0 and0,

by the Cayley-Hamilton Theorem in Problem 6.2.30.

24 λ = 0, 0, 6 (notice rank1 and trace6). Two eigenvectors ofuvT are perpendicular to

v and the third eigenvector isu : x1=(0,−2, 1), x2=(1,−2, 0),x3=(1, 2, 1).
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25 WhenA andB have the samen λ’s andx’s, look at any combinationv = c1x1 +

· · · + cnxn. Multiply by A andB : Av = c1λ1x1 + · · · + cnλnxn equalsBv =

c1λ1x1 + · · ·+ cnλnxn for all vectors v. SoA = B.

26 A has eigenvalues1 and2 from blockB (with eigenvectors ending in0, 0). A also

has eigenvalues5 and7 from blockD becauseAT has eigenvalues5, 7 from blockDT

(and transposing doesn’t change eigenvalues).

27 A has rank 1 with eigenvalues0, 0, 0, 4 (the 4 comes from the trace ofA). C has rank

2 (ensuring two zero eigenvalues) and(1, 1, 1, 1) is an eigenvector withλ = 2. With

trace 4, the other eigenvalue is alsoλ = 2, and its eigenvector is(1,−1, 1,−1).

28 The4 by 4 matrixA of 1’s hasλ = 0, 0, 0, 4. ThenB = A− I hasλ = −1,−1,−1, 3.

AndC = I −A hasλ = 1, 1, 1,−3.

29 A is triangular :λ(A) = 1, 4, 6; λ(B) = 2,
√
3,−
√
3; C has rank one :λ(C) = 0, 0, 6.

30


 a b

c d




 1

1


 = (a+ b)


 1

1


 whena+ b = c+ d. Thusλ1 = a+ b.

Thenλ2 = trace−λ1 = (a+ d)− (a+ b) = d− b.

31 If PA exchanges rows1 and2 of A, thenAPT exchanges columns1 and2. In fact

P =




0 1 0

1 0 0

0 0 1


 = PT = P−1 and B = PAPT = PAP−1.

ThenB is similar toA and they have the same eigenvalues. In this rank1 and trace11

example, the eigenvalues ofA andB are0, 0, 11. FromA−11I =




−10 2 1

3 −5 3

4 8 −7




the eigenvector forλ = 11 is




1

3

4


.
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32 (a) u is a basis for the nullspace (we knowAu = 0u); v andw give a basis for the

column space (we knowAv andAw are in the column space).

(b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. Sox = v/3 + w/5 is a particular

solution toAx = v + w. Add any cu from the nullspace to find all solutions.

(c) If Ax = u had a solution,u would be in the column space : wrong dimension3.

33 Always (uvT)u = u(vTu) sou is an eigenvector ofuvT with λ = vTu. (Watch

numbersvTu, vectorsu, matricesuvT !!) If vTu = 0 thenA2 = u(vTu)vT is the

zero matrix andλ2 = 0, 0 andλ = 0, 0 and trace(A) = 0. This zero trace also comes

from adding the diagonal entries ofA = uvT :

A =


u1

u2



[
v1 v2

]
=


u1v1 u1v2

u2v1 u2v2


 has traceu1v1 + u2v2 = vTu = 0

34 The vector(1, 1, 1, 1) is not changed byP . It is the eigenvector forλ = 1. The other3

eigenvectors (discussed in detail in Section 6.4) are

x2,x3,x4 =




1

i

i2

i3







1

−1
1

−1







1

−i
(−i)2

(−i)3



.

35 The six3 by 3 permutation matrices includeP = I and three single row exchange

matricesP12, P13, P23 and two double exchange matrices likeP12P13. SincePTP = I

gives(detP )2 = 1, the determinant ofP is 1 or−1. The pivots are always 1 (but there

may be row exchanges). The trace ofP can be 3 (forP = I) or 1 (for row exchange)

or 0 (for double exchange). The possible eigenvalues are 1 and −1 ande2πi/3 and

e−2πi/3.

36 AB −BA = I can happen only for infinite matrices. IfAT = A andBT = −B then

xTx = xT (AB −BA)x = xT (ATB +BTA)x ≤ ||Ax|| ||Bx||+ ||Bx|| ||Ax||.

Therefore||Ax|| ||Bx|| ≥ 1
2 ||x||2 and(||Ax||/||x||) (||Bx||/||x||) ≥ 1

2 .
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37 λ1 = e2πi/3 and λ2 = e−2πi/3 give detλ1λ2 = 1 and traceλ1 + λ2 = −1.

A =


cos θ − sin θ

sin θ cos θ


 with θ =

2π

3
has this trace anddet. So does everyM−1AM !

38 (a) Since the columns ofA add to 1, one eigenvalue isλ = 1 and the other isc− 0.6

(to give the correct tracec+ 0.4).

(b) If c = 1.6 then both eigenvalues are 1, and all solutions to(A − I) x = 0 are

multiples ofx = (1,−1). In this caseA has rank1.

(c) If c = 0.8, the eigenvectors forλ = 1 are multiples of (1, 3). Since all powersAn

also have column sums= 1, An will approach
1

4


1 1

3 3


 = rank-1 matrixA∞ with

eigenvalues1, 0 and correct eigenvectors.(1, 3) and(1,−1).
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Problem Set 6.2, page 242

1 Eigenvectors inX and eigenvalues1 and3 in Λ. ThenA = XΛX−1 is

1 2

0 3


 =


1 1

0 1




1 0

0 3




1 −1
0 1


. The second matrix hasλ = 0 (rank1) and

λ = 4 (trace= 4). ThenA = XΛX−1 is


1 1

3 3


 =


 1 1

−1 3




0 0

0 4







3
4 − 1

4

1
4

1
4


.

A3 = XΛ3X−1 andA−1 = XΛ−1X−1.

2
Put the eigenvectors inX

and eigenvalues2, 5 in Λ.
A = XΛX−1 =


1 1

0 1




2 0

0 5




1 −1

0 1


 =


2 3

0 5


.

3 If A = XΛX−1 then the eigenvalue matrix forA + 2I is Λ + 2I and the eigenvector

matrix is stillX . SoA+ 2I = X(Λ + 2I)X−1 = XΛX−1 +X(2I)X−1 = A+ 2I.

4 (a) False: We are not given theλ’s (b) True (c) True sinceX has independent columns.

(d) False: For this we would need the eigenvectors ofX .

5 With X = I, A = XΛX−1 = Λ is a diagonal matrix. IfX is triangular, thenX−1 is

triangular, soXΛX−1 is also triangular.

6 The columns ofX are nonzero multiples of(2,1) and(0,1): either order. The same

eigenvector matrices diagonalizeA andA−1.

7 Every matrix that has eigenvectors


 1

1


 and


 1

−1


 has the form

A = XΛX−1 =


 1 1

1 −1




 λ1

λ2


 /2 =

1

2


 λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2


 .

You could check trace= λ1 + λ2 anddet = 1
4 4λ1λ2 = λ1λ2.

8 A = XΛX−1 =


1 1

1 0


 =

1

λ1 − λ2


λ1 λ2

1 1




λ1 0

0 λ2




 1 −λ2

−1 λ1


.

XΛkX−1 =
1

λ1 − λ2


λ1 λ2

1 1




λ

k
1 0

0 λk
2




 1 −λ2

−1 λ1




1

0


.
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The second componentis Fk = (λk
1 − λk

2)/(λ1 − λ2).

9 (a) The equations are


 Gk+2

Gk+1


 = A


 Gk+1

Gk


 with A =


 .5 .5

1 0


. This matrix

hasλ1 = 1, λ2 = − 1
2 with x1 = (1, 1), x2 = (1,−2)

(b) An = XΛnX−1 =


1 1

1 −2




1

n 0

0 (−.5)n







2
3

1
3

1
3 − 1

3


→ A∞ =




2
3

1
3

2
3

1
3




10 The ruleFk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd,. . .

11 (a) True (no zero eigenvalues) (b)False(repeatedλ = 2 may have only one line of

eigenvectors) (c)False(repeatedλ may have a full set of eigenvectors)

12 (a) False: don’t know ifλ = 0 or not.

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

13 A =


 8 3

−3 2


 (or other),A =


 9 4

−4 1


, A =


 10 5

−5 0


;

only eigenvectors

arex = (c,−c).
14 The rank ofA − 3I is r = 1. Changing any entry excepta12 = 1 makesA

diagonalizable (the newA will have two different eigenvalues)

15 Ak = XΛkX−1 approaches zeroif and only if every |λ| < 1; A1 is a Markov matrix

soλmax = 1 andAk
1 → A∞

1 , A2 hasλ = .6± .3 soAk
2 → 0.

16


 .6 .9

.4 .1


 = XΛX−1 with Λ =


1 0

0 .2


 andX =


1 1

1 −1


 ; Λk →


1 0

0 0


.

ThenAk
1 = XΛkX−1 →




1
2

1
2

1
2

1
2


: steady state.

17 A2 isXΛX−1 with Λ =


 .9 0

0 .3


 and X =


3 −3
1 1


; A10

2


3

1


 = (.9)10


3

1


.

A10
2


 3

−1


 = (.3)10


 3

−1


. Then A10

2


6

0


 = (.9)10


3

1


 + (.3)10


 3

−1


 because

u0 =


6

0


 is the sum of


3

1


+


 3

−1


.
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18


 2 −1

−1 2


 = XΛX−1 =

1

2


1 −1

1 1




1 0

0 3




 1 1

−1 1


 and

Ak = XΛkX−1 =
1

2


1 −1
1 1




1 0

0 3k




 1 1

−1 1


.

Multiply those last three matrices to getAk =
1

2


1 + 3k 1− 3k

1− 3k 1 + 3k


.

19 Bk = XΛkX−1 =


1 1

0 −1




5 0

0 4



k 
1 1

0 −1


 =


5

k 5k − 4k

0 4k


.

20 detA = (detX)(detΛ)(detX−1) = det Λ = λ1 · · ·λn. This proof (det = product

of λ’s) works whenA is diagonalizable. The formula is always true.

21 traceXY = (aq + bs) + (cr + dt) is equal to(qa + rc) + (sb + td) = traceY X .

Diagonalizable case: the trace ofXΛX−1 = trace of(ΛX−1)X = trace ofΛ = Σλi.

AB −BA = I is impossible since the left side hastrace= 0.

22 If A = XΛX−1 thenB =


A 0

0 2A


 =


X 0

0 X




Λ 0

0 2Λ




X

−1 0

0 X−1


. So

B has the originalλ’s fromA and the additional eigenvalues2λ1, . . . , 2λn from 2A.

23 TheA’s form a subspace sincecA andA1 + A2 all have the sameX . WhenX = I

theA’s with those eigenvectors give the subspace ofdiagonal matrices. The dimension

of that matrix space is4 since the matrices are4 by 4.

24 If A has columnsx1, . . . ,xn then column by column,A2 = A means everyAxi = xi.

All vectors in the column space (combinations of those columnsxi) are eigenvectors

with λ = 1. Always the nullspace hasλ = 0 (A might have dependent columns,

so there could be less thann eigenvectors withλ = 1). Dimensions of those spaces

C(A) and N(A) add to n by the Fundamental Theorem, soA is diagonalizable

(n independent eigenvectors altogether).

25 Two problems: The nullspace and column space can overlap, sox could be in both.

There may not ber independent eigenvectors in the column space.
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26 R=X
√
ΛX−1 =


1 1

1 −1




3

1




1 1

1 −1


 /2 =


2 1

1 2


 hasR2=A.

√
B needsλ =

√
9 and

√
−1, the trace (their sum) is not real so

√
B cannot be real.

Note that the square root of


−1 0

0 −1


 hastwo imaginary eigenvalues

√
−1 = i and

−i, real trace0, real square rootR =


 0 1

−1 0


.

27 The factorizations ofA andB intoXΛX−1 are the same. SoA = B.

28 A = XΛ1X
−1 andB = XΛ2X

−1. Diagonal matrices always giveΛ1Λ2 = Λ2Λ1.

ThenAB = BA from

XΛ1X
−1XΛ2X

−1 = XΛ1Λ2X
−1 = XΛ2Λ1X

−1 = XΛ2X
−1XΛ1X

−1 = BA.

29 (a) A =


a b

0 d


 hasλ = a andλ = d: (A−aI)(A−dI) =


0 b

0 d− a




a− d b

0 0




=


0 0

0 0


. (b) A =


1 1

1 0


 hasA2 =


2 1

1 1


 andA2 − A − I = 0 is true,

matchingdet(A− λI) = λ2 − λ− 1 = 0 as the Cayley-Hamilton Theorem predicts.

30 WhenA = XΛX−1 is diagonalizable, the matrixA − λjI = X(Λ − λjI)X
−1 will

have0 in thej, j diagonal entry ofΛ− λjI. The productp(A) becomes

p(A) = (A− λ1I) · · · (A− λnI) = X(Λ− λ1I) · · · (Λ− λnI)X
−1.

That product is the zero matrix because the factors produce azero in each

diagonal position. Thenp(A) = zero matrix, which is the Cayley-Hamilton Theorem.

(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices

approachingA.)

Comment I have also seen the following Cayley-Hamilton proof but I amnot con-

vinced :

Apply the formulaACT = (detA)I from Section 5.1 toA − λI with variableλ. Its

cofactor matrixC will be a polynomial inλ, since cofactors are determinants :

(A− λI)CT(λ) = det(A− λI)I = p(λ)I.
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“For fixedA, this is an identity between two matrix polynomials.” Setλ = A to find

the zero matrix on the left, sop(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

I am not certain about the key step of substituting a matrixA for λ. If other matrices

B are substituted forλ, does the identity remain true ? IfAB 6= BA, even the order

of multiplication seems unclear. . .

31 If AB = BA, thenB has the same eigenvectors(1, 0) and(0, 1) asA. SoB is also

diagonalb = c = 0. The nullspace for the following equation is 2-dimensional:

AB − BA =


1 0

0 2




a b

c d


 −


a b

c d




1 0

0 2


 =


0 −b

c 0


 =


0 0

0 0


.

Those4 equations0 = 0,−b = 0, c = 0, 0 = 0 have a4 by 4 coefficient matrix with

rank= 4− 2 = 2.

32 B hasλ = i and−i, soB4 hasλ4 = 1 and 1. ThenB4 = I andB1024 = I.

C hasλ = (1 ±
√
3i)/2. Thisλ is exp(±πi/3) soλ3 = −1 and−1. ThenC3 = −I

which leads toC1024 = (−I)341C = −C.

33 The eigenvalues ofA =


cos θ − sin θ

sin θ cos θ


 areλ = eiθ ande−iθ (trace2 cos θ and

determinantλ1λ2 = 1). Their eigenvectors are(1,−i) and(1, i) :

An = XΛnX−1 =


 1 1

−i i




e

inθ

e−inθ




 i −1
i 1


 /2i

=


 (einθ + e−inθ)/2 · · ·

(einθ − e−inθ)/2i · · ·


 =


cosnθ − sinnθ

sinnθ cosnθ


 .

Geometrically,n rotations byθ give one rotation bynθ.

34 Columns ofX times rows ofΛX−1 gives a sum ofr rank-1 matrices(r = rank ofA).

Those matrices areλ1x1y
T
1 to λrxry

T
r .
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35 Multiply ones(n) ∗ ones(n) = n ∗ ones(n). Then

AA−1 = (eye(n) + ones(n)) ∗ (eye(n) + C ∗ ones(n))

= eye(n) + (1 + C + Cn) ∗ ones(n) = eye(n) for C = −1/(n + 1).

36 B = A−1
1 leads toA2A1 = B(A1A2)B

−1. ThenA2A1 is similar toA1A2 : they have

the same eigenvectors (not zero becauseA1 andA2 are invertible).

37 ChooseB = A−1
1 to show thatA2A1 is similar to A1A2. Assuming invertibility (no

zero eigenvalues) this shows thatA2A1 andA1A2 have the same eigenvalues.

38 This matrix has column1 = 2 (column2) sox1 = (1,−2, 0) is an eigenvector with

λ1 = 0. Also A(1, 1, 1) = (1, 1, 1) andλ2 = 1. Trace= zero soλ3 = −1. Then

12020 = 1 and(−1)2020 = 1 and(0)2020 = 0. SoA2019 has the same eigenvalues and

eigenvectors asA : A2019 = A andA2020 = A2. TO COMPLETE FOR 2023
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Problem Set 6.3, page 238

1 (a) ASB stays symmetric likeS whenB = AT

(b) ASB is similar toS whenB = A−1

To have both (a) and (b) we needB = AT = A−1 to be anorthogonal matrix Q.

ThenQSQT is similar toS and also symmetric likeS.

2 λ = 0, 4,−2; unit vectors±(0, 1,−1)/
√
2 and±(2, 1, 1)/

√
6 and±(1,−1,−1)/

√
3.

Those are forS. The eigenvalues ofT are λ = 0,
√
5,−
√
5 in Λ (trace= 0).

The eigenvectors ofT are1
3 (2, 2,−1) and(1+

√
5, 1−

√
5, 2) and(1−

√
5, 1+

√
5, 4).

3 S =


 9 12

12 16


 hasλ = 0 and25 so the columns ofQ are the two eigenvectors:

Q =


 .8 .6

−.6 .8


 or we can exchange columns or reverse the signs of any column.

4 (a)


1 2

2 1


 hasλ = −1 and3 (b) The pivots1, 1− b2 have the same signs as theλ’s

(c) The trace isλ1 + λ2 = 2, soS can’t have two negative eigenvalues.

5 (ATCA)T = ATCT(AT)T = ATCA. WhenA is 6 by 3, C will be 6 by 6 and the

triple productATCA is 3 by 3.

6 λ = 10 and−5 in Λ =


10 0

0 −5


, x =


1

2


 and


 2

−1


 have to be normalized to

unit vectors inQ =
1√
5


1 2

2 −1


. ThenS = QΛQT.

If A3 = 0 then allλ3 = 0 so allλ = 0 as inA =


0 1

0 0


. If A is symmetricthen

A3 = QΛ3QT = 0 requiresΛ = 0. The onlysymmetricA is Q 0QT = zero matrix.

7


3 1

1 3


 = 2




1
2 − 1

2

− 1
2

1
2


+4




1
2

1
2

1
2

1
2


;


 9 12

12 16


 = 0


 .64 −.48

−.48 .36


+25


.36 .48

.48 .64



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8

[
x1 x2

]
is an orthogonal matrix soP1 + P2 = x1x

T
1 + x2x

T
2 =

[
x1 x2

]

xT
1

xT
2


 = QQT = I; alsoP1P2 = x1(x

T
1 x2)x

T
2 = zero matrix.

Second proof:P1P2 = P1(I − P1) = P1 − P1 = 0 sinceP 2
1 = P1.

9 A =


 0 b

−b 0


 hasλ = ib and−ib. The block matrices


A 0

0 A


 and


 0 A

A 0


 are

also skew-symmetric withλ = ib (twice) andλ = −ib (twice).

10 M is skew-symmetric andorthogonal; everyλ is imaginary with|λ| = 1. Soλ’s must

bei, i,−i,−i to have trace zero.

11 A =


 i 1

1 −i


 hasλ = 0, 0 and only one independent eigenvectorx = (i, 1).

The good property for complex matrices is notAT = A (symmetric) butA
T

= A

(Hermitian with real eigenvalues and orthogonal eigenvectors).

12 S hasQ =




1 1 0

1 −1 0

0 0 1


; B hasX =




1 0 1

0 1 0

0 0 2d


.

Perpendicular inQ

Not perpendicular inX

sinceST = S butBT 6= B

13 S =


 1 3 + 4i

3− 4i 1


 is aHermitian matrix(S

T
= S). Its eigenvalues6 and−4 are

real. Here is the proof thatλ is always real whenS
T
= S :

Sx = λx leads toSx = λx. Transpose toxTS = xTλ usingS
T
= S.

ThenxTSx = xTλx and alsoxTSx = xTλx. Soλ = λ is real.

14 (a) False.A =


1 2

0 1


 (b) True fromAT = QΛQT = A

(c) True fromS−1 = QΛ−1QT
(d) False!

(e) True. Ifx is a column of the identity matrix, then the energyxTSx is a diagonal

entry ofS. SinceS is positive definite in this problem, each diagonal entry is apositive

numberxTSx.
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15 A andAT have the sameλ’s but theorder of thex’s can change.A =


 0 1

−1 0




hasλ1 = i andλ2 = −i with x1 = (1, i) first for A butx1 = (1,−i) is first forAT.

16 A is invertible, orthogonal, permutation, diagonalizable;B is projection, diagonaliz-

able.A allowsQR,XΛX−1, QΛQT; B allowsXΛX−1 andQΛQT.

17 Symmetry givesQΛQT if b = 1; repeatedλ and noX if b = −1; singular ifb = 0.

18 Orthogonal and symmetric requires|λ| = 1 andλ real, soλ = ±1. ThenS = ±I or

±S = QΛQT =


cos θ − sin θ

sin θ cos θ




1 0

0 −1




 cos θ sin θ

− sin θ cos θ


=


cos 2θ sin 2θ

sin 2θ − cos 2θ


.

19 Eigenvectors(1, 0) and(1,1) give a45◦ angle even withAT very close toA.

20 a11 is
[
q11 . . . q1n

] [
λ1q11 . . . λnq1n

]T
≤ λmax

(
|q11|2 + · · ·+ |q1n|2

)
= λmax.

21 (a) xT(Ax) = (Ax)Tx = xTATx = −xTAx soxTAx = 0. (b) zTAz is pure

imaginary, its real part isxTAx + yTAy = 0 + 0 (c) detA = λ1 . . . λn ≥ 0 :

because pairs ofλ’s = ib,−ib multiply to give+b2.

22 SinceS is diagonalizable with eigenvalue matrixΛ = 2I, the matrixS itself has to be

XΛX−1 = X(2I)X−1 = 2I. The unsymmetric matrix[2 1 ; 0 2] also hasλ = 2, 2

but this matrix can’t be diagonalized.

23 (a) ST = S andSTS = I lead toS2 = I.

(b) The only possible eigenvalues ofS are1 and−1.

(c) Λ=


 I 0

0 −I


 soS=

[
Q1 Q2

]
Λ


QT

1

QT
2


= Q1Q

T

1
− Q2Q

T

2
with QT

1 Q2=0.

24 Supposea > 0 andac > b2 so that alsoc > b2/a > 0.

(i) The eigenvalues have thesame signbecauseλ1λ2 = det = ac− b2 > 0.

(ii) That sign ispositivebecauseλ1 + λ2 > 0 (it equals the tracea+ c > 0).

25 Only S4 =


 1 10

10 101


 has two positive eigenvalues since101 > 102.

xTS1x = 5x2
1 + 12x1x2 + 7x2

2 is negative for example whenx1 = 4 andx2 = −3:

A1 is not positive definite as its determinant confirms;S2 has tracec0; S3 hasdet = 0.
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26
Positive definite

for −3 < b < 3


1 0

b 1




1 b

0 9− b2


=


1 0

b 1




1 0

0 9− b2




1 b

0 1


=LDLT

Positive definite

for c > 8


1 0

2 1




2 4

0 c− 8


 =


1 0

2 1




2 0

0 c− 8




1 2

0 1


=LDLT.

Positive definite

for c > |b|
L =


 1 0

−b/c 1


 D =


 c 0

0 c− b2/c


 S = LDLT.

27 x2+4xy+3y2 = (x+2y)2−y2 = difference of squaresis negative atx = 2, y = −1,

where the first square is zero.

28 S =


0 1

1 0


 producesf(x, y) =

[
x y

]

0 1

1 0




x

y


 = 2xy. S hasλ = 1 and

λ = −1. ThenS is anindefinite matrixandf(x, y) = 2xy has asaddle point.

29 ATA =


1 2

2 13


 andATA =


6 5

5 6


 are positive definite;ATA =




2 3 3

3 5 4

3 4 5


 is

singular (and positive semidefinite). The first twoA’s have independent columns. The

2 by 3 A cannot have full column rank3, with only 2 rows; thirdATA is singular.

30 S =




2 −1 0

−1 2 −1
0 −1 2




has pivots

2, 3
2
, 4
3
;

T =




2 −1 −1
−1 2 −1
−1 −1 2


 is singular;T




1

1

1


 =




0

0

0


.

31 Corner determinants|S1| = 2, |S2| = 6, |S3| = 30. The pivots are2/1, 6/2, 30/6.

32 S is positive definite forc > 1; determinantsc, c2 − 1, and(c − 1)2(c + 2) > 0.

T is neverpositive definite (determinantsd− 4 and−4d+ 12 are never both positive).

33 S =


1 5

5 10


 is an example witha+ c > 2b butac < b2, so not positive definite.

34 The eigenvalues ofS−1 are positive because they are1/λ(S). Also the energy is

xTS−1x = (S−1x)TS(S−1x) > 0 for all x 6= 0.

35 xTSx is zero when(x1, x2, x3) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally xTSx goesnegativefor x = (1,−10, 0) because the second pivot isnegative.
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36 If ajj were smaller than allλ’s, S − ajjI would have all eigenvalues> 0 (positive

definite). ButS − ajjI has azeroin the(j, j) position; impossible by Problem 35.

37 (a) The determinant is positive; allλ > 0 (b) All projection matrices exceptI

are singular (c) The diagonal entries ofD are its eigenvalues

(d) S = −I hasdet = +1 whenn is even, but thisS is negativedefinite.

38 S is positive definite whens > 8; T is positive definite whent > 5 by determinants.

39 A =











1 −1

1 1











√
2











√
9
√
1





















1 1

−1 1











√
2

=


2 1

1 2


; A = Q


4 0

0 2


QT =


3 1

1 3


.

40 The ellipsex2 + xy + y2 = 1 comes fromS =


 1 1/2

1/2 1


 with λ =

1

2
and

3

2
.

The axes have half-lengths
√
2 and

√
2/3.

41
S = CTC

S notA
=


9 3

3 5


;


4 8

8 25


 =


1 0

2 1




4 0

0 9




1 2

0 1


 andC =


2 4

0 3




42 The Cholesky factorsC =
(
L
√
D
)T

=




3 0 0

0 1 2

0 0 2


 andC =




1 1 1

0 1 1

0 0
√
5


 have

square rootsof the pivots fromD. Note againCTC = LDLT = S.

43 (a) detS = (1)(10)(1) = 10; (b) λ = 2 and5; (c) x1 = (cos θ sin θ) and

x2 = (− sin θ, cos θ); (d) Theλ’s are positive, soS is positive definite.

44 ax2 + 2bxy + cy2 has a saddle point ifac < b2. The matrix isindefinite(λ < 0 and

λ > 0) because the determinantac− b2 is negative.

45 If c > 9 the graph ofz is a bowl, ifc < 9 the graph has a saddle point. Whenc = 9 the

graph ofz = (2x+ 3y)2 is a “trough” staying at zero along the line2x+ 3y = 0.

46 A productST of symmetric positive definite matrices comes into many applications.

The “generalized” eigenvalue problemKx = λMx hasST = M−1K. (Often we use

eig(K,M) without actually invertingM .) All eigenvaluesλ of ST are positive :

STx = λx gives(Tx)TSTx = (Tx)Tλx. Thenλ = xTTTSTx/xTTx > 0.
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47 Put parentheses inxTATCAx = (Ax)TC(Ax). SinceC is assumed positive definite,

this energy can drop to zero only whenAx = 0. SineA is assumed to have independent

columns,Ax = 0 only happens whenx = 0. ThusATCA has positive energy and is

positive definite.

My textbooksComputational Science and Engineeringand Introduction to Ap-

plied Mathematicsstart with many examples ofATCA in a wide range of applications.

I believe positive definiteness ofATCA is a unifying concept from linear algebra.

48 (a) The eigenvalues ofλ1I − S areλ1 − λ1, λ1 − λ2, . . . , λ1 − λn. Those are≥ 0;

λ1I − S is semidefinite.

(b) Semidefinite matrices have energyxT (λ1I − S)x2 ≥ 0. Thenλ1x
Tx ≥ xTSx.

(c) Part (b) saysxTSx/xTx ≤ λ1 for all x. Equality at the eigenvector withSx =

λ1x. So the maximum value ofxTSx/xTx is λ1.

49 EnergyxTSx = a (x1+x2+x3)
2+c (x2−x3)

2 ≥ 0 if a ≥ 0 andc ≥ 0 : semidefinite.

S has rank≤ 2 and determinant= 0; cannot be positive definite for anya andc.
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Problem Set 6.4, page 269

1 z = 1 − i leads toz = 1 + i andr =
√
2 and

1

z
=

1 + i

(1 − i) (1 + i)
=

1

2
(1 + i)

andθ = −π

4
= −45◦.

2 det


 1− λ 1 + i

1− i 2− λ


 = λ2 − 3λ+ 2− 2 = 0 gives eigenvaluesλ = 3 and0.

3 If Qx = λx then ||Qx|| = |λ| ||x||. Square both sides and useQ
T
Q = I to find

|λ|2 = 1. Therefore|λ| = 1 for unitary matricesQ.

4 F3 =




1 1 1

1 e2π1/3 e4π1/3

1 e4π1/3 e8π1/3


 =




1 1 1

1 1
2

(
−1 +

√
3 i
)

1
2

(
−1−

√
3 i
)

1 1
2

(
−1−

√
3 i
)

1
2

(
−1 +

√
3 i
)




5 F6 = 6 by 6 matrix=


 I B

I −B




 F3 0

0 F3







columns

0, 2, 4, 1, 3, 5

of I (6 by 6)




The3 by 3 matrixB is diagonal with entries1, e2πi/6, e4πi/6.

6 CD =




1 1 1

1 1 1

1 1 1







1 2 1

1 1 2

2 1 1


 =




4 4 4

4 4 4

4 4 4




1 2 1
1 1 1

1 2 1
1 2 1

1 2 1

convolutionc
∗
d 1 3 4 3 1 reduces to4 4 4 for cyclic convolutionc

∗©
d

7 Convolution RuleF (c
∗©

d) = (Fc) .
∗
(Fd). This isF




4

4

4


 = F




1

1

1


 .
∗
F




1

2

1




with the3 by 3 Fourier matrixF = F3 : Multiply components for .
∗

.
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F




4

4

4


 =




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3







4

4

4


 =




12

0

0




F




1

1

1


 =




3

0

0


 F




1

2

1


 =




4

e2πi/3

e4πi/3


 and




3

0

0


 .
∗



4

e2πi/3

e4πi/3







12

0

0




8 cos θ+i sin θ =

(
1− 1

2
θ2 + · · ·

)
+i

(
θ − θ3

6
+ · · ·

)
= 1+iθ+

1

2
(iθ)2+

1

6
(iθ)3+· · ·

9 (eiθ) (eiθ) = e2iθ is (cos θ + i sin θ)2 = cos 2θ + i sin 2θ.

The left side iscos2 θ + 2i cos θ sin θ + i2 sin2 θ.

Matching the right side givescos 2θ = cos2 θ − sin2 θ andsin 2θ = 2 cos θ sin θ

10 The eigenvalues of a circulant matrixC areFc in equation (10).

If C is invertible then all its eigenvalues must be nonzero.

In that caseC−1 is also a circulant because its entries (from the formula forC−1) are

also constant down each (cyclic) diagonal. There are other proofs too.

11 This problem is looking for a solution !

12 An n byn circulant matrix hasC
T
= C (Hermitian) if its diagonal entries havec0 real,

c1 = cn−1, c2 = cn−2, . . . The circulant hasC
T
C = I (unitary) if |c0 + c1x + · · · +

cn−1x
n−1|2 = 1.

13 Columns0 and2 of the Fourier matrixF4 in equation (7) add to(2, 0, 2, 0). Columns

1 and3 add to(2, 0,−2, 0).

14 z = w2 = e2πi/32 would be a32nd root of1 : z32 = 1.

z =
√
w = e2πi/128 would be a128th root of1.

15 The4 eigenvalues0, 2, 4, 2 of C come from the eigenvalues1, i,−1,−i of P4.

λ = 2−1−1 = 0 λ = 2−i−i3 = 2 λ = 2−(−1)−(−1)3 = 4 λ = 2+i+i3 = 2.



Solutions to Problem Sets 109

Problem Set 6.5, page 280

1 Eigenvalues4 and1 with eigenvectors(1, 0) and(1,−1) give solutionsu1 = e4t


1

0




and u2 = et


 1

−1


. If u(0) =


 5

−2


 = 3


1

0


 + 2


 1

−1


, then use those

coefficients3 and2 : u(t) = 3e4t


1

0


+ 2et


 1

−1


.

2 z(t) = 2et solvesdz/dt = z with z(0) = 2. Thendy/dt = 4y − 6et with y(0) = 5

givesy(t) = 3e4t + 2et as in Problem 1.

3 (a) If every column ofA adds to zero, this means that the rows add to the zero row.

So the rows are dependent, andA is singular, andλ = 0 is an eigenvalue.

(b) The eigenvalues ofA =


−2 3

2 −3


 areλ1 = 0 with eigenvectorx1 = (3, 2) and

λ2 = −5 (to give trace= −5) with x2 = (1,−1). Then the usual 3 steps:

1. Writeu(0) =


4

1


 as


3

2


+


 1

−1


 = x1 + x2 = combination of eigenvectors

2. The solutions follow those eigenvectors:e0tx1 ande−5tx2

3. The solutionu(t) = x1 + e−5tx2 has steady statex1 = (3, 2) sincee−5t → 0.

4 d(v + w)/dt = (w − v) + (v − w) = 0, so the totalv + w is constant.

A =


−1 1

1 −1


 has

λ1 = 0

λ2 = −2
with x1 =


1

1


, x2 =


 1

−1


.


 v(0)

w(0)


 =


 30

10


 = 20


 1

1


+10


 1

−1


 leads to

v(1) = 20 + 10e−2

w(1) = 20− 10e−2

v(∞) = 20

w(∞) = 20

5
d

dt


 v

w


 =


 1 −1
−1 1


 hasλ = 0 andλ = +2 : v(t) = 20 + 10e2t → −∞ as

t→∞.
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6 A =


a 1

1 a


 has real eigenvaluesa+1 anda−1. These are both negative ifa < −1.

In this case the solutions ofdu/dt = Au approach zero.

B =


 b −1
1 b


 has complex eigenvaluesb+ i andb− i. These have negative real parts

if b < 0. In this case all solutions ofdv/dt = Bv approach zero.

7 A projection matrix has eigenvaluesλ = 1 andλ = 0. EigenvectorsPx = x fill the

subspace thatP projects onto: herex = (c, c). Eigenvectors withPx = 0 fill the

perpendicular subspace: herex = (c,−c). For the solution todu/dt = −Pu,

u(0) =


3

1


 =


2

2


+


 1

−1


 u(t) = e−t


2

2


+e0t


 1

−1


 approaches


 1

−1


 .

8


6 −2
2 1


 hasλ1 = 5, x1 =


2

1


, λ2 = 2, x2 =


1

2


; rabbitsr(t) = 20e5t+10e2t,

w(t) = 10e5t + 20e2t. The ratio of rabbits to wolves approaches20/10; (somewhat

against nature)e5t dominates.

9 (a)


4

0


 = 2


1

i


+2


 1

−i


. (b) Thenu(t) = 2eit


1

i


+2e−it


 1

−i


 =


4 cos t

4 sin t


.

10
d

dt


y

y′


 =


y

′

y′′


 =


0 1

4 5




y

y′


. This correctly givesy ′ = y ′ andy ′′ = 4y+5y ′.

A =


0 1

4 5


 hasdet(A− λI) = λ2 − 5λ− 4 = 0. Directly substitutingy = eλt into

y′′ = 5y′ + 4y also givesλ2 = 5λ+ 4 and the same two values ofλ. Those values are

1

2
(5±

√
41) by the quadratic formula.
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11 The series foreAt is eAt = I + t


0 1

0 0


+ zeros=


1 t

0 1


. Then


 y(t)

y′(t)


 =


1 t

0 1




 y(0)

y′(0)


 =


y(0) + y′(0)t

y′(0)


. Thisy(t) = y(0) + y ′(0)t solves

the equation—the factort tells us thatA had only one eigenvector : not diagonalizable.

12 A =


 0 1

−9 6


 has trace 6,det 9, λ = 3 and 3 withone independent eigenvector

(1, 3). Substitutey = te3t to show that this gives the needed second solution (y = e3t

is the first solution).

13 (a) y(t) = cos 3t andsin 3t solvey′′ = −9y. It is 3 cos 3t that starts withy(0) = 3 and

y′(0) = 0. (b) A =


 0 1

−9 0


 hasdet = 9: λ = 3i and−3i with eigenvectors

x =


 1

3i


 and


 1

−3i


. Thenu(t) = 3

2
e3it


 1

3i


+3

2
e−3it


 1

−3i


 =


 3 cos 3t

−9 sin 3t


.

14 WhenA is skew-symmetric, the derivative of||u(t)||2 iszero. Then‖u(t)‖ = ‖eAtu(0)‖

stays at‖u(0)‖. So the matrixeAt is orthogonalwhenA is skew-symmetric(AT=−A).

15 up = 4 andu(t) = cet+4. For the matrix equation, the particular solutionup = A−1b

is


4

2


 andu(t) = c1e

t


1

t


+ c2e

t


0

1


+


4

2


.

16 d/dt(eAt) = A+A2t+ 1

2
A3t2 + 1

6
A4t3 + · · · = A(I +At+ 1

2
A2t2 + 1

6
A3t3 + · · · ).

This is exactlyAeAt, the derivative we expect fromeAt.

17 eBt = I + Bt (short series withB2 = 0) =


1 −4t

0 1


. Derivative=


0 −4
0 0


 =

BeBt = B in this example.

18 The solution at timet+ T is eA(t+T )u(0). ThuseAt timeseAT equalseA(t+T ).

19 A2 = A giveseAt = I +At+ 1
2At2 + 1

6At3 + · · · = I + (et − 1)A.
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20 eA =


e 4(e− 1)

0 1


 from21 andeB =


1 −4

0 1


 from19. By direct multiplication

eAeB 6= eBeA 6= eA+B =


e 0

0 1


.

21 The matrix hasA2 =


1 3

0 0



2

=


1 3

0 0


 = A. Then allAn = A. So eAt =

I + (t+ t2/2! + · · · )A = I + (et − 1)A =


e

t 3(et − 1)

0 0


 as in Problem 19.

22 (a) The inverse ofeAt is e−At (b) If Ax = λx theneAtx = eλtx andeλt 6= 0.

To seeeAtx, write (I +At+ 1
2A

2t2 + · · · )x = (1 + λt+ 1
2λ

2t2 + · · · )x = eλtx.

23 Invert


 1 0

∆t 1


 to produceUn+1 =


 1 0

−∆t 1




1 ∆t

0 1


Un =


 1 ∆t

−∆t 1− (∆t)2


Un.

At ∆t = 1,


 1 1

−1 0


 hasλ = eiπ/3 ande−iπ/3. Both eigenvalues haveλ6 = 1 so

A6 = I. ThereforeU6 = A6U0 comes exactly back toU0.

24 iFirstA hasλ = ±i andA4 = I.

SecondA hasλ = −1,−1 andAn = (−1)n


1− 2n −2n

2n 2n+ 1


 Linear growth.

25 With a = ∆t/2 the trapezoidal step isUn+1 =
1

1 + a2


1− a2 2a

−2a 1− a2


Un.

That matrix has orthonormal columns⇒ orthogonal matrix⇒ ‖Un+1‖ = ‖Un‖

26 For proof2, square the start of the series to see(I + A + 1
2A

2 + 1
6A

3)2 = I + 2A+

1
2 (2A)

2+ 1
6 (2A)

3+ · · · . The diagonalizing proof is easiest when it works (but it needs

a diagonalizableA).
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Problem Set 7.1, page 295

1 ATA =




0 0 0

0 1 0

0 0 64


 AAT =




1 0 0

0 64 0

0 0 0


 give σ1 = 8 andσ2 = 1.

v1 = (0, 0, 1), v2 = (0, 1, 0), u1 = (0, 1, 0), u2 = (1, 0, 4). After removing

row 3 of A and column3 of AT,


 1 0

0 64


 still hasσ2

1 = 64 andσ2
2 = 1.

2 det(B − λI) = −λ3 + 1
125 = 0 gives λ = 1

5 times 1 and e2πi/3 and e4πi/3.

The singular values areσ = 8 and1 and1/1000. Soλ changed by1/5 andσ only

changed by1/1000.

3 AT has the same singular values asA, and the singular vectors change fromAv = σu

to Au = σv.

4


 0 A

AT 0




uk

vk


=


 Avk

ATuk


=σk


uk

vk


 and


 0 A

AT 0




−uk

vk


=


 Avk

−ATuk


=−σk


−uk

vk




So this one symmetric matrixS reveals theu’s andv’s andσ’s in the SVD ofA.

5 ATA is symmetric withλ1 = 25 andλ2 = 0 soA hasσ1 = 5. The eigenvectors of

ATA arev1 = (2, 1) andv2 = (−1, 2) : orthogonal. They are thev’s in A = UΣV T.

6 A1A
T
1 =


 1 0

1 1




 1 1

0 1


 =


 1 1

1 2


 producesλ2 − 3λ + 1 = 0 and

λ =
1

2

(
3±
√
5
)
. The singular values are the square rootsσ =

1

2

(√
5± 1

)
.

A2A
T
2 =


 1 0 1 0

1 1 1 1







1 1

0 1

1 1

0 1




=


 2 2

2 4


 hasλ2 − 6λ + 4 = 0 and

λ =
1

2

(
6±
√
20
)
= 3±

√
5. The singular values are the square rootsσ =

√
2

2

(√
5± 1

)
.

For the singular vectors I recommend the SVD commands inMATLAB or Julia or

Mathematica.
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7 There are20 singular values because a random20 by 40 matrix almost surely has rank20.

8 (a) The singular values ofA+ I are square roots of eigenvalues of(A+ I)T(A + I).

They arenot eigenvalues ofATA+ I.

(b) This formula V Σ−1UT is the best way to compute the pseudoinverseA+.

We could check the four Penrose conditions onA+ from Section 4.5. For example

AA+A =
(
Σσiuiv

T
i

)(
Σvju

T
j /σj

)(
Σσkukv

T
k

)
= Σσiuiv

T
i .

Notice also thatAA+ = Σuiv
T
i viui = ΣuT

i ui = UTU = projection.

9 The singular values ofQ are the positive square roots of eigenvalues ofQTQ—and all

those eigenvalues are1 becauseQTQ = I whenQ is orthogonal.

10 If theλ’s are in descending order, the maximum ofR(x) = (λ1c
2
1+ · · ·+λnc

2
n)/(c

2
1+

· · · + c2n) is λ1 (whenx = v1). Thenc1, c2, . . . , cn is 1, 0, . . . , 0. The minimum is

R(x) = λn whenx = vn andc = (0, 0, . . . , 0, 1).

11 xTv1 = 0 means that the coefficient isc1 = 0 in x = c1v1 + · · · + cnvn. Then

max
λ2c

2
2 + · · ·+ λnc

2
n

c22 + · · ·+ c2n
= λ2.

12 The first matrix hasATA =


 5 3

3 5


 with λ = 8 andλ = 2. The eigenvectors of

ATA = right singular vectorsv1,v2 of A are(1, 1)/
√
2 and (1,−1)/

√
2. The left

singular vectors areu = Av/σ = (4, 0)/
√
2
√
8 = (1, 0) and(0, 2)/

√
2
√
2 = (0, 1).

The second matrix hasATA =


 25 25

25 25


 soλ = 50 andλ = 0. The right singular

vectors ofA are againv1 = (1, 1)/
√
2 with σ1 =

√
50 andv2 = (1,−1)/

√
2 with no

σ2 (or you could sayσ2 = 0 but our convention is noσ2). Thenu1 = Av1/
√
50 =

(3, 4)/5.

13 This matrix hasATA =




1 1 0

1 2 1

0 1 1


 with eigenvaluesλ = 3, 1, 0 andσ1 =

√
3 and

σ2 = 1 and no σ3. The eigenvectors ofATA are v1 = (1, 2, 1)/
√
6 and
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v2 = (1, 0,−1)/
√
2 andv3 = (1,−1, 1)/

√
3. ThenAv = σu givesu = (1, 1)/

√
2

andu2 = (1,−1)/
√
2.

A =


1 1 0

0 1 1


 =

1√
2


1 1

1 −1





√
3 0

0 1




1 2 1

1 0 −1


 /
√
6

/
√
2

14 This small question is a key to everything. It is based on the associative law(AAT)A =

A(ATA). Here we are applying both sides to an eigenvectorv of ATA :

(AAT)Av = A(ATA)v = Aλv = λAv.

SoAv is an eigenvector ofAAT with the same eigenvalueλ = σ2.

15 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5

ThisA =


1 2

3 6


 is a2 by 2 matrix of rank1. Its row space has basisv1, its nullspace

has basisv2, its column space has basisu1, its left nullspace has basisu2 :

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1

3


 , N(AT)

1√
10


 3

−1


 .

16 (a) The main diagonal ofATA contains the squared lengths||row 1||2, · · · , ||rowm||2.

So the trace ofATA is the sum of alla2ij .

(b) If A has rank1, thenATA has rank1. So the only singular value ofA is

σ1 = (traceATA)1/2.

17 The numberσmax(A
−1)σmax(A) is the same asσmax(A)/σmin(A). This is≥ 1.

It equals1 if all σ’s are equal, andA = UΣV T is a multiple of an orthogonal matrix.

The ratioσmax/σmin is the importantcondition number of A.

18 The smallest change inA is to set its smallest singular valueσ2 to zero.
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Problem Set 7.2, page 301

1 (a) Suppose the identity matrixI isN byN , and anN byN approximating matrixA

has rankr < N . ThenI − A will haveN − r eigenvalues equal to1, meaning that

the error norm ||I − A|| is at least1, andI is impossible to compress by a lower

rank matrix.

(b) A matrix with a horizontal-vertical cross looks likeA :



zeros ones zeros
ones ones ones
zeros ones zeros


 =




zeros ones zeros
zeros ones zeros
zeros ones zeros


+




zeros zeros zeros
ones zeros ones
zeros zeros zeros




Those are both rank one matrices (all nonzero rows equal) soA has rank 2.

2 A =




1 2 1 1

2 4 2 2

1 2 1 1


+




0 0 0 0

0 −2 0 0

0 0 0 0


 =




1

2

1




[
1 2 1 1

]

+




0

1

0




[
0 −2 0 0

]

and the rank is2.

B =


 1 2 2

1 3 3


 =


 1

1



[
1 2 2

]

+


 0

1



[
0 1 1

]

also has rank2.

3 BBT =


 1 2 2

1 3 3







1 1

2 3

2 3


 =


 9 13

13 19


 trace= 28 anddet = 2.

BTB =




1 1

2 3

2 3





 1 2 2

1 3 3


 =




2 5 5

5 13 13

5 13 13


 trace= 28 anddet = 0.

The 2 nonzero eigenvalues must be the same for both matrices. Theyareσ1, σ2 =

14±
√
142 − 2. I would callB compressible whenσ2 is so much smaller thanσ1.

4 (computer questionsvd(A)).

5 The Japanese flag has a circle filled by1’s, with diameter= 2N 1’s. Outside the circle

are zeros. The rank is approximatelyCN . What is the numberC ? Alex Townsend
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contributed this key idea : The circle contains a big square matrix filled by 1’s. The

rank of that all-ones matrix is only1.

So we only have to count the rows above and below that square ! Multiply by 2 to

include the columns to the left and right of the square.

0

√
2

2
N

N
01

1 1

The picture shows

(
1−
√
2

2

)
N rows of 1’s above the

square—and repeated below the square. It also shows(
1−
√
2

2

)
N columns of1’s to the right of the square—and

repeated to the left.

Combined, those(2 −
√
2)N rows and columns (plus1 for the big square) tell us the

rank of this2N by 2N Japanese flag containing the red circle.

6 TheN by N matrixA is filled by the valuesAij = F (i/N, j/N) of the two-variable

functionF (x, y), by taking the points(x, y) = (i/N, j/N) on a uniform square grid

(x andy go from0 to 1). Three choices of that functionF :

1) F = xy produces a symmetricrank-1 matrix . Its i, j entry is a multiple of the

producti timesj. All rows of F contain a multiple of the vector(1, 2, . . . , N).

2) F2 = x + y gives a sum of2 rank-one matrices (the rank is 2). One matrix has

constants along each row. The other has constants down each column.

3) F3 = (x, y) = x2 + y2 will also produce a sum of constant rows (fromx2) and

constant columns (fromy2). Again rank= 2.

7 Symmetric matrixS if F (x, y) = F (y, x). ExampleF = x+ y.

Antisymmetric matrixA if F (x, y) = −F (y, x). ExampleF = x− y.

Matrix of rank2 if F (x, y) = F (x) + F (y) (and other possibilities too ?)

Singular matrixM from a sum of less thann rank-one matrices (please expand this

part of the answer).
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Problem Set 7.3, page 307

1 The row averages ofA0 are3 and0. Therefore

A =


 2 1 0 −1 −2
−1 1 0 1 −1


 and S =

AAT

4
=

1

4


10 0

0 4




The eigenvalues ofS areλ1 =
10

4
andλ2 =

4

4
= 1. The top eigenvector ofS is


1

0


. I think this means that ahorizontal line (thex axis) is closer to the five points

(2,−1), . . . , (−2,−1) in the columns ofA than any other line through the origin(0, 0).

2 Now the row averages ofA0 are 1
2 and2. Therefore

A =




1
2 − 1

2
1
2 − 1

2
1
2 − 1

2

−1 0 1 1 0 −1


 and S =

AAT

5
=

1

5




3
2 0

0 4


 .

Again the rows ofA are accidentally orthogonal (because of the special patterns of

those rows). This time the top eigenvector ofS is


0

1


. So ahorizontal line is closer

to the six points
(
1
2 ,−1

)
, . . . ,

(
− 1

2 ,−1
)

from the columns ofA than any other line

through the center point(0, 0).

3 A0 =


1 2 3

5 2 2


 has row averages2 and 3 so A =


−1 0 1

2 −1 −1


.

ThenS =
1

2
AAT =

1

2


 2 −3

−3 6


.

Then trace(S) = 1
2 (8) anddet(S) =

(
1
2

)2
(3). The eigenvaluesλ(S) are 1

2 times the

roots ofλ2 − 8λ + 3 = 0. Those roots are4 ±
√
16− 3. Then theσ’s are

√
λ1 and

√
λ2.

4 This matrixA with orthogonal rows hasS =
AAT

n− 1
=

1

3




2 0 0

0 8 0

0 0 4


.
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With λ’s in descending orderλ1 > λ2 > λ3, the eigenvectors are(0, 1, 0) and(0, 0, 1)

and(1, 0, 0). The first eigenvector shows theu1 direction= y axis. Combined with

the second eigenvectoru2 in thez direction, the best plane is theyz plane.

These problems are examples where the samplecorrelation matrix (rescalingS so all

its diagonal entries are1) would be the identity matrix. If we think the original scaling

is not meaningful and the rows should have the same length, then there is no reason to

chooseu1 = (0, 1, 0) from the8 in row 2.

5 Recall that least squares measures vertical errors (squared distances up or down from

data points to the closest line) while PCA measures perpendicular distances to the line.

They are different problems. Ordinary least squares is different from PCA= perpen-

dicular least squares.

ATAx̂=ATb is


 3 0

0 14


 x̂=


 0

5


 leads tox̂=


 0

5/14


. Best line isy =

5

14
t.

PCA finds the line through(0, 0) whose perpendicular distances to the points(−3,−1),
(1, 0), (2, 1) is smallest. The computation finds the top eigenvector ofATA, whereA

is now the2 by 3 matrix of data points :

AAT =


 −3 1 2

−1 0 1







−3 −1
1 0

2 1


 =


 14 5

5 2


 hasλ2 − 16λ+ 3 = 0.

Thenλ = 8±
√
61 and the top eigenvector ofAAT is in the direction of(5,

√
61− 6)

≈ (5, 1.8). That is the (approximate) direction of the liney =
1.8

5
t.

6 Seeeigenfaceson Wikipedia.

7 The closest matrixA3 of rank3 has the3 top singular values5, 4, 3. ThenA−A3 has

singular values2 and1.

8 If A hasσ1 = 9 andB hasσ1 = 4, thenA + B hasσ1 ≤ 13 because||A + B|| ≤
||A||+ ||B||. Also σ1 ≥ 5 for A+B because||A+B||+ || −B|| ≥ ||A||.
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Problem Set 8.1, page 315

1 With w = 0 linearity givesT (v + 0) = T (v) + T (0). ThusT (0) = 0. With c = −1

linearity givesT (−0) = −T (0). But−0 = 0. This is a second proof thatT (0) = 0.

2 CombiningT (cv) = cT (v) andT (dw) = dT (w) with addition givesT (cv + dw) =

cT (v) + dT (w). Then one more addition givescT (v) + dT (w) + eT (u).

3 (d) T (v) = (0, 1) = constant and(f)T (v) = v1v2 are not linear.

4 (a) S(T (v)) = v (b) S(T (v1) + T (v2)) = S(T (v1)) + S(T (v2)) : linear.

5 Choosev = (1, 1) andw = (−1, 0). ThenT (v) + T (w) = (v + w) = (0, 1) but

T (v +w) = T (2, 1) was defined as(0, 0).

6 (a) T (v) = v/‖v‖ does not satisfyT (v + w) = T (v) + T (w) or T (cv) = cT (v)

(b) and (c) are linear (d) satisfiesT (cv) = cT (v) only for c ≥ 0

7 (a)T (T (v))=v (b) Nonlinearv+(2, 2) (c) T (T (v))=−v (d) T (T (v))=T (v).

8 (a) The range ofT (v1, v2) = (v1 − v2, 0) is the line of vectors(c, 0). The nullspace

is the line of vectors(c, c). (b) T (v1, v2, v3) = (v1, v2) has rangeR2, kernel

{( 0, 0,v3)} (c) T (v) = 0 has range{0}, kernelR2 (d) T (v1, v2) = (v1, v1)

has range = multiples of(1, 1), kernel = multiples of(1,−1).

9 If T (v1, v2, v3)=(v2, v3, v1) thenT (T (v))=(v3,v1,v2); T 3(v)=v; T 100(v)=T (v).

10 T (v)=(4, 4); (2, 2); (2, 2); if v=(a, b)= b(1, 1)+ a−b
2 (2, 0) thenT (v)=b(2, 2)+(0, 0).

11 (a) T (1, 0)=0 (b) (0, 0, 1) is not in the range (c)T (0, 1)=0.

12 For multiplicationT (v) = Av: V = Rn, W = Rm; the outputs fill the column

space;v is in the kernel ifAv = 0.

13 Thedistributive law(page 69) givesA(M1 +M2) = AM1 + AM2. Thedistributive

law overc’s givesA(cM) = c(AM).

14 Now T (M) = AM with an invertibleA. Multiply AM = 0 andAM = B by A−1

to getM = 0 andM = A−1B. The kernel contains only the zero matrixM = 0.
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15 This A is not invertible. AM = I is impossible.A


 2 2

−1 −1


 =


0 0

0 0


. The

range ofT contains only matricesAM whose columns are multiples of(1, 3).

16 No matrixA givesA


0 0

1 0


 =


0 1

0 0


. To professors: Linear transformations on

matrix space come from4 by 4 matrices. Those in Problems 13–15 were special.

17 ForT (M) = MT (a) T 2 = I is True (b) True (c) True (d) False.

18 T (I) = 0 butM =


0 b

0 0


 = T (M); theseM ’s fill the range. EveryM =


a 0

c d




is in the kernel. Notice thatdim (range)+dim (kernel)= 3 + 1 = dim (input space

of 2 by 2 M ’s).

19 Linear transformations keep straight lines straight! And two parallel edges of a square

(edges differing by a fixedv) go to two parallel edges (edges differing byT (v)). So

the output is a parallelogram.

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes

onto a line (c) Vertical lines stay vertical becauseT (1, 0) = (a11, 0).

21 D =


2 0

0 1


 doubles the width of the house.A =


 .7 .7

.3 .3


 projectsthe house

(sinceA2 = A from trace= 1 andλ = 0, 1). The (non-orthogonal) projection is onto

the column space ofA = line through(.7, .3). U =


1 1

0 1


 will shearthe house

horizontally: The point at(x, y) moves over to(x+ y, y).

22 (a) A =


a 0

0 d


 with d > 0 leaves the houseAH sitting straight up

(b) A =


cos θ − sin θ

sin θ cos θ


 rotates the house.

23 T (v) = −v rotates the house by180◦ around the origin. Then the affine transformation

T (v) = −v + (1, 0) shifts the rotated house one unit to the right.

24 A code to add a chimney will be gratefully received!
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25 This code needs a correction: add spaces between−10 10 −10 10

26


1 0

0 .1


 compresses vertical distances by10 to1.


 .5 .5

.5 .5


 projects onto the45◦ line.


 .5 .5

−.5 .5


 rotates by45◦ clockwise and contracts by a factor of

√
2 (the columns have

length1/
√
2).


1 1

1 0


 has determinant−1 so the house is “flipped and sheared.” One

way to see this is to factor the matrix asLDLT:


1 1

1 0


 =


1 0

1 1




1

−1




1 1

0 1


 = (shear) (flip left-right) (shear).

27 Linear transformations ofR2 take circles to ellipses (see figure in Section 6.7).

28 (a) ad − bc = 0 (b) ad − bc > 0 (c) |ad − bc| = 1. If vectors to two

corners transform to themselves then by linearityT = I. (This is not always true if one

corner is(0, 0).)
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Problem Set 8.2, page 324

1 i ForSv = d2v/dx2

Basisv1, v2, v3, v4 = 1, x, x2, x3

Sv1 = Sv2 = 0, Sv3 = 2v1, Sv4 = 6v2;

The matrix forS isB =




0 0 2 0

0 0 0 6

0 0 0 0

0 0 0 0




.

2 Sv = d2v/dx2 = 0 for linear functionsv(x) = a + bx. All (a, b, 0, 0) are in the

nullspace of the second derivative matrixB.

3 (Matrix A)2 = B when transformationT (T (v)) = S(v) and output basis= input basis.

4 The third derivative matrix has6 in the(1, 4) position; since the third derivative ofx3

is 6. This matrix also comes fromAB. The fourth derivative of a cubic is zero, andB2

is the zero matrix.

5 T (v1 + v2 + v3) = 2w1 +w2 + 2w3; A times(1, 1, 1) gives(2, 1, 2).

6 v = c(v2−v3) givesT (v) = 0; nullspace is(0, c,−c); solutions(1, 0, 0)+(0, c,−c).

7 (1, 0, 0) is not in the column space of the matrixA, andw1 is not in the range of

the linear transformationT . Key point: Column spaceof matrix matchesrangeof

transformation. Nullspace matches normal.

8 We don’t knowT (w) unless thew’s are the same as thev’s. In that case the matrix is

A2.

9 Rank ofA = 2 = dimension of therangeof T . The outputsAv (column space) match

the outputsT (v) (the range ofT ). The “output space”W is like Rm: it contains all

outputs but may not be filled up by the column space.

10 The matrix forT isA =




1 0 0

1 1 0

1 1 1


. For the output




1

0

0


 choose inputv =




1

−1

0


 =

A−1




1

0

0


. This means: For the outputw1 choose the inputv1 − v2.
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11 A−1 =




1 0 0

−1 1 0

0 −1 1


 soT−1(w1) = v1 − v2, T

−1(w2) = v2 − v3, T
−1(w3) =

v3. The columns ofA−1 describeT−1 from W back toV . The only solution to

T (v) = 0 is v = 0.

12 (c) T−1(T (w1)) = w1 is wrong becausew1 is not generally in the input space.

13 (a) T (v1) = v2, T (v2) = v1 is its own inverse (b)T (v1) = v1, T (v2) = 0 has

T 2 = T (c) If T 2 = I for part (a) andT 2 = T for part (b), thenT must beI.

14 (a)


2 1

5 3


 (b)


 3 −1
−5 2


 = inverse of (a) (c)A


2

6


must be2A


1

3


.

15 (a) M =


r s

t u


 transforms


1

0


 and


0

1


 to


r

t


 and


 s

u


; this is the “easy”

direction. (b)N =


a b

c d



−1

transforms in the inverse direction, back to the stan-

dard basis vectors. (c)ad = bc will make the forward matrix singular and the inverse

impossible.

16 MW =


1 0

1 2




2 1

5 3



−1

=


 3 −1
−7 3


.

17 Reordering basis vectors is done by apermutation matrix. Changing lengths is done by

a positive diagonal matrix.

18 (a, b) = (cos θ,− sin θ). Minus sign fromQ−1 = QT.

19 M =


1 1

4 5


;


a

b


 =


 5

−4


 = first column ofM−1 = coordinates of


1

0


 in basis


1

4




1

5


 because5


1

4


− 4


1

5


 =


1

0


.

20 w2(x) = 1− x2; w3(x) =
1
2 (x

2 − x); y = 4w1 + 5w2 + 6w3.
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21 w’s to v’s:




0 1 0

.5 0 −.5

.5 −1 .5


 . v’s to w’s: inverse matrix=




1 1 1

1 0 0

1 −1 1


. The key

idea: The matrix multiplies the coordinates in thev basis to give the coordinates in the

w basis.

22 The3 equations to match4, 5, 6 at x = a, b, c are




1 a a2

1 b b2

1 c c2







A

B

C




=




4

5

6




. This

Vandermonde determinant equals(b − a)(c − a)(c − b). Soa, b, c must be distinct to

havedet 6= 0 and one solutionA,B,C.

23 The matrixM with these nine entries must be invertible.

24 Start fromA = QR. Column2 isa2 = r12q1+ r22q2. This givesa2 as a combination

of theq’s. So the change of basis matrix isR.

25 Start fromA = LU . Row 2 ofA is ℓ21(row 1 ofU) + ℓ22 (row 2 ofU ). The change of

basis matrix is alwaysinvertible, because basis goes to basis.

26 The matrix forT (vi) = λivi isΛ = diag(λ1, λ2, λ3).

27 If T is not invertible,T (v1), . . . , T (vn) is not a basis.We couldn’t choosewi = T (vi).

28 (a)


0 3

0 0


 givesT (v1) = 0 andT (v2) = 3v1. (b)


1 0

0 0


 givesT (v1) = v1

andT (v1 + v2) = v1 (which combine intoT (v2) = 0 by linearity).

29 T (x, y) = (x,−y) is reflection across thex-axis. Then reflect across they-axis to get

S(x,−y) = (−x,−y). ThusST = −I.

30 S takes(x, y) to (−x, y). S(T (v))=(−1,2). S(v)=(−2, 1) andT (S(v))=(1,−2).

31 Multiply the two reflections to get


cos 2(θ − α) − sin 2(θ − α)

sin 2(θ − α) cos 2(θ − α)


 which isrotation

by 2(θ − α). In words:(1, 0) is reflected to have angle2α, and that is reflected again

to angle2θ − 2α.
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32 The matrix forT in this basis isA =




1 0 0 0

0 1 0 0

0 0 0 0


.

33 The basisv1,v2,v3,v4 for the space of2 by 2 matrices is meant to be

v1 =


 1 0

0 0


 v2 =


 0 1

0 0


 v3 =


 0 0

1 0


 v4 =


 0 0

0 1


 .

Apologies for the reference to Worked Example 8.2A, which was omitted in final

editing of the book. Question 33 asks for the4 by 4 matrixA that representsT (M) =
 a b

c d


M in this basis ofv’s. As always, multiply each basis matrix by


 a b

c d




to findT (v1), . . . , T (v4). Write each output as a conbination of the output basis (also

v1 to v4). The coefficients ofv1 to v4 tell you each column ofA.

Multiplying by


a b

c d


 givesT (v1) = A


1 0

0 0


 =


a 0

c 0


 = av1 + cv3. Simi-

larly T (v2) = av2+cv4 andT (v3) = bv1+dv3 andT (v4) = bv2+dv4. The matrix

for T in this basis is




a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d




34 False: We will not knowT (v) for everyv unless then v’s are linearly independent.
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Problem Set 8.3, page 334

1 For this matrixJ , the rank ofJ − 3I is 3 so the dimension of the nullspace is only

1. There is only1 independent eigenvector even thoughλ = 3 is a double rootof

det(J − λI) = 0 : a repeated eigenvalue.

J =




2

2

3 1

3



.

2 J =


 0 1

0 0


 is similar to all other2 by2 matricesA that have2 zero eigenvalues but

only 1 independent eigenvector. ThenJ = B−1
1 A1B1 is the same asB1J = A1B1 :

B1J =


 4 0

0 1




 0 1

0 0


 =


 0 4

0 0




 4 0

0 1


 = A1B1

B2J =


 4 1

2 0




 0 1

0 0


 =


 4 −8

2 −4




 4 1

2 0


 = A2B2

3 Every matrix is similar to its transpose (same eigenvalues,same multiplicity, more than

that the same Jordan form). In this example

BJ =




1

1

1







2 1 0

0 2 1

0 0 2


 =




2 0 0

1 2 0

0 1 2







1

1

1


 = JTB.

4 HereJ andK aredifferentJordan forms (block sizes2, 2 versus block sizes3, 1). Even

thoughJ andK have the sameλ’s (all zero) and same rank,J andK arenot similar.

If BK = JB thenB is not invertible:



128 Solutions to Problem Sets

BK = B




0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0



=




0 b11 b12 0

0 b21 b22 0

0 b31 b32 0

0 b41 b42 0




JB =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0



B =




b21 b22 b23 b24

0 0 0 0

b41 b42 b43 b44

0 0 0 0




Those right hand sides agree only ifb21 = 0, b41 = 0, b24 = 0, b44 = 0, b22 = 0,

b42 = 0. But then alsob11 = b22 = 0 andb31 = b42 = 0. So the first column has

b11 = b21 = b31 = b41 = 0 andB is not invertible.

5 If A3 is the zero matrix then every eigenvalue ofA is λ = 0 (becauseAx = λx leads

to θ = A3x = λ3x). The Jordan formJ will also haveJ3 = 0 becauseJ = B−1AB

hasJ3 = B−1A3B = 0. The blocks ofJ must become zero blocks inJ3. So those

blocks ofJ can be

[
0
]

 0 1

0 0







0 1 0

0 0 1

0 0 0


 but not




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0





 third power

is not zero




The rank ofJ (andA) is largest if every block is3 by 3 of rank2. Then rank≤ 2

3
n.

If An = zero matrix thenA is not invertibleand rank(A) < n.

6 This question substitutesu1 = teλt andu2 = eλt to show thatu1, u2 solve the system

u ′ = Ju :

u ′

1 = λu1 + u2 eλt + tλeλt = λ(teλt) + (eλt)

u ′

2 = λu2 λeλt = λ(eλt) .

Certainlyu1 = 0 andu2 = 1 at t = 0, so we have the solution and it involvesteλt (the

factort appears becauseλ is a double eigenvalue ofJ).
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7 The equationuk+2 − 2λuk+1 + λ2uk is certainly solved byuk = λk. But this is a

second order equation and there must be another solution. Inanalogy withteλt for the

differential equation in8.3.6, that second solution isuk = kλk. Check :

(k + 2)λk+2 − 2λ(k + 1)λk+1 + λ2(k)λk =
[
k + 2− 2(k + 1) + k

]
λk+2 = 0.

8 λ3 = 1 has3 rootsλ = 1 and e2πi/3 and e4πi/3. Those are1,λ,λ2 if we take

λ = e2πi/3. The Fourier matrix is

F3 =




1 1 1

1 λ λ2

1 λ2 λ4


 =




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3


 .

9 A 3 by 3 circulant matrix has the form on page425 :

C =




c0 c1 c2

c2 c0 c1

c1 c2 c0


 with C




1

1

1


 = (c0 + c1 + c2)




1

1

1




C




1

λ

λ2


 = (c0+c1λ+c2λ

2)




1

λ

λ2


 C




1

λ2

λ4


 = (c0+c1λ

2+c2λ
4)




1

λ2

λ4


 .

Those3 eigenvalues ofC are exactly the3 components ofFc = F




c0

c1

c2


,

10 The Fourier cosine coefficientc3 is in formula (7) with integrals from−π toπ. Because

f drops to zero atx = L, the integral stops atL :

a3 =

∫
f(x) cos 3x dx∫
(cos 3x)2 dx

=
1

π

∫ L

−L

(1)(cos 3x) dx =
1

3π

[
sin 3x

]x=L

x=−L

=
2 sin 3L

3π
.

Note that we should have definedf(x) = 0 for L < |x| < π (not2π !).
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Problem Set 9.1, page 345

1 Equations (1) and (2) give the first three terms in the Taylor Series forF (x) andF (x) =

one variablex or several variablesx = (x1, . . . , xn). The formulas are exact when

F is a quadratic function (powers1, x, x2 or in N dimensions1, x1 to xN and all

productsxixj from x2
j to x1xN to x2

2 to x2xN and eventuallyxN−1xN andx2
N ).

2 f(x) = x2+1, f ′(x) = 2x, f ′′ = 2. Then Newton’s method computesxn+1 fromxn :

xn+1 = xn −
f(xn)

fv(xn)
= xn −

x2
n + 1

2xn
=

1

2

(
xn −

1

xn

)
.

This iteration stays with real numbers so it can’t converge to the solutionsx = i or

x = −i. Instead the numbersxn are“chaotic” .

The key insight is that the cotangent functionxn = cot 2nθ gives the correctxn+1

from xn :

cos 2θ

sin 2θ
=

1

2

(
cos θ

sin θ
− sin θ

cos θ

)
or cot 2θ =

1

2

(
cot θ − 1

cot θ

)
.

In the left equation, the common denominator is2 sin θ cos θ = sin 2θ. The numerator

is cos2 θ − sin2 θ = cos 2θ. The identity says this about the iteration :

If x0 = cot θ then x1 =
1

2

(
x0 −

1

x0

)
= cot 2θ.

Thenx2 = cot 4θ. Thenxn = cot 2nθ. This is the formula.

Example 1 Start withθ = π/4 (cotangent isx0 = 1). The first step givesθ = π/2

(cotangent equals0). The next step isθ = π (iteration blows up becausesinπ = 0).

Example 2 Start with θ = π/3 (cotangent isx0 = 1/
√
3). The first step gives

θ = 2π/3 (cotangent equals−1/
√
3). The next step isθ = 4π/3 (which is the original

θ plusπ). The iteration cycles between1/
√
3 and−1/

√
3.

Example 3 Start with a smallθ (a large cotangent). After the first step,cot 2θ is

approximately cut in half (use calculus). The cotangent decreases until the angle2nθ

passesπ/3. Then the next step makes it larger.
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The iteration eventually blows up ifθ/π = integer/2N .

The iteration eventually cycles ifθ/π = any other fractionp/q.

The iteration is not periodic (or convergent) ifθ/π is irrational.Chaos.

We can’t find
√
−1 by Newton’s method which stays real.

3 The derivative of− logx11 with respect tox11 is −1/x11. The second derivative is

+1/x2

11
> 0. So− log x is a convex function—its slope−1/x is increasing.

4 For the functionF = − log detA = − log(ac− b2) the first derivatives are

∂F

∂a
=

−c
ac− b2

∂F

∂b
=

+2b

ac− b2
∂F

∂c
=

−a
ac− b2

Then all second derivatives involveD = ac− b2 =

∂2F

∂a2
=

c2

D2

∂

∂b

(
∂F

∂a

)
=

+2bc

D2

∂

∂c

(
∂F

∂a

)
=
−1
D

+
ac

D2
.

This already shows that the matrix of second derivatives is complicated and we need a

new idea.

5 The gradient ofF (x) =
1

2

(
xTATAx− 2bTAx+ bTb

)
is ∇F = ATAx − ATb.

So the minimizing vectorx solvesATAx = ATb as we know from Chapter 4. That

givesx in one step, where gradient descent takes a sequence of simpler steps of sizes

sk to approachx :

xk+1 = xk − sk∇F (xk) = xk − sk(A
TAxk −ATb).

6 F =
1

2

(
x2 +

1

4
y2
)

has gradient

(
∂F

∂x
,
∂F

∂y

)
=
(
x,

y

4

)
. One step from(x0, y0) =

(
1

4
, 1

)
goes to(x1, y1) =

(
1

4
, 1

)
− s

(
1

4
,
1

4

)
.

7

8 Certainlyx2 is minimized atx = 0 ande−y is minimized aty =∞. ThenFmin = 0+

0. At (x0, y0) = (1, 1) the function isF = 1
2+

1
e and the gradient is∇F = (2x,−e−y)

and descent goes to(x1, y1) = (1, 1) = −s∇F = (1, 1)− s(2,−1/e).
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Problem Set 9.2, page 353

1 The two equations have rowsa1 =
[
1 2

]
anda2 =

[
2 3

]
. The right hand sides

of Ax = b areb1 = 3 andb3 = 5. The classical Kaczmarz method updatesx to solve

a1x = b1 and thena2x = b2 (and repeat indefinitely). Starting fromx0 =


 0

0


 here

is the first cycle from equation (6) :x1 solves the first equation
[
1 2

]
x1 = 3

x1 = x0 +

3−
[
1 2

]

 0

0




12 + 22


 1

2


 =

3

5


 1

2


 =


 3/5

6/5




Note thatx1 solves the first equation
[
1 2

]
x1 = 3 but nota2x1 = 5.

Thenx2 modifiesx1 to solve that equation but now the first equation fails :

x =


 3/5

6/5


+

5−
[
2 3

]

 3/5

6/5




22 + 32


 2

3


 =


 3/5

6/5


+ 1/5

13


 2

3


 =

1

5


 3 + 2/13

6 + 3/13


 .

This vectorx2 solves the second equation
[
2 3

]
x2 = 5 but not the first equation.

Repeating the Kaczmarz double step brings us closer to the true solutionx∞ =


 1

1


.

With a computer you can take more Kaczmarz steps tox2,x3, . . . and compare the con-

vergence rate with“random Kaczmarz” –when the order of the equations and updates

jumps randomly between equations1 and2.
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2 The problem (least squares) is to minimizeℓ(x) = (1−F (x))2 whereF (x) = F2(F1(x)).

Backpropagation computes
∂ℓ

∂F
and

∂F

∂x
:

∂ℓ

∂F
= 2(1−F (x))

∂F

∂x
=

∂F2

∂F1

∂F1

∂x
=

(
∂F2

∂F1

)
(− sin(sinx)) cos x = 0 at x = 0

3 (a) The limits oftanh(x) atx = 0,∞,−∞ are0, 1,−1.

(b) The graph has an inflection point atx = 0, where the second derivative oftanh(x)

is zero.

(c) The derivative oftanh(x) = (ex − e−x)/(ex + e−x) by the quotient rule is

(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
=

4

(ex + e−x)2
> 0 so tanh is increasing

4 Componenti of tanh(Ax + b) is y = tanh(aT
i x + bi). The scalar functiontanh(x)

has the derivative4/(ex + e−x)2 from Problem 3. Then the chain rule gives

∂

∂bi
(tanh(Ax+ b)) =

4

(ex + e−x)2
with x = aT

i x+ bi.

5 The partial derivatives ofF (x, y) = F2(x, F1(y)) are
∂F

∂x
=

∂F2

∂x
(x1, F1(y)) and

∂F

∂y
=

∂F2

∂F1

∂F1

∂y
.
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Problem Set 9.3, page 363

1 To minimize with a constraint3x+4y = 1, introduce a Lagrange multiplier inL(x, y, λ) =

|x|p + |y|p − λ(3x+ 4y − 1).

∂L/∂x = pxp−1 − 3λ = 0 xp−1 = 3λ/p

∂L/∂y = pyp−1 − 4λ = 0 yp−1 = 4λ/p

−∂L/∂λ = 3x+ 4y − 1 = 0 3(3λ/p)q + 4(4λ/p)q = 1

Hereq = 1/(p−1) andq+1 = p/(p−1). The bold equation is(3q+1+4q+1)λq = pq.

The solution isλ = p/E with E = (3q+1+4q+1)1/q. Knowingλ we can findx andy.

2 Supposev1 andv2 are in the unit ball : their norms are≤ 1. We want to show that any

pointw = cv1 + (1− c)v2 betweenv1 andv2 (which means0 < c < 1) is also in the

ball (which means||w|| ≤ 1). Use the triangle inequality :

||w|| ≤ ||cv1||+ ||(1 − c)v2|| ≤ |c|+ |1− c| = 1 because0 < c < 1.

3 (a) L(X, λ) =
1

2
x2
1 + 2x2

2 − λ(x1 + 3x2 − b).

(b) ∂L/∂x1 = x1 − λ = 0

∂L/∂x2 = 4x2 − 3λ = 0

∂L/∂λ = x1 + 3x2 − b = 0 = (λ) + 3(3λ/4)− b

Solve the last equation :(4/4 + 9/4)λ = b or λ = 4b/13. Thenx1 = 4b/13 and

x2 = 3b/13.

(d) The minimum ofF =
1

2
x2
1 + 2x2

2 is
1

2

(
4b

13

)2

+ 2

(
3b

13

)2

= (8 + 18)b2/132 =

2b2/13. The derivative of thatFmin is ∂Fmin/∂b = 4b/13. This is exactlyλ !

4 L =
1

2
(x2

1 + 4x2
2)− λ(2x1 + x2 − 5).

∂L/∂x1 = x1 − 2λ = 0 x1 = 2λ

∂L/∂x2 = 4x2 − λ = 0 x2 = λ/4

−∂L/∂λ = 2x1 + x2 − 5 = 0

(
4 +

1

4

)
λ = 5 or λ = 20/17

Thenx1 = 40/17 andx2 = 5/17 andF =
1

2

(
x2
1 + 4x2

2

)
=

1

2
(1700)/172 = 50/17.
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5 K has2 positive pivots and1 negative pivot. Then it must have2 positive eigenvalues

and1 negative eigenvalue.

6 Line 4 of this problem proves the Law of Inertia for the number of positive pivots ofS

(= number of positive eigenvalues, becauseK is symmetric). Then the problem asks

for a straightforward and basic proof whenS is 2 by 2 : There are2 steps.

1 Determinants ofS = LDLT = QΛQT are(detD) (detL)2 and(detΛ) (detQ)2.

SodetD has the same sign asdetΛ. If those diagonal matricesD andΛ are2 by

2, then negative determinants mean1 positive pivot and1 positive eigenvalue.

2 If D andΛ both have positive determinants, then the two pivots have the same

sign and the two eigenvalues have the same sign. Then positive eigenvalues means

positive trace (sum of eigenvalues= sum of diagonal entries).

7 By symmetry the minimum ofF = 1
2

(
x2
1 + x2

2 + x2
3

)
with x1 + x2 + x3

= 3 is 1
2 (1 + 1 + 1) = 1.5. With the added constraintx1 + 2x2 + 3x3 = 12, we

have two multipliersλ andσ :

Lagrange functionL = F − λ(x1 + x2 + x3 − 3)− σ(x1 + 2x2 + 3x3 − 12).

∂L/∂x1 = x1 − λ− σ = 0 x1 = −2
∂L/∂x2 = x2 − λ− 2σ = 0 x2 = 1

∂L/∂x3 = x3 − λ− 3σ = 0 x3 = 4

−∂L/∂λ = x1 + x2 + x3 − 3 = 0 → 3λ+ 6σ = 3 → λ = −5
−∂L/∂σ = x1 + 2x2 + 3x3 − 12 = 0 → 6λ+ 14σ = 12 → σ = 3

The second minimum isF =
1

2
(4 + 1 + 16) = 10.5 = larger than1.5 from extra

constraint !

8 The constraints arex1 ≤ 1,−x1 ≤ 1, x2 ≤ 1,−x2 ≤ 1. This isAx ≤ b for

A =




1 0

−1 0

0 1

0 −1




x =


 x1

x2


 b =




1

1

1

1



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Problem Set 9.4, page 369

1 Yes,x ≥ 0 is needed for this step : IfATy ≤ c then(ATy)Tx ≤ cTx.

3 ≤ 4 leads to3x ≤ 4x if x ≥ 0. But x = −1 would give a wrong output−3 < −4.

2 The corners(x1, x2, x3) with x1+2x2+2x3 = 4 are(4, 0, 0) and(0, 2, 0) and(0, 0, 2).

When the cost iscTx = 5x1 + 3x3 + 8x3, the corner(0, 2, 0) gives the minimum cost

cTx = 6. The other corners(4, 0, 0) and(0, 0, 2) cost20 and16.

3 The dual problem maximizesyTb = 4y1 subject toy1 ≥ 5, 2y1 ≥ 3, 2y1 ≥ 8. The

besty1 is y1 = 3/2 leading toyTb = 4(3/2) = 6. Notice strong duality : min ofyTb

equals max ofcTx in Problem2 = 6.

4 With 2 constraints onx1 to x4, we can set4 − 2 = 2 of thex’s to zero and see if the

other2 x’s are≥ 0 as required. The problem asks about(x1, x2, 0, 0) = (4, 2, 0, 0)

which satisfies the constraints. The cost at the corner depends on the cost functioncTx

which the problem statement forgot to include.

5 First payoff matrix :R chooses row1 every time andC chooses column2 every time.

The payoff toC is 2 every time.

Second matrix : IfR chooses rows1 and2 with probabilitiesx and1 − x, the payoffs

toC arex+8(1− x) for column1 and4x+2(1− x) for column2. Those payoffs are

equal if8− 7x = 2 + 2x or 6 = 9x or x = 2/3 : payoff= 10/3.

If C chooses columns1 and2 with probabilitiesy and1 − y, the payoffs toC are

y + 4(1 − y) = 4 − 3y whenR chooses row1 and8y + 2(1 − y) = 2 + 6y when

R chooses row2. Those are equal when4 − 3y = 2 + 6y or y = 2/9 and the payoff

to C is again4− 2/3 = 10/3. Duality holds and the game is worth10/3 to playerC.
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6 If AT = −A (square antisymmetric matrix) then any choicex of the row frequencies

by the row playerR can be matched by the same probabilitiesx for the column player

C (and vice versa). ButxT(Ax) = (Ax)Tx = −xTAx is always zero ! So both

players can avoid any loss and the value of this antisymmetric game is zero.

Example: A =


 0 −1

1 0


 has optimal strategiesx = (1, 0) for row playerR

andy = (1, 0) for column playerC and all payoffs= 0.

7 PlayerR chooses row1 with probabilityσn/(σ1 + σn) and rown with probability

σ1/(σ1+σn). PlayerC chooses column1 and columnn with those same probabilities

and expects the same average payments. (This is effectivelya 2 by 2 diagonal matrix

with the same mixed strategy for both players.) The average payment fromR toC will

beσ1σn/(σ1 + σn).

8 ||(x1, x2, x3)||1 ≤ 2 is equivalent to±x1 ± x2 ± x3 ≤ 2. Those3 choices of plus or

minus sign give8 linear inequalities.

9 We have not explained semidefinite programming well enough to make this a fair

question.

10 If Ax ≤ b andx ≥ 0 andAX ≤ b andX ≥ 0, then 1
2A(x + X) ≤ b and

1
2 (x +X) ≥ 0. Convexity is a crucial property in the theory of optimization.
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Problem Set 10.1, page 372

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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Problem Set 10.2, page 381

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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Problem Set 10.3, page 386

1 If all sample values arex = 20, then the sample mean isµ = 20 and the sample

variance isS2 = 0. If x = 20 or 21 (12 samples each) thenµ = 20.5 and

S2 =
1

23
(24) (0.5)2 =

6

23
.

2 The sample mean and the expected value both increase by7. The variance does not

change.

3 Fraction of integers divisible by3 or 7 or both=
1

3
+

1

7
− 1

21
=

9

21
=

3

7
.

Since
1

21
of the integers are divisible byboth 3 and 7, those were double counted in

1

3
and

1

7
. Then

1

21
must be subtracted off.

4 The probabilitiesp0 to p9 that a random number from1 to 10 (and1 to 100 and1 to

1000) ends in0, 1, , . . . , 9 are
1

10
for each case. The expected mean of that digit is4.5.

The expected variance isσ2 =
2

10

(
0.52 + 1.52 + 2.52 + 3.52 + 4.52

)
.

5 By Problem4, the last digit is0, 1, . . . , 9 with equal probabilityp =
1

10
. The squares

of 0 to 9 end in0, 1, 4, 9, 6, 5, 6, 9, 4, 1. So the probabilitiesp0 to p9 for those squares to

end in0, 1, 4, 9, 6, 5 are
1

10
,
2

10
,
2

10
,
2

10
,
2

10
,
1

10
. The mean of those ten ending digits

is

0

(
1

10

)
+ (1 + 4 + 9 + 6)

(
2

10

)
+ 5

(
1

10

)
=

45

10
= 4.5.

The varianceσ2 is
1

10

[
4.52 + 2

(
3.52 + 0.52 + 4.52 + 1.52

)
+ 0.52

]
.

Crazy question.

6 Thefirst digit of the numbers from1 to 1000 is 1(112 times). It is 2 to 9 111 times

each. Reason : The first digit is2 to 9 in 1 + 10 + 100 cases. First digit= 1 in 1 extra

case. Total count is8(111) + 1(112) = 1000.

Mean :m =
1

1000
(112 + 111(2 + 3 + · · ·+ 9)) =

1

1000
[1 + 111(45)]

Variance :σ2 = prize for this computation !
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7 The squares of157, 312, 696, 602 start with2, 9, 4, 3. The sample meanµ (the average)

is 18/4. The sample variance is

S2 =
1

3

[(
2− 18

4

)2

+

(
9− 18

4

)2

+

(
4− 18

4

)2

+

(
3− 18

4

)2
]
.

8 σ2 =
∑

pi(xi −m)2 =
∑

pix
2
i − 2

∑
pixim+

∑
pim

2 =
∑

pix
2
i − 2m2 +m2 =

∑
pix

2
1 −m2

9 How long did the experiment take ? On what device?̇

10 The key formula is E[(x−m)]2 = E[x2]−(E[x])2 as in Problem 8. The only difference

is that expected values E are given by integrals (not sums). The useful identity E[(x −
m)]2 = E[x2]−m2 is still true withm = E[x].

11 To integrate over thex-y plane, the problem statement shows the correct change of

variables fromdxdy to rdrdθ. Then−∞ < x, y < ∞ becomes0 ≤ r ≤ ∞ and

0 ≤ θ ≤ 2π. The integral ofdθ gives2π and
∫

e−r2/2 rdr =

[
− e−r2/2

]∞

0

= 1.


