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Solutions to Problem Sets 1
Three Questions at the End of the Preface

Gilbert Strang, Introduction to Linear Algebra, 6th Editio n (2023)

1. When can lines of lengths s, ¢ form a triangle ?

They must satisfy the strict triangle inequalities

r<s4+t s<r—+t t<r—+s

If we allow equality, the triangle will have angles @f0 and180 degrees.

If » > s+ t, then one segmentis too long to complete a triangle.

2. If those lines have different fixed directions with adjustalengths, then a triangle

is always possible.

3. With 4 lines in different directions i8-dimensional space, we are in trouble if some
plane contains three of the lines. Their combinations vigs lie in that plane. If
the4th line is not in that plane, thatu + bv + cw + dz = 0 is impossible if all four

terms are required to be nonzero.



2 Solutions to Problem Sets

Problem Set 1.1, page 6

1 ¢ = ma andd = mb lead toad = amb = be. With no zerosad = be is the equation
for a2 x 2 matrix to have rank.

2 The three edges going around the triangleware (5,0),v = (—5,12), w = (0, —12).
Their sumisu + v + w = (0,0). Their lengths argu|| = 5, ||v|| = 13, ||w]|| = 12.
This is a5 — 12 — 13 right triangle with52 + 122 = 25 + 144 = 169 = 13%2—the best
numbers after thg — 4 — 5 right triangle if we don’t couné — 8 — 10.

3 The combinations give (a) alineRR® (b) aplaneinR? (c) all of R3.

4 v+w = (2,3) andv — w = (6,—1) will be the diagonals of the parallelogram with

v andw as two sides going out froif®, 0).

el

5 This problem gives the diagonals+ w = (5,1) andv — w = (1,5) of the paral-

lelogram and asks for the sidesandw : The opposite of Problem 4. In this example

v = (3,3) andw = (2,—2). Those come from = 1(v + w) + (v — w) and
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3v 4w = (7,5) andcv + dw = (2¢ + d, ¢ + 2d).

u+v =(-2,3,1)andu+v+w = (0,0,0) and2u+2v+w = ( add first answejs=
(—2,3,1). The vectora:, v, w are in the same plane because a combinatiemn + w
gives(0,0,0). Stated another wayu = —v — w is in the plane ob andw.

The components of every+dw add to zero because the components ef (1, —2, 1)
and ofw = (0,1, —1) add to zeroc = 3 andd = 9 give 3v + 9w = (3,3, —6). There
is no solution tav + dw = (3, 3, 6) becaus& + 3 + 6 is not zero.

The nine combinations(2,1) + d(0,1) with ¢ = 0,1,2 andd = 0,1, 2 will lie on a

lattice. If we took all whole numbeksandd, the lattice would lie over the whole plane.

c=2,d=2
C:O,d:2 C:27d:O
c=0,d=1
C:07d:0T T T T T

The question is whethér, b, ¢) is a combination:; u + zov. Can we solve

1 0 a
r1| 1 | +z| 1 |=]0b]|7
0 1 c

Certainlyz; has to be:. Certainlyzs has to be:. So the middle components give the

requirementa + ¢ = b.
The fourth corner can b, 4) or (4,0) or (—2, 2). Draw3 possible parallelograms!
Four more corner$l, 1,0), (1,0, 1),(0,1,1),(1, 1,

1).
Centers of; faces (1, 3,0),(3,3,1)& (0,1, 3).(1,3,3)&(3,0,3).(3,1,3).12 edges.

The center point if1, 1, 1).

The combinations of = (1,0,0) andi + j = (1, 1, 0) fill the zy planein zyz space.
(&) Sum= zero vector. (b) Sum= —2:00 vector= 8:00 vector.

Zsin ) = (v3/2,1/2).

(c) 2:00 is 30° from horizontalk= (cos £
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Solutions to Problem Sets

Moving the origin to6:00 addsj = (0, 1) to every vector. So the sum of twelve vectors

changes fron® to 125 = (0, 12).
First part:u, v, w are all in the same direction.

Second part: Some combination®fv, w gives the zero vector but tho8evectors

are not on a line. Then their combinations fill a plan&ln

The two equations are+ 3d = 14 and2c + d = 8. The solution is: = 2 andd = 4.

. 1. .
The pomt%v + i is three-fourths of the way te starting fromw. The vector

1 1 . 1 1 .
7Y + it is halfway tou = 5? + W The vectow + w is 2u (the far corner of the

parallelogram).

The combinationsv + dw with 0 < ¢ < 1 and0 < d < 1 fill the parallelogramwith
sidesv andw. For example, ifv = (1,0) andw = (0,1) thencv + dw fills the unit
square. In a special case like= (a,0) andw = (b, 0) these combinations only fill a

segment of a line.

With ¢ > 0 andd > 0 we get the infinite “cone” or “wedge” between and w.

For example, ifv = (1,0) andw = (0, 1), then the cone is the whole first quadrant
x > 0,y > 0. Question What if w = —v? The cone opens to a half-space. But the
combinations ob = (1,0) andw = (—1,0) only fill a line.

(@) 2u + tv + Lw is the center of the triangle betweenv andw; u + Jw lies
halfway betweeru and w (b) To fill the triangle keep: > 0, d > 0, ¢ > 0, and

c+d+e=1.

The sumigv —u)+ (w —v)+ (u—w) = zero vector. Those three sides of a triangle

are in the same plane!
The vector} (u + v + w) is outsidethe pyramid because+ d +e =1+ 1 +1 > 1.

All vectors in3D are combinations af, v, w as drawn (notin the same plane). Start by
seeing thatu + dv fills a plane, then adding all the vectens fills all of R3. Different

answer when, v, w are in the same plane.
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A four-dimensional cube has! = 16 corners and® - 4 = 8 three-dimensional faces

and24 two-dimensional faces arg® edges.

Fact: For any three vectots v, w in the plane, some combinatien + dv + ew is
the zero vector (beyond the obvious= d = e = 0). So if there is one combination
Cu+ Dv+ FEw that produces, there will be many more—just adgld, e or 2¢, 2d, 2¢
to the particular solutiod’, D, E.

The example ha8u — 2v + w = 3(1,3) — 2(2,7) + 1(1,5) = (0,0). It also has
—2u + lv + 0w = b= (0,1). Adding givesu — v + w = (0,1). In this case, d, e
equal3, —2,1andC,D,E = —2,1,0.

Could another example have v, w that could NOT combine to produée? Yes. The
vectors(1, 1), (2,2), (3, 3) are on a line and no combination produde¥Ve can easily

solvecu + dv + ew = 0 but notCu + Dv + Ew = b.
The combinations ob andw fill the planeunlessy andw lie on the same line through
(0,0). Four vectors whose combinations fildimensional space: one example is the
“standard basis{1, 0, 0,0), (0, 1,0, 0), (0,0, 1,0), and(0, 0,0, 1).
The equationsu + dv + ew = b are

2¢ —d =1 Sod = 2e c=3/4

—c+2d —e=0 thenc = 3e d=2/4

—d+2e=0 thende =1 e=1/4



6 Solutions to Problem Sets

Problem Set 1.2, page 15

lu-v=-24424=0,u-w=—-6+16=1Lu-(v+w)=u-v+u-w=
O+1l,w-v=44+6=10=v - w.

2 The lengths ardu|| = 1 and||v|| = 5 and|w| = v/5. Then|u - v| = 0 < (1)(5) and

|v - w| = 10 < 5/5, confirming the Schwarz inequality.

3 Unit vectorsv/||v|| = (£, 2) = (0.8,0.6) andw/|w| = (1/V/5,2/V/5). The vectors
w, (2,—1), and —w make0°,90°,180° angles withw. The cosine o) is ”}j—” .
o = 10/5V5 = 2/V5.

4 For unit vectorsu,v,w: (&) v - (—v) = —1 b)) (v+w)-(v—w)=v-v+
w-v—vrw—w-w=14+( )—( )—1=0s06=90° (noticev - w = w - v)
€ w—2w) - (v+2w)=v-v—4dw-w=1—-4=-38.

5 u; = v/|jv|| = (1,3)/v/10 anduy = w/|w| = (2,1,2)/3. U; = (3,-1)/V/10is
perpendicular tat; (and so is(—3,1)/1/10). U, could be(1, —2,0)/+/5: There is a
whole plane of vectors perpendiculardg, and a whole circle of unit vectors in that

plane.

6 All vectorsw = (c,2c¢) are perpendicular to = (2,—1). They lie on a line. All
vectors(z, y, z) with z + y + z = 0 lie on aplane All vectors perpendicular to both
(1,1,1) and(1, 2, 3) lie on aline in 3-dimensional space.

7 () cosf = v - w/|v||w] = 1/(2)(1) sof = 60° or 7/3 radians  (b)cosf =
0sof = 90° or w/2 radians (C)cos® = 2/(2)(2) = 1/2s060 = 60° or w/3
(d) cosf = —5//10/5 = —1/+/2 s0f = 135° or 37 /4 radians.

8 (a) False: v and w are any vectors in the plane perpendicularuto (b) True:
u-(v+2w)=u-v+2u-w=0 (c) True,|ju—v|?=(u—v)-(u—o)
splitsintou - u+v:-v=2whenu-v=v-u=0.

9 If vaws/v1wr = —1thenuvawy = —v1w; Orvyw +vewe = v-w = 0: perpendicular!

The vectorg1,4) and(1, —1) are perpendicular because- 1 = 0.
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Slopes2/1 and —1/2 multiply to give —1. Thenwv - w = 0 and the two vectors
(the arrow directions) are perpendicular.

v - w < 0 means angle- 90°; thesew’s fill half of 3-dimensional space. Draw a
picture to show and thew’s.

(1,1) is perpendicular td1, 5) — ¢(1,1) if (1,1)-(1,5) —¢(1,1)+(1,1) =6 —-2c¢=0
(thenc=3). v-(w —cv) = 0if ¢ = v-w/v-v. Subtractingev is the key to
constructing a perpendicular vector— cv.

One possibility among many. = (1,-1,0,0),v = (0,0,1,-1),w = (1,1,-1,-1)
and(1,1,1,1) are perpendicular to each other. “We can rotate thase w in their
3D hyperplane and they will stay perpendicular.”

Lz +y)=(2+8)/2=5and5 > 4; cos§ = 2v/16//10v/10 = 8/10.
[v]?=1+1+4---+1=9s0|v|| =3;u=v/3=(3,...,3)isaunitvectorirdD;
w = (1,-1,0,...,0)/v/2is a unit vector in th&D hyperplane perpendicular io
cosa = 1/v/2, cosf = 0, cosy = —1/+/2. For any vectow = (vy,vs,v3) the
cosines with the axes areos? a + cos? 3 + cos? y= (vi + v3 +v3)/||v[?= 1.

|[v]|? = 42 + 2% = 20 and||w||? = (—1)? + 2% = 5. Pythagoras ig§(3,4)|? = 25 =
20 + 5 for the length of the hypotenuset w = (3,4).

lv +w|? = (v+w) - (v+w) =v-(v+w)+w- (v+w). This expands to
vov+2v-w+w-w = ||v]]2 4 2||]v]| |[|w]| cosd + ||w]||?.
We know thatv — w) - (v —w) = v-v —2v-w+w-w. The Law of Cosines writes

|v|[||w]| cos @ for v - w. Hered is the angle between andw. Whené < 90° this
v - w is positive, so in this case- v + w - w is larger tharjv — w||%.

Pythagoras changes from equatifs-b? = c? toinequalitywhend < 90° ord > 90 °.
2v-w < 2||v|||w| leads to|v + w||? = v-v+2v-w+w-w < ||v]|* +2||v||||w| +
|lw|?. Thisis(||v| + ||w]|)?. Taking square roots givel® + w|| < ||v]|| + ||w].
viw? + 2uiwvaws + viws < viw? + v?wi + viw? + v3ws is true (cancel terms)

because the differenceig§w? + v3wi — 2v1w1vews Which is (vws — vaws)? > 0.
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Example 6 givesu, ||U1| < 1 (u? + U?) and|us||Us| < £ (u3 + UZ). The whole line

1
2
becomes96 < (.6)(.8) + (.8)(.6) < $(.6% + .8%) + 3(.82 +.6%) = 1. True:.96 < 1.
The cosine ob is z:/+/x2 + y2, near side over hypotenuse. THens 0|? is not greater
than 1:22 /(2% + ¢?) < 1.

These two lines add @} |v||? + 2||w]||?:
lv+w|?=@w+w) v+w)=v-v+v-wtw -v+w- w

v —w||?=@v-w) - v-—w)=v-v-—v-w-—w-v+w- w

The length||v — w|| is betweer2 and8 (triangle inequality whetjv|| = 5 and||w|| =
3). The dot product - w is between-15 and15 by the Schwarz inequality.

Three vectors in the plane could make angles greater @3hamvith each other: for
example(1,0), (—1,4), (-1, —4). Four vectors coulchot do this §60° total angle).
How many can can be perpendicular to each oth&ror R"? Ben Harris and Greg
Marks showed me that the answemist 1. The vectors from the center of a regular
simplex inR™ to itsn+ 1 vertices all have negative dot productsn -2 vectors inR™
had negative dot products, project them onto the plane gatal to the last one. Now
you haven + 1 vectors inR™~! with negative dot products. Keep going to 4 vectors in

R?: no way!

The columns of the 4 by 4 “Hadamard matrix” (timés are perpendicular unit

vectors:
11 1 1 The columns have
1,1 1 -1 1 -1 i+i+i+i:1..
2011 1 -1 -1 Their dot products
1 -1 -1 1 are all zero

The command¥ = randn (3,30); D = sqrt (diag (V' « V)); U = V\D; will give
30 random unit vectors in the columns@f Thenw’ x U is a row matrix of 30 dot

products whose average absolute value should be cl@serto
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29 The four vectora, v, v3, v4 must add to zero. Then the four corners of the quadri-
lateral could beéb andv, andv; + v, andv; + vy + v3. We are allowing the side

vectorsw to cross each other—can you answer if that is not allowed ?
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Problem Set 1.3, page 24

1 The column spac€(A,) is a plane irR® : the two columns ofd; are independent
The column spac€(4,) is all of R®

The column spac€(A43) is a line inR?

2 The combinatioma = column1 — 2 (column2) + column3 is zero for both matrices.

This leave independent columns. S(A) is a 2-dimensional) plane iR®.

3 B has2 independent columns so its column space is a plane. Thexn@atnas the
same2 independent columns and the same column spaég as

14

W~
N
A

Typical dot product is

4 Ax = | 928 By = 8 Iz=2z=| 2
2(1)+1(2) +2(5) = 14
18 23
o] 1] 2 14
5Ar=1|4 | +2| 2 | +5|4 | =] 28
0 1 0 2
1] o] 0 4
By=4|1|+4|1|+10[0|=] 8
1 1 1 18
1 0 0 Z1
Iz=2z1| 0 |+2|1|+2z|0]|=] 2
0 0 1 23

6 A has2independent columng} has3, andA + B has3. These are the ranks dfand
BandA + B. Theruleis that rankd + B) < rank(A) + rank(B).

1 3 3 1 4 4

7 (@) A = B= A+ B= =rank1
2 4 4 2 6 6
1 3 -1 -3 0 0

(b) A = B= A+ B= = rank0
2 4 -2 -4 0 0
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1 0 00 0 0 0O
01 00 0 0 0O
(c)A = B= A+ B =1 =rank4
0 00O 0010
0 0 0O 0 0 01

The column space afl is all of R®. The column space aB is aline in R®. The
column space of is a2-dimensional plane iR®. If C' had an additional row of zeros,

its column space would bezadimensional plana R*.

1 1 2 Seven oness the maximum for
A=11 1 1 rank3. With eight ones, two
1 2 1 columns will be equal
4 3 9 has rankl : 1 independent column,
5 15 1 independent row
5 1 2 =5 | haslindependentcolumniR?,
4 8 —20 1 independent row iiR>
(a) If B has an extra zero columd,and B have thesamecolumn space. Different row

spaces because of different row lengths!
(b) If column3 = column2 — column1, A and B have the same column spaces.

(c) If the new column3 in B is (1,1, 1), then the column space is not changed or

changed depending wheth@r, 1, 1) was already irC(A).

If bis in the column space ofl, thenbd is a combination of the columns of and
the numbers in that combinatigiive a solutionc to Ax = b. The examples are solved
by (z1,22) = (1,1) and(1,—1) and(—3, ).

272
1 0 1 0 2 0
A= -1 1 B = 0 2 A+B=| -1 3 | hasthe
0 —1 -1 -2 -1 -3

same column space asand B (other examples could have a smaller column space:

for example ifB = — A in which cased + B = zero matrix).



12

14

15

16

17

18

Solutions to Problem Sets

1 0 2

A= 3 9 | has columr8 = 2 (column1) + 3 (column2)

—_

5 0 10

A= 2 5 8§ | hascolumr8 = —1 (columnl) + 2 (column2)

A= 2 2 4 | has2independentcolumnsi # 0

0 0 q

If Az = b then the extra columhb in [A b} is a combination of the first columns,

so the column space and the rank are not changed by incluairbgcolumn.
(a) False: B could be—A, thenA + B has rank zero.

(b) True: If the n columns ofA are independent, they could not be in a spREewith

m < n. Thereforen > n.

(c) True: If the entries are random and the matrix has= n (or m > n), then the

columns are almost surely independent.

1 0 0 0 1 0 1 0
rank 2 : + rank 1 : +
0 0 0 1 0 0 0 0
1 0 10
rank O : —
0 O 0 0
1 0 0 3
3|1 |+4]1|+5]0|=| 7|=5Sz=0b
1 1 1 12
1 00
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19 Supposer = mc andb = md (all nonzero). Themmd = bme. Thena/b = ¢/d.

If those ratios aré/, then(a, c¢) = M (b, d).

1 0 0 Y1 c1 C1
205y =110 ya | = | ¢co | issolvedbyy = | ¢y —¢; |. Thisis
1 1 1 Y3 c3 C3 —C2

y=S"tle=| -1 1 0 ¢y |- S'is square with independent columns. $o

1 -1 1 cs
has an inverse wit§s—1 = 15 = I.

21 To solveAx = 0 we can simplify the3 equations (this is the subject of Chap2gr

$1+2$2+3$3:0 Il+2Z2+3Z5:0
Row2 — 3(row 1)

StartfromAz =0 321 + 520 +6x3=0 —x9—3x3=0
row 3 — 4(row 1)

4r1 4+ Txo+923=0 —xr9—3x3=0

If 23 = 1thenzy = —3 andz; = 3. Any answerr = (3¢, —3¢, ¢) is correct.

2 1
1 1 0 1 0 ¢c=-1 0 0O have
4 2
22 | 3 2 1 11 0 2 1 5 = 7 dependent
—2 1
7 4 ¢c=3 0 1 1 3 3 6 columns
4 -2

23 The equatiomx = 0 says thatc is perpendicular to each row df (three dot products
are zero). See is perpendicular to all combinations of those rows. In otherds,z is

perpendicular to the row space (here a plane).

An important fact for linear algebra: Evesyin the nullspace ofi (meaningAx = 0)

is perpendicular to every vector in the row space.
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Problem Set 1.4, page 35

1 Here are the ways to multiplyAB and the operation countd. is m by n, B isn by p.

Row i times columrk mp dot productsp multiplications each
Matrix A times columnk p columns;nn multiplications each
Row i times matrixB m rows,np multiplications each

Columnj of A times rowj of B n (columns) (rows)mp multiplications each

2A:[a a a}factorsintoCR:[aﬂl 1 1}

(b)

1
0

0 1 00 100
ol =1 1 0l=]010
1 1 -1 1 10 1
23}4 4{123} 48 12
5:{32} 5 =5 10 15
6 6 6 12 18
1}1{111}
=2{111} =[222}
1
1}_1_[111} (11 1
1 :[11}111:[222}
1 111
o1 3][1 4] 1 5] [1 4 19
1o 1llo1 o1 llo 1 0 1
ol l1 3][1 4] 121 7 1 9
1llo1llo1 0o 1llo 1 0 1

5 A has7 columns and! rows. Those columns are vectorsdirdimensional space. We

cannot havé independent column vectors because we cannothawependent vec-

tors in4-dimensional space. (This is really just a restatementeptioblem. The proof
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comes in SectioB.2: Everym by n matrix C, with m < n has a nonzero solution to

Cx = 0. Herem = 4 andn = 5 and5 columns ofC cannot be independent.)

2 -2
6 A=]1 -1
3 -3

2 1

30
[ 9 2
8A=|0 4
00
[ 9
B=1|0 0
00

4
6

1

o O

o O

6
2
6

0 2 1 0

0 C=|100

1 3 0 1

1 -1 0 2 0

0 01 2 0 | =A4inProblems.

0 0 0 0 1
[0 2 2] [1 A=C

0 4 4 1 = Al and
_0 0 6 1 R=1
_2 2 1 1 0

0 4 0 0 1|=CR

0 6

9 Arandomd by 4 matrix has independent columr$£ A andR = I) with probability1.

(We could be choosing this entries ofA betweern) and1 with uniform probability

by A = rand(4, 4). We could be choosing thogé entries ofA from a “bell-shaped”

normal distribution byA = rand(4,4). If we were choosing thos&6 entries from

a finite list of numbers, then there is a nonzero probabiligt the columns ofA are

dependentin fact a nonzero probability that al6 numbers are the same.)

10 If Ais arandomt by 5 matrix, then (usingand or randn as above) with probability

the first4 columns are independent and go idto With probability zero (this does not

mean it can’'t happen!) the firdtcolumns will be dependent ard will be different

(C will have r columns withr < 4).

1 0 a
1 b

11 A=

o o o

0 0

1

o o o

o O = O

1 0 a ¢
01 b d

= CR. Many other possibilities!
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[ 1 2 1 01 [ 1 2 17 01 0 -1
12 Ay = Ay =
1 3 0 1 1 1 3 0 0 1 2

A, 2}[10.5 1.5} A—_l 0-_1004]

1
13 C = andR = { 2 4 } haveCR =

3 6 12

andCRC = andRCR = { 28 56 }

42

Here is an interesting fact whe# is m by n and B is n by m. Them numbers on

the main diagonal ofi B have the same total as theaumbers on the main diagonal of

BA. Example:
0 3 12 15 18
1 2 3 8 26
A= B=1|1 4 AB = BA=| 17 22 27
4 5 6 17 62

22 29 36
8462 =124 224 36

3 6 6 —7 2 0 3 4
14

5 10 7 6 3 6 -2 -3

rank one  orthogonal columns rapk A2 =1

15 1. Columnj of A equals the matrix’ times columny of R.

This is a combination of theolumnsof C.

2. Row: of A is row: of C times the matrixR.

This is a combination of theows of R.

3. (rows of C) - (columnj of R) givesA;;
That dot product requires the number of columng’ofo equal the number of

rows of RR.
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4. C hasr columns soR hasr rows (to multiply CR). Those columns of are
independent (by construction). Those rows/ofare independent (because

contains the by r identity matrix).

16 (@) The vectord Bz is the matrixA times the vectoBz. So it is a combination of the

columns ofA. ThereforeC(AB) C C(A).

{1 0
(b) A=
0 0

17 (a) If A and B have rankl, thenAB has rankl or 0. A = uv™ andB = zy" give

B=

0
} give AB = zero matrix andC(AB) = zero vectors.
0 1

AB = u(vTz)y! so AB = zero matrix if the dot product™x happens to be zero.

(b) If A and B are3 by 3 matrices of rank3, then it istrue that AB has rank3.
One approach If ABx = 0 thenBx = 0 becaused has3 independent columns.

But Bx = 0 only whenz = 0, becausd3 has3 independent columns.

10
(c) SupposeAB = BA for all 2 by 2 matricesB. ChooseB = so that
0 0
c d 1 0 1 0 c d ] c 0 c d
AB= = . Thistells us tha =
e f 0 0 e 0 0 0
c 0 0 1
and thereford = e = 0. Now chooseB = sothatAB =
0 f 0 0
0o 1][ec 0 0 ¢ 7
= . Thistells us tha = andc = fandA = cl.
0 0 0 f 0 0 0 0

3 4
18 (a) AB = ] andBC =

[ 4 3
(b) (AB)C = column exchange ol B = ]

A(BC') = row exchange oBC =
2 1

3
] = same resuld BC.
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tool]f[1 11 i1 1] Jolfor 1]
199AB=|1 1 0 01 1|=1]1 +]1 +
11 1 0 01 1 1

ollo o 1]

0

1

111 00 0 0 0 0 11 1

=11 1(+|011[+|000O0|=]|12 2

111 01 1 0 0 1 1 2 3
1[100}1[110}1[111} 3 21

BA= |0 +11 +11 =12 2 1
0 0 1 111

20 AB = (4 x 3) (3 x 2) needsnnp = (4) (3) (2) = 24 multiples.
Then(AB)C = (4 x 2) (2 x 1) needq4) (2) (1) = 8 more: TOTAL32.

BC = (3 x 2) (2 x 1) needsnnp = (3) (2) (1) = 6 multiplies.

ThenA(BC) = (4 x 3) (3 x 1) needq4) (3) (1) = 12 more: TOTAL18.

Best to start with C' = vector. Multiply by B to get the vectoBC, and then the vector

A(BC). Vectors need less computing time than matrices!
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Problem Set 2.1, page 46

1 Multiply equationl by ¢5; = % = 5 and subtract from equatiénto find2x + 3y = 1

(unchanged) and-6y = 6. The pivots to circle are 2 and6. Back substitution in

—6y = 6 givesy = —1. Then2z + 3y = 1 givesz = 2.

2 The row picture and column picture and coefficient matrix@ranged. The solution

has not changed.

3 Subtract—% (or add%) times equation 1. The new second equatioBys=3. Then

y=1andz=5. If the right sides change sign, so does the solutieny) = (-5, —1).

4 Subtract = ¢ times equationl from equatiorg. The new second pivot multiplying
isd— (¢b/a) or (ad — bc)/a. Theny = (ag — cf)/(ad — bc). Notice the “determinant

of A” = ad — be. It must be nonzero for this division.

5 6z + 4y is 2 times3z + 2y. There is no solution unless the right sideis10 = 20.
Then all the points on the lingx + 2y = 10 are solutions, including), 5) and(4, —1).

The two lines in the row picture are the same line, contaiaihgolutions.

6 Singular system ib = 4, becausdx + 8y is 2 times2x + 4y. Theng = 32 makes the
lines2x + 4y = 16 and4x 4 8y = 32 become thesame infinitely many solutions like

(8,0) and(0,4).

7 If a = 2 elimination must fail (two parallel lines in the row pictgreThe equations
have no solution. Witla = 0, elimination will stop for a row exchange. Thép = —3

givesy = —1 and4x + 6y = 6 givesz = 3.

8 If £ = 3 elimination must fail: no solution. I = —3, elimination gives) = 0 in

equation 2: infinitely many solutions. 4= 0 a row exchange is needed: one solution.

9 On the left side6x — 4y is 2 times(3x — 2y). Therefore we neell, = 2b; on the right
side. Then there will be infinitely many solutions (two péeHines become one single

line in the row picture). The column picture has both coluralomg the same line.
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The equationy = 1 comes from elimination (subtragt+ y = 5 from = + 2y = 6).

Thenz = 4 andbx — 4y = 20 — 4 = ¢ = 16.

(a) Another solution i%(x +X,y+Y, 24+ 7). (b) If25 planes meet at two points,

they meet along the whole line through those two points.

Elimination leads to an upper triangular system; then commask substitution.

20 +3y+ z=38 =2
y+32=4 gives y =1 Ifazerois atthe start of row 2 or row 3,

8z =28 z =1 thatavoids a row operation.

2z — 3y =3 2r — 3y =3 20 — 3y =3 x=3
dr —5y+ z=7 gives y+ z=1 and y+ z=1 and y=1

20 — y—32=5 2y+32=2 —52=0 z=0

Subtract2 times row 1 from row 2 to reactd — 10)y — z = 2 along withy — 2 = 3.

If d = 10 exchange rows 2 and 3. df= 11 the system becomes singular.

The second pivot position will contain2 — b. If b = —2 we exchange with row 3.
If b = —1 (singular case) the second equatior-ig — z = 0. But equation(3) is the

same so there islae of solutionyz, y, z) = (1,1, —1) whenb = —1.

Oz +0y+2z=4 Exchange 0Ox+3y+4z=4
Example of
T+ 2y+22=5 but then T+2y+22=25
(&) 2 exchanges (b)
Oz +3y+42=6 breakdown 0z 4+ 3y +42=6
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If row 1 =row 2, then row?2 is zero after the first step; exchange the zero row with row

3. The new row3 has no pivot. If columr2 = column1, then columr has no pivot.

Exampler + 2y + 32 = 0, 4z + 8y + 12z = 0, 5z + 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 becorfie= 0: infinitely many solutions todxz = 0 but

almost surely no solution tdx = b for a randomnb.



Solutions to Problem Sets 21

18

19

20

21

22

23

24

25

26

Row 2 become8y — 4z = 5, then row 3 becomeg + 4)z =t — 5. If ¢ = —4 the
system is singular—no third pivot. Thentif= 5 the third equation i$) = 0 which
allows infinitely many solutions. Choosing= 1 the equatio3y — 4z = 5 givesy = 3
and equation 1 gives = —9.

a 2
Elimination fails on if a = 2 ora = 0. (You could notice that the determinant
a a

a? — 2ais zero fora = 2 anda = 0.)

a = 2 gives equal columns; = 4 gives equal rowsqg = 0 gives a zero column.

Solvable fors = 10 (add the two pairs of equations to get b+ c+ d on the left sides,
12 and2 + s on the right sides). Sb2 must agree witR2 + s, which makes = 10. The

1 3 0 4
four equations for, b, ¢, d aresingular! Two solutions are and ,
1 7 2 6
1 1 0 O 4 1 1 0 0
1 01 0 2 -1 1 0
A= and b = and U =
0 0 1 1 8 0O 0 1 1
01 0 1 s 0O 0 0 O

A(2,:) = A(2,:) — 3% A(1,:) subtracts3 times all of rowl from all of row 2.

The average pivots for rand(®jthoutrow exchanges wer?, 5,10in one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averagesaatually infinite ! With
row exchangesn MATLAB'’s Iu code, the average%5 and.50 and.365 are much
more stable (and should be predictable, alsadodn with normal instead of uniform

probability distribution for the numbers iA).
If A(5,5)is7 notll, then the last pivot will b® not4.

Row j of U is a combination of rows, . . ., j of A (when there are no row exchanges).
If Az = 0thenUx = 0 (nottrue ifb replace®). U just keeps the diagonal af when

A is lower triangular,all entries below that diagonal go to zero.

The question deals with 100 equatiofi® = 0 whenA is singular.
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(@) Some linear combination of the 160lumnsis the column of zeros

(b) A very singular matrix has all onest = ones(100). A better example has 99
random rows (or the numbets, . . ., 100% in those rows). The 100th row could

be the sum of the first 99 rows (or any other combination ofehosvs with no

Zeros).

(c) The row picture has 100 plana®eting along a common line throughd. The

column picture has 100 vectors all in the same 99-dimenkigyqeerplane.
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Problem Set 2.2, page 53

0 If columns1 and2 of A are exchanged then rowisand 2 of A~! are exchanged.

To keepA—! A = I, we have to keep

(rowi of A=1)-(columni of 4)=1 (rowi of A=1)-(columnj of A)=0if i # j

100 100 100[{]010 010
1En=|-510|,E2=(010,P=|001 100[{=(001
001 071 010|001 100

2 E53F5b = (1,—5,-35) but E9; E32b = (1,—5,0). When E5, comes first, row 3

feels no effect from row 1.

L 00 100 1 0 0| < Ey,E31E3 1 0 0
31-4 1 0,0 1 0f,[|0 1 0| E=FEpExEy =|—4 1 0
0 0 1 2 0 1 0 —2 1 10 —2 1

ThoseE’s are in the right order to givE A = U.

1 00
E'=E'E;'Ex'=L=| 4 1 0
-2 2 1

1 1 1 1

4 Elimination on column 4:b = |0 Ex 4 Eq 4 Ego _4|. The

0 0 2 10
original Az = b = (1,0,0) has becomé&x = ¢ = (1, —4, 10). Then back substitu-
tion givesz = —5,y = 1,z = . This solvesdz = (1,0,0).

5 Changinguss from 7 to11 will change the third pivot from 5 to 9. Changings from

7 to 2 will change the pivot from 5 tno pivot
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2 3 7 1 4
6 Example:|2 3 7 3| = |4]. Ifall columns are multiples of columh there
2 3 7 -1 4

is no second pivot.

7 To reverselsy, add 7 times row1 to row 3. The inverse of the elimination matrix

1 0 0 1 0 0
E= 0 1 0|isE-*= |0 1 o].MuliplicationconfirmsEE~! = 1.
-7 0 1 7 0 1
a b a b
8 M = and M* = . det M* = a(d — €b) — b(c — {a)
c d c—Vfa d—1b

reduces tard — be! Subtracting rowl from row 2 doesn’t changéet M.

100

for both parts (a) and (b).
9M=| 001

After the exchange, we nedds; (not E»;) to act on the new row 3.
-1 10

1 0 1 2 0 1
10 Atthesametime 0 1 0| ;E3Ei3=1(0 1 0] .Teston theidentity matrix!
2

1 0 1 1 0 1
1 2
11 An example with two negative pivotsid = |1 1 2|. The diagonal entries can
1 2 1

change sign during elimination.

12 For the first, a simple row exchange h&¢ = I so P! = P. For the second,
0 0 1
P '=11 0 o].AlwaysP~!="transpose” ofP, coming in Sectior.4.

01 0
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T 5 t -2 1l 5 -2 _ _
13 = and = sOA™l = — . This question
y —2 2 1 0] 2 1

solvedAA~! = T column by column, the main idea of Gauss-Jordan elimination

14 An upper triangulat/ with U? = TisU =
0 -1

15 (a) Multiply AB = AC by A~! to find B = C (sinceA is invertible) (b) Aslong as

a
] for anya. And also—U.

1
B — C has the form v 4 ,we havedB = AC for A =

—r —y 11

16 (a) If Az = (0,0,1) then equation 1+ equation 2— equation 3 is0 = 1
(b) Right sides must satisty + by = b3
(c) In elimination, Row 3 becomes a row of zeros—no third pivo

17 (a) The vectorr = (1,1,—1) solvesAx = 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does coluna column1 + 2: no third pivot.

18 Yes, B is invertible (4 was just multiplied by a permutation mati. If you exchange
rows1 and?2 of A to reachB, you exchangeolumns1 and2 of A~! to reachB~!. In
matrix notation,B = PA hasB~! = A=1P~1 = A~1P for this P.

19 (a) If B=—AthenA, B can be invertible butl + B = zero matrix is not invertible.

10 0 0
(b) A= andB = are both singular butt + B = I is invertible.
0 0 0 1

20 Multiply C' = AB on the left byA~! and on the right by’ ~*. ThenA—! = BC 1.
21 M—! = C~'B~1A~! so multiply on the left byC and the right byd : B! =
CM~1A.
1 0

1 0
22 B~ l=4"1 = A1 : subtractcolumn2 of A= from columnl.
1 1 -1 1

23 If A has a column of zeros, so doBsl. ThenBA = I is impossible. Thereis nd—!.

a b d —b ad — be 0 The inverse of each matrix is

¢c d| |-¢c a 0 ad—be| the other divided byd — be
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1 1 1 1
25 FE3aE31FE0 = 1 1 -1 1 =|-1 1 =F.
-1 1 -1 1 1 0o -1 1

Reverse the order and changéto +1to getinverse®,,' E5,' Fy,' = |1 1 =
1 1 1

L = E~!. The off-diagonal’s are unchanged by multiplying inverses in this order.

26 A%B = I can also be written ad(AB) = I. Therefored~! is AB.

T T
27 Axones(4,1) = |4 4 4 4} —[4 4 4 4} Z[O 0 0 O}SOA
cannot be invertible.

28 Six of the sixteer) — 1 matrices are invertiblef and P and all four with three 1’s.

1310 1 3 1 0 1 0 7 -3
29 - — =[1 A™'];
2 7 0 1 0 1 -2 1 0 1 -2 1
(141 0] 14 10 1 0 -3 4/3
— — :[I Ail].
3901 0 -3 -3 1 0o 1 1 —1/3

30 A can be invertible with diagonal zeros (example to finB)is singular because each

row adds to zero. The all-ones vectoe= (1,1,1,1) hasBx = 0.

21171 3 -1 -1 1 2 -1 -1 |1 0
31121:%4 3 —1|; Bl1|=|-1 2 —1|]|1|=]0
11 2 -1 -1 3 1 -1 -1 2|1 0
soB~! does not exist.
1 a b 100 1 a 01 0 —b
32[UI]:0100104>0100176
001001 00100 1

1 0 01 —a ac—25b
-0 1 0 O 1 —c Z{I U‘l}-
0 01 0 O 1
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33 (a) True (If A has a row of zeros, then so does evay, andAB = [ is impossible).
(b) False (the matrix of all ones is singular even with disgdrs).

(c) True (the inverse afi—! is A and the inverse afi? is (A~1)2).

a 0-b
34 Elimination produces the pivotsanda —b anda—b. A~! = a(ali ) —a a 0
0—a a
The matrixC' is not invertible ifc =0 orc =7 orc = 2.
1 1 0 0 1 2
35 A7 = L andz = A1 ! = 2 . When the triangulad alternates
0 0 1 1 1 2
0 0 0 1 1 1

1 and—1 on its diagonalsA—! hasl’s on the main diagonal and next diagonal.

36 = (1,1,...,1) hase = Pz = Qx so(P — @Q)x = 0. Permutations do not change
this all-ones vector. TheR — @ is not invertible.
I 0 At 0 -D I

37 The block inverses ar and and
-C 1T —-D71CA™! D! I 0

38 A is invertible when elimination (with row exchanges alloyeguoduces3 nonzero

pivots.
39 (I— uvT) (I—I—uvT (I—o7 )_1)
=71 —uvT —|—uvT(I — T )_1 — (vTu)uvT(I — T )_1

=T —uvT +uvT =1
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Problem Set 2.3, page 61

10
1 /57 = 1 multiplied row 1 and subtracted from row &y reverse L. = [ ] times
1 1

R e Rl

In letters,L multiplies Ux = cto give Ax = b.

. 1 0 C1
2 Lc=bis =
1 1 Co

5
, solved byec = as elimination goes forward.
2

5
7
|11 T 5 3| . _
Ux=cis ] = [ ],solved byx = [ ] in back substitution.
Y 2 2

_0 1_
1 2 10 2 1 0
SEA=| 0 1 0 4 2(=1]0 4 2|=U
-3 0 1 6 3 5 0 0 b5
1 2 10 2 10
With E-tasL, A=LU = |0 1 0 4 2|=1]0 4 2
301 0 0 5 6 3 5
1 1 1 1 1 1 0 0
410 1 -2 1 A= 1|0 2 3| =U. ThenA = |2 1 o| Uis
0-2 1 0 01 0 0-6 0 2 1
the same a&,,' E5,'U = LU. The multipliersly; = ¢35 = 2 fall into place inL.
1 1 1 1 0 1]
5 EsE31E0 A = 1 1 -2 1 2 2 2|. Thisis
-2 1 -3 1 1 _3 4 5_
101 (1 0 0]
0 2 0| =U.Putthose multipliers,3,2intoL.ThenA= |2 1 0o|U= LU.
0 0 2 _3 2 1_
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2 4 1 0 2 4 1 0 2 0 1 2 I
6 A= = = =LDU;UisL
4 11 2 1 0 3 2 1 0 3 0 1
_1 _1 4 0 1 1 1 4 0
4 1 0 -4 4|=1]4 1 —4 0 1 —1|=LDL".
0 -1 1 0O 0 4 0 -1 1 4 0 0 1
(caaa 1 a a a a a # 0 All of the
abbbd 11 b—a b—a b—a b # a multipliers
7 = . Need
abcc 111 c—b ¢c—1b c#barel; =1
labcd 1111 d—c d # c for this A
8 Correction : Problem 8 has the sandeasProblem 7.
a r r T 1 a r r r a#0
a b s s 11 b—r s—r s-— b#r
= . Need
a b c t 1 1 1 c—s t—s c# s
la b ¢ d 1 1 1 1 d—t d#1
10 20 . 2 2 4 20 -5
9 c= givesc = . Then T = givesr =
4 1 11 3 0 1 3 3
_ 2 4 2 o 2 2
Ar =b is LUx = T = . Eliminate to T = =c.
8 17 11 0 3
1 0 0 4 4 1 1 1 4 3
10 |1 1 0|lec=|5|givesc=|1]|.Then|p 1 1|x=|1]| givesz= |0].
1 1 1 6 1 0 0 1 1 1
1 1 1 4
Those are forward elimination and back substitutionffar 2 2| x = |5
1 2 3 6

11 (a)L goestal (b)I goestoL !

(c)LU goes taU. Elimination multiplies by L.

12 (a) Multiply LDU = L, DU, by inverses to gek; ' LD = DU, U~'. The left side
is lower triangular, the right side is upper triangutarboth sides are diagonal.

(b) L,U, Ly,U, have diagonal’s soD = D;. ThenL; 'L andU; U~ are bothl.
1
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1 1 1 0 a a 0 a
13 |1 1 1 1| =LIU; a a+b b =L b U.
0 1 1 1 0 b b+c c

A tridiagonal matrixA hasbidiagonal factors L andU .

14 For the first matrix4, L keeps the 3 zeros at the start of rows. Butnay not have the
upper zero wherelsy = 0. For the second matriB, L keeps the bottom left zero at
the start of row 4L keeps the upper right zero at the start of colum®#e zero in A

and two zeros inB are filled in.

15 The 2 by 2 upper submatri®, has the first two pivot§, 9. Reason: Elimination ol

starts in the upper left corner with elimination dn.

120 000 000 120
61 2 0(+|0 3 1|+]00O0|=A=]1 51
000 06 2 00 2 0 6 4
111|100 3 2 1 1 00(|1 10
17 LL=l0 1 1||1 1 o0]|=|2 2 1]adlLT=|1 1 0|0 1 1
0 1|1 11 111 11 1(l0 o0 1
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Problem Set 2.4, page 71

1 0 1 9
14 = hasAT = AT = — (AT =
9 3 0 3 -3 1/3
1 -3 1 0
A= ¢ hasAT = AandA~—! = 1 “l = (A—HT,
0 1/3 ¢ 0 c? ~1

2 (AB)T =

1 2
] = BTAT. This answer is different frodTBT =
3 7

1 0 2 1 1 2 _5 2_
= andAT A =
2 1 0 1 2 5 2 1

3 (@) (AB)™)T = (B1A")T = (A-)T(B-1)T. This is also(AT) 1 (BT)!

(b) If U is upper triangular, so i§~*: then(U~1)" is lower triangular.

(exceptwhem B = BA). AAT =

4 A=

0 1
] hasA? = 0. But the diagonal ofA™ A has dot products of columns df
0 0

with themselvesf AT A = 0, zero dot products> zero columns= A = zero matrix.

0
1 2 3
5 (a) wTAy:[o 1] L i 6] 1] =5
0

0
(b) This answeb is the rowz™ A = [4 5 6} timesy | 1

0

2
(c) This is also the rowtT = [0 1} timesAy = [ ]
5

AT cT
BT DT

6 MT = i MT = M needsAT = Aand BT = C and D™ = D.
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0 Al . ) )
(a) False is symmetric only if4 = AT,
0

(b) False: The transpose dfB is B* AT = BA. So(AB)" = AB needsBA = AB.

(c) True: Invertible symmetric matrices have symmetrieises! Easiest proof is to

transposed A~ = I. So unsymmetriel has unsymmetrigl—!.
(d) True:(ABC)T is CT BT AT (= C B A for symmetric matricesl, B, and(C).

Thel in row 1 hasn choices; then th& in row 2 hasn — 1 choices .. .¢! overall).

0 1 0|1 0 O 0 0 1 01 0
PP, = 10 0 1|0 0 1| = |0 1 0f butRRP = |1 0 0
10 0[]0 1 O 1 00 0 01

If P; and P, exchangalifferentpairs of rows, ther’; Py = Py P; = both exchanges.
(3,1,2,4) and(2,3,1,4) keep4 in place;6 more evenP’s keep 1 or 2 or 3 in place;
(2,1,4,3)and(3,4,1,2) and(4, 3,2, 1) exchange 2 pairg1, 2, 3,4) makesl2 evens.
The “reverse identity’P takes(1, ..., n) into (n,...,1). When rows and also columns
are reversed, the, 1 andn, n entries ofA change places i* AP. So do thel, n and
n, 1 entries. In generdlPAP);; iS(A)y —i+1,n—j+1-

(Pz)T (Py)=2TPTPy=a"ysincePTP=1. IngeneralPz-y=x-PTy # x- Py:

01 0 1 1 1 01 0 1
Non-equality where® # P*: [0 0 1| |2 1l #1210 0o 1] |1
1 0 0 3 2 3 1 0 0 2
0 1 00 0 6 1 2 3
PA= 10 0 1|1 2 3| =10 4 5| isuppertriangular. Multiplyingd
1 0 0[]0 4 5 0 0 6

on the rightby a permutation matri¥, exchanges theolumnsof A. To make thisA
lower triangular, we also ned to exchange rows 2 and 3:
1 1 6 0 O
PAP, = 114 1 =15 4 0
1 1 3 2 1
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010
14 Acyclic P = |0 0 1| oritstranspose will have? =71 : (1,2,3) — (2,3,1) —
1 00
0

0 P
Simple row exchanges haw?? = I andP? = P.

(3,1,2) — (1,2,3). The permutatio® = for the sameP hasP* = P +# I.

E 0
15 (a) If P sends row to row4, thenPT sends rowt torowl (b) P = =
0 F

0 1
PT with E = moves all rows1 and2 are exchange®,and4 are exchanged.
10

16 A? — B2 and alsa4 BA are symmetric ifA and B are symmetric. ButA + B)(A— B)
and ABAB are generallynot symmetric. Transposdst — B) (A + B) and BABA.

17 (@) 5+4+3+2+1 = 15independent entries § = ST (b) L has 10 and has 5;
total 15inLDLT (c) Zero diagonal ifAT = —A, leavingd +3+2+1 = 10 choices.

(d) The diagonal ofAT A containg|row 1||?, |[row 2|2, ... = never negative.

R vo] [t o1 o8] 1w 1ol o 1 b
3 2 3 1o =7| 1o 1| |b e b 1|0 c—»2| |0 1
2 -1 0 1 2 1—%0

_ | 1 3 2| _ T
12 -1 = |- 1 3 1 -2| =LDL
2 4

0 -1 2] 0o -2 1 l 1
[ ] 10 1| [1 111 o 1]

19 |1 A=10 1 1| =10 1 11
1 2 3 4 2 3 1 _1
] 1 2 ol [1 111 2 o
1A=1|1 1 1| =1|1 1 -1 1
1 2 4 1 2 0 1 1
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0 0 0 1
0 0 Elimination on thisA = P exchanges
A= =PandL=U = 1.
01 00 rows1-2 then rows2-3 then rows3-4.
0 010
One way to decide even vs. odd is to count all pairs thhas in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Shatathexchange

always switches that count! Then 3 or 5 exchanges will leaaedount odd.

01 2 3
1 2 3 .
A= = AT haso0, 1,2, 3 in every row. | don’t know any rules for a
2 3 0 1
3 0 1 2

symmetric construction like this “Hankel matrix” with cdast antidiagonals.

Reordering the rows and/or the columns|&f5 | will move the entrya. So the result

cannot be the transpose (which doesn’t maje

1 0 1| |ysc Yo +YBs
(a) Total currents ared™y = | -1 1 0| |yes | = |-ysc+yes
0 -1 -1} |yBs —Ycs — YBsS

(b) Either way(Az)'y = ¥ (Ay) = zpysc + xBYBSs — Tcyse + Toycs —
TsYcs — rsyps. Six terms,
01 0
P= |0 0 1| andP? = I so three rotations fa360°; P rotates everw around
1 0 0
the(1,1,1) line by 120°.
L(UT)~tis lower triangular times lower triangular, mwer triangular. The transpose
of UTDU isUTDTUT™T = UT DU again, sdU T DU is symmetric The factorization

multiplies lower triangular by symmetric to getDU which is A.

These are groups: Lower triangular with diagotial diagonal invertibleD, permuta-

tions P, orthogonal matrices with™ = Q.
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28 There aren! permutation matrices of order. Eventuallytwo powers ofP must be

the same permutatio\nd if P = P® thenP"” — ¢ = [. Certainlyr — s < nl

0 1 0
Py ) . 0 1
P= is 5 by 5 with P, = andP; = |0 0 1| andP® =1.
Ps 1 0
1 0 0

29 To split the matrix)/ into (SymmetricS) + (anti-symmetricA), the only choice is

S=3(M+MT)andA = $(M — MT).

gt 10
30 Start fromQ™Q = I, asin 9 92| =
qs 01

(@) The diagonal entries givgl q, = 1 andq3i g, = 1: unit vectors
(b) The off-diagonal entry isy{ ¢, = 0 (and in generag; q; = 0)

. . . | cos@ —sinf
(c) The leading example fd@p is the rotation matrix

sin @ cos
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Problem Set 2.5, page 81

1 Ay=ylx+h) —y(z) = (z+h)°—2°
= a3 + 32%h + 3zh? + h3 — 23
First order term= 3z2h matchesh dy/dz.
Second order term: 3zh? matches;h?d?y /da* = Lh%(62).
2 y = e” hasdy/dx = e* = 1 atthe pointc = 0. The tangentlineat =0isy = 1+=.
3y = e® hasd?y/dz? = ¢* = 1 atz = 0. The tangent parabola at = 0 is
y=1+z+ 32 Atz = hthis parabolaid + h + 3 h* = " to second order.
4 y = e has alld"y/dx™ = e* = e = 1 atx = 0. So the Taylor series ig(h) = " =
L+h+3h%+- + LA+
5 sinh =h — $h®+ %h° — -+ sothe error isin h — h is orderh?,
6 Separate the real and imaginary partséf(even and odd powers éf Those two parts

are exactly the Taylor series foos x andsin . So comparing Taylor series produces

e =cosx +tsinx.

(1/10)* — (-1/10)* 1 . o dy )
7 = — = = = .
Centered 2/10 100 IS approxmatmg—dm 3z Oatx =0
(1/10)3 -0 1 0—(—1/10)3 1
Forward———— = — Backward——————— = —.
1/10 100 1/10 100

By chance all three give the same answer.

8 Substitutey(h) and alsay(—h) in the3 options of Problem 7,:

2

Centered gives% = exact through thé? term.

. dy 1. d%y _
Forward g|vesd—x(0) + §h@(0) = error of orderh.

. dy 1. d%y

Backward glvesCE(O) - §h@(0) = error of orderh.

e—e e—1 1—e! o 0

9 Compare 5 and . and 1 as approximations tdy /dz(0) = e” = 1.

Takinge ~ 2.8 ande~! ~ .35, the first (centered) difference wins easily.
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10

11

12

13

14

15

16

(e—2+e ') ~ (2.78 — 2+ 0.36) = 1.14. The correct second derivative of at
x =0is1.00: 14% error.

The3rd difference uses numbets—3, 3, —1.
Testony =23 33—3(23%)+3(1%) - (03) = 27—-24+3 = 0 = correctatz = 0.
Testony = z*  3* —3(2%) +3(1*) — (0*) =81 - 48 +3 #0atx = 0.

Z figiv1 = Z fi—1 g: (Just shifting: by 1 in infinite series).

Z fz gi—1 = Z fi+1 gi (same idea).

Summation by parts is true : Subtract second line from fingt. li

. d
Testu = 22 —4+8—-8+4=0=correct derlvatlved—u =2z atz = 0.
X
d )
Testu = z* —24 4814 = 8(-1)*+ (—2)* = 0 = also correctd—u =423 =0
X
atr = 0.
The pattern of determinants indicatdst K5 = 6 (correct!). The inverse is

(5 4 3 2 1] (5 4 3 2 1] (5 4 3 2 1]
4 2 48 6 4 2 48 6 4 2
K*:%:a 3:%36 63:%36963
2 4 2 4 6 8 4 2 4 6 8 4
12 3 4 5 12 3 4 5 12 3 4 5

Remove column of A, to produced; with T = AT A;. Remove columng and4

to produced, with K = AJ A,. Check:

1 -1 0 1 0 2 -1
AT =0 1 -1 -1 1|=|-1 2
0 —1

-1 2 -1
D,D} = = (4= periodic circulant matrix (not invertible)
0 -1 2 -1

-1 0 -1 2
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. d? . 1\’
17 The solution to- % = cos 4rz is u(x) = | — | cosdmx + A+ Bz.
dx? 4

The boundary conditions = 0 atz = 0 andz = 1 give

2 2
u(0) = <$> + A=0andu(l) = (i) +A+B=0.
2

1\? 1
ThenA = — (E) andB = 0 andu(z) = <E> (cosdmx —1).

0 1 0
18 Az = | -1 0 1 | has columr8 = — columnl: not invertible.
0 -1 0

0
Ay = has4 independent columns: invertible.
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Problem Set 3.1, page 79

Note An interesting “max-plus” vector space comes from the reahbersR combined
with —oo. Change addition to give + y = max(x,y) and change multiplication to

zy=usual x+y. Whichy is the zero vector that givas+ 0=maxz, 0) =z for everyz?

lx+y#y+xzandz+ (y+2) # (x+y) + zand(c; + c2)x # a1z + cox.

2 Whene(zy,z2) = (cz1,0), the only broken rule is 1 times equalsz. Rules (1)-(4)

for additionx + y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Als®rand no—x
(b) c(x + y) is the usualzy)®, while cx + cy is the usua(z°)(y°). Those are equal.
With ¢ = 3,2 = 2,y = 1 thisis3(2 + 1) = 8. The zero vector is the number 1.
1 -1 -2 2

00
4 The zero vector in matrix spadd is ; %A = and—A = .
0 0 1 -1 -2 2

The smallest subspace d1 containing the matrixd consists of all matricesA.
5 (a) One possibility: The matricesi form a subspace not containig) (b) Yes: the

subspace must contaih— B =1 (c) Matrices whose main diagonal is all zero.

6 When f(z) = 22 andg(z) = 5z, the combinatior8f — 4g in function space is
h(z) = 3f(x) — 4g(z) = 32% — 20u.

7 Rule 8 is broken: Ifcf(z) is defined to be the usudi(cz) then(c; + co)f =
f((c1 + c2)x) is not generally the same asf + cof = f(c1x) + f(caw).

8 (a) The vectors with integer components allow addition imitmultiplication by%

(b) Remove the: axis from thexry plane (but leave the origin). Multiplication by any

c is allowed but not all vector additiong1,1) + (—1,1) = (0, 2) is removed.

9 The only subspaces are (a) the plane with= b, (d) the linear combinations af
andw (e) the plane witth; + by + b3 = 0.
a

b
10 (a) All matrices[a ] (b) All matrices[
0 0 0

a
] (c) Alldiagonal matrices.
0



40 Solutions to Problem Sets

11 For the plane: 4+ y — 2z = 4, the sum of4, 0, 0) and(0, 4, 0) is not on the plane. (The
key is that this plane does not go throu@ho, 0).)

12 The parallel plan®, has the equation + y — 2z = 0. Pick two points, for example
(2,0,1) and(0,2,1), and their sun{2,2,2) is in Py.

13 The smallest subspace containing a plEhand a lineL is either P (when the lineL
is in the planeéP) or R3 (whenL is not inP).

14 (a) The invertible matrices do not include the zero matrixirey are not a subspace

10 0 0
(b) The sum of singular matrices + is not singular: not a subspace.

0 0 0 1
15 (a) True The symmetric matrices do form a subspace Th)e The matrices with

AT = — A doform asubspace (cJrue Any set of vectors from a vector space will

span a subspace of that space.

16 The column space of is thex-axis= all vectors(x,0,0): aline. The column space
of B is thexy plane= all vectors(x, y, 0). The column space @ is the line of vectors
(z,2z,0).

17 (a) Elimination leads t@) = b, — 2b; and0 = b; + b3 in equations 2 and 3:
Solution only ifbs = 2b; andbs = —b (b) Elimination leads td = by + b3
in equation 3: Solution only ifs = —b;.

18 A combination of the columns af is also a combination of the columns 4f Then

1 3 1 2 1 2
C = andA = have the same column spacB. = has a
2 6 2 4 3 6

different column space. The key word is “space”.
19 (a) Solution for everyp (b) Solvable only ifbs =0 (c) Solvable only ifbs = bs.

20 The extra columib enlarges the column space unléss already inthe column space.
(A b] 1 0 1| (largercolumnspace) [1 0 1| (bisin column space)
0 0 1] (nosolutiontoAxz=>b) |0 1 1| (Ax = b has a solution)

21 The column space ol B is contained in(possibly equal to) the column space 4f
The exampleB = zero matrix and4 # 0 is a case wheml B = zero matrix has a

smaller column space (it is just the zero spAg¢han A.
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30

31

The solutiontodz = b+ b* isz =  + y. If bandb™ are inC(A) so isb + b".
The column space of any invertible 5 by 5 matrixRS. The equatiordx = b is
always solvable (by: = A~'b) so everyb is in the column space of that invertible

matrix.
(a) False Vectors that arenot in a column space don't form a subspace.
(b) True Only the zero matrix ha€(4) = {0}. (c) True C(A) = C(24).

1 0
(d) False C(A—1)#C(A)whenA=1To0rA= (or other examples).
0 0

1 1 0 1 1 2 1 1 2 0
A=1|1 0 o|and|{1 0 1| donothavel1|inC(4). A= 1|2 4 0] has
0 1 0 01 1 1 3 6 0

C(A) =lineinR?,

WhenAx = b is solvable for allb, everyb is in the column space of. So that space
isC(A) = RY.

(@) If wandwv are bothinS+ T, thenu = s; + t; andv = sy + t2. Sou + v =
(814 82)+ (t1 +t2)isalsoinS+T. And soiscu = ¢s; + ct; : S+ T = subspace

(b) If SandT are different lines, theBU T is just the two linesr{ot a subspagebut
S+ T is the whole plane that they span.
If S=C(A4) andT = C(B) thenS+ T is the column space df/ = [A B].

The columns ofdA B are combinations of the columns 4f So all columnsof A AB)|

0 1 0 0
are already irC(A). ButA = has a larger column space thah =

00 0 0
For square matrices, the column spacRisexactly whenA is invertible

y — e~ % andy = e are independent solutions #y/dz? = y. Alsoy = cosz and

y = sin z are independent solutions 8y /dxz? = —y. The solution space contains all
combinationsA cos x + Bsin .

If  andy are in the vector spacé N W, then they are in botv andW. So all

combinations:x + dy are in bothV andW. So all combinations are M N'W.
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Problem Set 3.2, page 100

11f Ax = 0thenEAxz = 0. If EAx = 0, multiply by E~! to find Az = 0.
2 (a) If ¢ = 4 then A has rankl and columnl is its pivot column and—2, 1,0) and
(—1,0,1) are special solutions tdxz = 0. If ¢ # 4 then A has rank and columnd
and3 are pivot columns an¢—2, 1, 0) is a special solution. If = 0 thenB = zero
matrix with rank0 and(1, 0) and(0, 1) are special solutions tBx = 0. If ¢ # 0 then

B has rankl and columnl is its pivot column and—1, 1) is the special solution to

Bx = 0.
1 3 0 2 . . . . .
3 R= . All matricesA = C'R with C' = 2 by 2 invertible matrix have
0 01 6
the same nullspace @
1 2 0 0 0] Freevariabless, x4, x5 1 0 —1|Freexs
4 (a) R= (b) R=
0 0 1 2 3| Pivotvariablest,z3 0 1 1| Pivotzy, zo

5 Free variables., x4, x5 and solutiong—2, 1,0, 0, 0), (0,0, —2,1,0), (0,0, —3,0, 1).
6 (a) False Any singular square matrix would have free variables Toje An in-
vertible square matrix has free variables. (c)True(only n columns to hold pivots)

(d) True(only m rows to hold pivots)

7 A= [ C } { I I } (notice thatt' = I). Ther special solutions tolx = 0 are the

—I
r columns of
I
11 0 1 1 1 0 O 01 1 0 0 1 11
0 01 11 10 0 00 010 111
8 R= ,
0 00 OO O 1O 00 00 1111
0 00 OO OO0 1 00 00 0 OTUODUDO

Notice the identity matrix in the pivot columns of thaselucedrow echelon formsR.

n

9 If column 4 of a 3 by 5 matrix is all zero thery, is afreevariable. Its special solution

isxz = (0,0,0,1,0), because 1 will multiply that zero column to giver = 0.
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10 If column 1= column 5 therx; is a free variable. Its special solution(is1, 0, 0,0, 1).

11 The nullspace contains ondy = 0 when A has 5 pivots. Also the column spaceRs,
because we can always solda = b and eveny is in the column space.

12 If a matrix hasn columns and pivots, there are — r special solutions. The nullspace
contains onlyr = 0 whenr = n. The column space is all @™ whenr = m. All

those statements are important!

13 Fill in 12 then3 then1 to get the complete solution iR® to z — 3y — z = 12

T 12 3 1
y|=10|+y|1]|+=z|0]| =one particular solution- all nullspace solutions.
z 0 0 1

14 Column 5 is sure to have no pivot since it is a combination ofiezacolumns. With
4 pivots in the other columns, the special solutios is (1,0,1,0,1). The nullspace
contains all multiples of this vectar (this nullspace is a line iR ).

15 To produce special solution®,2,1,0) and (3,1,0,1) with free variableszs, z4:

10 -2 -3 , , -
R = and A can be any invertible 2 by 2 matrix times tHis
01 -2 -1
4
The rank is3 3

10 0 —4

16 Thenullspaceoi= |0 1 0 -3
is the line through the special solution 2

0 01 -2
1
1 0 -1/2 1 0 1
17 A=|1 3 —2|has|1|and|3|inC(A4)and|1]| in N(A). Which other4’s?
5 1 -3 5 1 2
(10 -1

18A=1|[1 1 -1

1 0
19 A= hasN(A4) = C(A). Notice thatref(AT) = isnotAT.
0 0 0 0
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If nullspace= column space (with pivots) thenn — r = r. If n = 3 then3 = 2r is

impossible. Only possible whenis even.

If AtimeseverycolumnaB is zero, the column space Bfis contained in theullspace
1 1 1 1

of A. An example isA = andB = . HereC(B) equalsN(A).
1 1 -1 -1

For B = 0,C(B) is smaller tharN(A).

For A = random 3 by 3 matrixR is almost sure to bé. For 4 by 3,R is most likely

to beI with a fourth row of zeros. What iR for a random 3 by 4 matrix?

If N(A) = line throughxz = (2,1,0,1), A hasthree pivotg4 columns and 1 special
1 0 0 -2

solution). Its reduced echelonformcan®e= |0 1 0 -1 (addanyzerorows).

001 O

1 00
R=[1 -2 -3], R= , R =1I. Any zero rows come after those rows.

01 0

0 0
(@) ; , : : (b) All8 matrices areR’s!
0 0

The nullspace oB = [A A] contains all vectors = Y for y in R*.

-y
One reason thak is the same ford and—A: They have the same nullspace. (They
also have the same row space. They also have the same colao®) bpt that is not

required for two matrices to share the sameR tells us the nullspace and row space.)

If Cx = 0thenAxz = 0 andBx = 0. SON(C) = N(A) N N(B) = intersection
12 3 0 00

1 2 3 0O 01 2 3

AhasRy = andR = [1 2 3}. B andC haveRg =
0 0 O 00 0 0 0 O
0 00 O0O0OO O

1 2 3 0 0 O
And R = .

0 001 2 3
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0 10
29 R= andN = |
0

30 A andA™T have the same rank= number of pivots. But the pivot column is colur2n
010

for this matrixA and columnl for AT: A= {0 0 0

0 0 0
a b c 3 9 —-45
31 The new entries keeprank 4 = | ¢4 b_ad % ifa#0, B=1|1 3 -15],
g ¥ « 2 6 -3
a b )
¢ be/a
32 With rank1, the second row oRR does not exist!
Invertibler by » submatrices 1 3 1 0
33 S = andS = [1]andS =
Use pivot rows and columns 1 4 0 1

34 (a) A andB will both have the same nullspace and row space a&ttiey share.

(b) A equals annvertiblematrix timesB, when they share the sanie A key fact!

35 CORRECTED: ATy =0 :y1 —ys+ysa = —y1+y2 +ys = -y + Y3 + yg =
—ys — Y5 —ys = 0.
These equations add o= 0. Free variablegs, y5, ys: watch for flows around loops.
The solutionstoATy = 0 are combinations af-1,0,0,1, —1,0)and(0,0, —1,—1,0,1)

and(0,—1,0,0,1,—1). Those are flows around tl3esmall loops.

1 3
1 2
36 C = |2 6| CT has pivot column . The invertibleS insideC is
3 7 2 7
2 7

37 The column space ofl B contains all vector§AB)x. Those vectors are the same as

A(Bz) so they are also in the column spacefof
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38 By matrix multiplication, each column oA B is A times the corresponding column of
B. Soif columnj of B is a combination of earlier columns &f, then columry of AB
is the same combination of earlier columns4B. Then rank AB) < rank(B). No

new pivot columns!

39 We are giveMd B = I which has rank. Then rankAB) < rank(A) forces rankA) =
n. This means thatl is invertible. The right-invers® is also a left-inverseBA = I

andB = A~1.

40 Certainly A and B have at mostank 2. Then their producd B has at mostank 2.

1 00
Since BA is 3 by 3, it cannot bel even if AB = I. Exampled = ,
0 1 0
1 0 1 0 0
B=10 1(,BA=1|0 1 0]-
_0 0 0 0 O
r I I 1
41 A= T [} hasN = :B = hasthesamef;C:[[ I [} has
- —I 0 0
-1 I
N = I 0
0 I

42 Them by n matrix Z hasr ones to start its main diagonal. Otherwigés all zeros.

I F rbyr rbyn—r I
43 Ry = - L (b) B = ©c =1 o
00 m—rbyr m—rbyn—r 0

10
rref (RY) = s rref (RE Ro) =sameR,
00
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1 2 0 1 2 0
2
44 Ry = hasRi Ry = |2 4 0| and this matrix row reduces 0 1| =
0 0 1
0 0 1 0 0 0

. Always R} Ry has the same nullspace Bg, so its row reduced form
ZEero row

must beRy with n — m extra zero rowsRy is determined by its nullspace and shape!
-1

1 4 7 1 4 1 0 —1 1 4 1 4 1 47
4 A=]12 5 8 |=|2 5 0 1 2 (=12 5 2 5 2 5 8
3 6 9 3 6 3 6

Notice2 rows of A are in the matrixB.

46 Multiply block row 1 by JW 1 to produce rov.
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Problem Set 3.3, page 111

2 46 4 b 2 4 6 4 b 2 4 6 4 b 4
112 5 7 6 by|—|0 1 1 2 by—by|—|0 1 1 2 by—by -1

2 3 5 2 bs 0-1-1—-2 bz—Dby 0 0 0 0 bg+by—2b; 0
Ax = b has a solution whebs + b, — 2b; = 0; the column space contains all combi-

nations of(2, 2, 2) and(4, 5, 3). This is the planebs + b2 — 2b; = 0 (!). The nullspace
contains all combinations &f, = (—1,—-1,1,0) andsy = (2, —2,0,1); Zcompiete =

T, + c181 + C282;

101 -2 4
[RO d} =10 1 1 2 —1| givesthe particular solution, = (4, —1,0,0).
06000 o0 O

21 3 b

[\)

1 3 by 1 1/2 3/2 5
216 3 9 byl =0 0 0 by—3by| Then[Ry d]=1]0 0 0 O
4 2 6 by 0 0 0 bsy—2b; 00 0 O

Az = b has a solution whet, — 3b; = 0 andbs — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planés — 3b; = 0 andbs — 2b; = 0;
the nullspace contains all combinationssgf= (—1/2,1,0) ands; = (—3/2,0,1);

particular solutionz,, = d = (5,0,0) and complete solutio®,, + ¢181 + c2S2.

3@ z+3y=7 T+3y="7 7 -3
T, = T, =cs=c foranyc.
2z 4+ 6y=14 0=0 0 1
-2 -3
b 7 =31
( )mcomplete o 0 te 1 ’ mcomplete = 0] Fel 1
1 0

= mp+mn = (%aovéao) +x2(73)17050)+x4(070)72’1)‘

T
complete
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1 2 -2 b 1 2 -2 b
5102 5 —4 by|—]0 1 0 by—2b solvable ifbs — 2by — by = 0.
4 9 —8 bs 0 0 0 bg—2b —by
Back-substitution gives the particular solution4a: = b and the special solution to
5b1 — 2by 2 2 0 2 b 1 0 1 b1/2
Az =0:x = | by —2b; [+23 0] |4 4 0 bo| = [0 1 —1 by/4—101/2
0 1 8 8 0 b3 0 0 0 bs — 2by

b1/2 -1
is solvable ifbs = 2by. Thenz = ba/4—b1/2| T3 | 1
0 1

. 5b1 — 2b3
6 (a) Solvable ifby = 2b; and3b; — 3b3 + by = 0. Thenz = =z,
bz — 2by
5b1 — 2bs -1
(b) Solvable ifb; = 2b; and3b; —3bs +bs =0. ¢ = | by —2b; | + 23 [—1
0 1

1 3 1 by 1 3 1 be One more step givg®) 0 0 0] =
713 8 2 by|—|0 —1 —1 by—3b;| row3—2(row2)+ 4(row 1)

2 4 0 b3 0 —2 —2 b3z —2by| provided bg—2bs+4b;=0.
8 (a) EverybisinC(A): independent rownly the zero combination gives

(b) We needrs = 2bs, becausérow 3) — 2(row 2) = 0.

T 4 -1 -1 x 4 -1
9@ |y|l=1|0|+y| 1|+2| o] () |y|=1|0|+2z]| 0. Thesecond
z _0 0 1 z 0 1
equation in part (b) removed one special solution from tHispace.
1 0 -1 2 .
10 x = hasz, = (2,4,0) andx = (c, ¢, c). Many possibled !
0 1 -1 4

11 Alby3 sys_tem has at leatsto free variables. Buk, | in Problem 10 only hasne
12 (a) If Ax; = bandAx, = bthenxz = x; — x4 and alsar = 0 solve Az =0

(b) A(le — 2:132) = 0, A(Zﬂ}l — mg) =b
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(a) The particular solutiow, is always multiplied by 1.2z, would solveAx = 2b

(b) Any solution can be,,. If A has rank= m, the onlyz,, is 0.

3 3| |z 6 1] . 2
(©) = . Then is shorter (length/2) than (length 2)
3 3| |y 6 1 0

(d) The only “homogeneous” solution in the nullspace js= 0 whenA is invertible.

If column 5 has no pivoty; is afreevariable. The zero vectas notthe only solution

to Az = 0. If this systemAx = b has a solution, it hasfinitely manysolutions.

If row 3 of U has no pivot, that is aero row Ux = c is only solvable provided
cs = 0. Az = b might not be solvablebecausé/ may have other zero rows needing

morec; = 0.

The largest rank is 3. Then there is a pivot in evieny. The solutionalways exists

The column space B®. An example isA = [I F] for any3 by 2 matrix F.

The largest rank of a 6 by 4 matrix is 4. Then there is a pivotviergcolumn The
columns are independent. The solutiomisque(if there is a solution). The nullspace
I (4by4)
0 (2by4)

Rank= 2; rank= 3 unless; = 2 (then rank= 2). Transpose has the same rank!

contains only theero vector ThenRo = rref (A) =

If Azqy = band alsoAxz, = bthenA(x; — x2) = 0 and we can ada; — x- to any
solution of Az = B: the solutionz is not unique. But there will bao solution to

Ax = B if Bisnotinthe column space.

For A, g = 3 gives rank 1, every othergives rank 2. FoiB, ¢ = 6 gives rank 1, every
othergq gives rank 2. These matrices cannot have rank 3.
1

b1 . . [1 1} x
€) [z] = has 0 or 1 solutions, depending bn (b) =
1 bo X2

[b] has infinitely many solutions for evety (c) There are 0 oto solutions whemd
has rankr < m andr < n: the simplest example is a zero matrix.  @esolution

for all b when A is square and invertible (likd = T).

(@ r<m,alwaysr<n () r=m,r<n (€)r<m,r=n (d)r=m=n.
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2 4 4 1 0 -2 2 4 4
23 10 3 6| —=>Ro=10 1 2land|0 3 6| - Ro=I1I=Rand

10 0 0] 100 0 0 0 5
0 0 4 0 10

— Ry = = R.
01 0 0 01

24 Ry = I whenA is square and invertible—so for a triangular matrix, altinal entries

must be nonzero.

-2
1230 1200 12305 120 -1
— Ly = 1]: —
0040 0010 0048 001 2
0
Freez, = 0 givesz, = (—1,0, 2) because the pivot columns contdirNote : Ry = R.
1 0 0 O 0 1 0 0 -1
26 [Rod] = |0 0 1 of leads tox, = |1|; [Rod] = |0 0 1 2
00 0 O 0 0 0 O 5

leads to no solution because of the 3rd equaliens.

—4 -2

1023 2 102 3 2 1020 —4
3 0

2711320 5|/—>|030-33|—=>|0100 3}, » L = T3

0 1

204910 000 36 060001 2
0

11 1
0

28 ForA= |0 2/,theonlysolutiontddx = |2 | isx =
1
0 3 3

B cannot exist since 2 equations in 3 unknowns cannot haveqa@solution.
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29

30

31

32

33
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1 3 1 1 1 3 1
2 3 . 1 0 -1 2 .
A= factors intoLU = and the rank is
2 4 6 2 2 1 0 0 0
1 1 5 1 2 01 0 0 0

r = 2. The special solution tdlx = 0 andUx = O0iss = (-7,2,1). Since
b = (1,3,6,5) is also the last column ofi, a particular solution todz = b is
(0,0, 1) and the complete solutionis= (0,0, 1) 4+ ¢s. (Another particular solution is

x, = (7, —2,0) with free variablers = 0.)
Forb = (1,0,0,0) elimination leads t&/x = (1, —1,0,1) and the fourth equa-
tion is0 = 1. No solution for thish.

1 1 0 0
If the complete solution tolx = isx = + thenA =
3 0 c 3 0

(@) If s =(2,3,1,0) is the only special solution tdx = 0, the complete solution is
x = cs (aline of solutions). The rank of mustbet — 1 = 3.

1 0 -2 0
(b) The fourth variable:4 is not freein s, andRy mustbe|o 1 -3 0].

0 0 0 1
(c) Ax = b can be solved for ab, becaused and Ry havefull row rankr = 3.

If Az = b andCzx = b have the same solutiond, andC' have the same shape and

the same nullspace (take= 0). If b = columnl of 4, x = (1,0,...,0) solves

Ax=bsoitsolvexCx=b. Thend andC share columni. Other columnstoad =C'

The column space aR, (m by n with rankr) is spanned by itg pivot columns (the
first » columns of anm by m identity matrix). The column space & (afterm — r

zero rows are removed from) is r-dimensional spack".
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Problem Set 3.4, page 124

=0 givescs = co = ¢; = 0. So those3 column vectors are

independent: no other combination givies

00 1 c3
r 1
1 1 1 2 0
1
0 1 1 3|e=]|0] issolvedbyc= . Thenvy + vy — 4v3 + v, =0 (dependent).
—4
0 01 4 0
- 1

2 v1,v9,vs are independent (thel’s are in different positions). All six vectors iR*
are on the planél, 1,1,1) - v = 0 so no four of these six vectors can be independent.
3 If a = 0 then columnl = 0; if d = 0 thenb(columnl) — a(column2) = 0; if f =0

then all columns end in zero (they are all in thgplane, they must be dependent).

a b ¢ T 0
AUx = |0 d el||y| = |0]| givesz = 0theny = 0 thenz = 0 (by back
0 0 f||= 0

substitution). A square triangular matrix has independeiimns (invertible matrix)

when its diagonal has no zeros

1 2 3 1 2 3 1 2 3
. invertible= independent
5@ |3 1 2(—]0 -5 —7|—]0 =5 -7
columns
2 3 1 0 -1 -5 0 0 —18/5
1 2 -3 1 2 -3 1 2 -3 1 0
columns
B |-3 1 2|—=l0 7 =7/=>10 7 =7|[;A|1|=|0
add to0.
2 -3 1 0o -7 7 0 0 0 1

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 andsthet not 1, 2, 3).
Same column numbers (not same columns!) AorThis is becaus& A = U for the
matrix ' that subtractg times rowl from row4. SoA andU have the same nullspace

(same dependencies of columns).
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7

10

11

12

13

14

15

Solutions to Problem Sets
The sumv; — v2 +v3 = 0 becauséws, — w3) — (w1 —ws) + (w1 —ws2) = 0. So the
0 1 1
differences ardependendnd the difference matrix is singulad: = 1 0 —1
-1 -1 0

If Cl(’ll)g +w5) +CQ(’U)1 +’U)3) +C3(’U)1 +’U)2) =0 then(02 +03)w1 —+ (Cl +03)w2 —+
(c1 + c2)wsz = 0. Since thew's are independenty + ¢3 = ¢; +¢3 = ¢1 + ¢ = 0.

The only solution is:; = ¢o = ¢3 = 0. Only this combination ob, vs, v3 gives0.
(changing—1's to 1's for the matrixA in solution7 above maked invertible.)

(a) The four vectors iR? are the columns of a 3 by 4 matrix. There is a nonzero
solution toAxz = 0 because there is at least one free variable (b) Two vecters ar
dependentifv; vy] hasrank 0 or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” buhot “v, is a multiple ofv,” —since v; might be0.)

(c) A nontrivial combination ob; and0 gives0: 0v; + 3(0,0,0) = (0,0,0).

The plane is the nullspace of = [1 2 —3 —1]. Three free variables give three
independent solution$z, y, z,t) = (-2,1,0,0) and (3,0,1,0) and (1,0,0,1).

Combinations of those special solutions give more solst{@ail solutions).
(a) LineinR? (b) PlaneirR®  (c) Allof R*  (d) All of R®.

b is in the column space wheAxz = b has a solutiong is in the row space when

ATy = ¢ has a solutionFalsebecause the zero vector is always in the row space.

The column space and row space 4fand U all have the same dimension 2
The row spaces oft and U are the samgbecause the rows éf are combinations of

the rows ofA (and vice versa!).

v=1(v+w)+i(v—w)andw = 1(v+ w) — i(v — w). The two pairspanthe

same space. They are a basis for the same spacewdrgthw areindependent

Then independent vectors span a space of dimensidrhey are dasisfor that space.

If they are the columns ofl thenm is not lessthann (m > n). Invertibleif m = n.
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16

17

18

19

20

21

22

23

24

These bases are not unique! @ 1,1,1) for the space of all constant vectors
(¢,c,c,0) (b) (1,-1,0,0),(1,0,-1,0),(1,0,0,—1)for the space of vectors with
sum of components & (¢) (1,-1,-1,0),(1,—1,0,—1) for the space perpendic-
ular to(1,1,0,0) and(1,0,1,1) (d) The columns of are a basis for its column

space, the empty set is a basis (by convention)Nidr) = Z = {zero vector}.

1 01 0 1
The column space of/ = is R? so take any bases fdR?;

01 0 10
(row 1 and row2) or (row 1 and row1 + row 2) or (row 1 and — row 2) are bases

for the row space of/.

(a) The 6 vectorsnight notspanR* (b) The 6 vectorsire notindependent

(c) Any fourmight bea basis.

n independent columns- rankn. Columns spalRR™ =- rankm. Columns are basis

for R™ = rank= m = n. The rank counts the numberiodependentolumns.

One basis i52,1,0), (—3,0,1). A basis for the intersection with they plane is

(2,1,0). The normal vectofl, —2, 3) is a basis for the line perpendicular to the plane.

(&) The only solution tadx = 0 is * = 0 becausdhe columns are independent
(b) Az = bis solvable becaudbe columns spaR?®. Their combinations give evely

Key point: A basis gives exactly one solution for evéry
(&) True (b) False because the basis vectorRfomight not be inS.

Columnsl and2 are bases for thalifferent) column spaces oft andU; rows1 and
2 are bases for theequal) row spaces ofd andU; (1,—1, 1) is a basis for thegqual)

nullspacesRow spaces and nullspacestay fixed in elimination.

(a) FalseA = [1 1] has dependent columns, independentrow  RKalseColumn
0

space# row space forA = (c) True Both dimensions= 2 if A is

invertible, dimensions- 0if A = 0, otherwise dimensions 1 (d) Falsg columns

may be dependent, in that case not a basi€fot).
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25 (a) Makewy, ... v, the columns ofd. Then find the first: independent columns (we

are told they spaR"™).

(b) Makews, ... v; the rows ofA and then include the rows of the identity matrix.
Row elimination will keep the firsj independent rows and find — j more rows to

form a basis foR".

c d
26 AhasrankR if c = 0andd = 2; B = has rank2 except where = d or
d c

c= —d.
1 00 0 0O 0 0 0
27 (a) Basis for all diagonal matrices:o 0 0|, [0 1 0|, |0 0 0

0 0 O 0 0O 0 0 1
0 1 0 0 0 1 —0 0 0
(b) Add |1 0 0|, |0 0 O],|0 0 1| =basisforsymmetric matrices.
0 0 O 10 0] [010

01 0 0 0 1 0 0 0
© |-1 0 0,10 o0 o0,]0 0 1
0 0 0 -1 0 0] |0 -1 0

These are simple bases (among many others) for (a) diagatidtes (b) symmetric
matrices (c) skew-symmetric matrices. The dimension8 &5€3.
1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0

2810 1 0[]0 1 0Of,|0 2 0,0 1 Of,|0 1 Of,|0 1 1];

0 0 1 0 0 2 0 0 1 |0 0 1 0 0 1 0 01
Echelon matrices doot form a subspace; theypan the upper triangular matrices (not

everyU is an echelon matrix).
1 0 0 0o 1 0 0 0 1 1 -1 0 1 0 -1
29 , ) ; and .
-1 0 0 0 -1 0 0 0 -1 -1 1 0 -1 0 1
30 (a) The invertible matrices span the space of3dlly 3 matrices (b) The rank one

matrices also span the space of&aby 3 matrices (c)I by itself spans the space of

all multiplescI.
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31

32

33

34

35

36

37

38

39

40

41

-1 2 0 -1 0 2 0 0 O 0 0 O ) )
) , , . Dimension= 4.
0 0 O 0 0 O -1 2 0 -1 0 2

(@) y(z)= constanC (b) y(z)=3z. (c) y(z)=3z+ C=y, +y, Solvesy’ = 3.
y(0) = 0 requiresA + B + C = 0. One basis isos x — cos 2z andcos z — cos 3x.
(@) y(z) = e** is a basis for all solutions t9’ = 2y (b) y = = is a basis for all
solutions tody/dx = y/x (First-order linear equatios>- 1 basis function in solution
space).
y1(z),y2(x), y3(x) can ber, 2z, 3z (dim1) or z, 2z, 22 (dim2) or z, 22, 23 (dim3).
Basisl, x, 22, 23, for cubic polynomials; basis — 1, 22 — 1, 23 — 1 for the subspace
with p(1) = 0. (4-dimensional space arsddimensional subspace).
Basis forS: (1,0,-1,0),(0,1,0,0),(1,0,0,—1); basis forT: (1,—1,0,0) and(0,0, 2, 1);
S NT= multiples of(3, —3,2, 1) = nullspace foB equations ifR* has dimension 1.
If the 5 by 5 matrix[A b] is invertible,b is not a combination of the columns df:
no solution toAx = b. If [A b] is singular, and theé columns ofA are independent
(rank4), b is a combination of those columns. In this cake = b has a solution.
One basis foy” = yisy = e* andy = ¢~%. One basis foy” = —yisy = cosz and
y =sinz.

1 1 1 1 1
I=]1 - 1|+ 1 + 1] — |1

The sixP’'s

are dependent
1 1 1 1 1

Those five are independent: Theh hasP;; = 1 and cannot be a combination of the
others. Then th&rd cannot be (fromP,; = 1) and alsolst (Ps3 = 1). Continuing,
a nonzero combination of all five could not be zero. Furthetlenge: How many

independent by 4 permutation matrices?
The dimension ofS spanned by all rearrangementsaofs (a) zero whene = 0
(b) onewhere = (1,1,1,1) (c) three wherr = (1,1, —1,—1) because all rear-

rangements of thig are perpendiculartfl, 1,1, 1) (d) four when thex’s are not
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equal and don't add to zer®No « givesdim S = 2. | owe this nice problem to Mike

Artin—the answers are the same in higher dimensior®s:1 orn — 1 or n.

The problem is to show that thes, v’s, w’s together are independent. We know the
u’'s andv’s together are a basis f&f, and theu’s andw'’s together are a basis &% .

Suppose a combination afs, v's, w’s gives0. To be proved All coefficients= zero.

Key idea In that combination givin@, the partz from thew’s andv’s is in V. So the
part from thew’s is —a. This partis now inV and also inW. Butif —zisinV NnW
it is a combination ofu’s only. Now the combination givin@ uses onlyu’s andv’s
(independent ird/!) so all coefficients ofu’'s andv’s must be zero. Thes = 0 and

the coefficients of thev's are also zero.

If the left side ofdim (V) + dim(W) = dim(V N'W) + dim(V + W) is greater than

n, thendim(V N 'W) must be greater than zero. $oN W contains nonzero vectors.

Here is a more basic approach: Put a basi®/fand then a basis fa in the columns
of a matrix A. ThenA has more columns than rows and there is a nonzero solution
to Az = 0. Thatx gives a combination of th¥ columns= a combination of the

W columns.

If A%2 = zero matrix, this says that each columnis in the nullspace ofi. If the
column space has dimensionthe nullspace has dimensiaf — r by the Counting

Theorem. So we must have< 10 — r and this leads to < 5.
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Problem Set 3.5, page 137

1 (a) Row and column space dimensi®rss = 5, nullspace dimensios 4, dim(N(A™))
=9—-7=2 sum5+5+4+2=16=m+n
(b) Column space iR3; left nullspace contains onl§y (dimension zero).

2 A: Row space basis- row 1 = (1,2,4); nullspace(—2, 1,0) and(—4, 0, 1); column
space basis= columnl = (1,2); left nullspace(—2,1). B: Row space basis=
both rows= (1,2,4) and(2, 5, 8); column space basis: two columns= (1,2) and

(2,5); nullspace(—4,0,1); left nullspace basis is empty because the space contains

only y = 0: the rows ofB are independent.

3 Row space basis first two rows ofR; column space basis pivot columns (ofA not R)
= (1,1,0) and (3,4, 1); nullspace basiél, 0,0, 0,0), (0,2,—1,0,0), (0,2,0,—2,1);
left nullspaceg(1, —1, 1) = last row of the elimination matri¥—! = L.

1 0
4@ |1 0 (b) Impossibler+(n—r) mustbe3  (c)[1 1] (d)

-3

-1
0 1

(e) ImpossibleRow space= column space requires = n. Thenm —r = n — r;

nullspaces have the same dimension. Section 4.1 will phogé) and N(AT)

orthogonal to the row and column spaces respectively—heetare the same space.
1

1 1
5 A= has those rows spanning its row spaée= {1 -2 1} has the
2 10

same vectors spanning its nullspace aifél” = zero matrix ot AB).

6 A: dim 2,2,2,1: Rows(0,3,3,3) and(0,1,0,1); columns(3,0,1) and(3,0,0);
nullspace(1, 0,0, 0) and (0, —1,0,1); N(A™) (0,1,0). B: dim 1,1,0,2 Row space
(1), column spacél, 4,5), nullspace: empty basi®|(AT) (—4,1,0) and(—5,0,1).
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7 Invertible3 by 3 matrix A: row space basis: column space basis (1,0, 0), (0,1,0),
(0,0, 1); nullspace basis and left nullspace basiseangty Matrix B = {A A} : row
space basi¢1,0,0,1,0,0), (0,1,0,0,1,0) and(0,0,1,0,0,1); column space basis
(1,0,0), (0,1,0), (0,0, 1); nullspace basié-1,0,0,1,0,0) and(0,—1,0,0,1,0) and
(0,0,—1,0,0, 1); left nullspace basis is empty.

8 [[ o} and[[ I; o7 OT} and[o} = 3 by 2 haverow space dimensions 3,3,0 =
column space dimensionslispace dimensiors 3, 2; left nullspace dimensiorts 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of raee¥ps the same

(b) Same column space and left nullspace. Same rank (dioreattcolumn space).

10 Forrand(3), almost surely rank 3, nullspace and left nullspace contain ofly0, 0).

Forrand(3, 5) the rank is almost surelyand the dimension of the nullspaceis

11 (a) No solution means that < m. Alwaysr < n. Can’t comparen andn here.

(b) Sincem — r > 0, the left nullspace must contain a honzero vector.

1 1 2 21
o 1 01
12 A neat choiceis|o 2 =12 4 0|; 7+ (n—7r)=n=3does
1 2 0
1 0 1 0 1

not match2 + 2 = 4. Only v = 0 is in bothN(A) andC(A™T).
13 (a) False Usually row space“ column space.
(b) True A and— A have the same four subspaces

(c) False(chooseA and B same size and invertible: then they have the same four
subspaces)

14 Row space basis can be the nonzero row#/of(1, 2, 3,4), (0,1, 2,3), (0,0,1,2);
nullspace basi$0, 1, -2, 1) as forU; column space basid, 0,0), (0, 1,0), (0,0, 1)
(happen to hav€(A) = C(U) = R?); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the;¢am, 3, 4) is in the

new left nullspace after the row exchange.

16 If Av = 0andv is arow ofAthenv - v = 0. Sow is perpendicualrte: v = 0.
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17

18

19

20

21

22

23

24

25

26

Row space ofA = yz plane; column space of = zy plane; nullspace- = axis; left
nullspace= z axis. Forl + A: Row space= column space= R?, both nullspaces
contain only the zero vector.

a1 = 1,a12 = 0,a13 = 1,a22 = 0,a32 = 1,a31 = 0,a23 = 1,a33 = 0,a2; = 1.
(Need to specify the five moves).

Row3—2row 2+ row 1 = zero row so the vectorg1, —2, 1) are in the left nullspace.

The same vectors happen to be in the nullspace (an accidehtfonatrix).

The steps fromA to R, are described on page 96 (Section 3.2). | don't think | can
do better—but you could put those ideas into different worlg all means give an

example that needs row exchanges.

(8) wandw (b) vandz (c) rank< 2if u andw are dependent or if andz

are dependent (d) The rankobT + wzT is 2.

1 2
,vT

A=lu w =12 2
T

4 1

As in Problem 22: Row space basi$, 0, 3), (1,1, 2); column space basid, 4, 2),

3 2
1 0] w, w span column space;
=14 2

11

v, z Span row space

(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than thé i@&reither

factor, so rank< 2 and the 3 by 3 product is not invertible.

ATy = d putsd in therow spaceof A; unique solution if thdeft nullspacenullspace

of AT) contains onlyy = 0.

(@) True(A andA™ have the same rank) (WalseA =[1 0]andAT have very
different left nullspaces (c)alse (A can be invertible and unsymmetric even if
C(A)=C(A")) (d) True(The subspaces fot and— A are always the same. If
AT = Aor AT = — A they are also the same fdrT)

Choosel = bc/a to make[2 B ] arank-1 matrix. Then the row space has bésis)

and the nullspace has basisb, a). Those two vectors are perpendicular!
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27 B andC (checkers and chess) both have rank2# 0. Row 1 and 2 are a basis for the
row space of”, BTy = 0 has 6 special solutions with1 and 1 separated by a zero;
N(CT) has(-1,0,0,0,0,0,0,1) and (0, —1,0,0,0,0,1,0) and columns3, 4, 5, 6 of
I; N(C) is a challenge : one vector M(C) is (1,0,...,0,—1).

28 The subspaces fal = uwv™ are pairs of orthogonal linex (and v+, u andu™).

If B has those same four subspaces tBea cA with ¢ # 0.

29 (a) AX = 0 if each column ofX is a multiple of(1,1,1); dim(nullspace = 3.
(b) If AX = B then all columns ofB add to zero; dimension of th&'s = 6.
(€) 3+ 6 = dim(M3*3) = 9 entries in & by 3 matrix.

30 The key is equal row spaces. First row 4f= combination of the rows of3: the

only possible combination (notic® is 1 (row 1 of B). Same for each row sb = G.

-1 1 0 0]
-1 0 1 0 1 -1
0 -1 1 0 1
31 A= N(A) Row spaceC(AT)
0 -1 0 1 1 0
0 0 -1 1 1 0
-1 0 0 1
o] e
0 -1
0 1
C(4) N(AT)
1 0
1 0
(- 1 - L 0 -

32 (a)N(BA) containadN(A).
(b) C(AB) is contained inC(A).
33 (a)N(A) andN(B) containN(T).

(b) Row spaces oft and B are contained in the row spaceDf
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34 Fundamental subspaces far (m x n).
Row spaceC(A™T) perpendicular to Nullspadg(A) : Dimensions: andn — r.
Column spac€(A) perpendicular ttN(AT) : Dimensions- andm — .
Subspaces foi” = { A A } — same ranl.

Row space ofl/ contains all{ v v } vin C(AT) (Dimensionr).

Nullspace ofi¥ contains all Y with y + zin N(W) (Dimension2n — 7).
z

Column space ofV = Column space oA (Dimensionr).
Nullspace ofi’ ™ = Nullspace ofA (Dimensionm — ).

35 Please send a proof or counterexample. Thank you.
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Problem Set 4.1, page 148

1 Both nullspace vectors will be orthogonal to the row spaagtordn R3. The column

space ofd and the nullspace o™ are perpendicular lines iR? because rank 1.

2 The nullspace of a 3 by 2 matrix with rank 2Zs(only the zero vector because the
columns are independent). $¢ = 0, and row space- R?. Column space= plane

perpendicular to left nullspace line in R3 (because the rank .

1 2 -3
3 (@) One way is to use these two columns directly = | 2 -3 1
and make co8 = — col 1— col 2. -3 5 =2

1

Impossible becaud¢(A4) andC(AT) _
(b) —3| is not orthogonal tg 1

are orthogonal subspaces:
5 1

1 1
() |1]| and|o| in C(A) andN(AT) is impossible: not perpendicular
1 0
(d) Rows orthogonal to columns makdgimes A = zero matrix. An example igl =
[+ 23]
(e) (1,1,1) in the nullspace (columns add to the zero vector) and @isb, 1) is in

the row space: no such matrix.

4 If AB = 0, the columns of3 are in thenullspaceof A and the rows ofd are in thdeft
nullspaceof B. If rank = 2, all those four subspaces have dimension at [2agtich

is impossible foi3 by 3.

5 (a) If Az = b has a solution andi™y = 0, theny is perpendicular td. by =
(Az)Ty = T (ATy) = 0. This says again tha€(A) is orthogonal toN(A™).
(b) If ATy = (1,1,1) has a solution(1,1,1) is a combination of the rows aof.

Itis in therow spaceand is orthogonal to evety in thenullspace
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6 Multiply the equations by, y2,y3 = 1,1, —1. Now the equations add o= 1 so

10

11

12

13

there is no solution. In subspace languages= (1,1, —1) is in the left nullspace.
Az = bwould need) = (yTA)x = yTb but herey™d = 1.

Multiply the 3 equations by = (1,1, —1). Thenz; — 22 = 1 plusze — 23 = 1 minus
x1 — a3 = 1is0 = 1. Key point: Thisy in N(A™) is not orthogonal td = (1,1,1)
sob is not in the column space amtle = b hasno solution

Figure4.1 hasx = x,. + x,,, wherex,. is in the row space and,, is in the nullspace.
ThenAz, = 0 andAx = Az, + Az, = Ax,.. The example has = (1,0) and row
space= line through(1, 1) so the splitting ist = «, + =, = (1,3) + (3, —1). Al
Ax are inC(A).

Az is always in thecolumn spacef A. If AT Az = 0 thenAz is also in thenullspace
of AT. Those subspaces are perpendicularASas perpendicular to itself. Conclu-
sion: Az = 0if ATAzx = 0.

(a) With AT = A, the column space and row space areshme The nullspace is
always perpendicular to the row space. @)s in the nullspace and is in the

column space- row space: so these “eigenvectossandz havex™z = 0.

For A: The nullspace is spanned by 2, 1), the row space is spanned b, 2). The
column space is the line throug, 3) andN(A™) is the perpendicular line through
(3,—1). For B: The nullspace oB3 is spanned by0, 1), the row space is spanned by

(1,0). The column space and left nullspace are the same as. for
x = (2,0) splits intox, + =, = (1,—-1) + (1,1).
VTW = zero matrix makes each columngforthogonal to each column &F. This

means: each basis vector fdris orthogonal to each basis vector #f. Thenevery

v in V (combinations of the basis vectors) is orthogonadteryw in W.
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xr
14 Ax = Bx meansthafA B] = 0. Three homogeneous equations (zero right
-
hand sides) in four unknowns always have a nonzero solutiterex = (3,1) and
z = (1,0) andAz = Bz = (5,6,5) is in both column spaces. Two planedif must

share a line.

15 A p-dimensional and g-dimensional subspace Bf* share atleastalinegf + g > n.
(Thep + ¢ basis vectors o andW cannot be independent, so some combination of

the basis vectors dof is also a combination of the basis vectordt.)

16 ATy = 0leadsto(Az)Ty = xTATy = 0. Theny L Az andN(AT) L C(A).

17 If Sis the subspace dR® containing only the zero vector, the®t" is all of R3.
If Sis spanned by1,1,1), thenS* is the plane spanned Iy, —1,0) and (1,0, —1).
If Sis spanned byl,1,1) and(1,1,—1), thenS* is the line spanned byt, —1,0).

18 S* contains all vectors perpendicular to those two given wect®oS" is the nullspace

5 1
of A = . ThereforeS* is asubspaceven ifSis not.

2 2 2

19 L* is the2-dimensional subspade plang in R? perpendicular td.. Then(L*)* is

a 1-dimensional subspada line) perpendicular td.*. In fact (L*) L isL.

20 If V is the whole spac®*, thenV* contains only theero vector Then(V4)+ =
all vectors perpendicular to the zero vectoR* = V.
2 2 3
1 3 3 2

21 Forexamplé—5,0,1,1)and(0,1,—1,0) spanSt =nullspace ofd =

22 (1,1,1,1) is a basis for the lin@+ orthogonal to the hyperplare
A= {1 1 1 1} hasP as its nullspace an@t" as its row space.

23 x in V= is perpendicular to every vector W. SinceV contains all the vectors i8,

x is perpendicular to every vector $ So everyz in V= is also inS*.

24 AA~! = I: Columnl of A~!is orthogonal to rowg, 3, ..., n of A and therefore it is

orthogonal to the space spanned by those rows.
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25 Ifthe columns of A are unit vectors, all mutually perpendéeuthenA™ A = I. Simple
but important! We write&) for such a matrix.
2 2 —1| Thisexample shows a matrix with perpendicular columns.
26 A=|-1 2 2|, ATA=09lisdiagonal (AT A);; = (columni of A) - (columnj of A).
2 —1 2| When the columns ananit vectorsthenAT A = I.
27 The lines3z + y = b; and6x + 2y = by areparallel. They are the same line if
by = 2b1. In that casé€b,, bs) is perpendicular t§—2, 1). The nullspace of the 2 by 2

matrix is the line3z 4+ y = 0. One particular vector in the nullspace(is 1, 3).

28 (a) (1,—1,0) is in both planes. Normal vectors are perpendicular to edbbro
but planes can still intersect! Two planesRrt can’t be orthogonal.
(b) Needthree orthogonal vectors to span the whole orthogonal complerneRt°.
(c) Lines inR3 can meet at the zero vector without being orthogonal.
1 2 3 1 1 —1| Ahasv=(1,2,3)inrow and column spaces
29 A=12 1 0|, B=|2 -1 0]; Bhasvinits column space and nullspace.
3 01 3 0 —1| wcannotbeinthe nullspace and row space,
or in the left nullspace and column space. These spacesthmgonal ancdb™ v # 0.
30 When AB = 0, every column ofB is multiplied by A to give zero. So the column
space ofB is contained in the nullspace of. Therefore the dimension &(B) <

dimension oN(A). This means ranlB) < 4 — rank(A).

31 null(N') produces a basis for threw spaceof A (perpendicular tiN(A)).

32 We needr'n = 0 andc'£ = 0. All possible examples have the forh= acr™ with
a # 0.

33 Bothr’s must be orthogonal to both's, bothc’s must be orthogonal to bottis, each

pair (r's, n's, ¢'s, and£'s) must be independent. Fact: All's with these subspaces

have the fornic; co]M[r; r3]* for a2 by 2 invertible M.
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Problem Set 4.2, page 159

0 (a) P? = Pistrue butPT # P. This question is about nonsymmetric projections (the

errore is no longer perpendicular to the projectipn Same forl — P.

1 1
(b)yv= isinC(P) andw= isin C(I — P). Butw is not perpendicular ta.
1 0

(c) If P2 = PandP™T = P, then the column spaces Bfandl — P are perpendicular:
(Pv)Y(I — P)w =v"P(I — P)w = 0 sinceP — P? = 0.
1 (@) atb/aa = 5/3; projectionp = 5a/3 = (5/3,5/3,5/3); e = (—2,1,1)/3
(b) atb/aTa=—1; projectionp=—a; e=0.
2 (a) The projection ofb = (cosf,sinf) ontoa = (1,0) is p = (cosh,0)
(b) The projection ob = (1,1) ontoa = (1, —1) isp = (0,0) sincea™d = 0.
The picture for part (a) has the vectoat an angl@ with the horizontak.. The picture

for part (b) has vectora andb at a90° angle.

1 1 1 5 1 3 1 1
1 1 1
3P1:§ 1 1 1 andPlbzg 5 .PQ:H 3 9 3| andPb= |3
1 1 1 5 1 3 1 1
P, projects ontd1, 0), P, projects ontq1, —1)
10 aat 1| 1 —
4 P = Pr= === . PiP, # 0 andP; + P; is not a projection matrix.
0 0 aa 2 -1
(P, + P)? is different fromP; + P.
1 -2 =2 4 4 -2
1 1
5P==-|_9 4 4 and P =- 4 4 -2
9 9
—2 4 4 -2 =2 1

P, and P, are the projection matrices onto the lines through= (—1,2,2) and

as = (2,2,—1). P, P, = zero matrix because; L as.

6 plz(%afgafg) andp2:(9a 9;79> andpS = (97*%a§>' Sopl + Py +P3 = b.
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1 -2 -2 4 4 -2 4 -2 4
1 1 1
Th+h+P=g1-2 4 4)+51 4 4 2|+5|-2 1 -2|=1IL
-2 4 4 -2 -2 1 4 -2 4

We canadd projections ontorthogonal vectorso get the projection matrix onto the

larger space. This is important.

8 The projections of1, 1) onto(1,0) and(1,2) arep, = (1,0) andp, = £(1,2). Then
p; + p, # b. The sum of projections is not a projection onto the spacerspd by

(1,0) and(1, 2) because those vectors arat orthogonal

9 SinceA is invertible,P = A(ATA)~! A" separates intel A= (AT)~1AT = . And

I is the projection matrix onto all dR2.

T 0.2 04 0.2 T 1 0
10 P, = a?fGQ = yPay = Pr= alTal = yPrPa; =
aj az 04 0.8 0.4 ajal 0 0

0.2| Thisisnota; = (1,0)
0 | No, PLP; # (PP

11 Here P is the usual projectioriP? = P = PT) of the whole spac®™ onto its

subspacé.
S is the row space and column spacefof
S+ is the nullspace oP and P™.
12 (@) p=A(ATA)"1ATb=(2,3,0),e=(0,0,4), ATe=0
(b) p = (4,4,6) ande=0 becausé is in the column space of.

1 0 0

13 PL=|0 1 0] = projection matrix onto the column space4fthezy plane)

0 0 0

(05 05 0

Projection matrixA(A™ A)~! AT onto the second column space.
P,=105 05 0]|=

Certainly(P)? = P,. A true projection matrix.

0 0 1
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1 00 1 0 00 1 1
010 ) 01 00 2 2
A= , P = square matrix= ,p=P = .
0 0 1 0 01 0 3 3
0 00 0 00 O 4 0
The projection of thish onto the column space of is b itself because is in that

column space. BUP is not necessarily. Hereb = 2(columnl of A):
0 1 5 8 —4 0

A=11 2 givesP:21—1 8 17 2| andb=Pb=p=|2].
2 0 -4 2 20 4

2A has the same column spaceAsThenP is the same ford and2A, butz for 24

is half of z for A.

%(1,2, -+ %(1,0, 1) =(2,1,1). Sobis in the plane. Projection show = b.

If P2= Pthen(I — P)2=(I—-P)I—-P)=I1I—PI—IP+P2=1— P.When

P projects onto the column spade;- P projects onto théeft nullspace

(a) I — P is the projection matrix ont6l, —1) in the perpendicular direction {d@, 1)

(b) I — P projects onto the plane+ y + z = 0 perpendicular tgl, 1,1).
5/6  1/6 1/3
1/6  5/6 —1/3].
1/3 —-1/3  1/3

For any basis vectors in the plane- y — 2z = 0,

say(1,1,0) and(2,0,1), the matrixP = A(ATA)"1ATis

1 1/6 —1/6 —1/3 5/6 1/6  1/3
e=|-1|,Q=%=|-1/6 1/6 1/3|.1-Q=1{1/6 5/6 —1/3].
2 13 1/3 2/3 1/3 —-1/3 1/3

(A(ATA)"TAT)? = A(ATA)"1(ATA)(ATA)~TAT = A(ATA)~LAT. SoP? = P.

Pbis in the column space (whefeprojects). Then its projectioR(Pb) is alsoPb.

PT = (A(ATA)1AT)T = A(ATA)"H)TAT = A(ATA)1AT = P. (AT A is sym-
metric!)
If Aisinvertible then its column space is allBf*. SoP = I ande = 0.
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25 The nullspace ofiT is orthogonatto the column spac€(A). Soif ATb = 0, the pro-
jection ofb ontoC(A) should bep = 0. CheckPb = A(ATA)~1ATh = A(ATA)~10.

26 The column space ofP is the space thatP projects onto. The column space of
always contains all outputdz and here the outpuBz fill the subspace&. Then rank

of P = dimension ofS = n.
27 A~! exists since the rank is= m. Multiply A2 = A by A~! to getA = I.

28 If AT Ax = 0then Az is in thenullspace of AT. But Az is always in thecolumn
space ofA. To be in both of those perpendicular spacés, must be zero. Sel and

AT A have thesame nullspaceA™ Az = 0 exactly whenAz = 0.

29 Start fromP? = P. The(2,2) entry of P? is the dot product (rol of P) - (column2 of P).

SinceP is symmetric this ig|row 2 of P||%.

11 ) 1 1/2
P== hasP® = P and Py = 3 and columm2 =

1
has||column2||? = =
11 1/2 2

30 If BBTz = 0then0 = 2"BBTz = ||BTz||%. ButthenBTz = 0. SinceB has

independent rows, this only happens:it= 0. SoBB? is invertible.
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Problem Set 4.3, page 161

1 0 0
11 8| 4 8 36
1A= andb = give ATA = andATb = :
1 3 8 8 26 112
1 4 20
1] 1
~ o 1 . 5 3
AT Az = ATb givesz = andp = Az = ande =b—p =
4 13 -5

10 0 1
11 C 8| This Az = bis unsolvablg 5
2 = . ; Whenp replaced,
1 3| |D 8| Projectbtop = Pb= 13
1 4 20 17

1
T= [ ] exactly solvesAz = p.
4

3 In Problem 2p = A(ATA)"1ATb = (1,5,13,17) ande = b — p = (—1,3, -5, 3).
This e is perpendicular to both columns df This shortest distandge|| is v/44.

4 E=(C+0D)?>+ (C+1D —28)2+ (C + 3D —8)? + (C + 4D — 20)%. Then
OE/0C = 2C 4+ 2(C+ D —8)+2(C +3D —8)+2(C+4D —20) = 0 and
OE/OD = 1-2(C+ D —8)+3-2(C+3D —8)+4-2(C+4D — 20) = 0.

. 4 8| |C 36
These two normal equations are again = .
8 26| |D 112

5 FE=(C—-0)24(C—-8)*+(C—8)?+(C—20)2. AT=[1 1 1 1]andA™A4 = [4].
ATb = [36] and (ATA)"'ATb = 9 = best heightC for the horizontal line.
Errorse = b —p = (-9, —1,—1,11) still add to zero.
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6

10

11

12

a = (1,1,1,1) andb = (0,8,8,20) giveZ = a'b/a>a = 9 and the projection is
Ta=p=(9,9,9,9). TheneTa = (-9,—1,—-1,11)%(1,1,1,1) = 0 and the shortest
distance fronb to the line throughu is ||e|| = v/204.

Now the4 by 1 matrix in Az = bis A = [0 1 3 4]". Then ATA = [26] and
ATb = [112]. BestD = 112/26 = 56/13.

Z = a'b/a"a = 56/13 andp = (56/13)(0,1,3,4). (C,D) = (9,56/13) don’t
match(C, D) = (1,4) from Problemsl-4. Columns ofA were not perpendicular so

we can't project separately to fird and D.

1 0 0 0

Parabola C 4 8 26 C 36
11 1 8 R

Projectb D|= CATAzZ=| 8 26 92| |D|=|112].
1 3 9 8

4D to 3D E 26 92 338| | E 400
1 4 16 20

Figure4.9 (a) is fitting4 points andt.9 (b) is a projection iR*: same problem!

1 0 0 O0f(C 0 C 0| Exactcubic sop =b,e =0.

11 1 1||D 8 D| 1| 47| This Vandermonde matrix
= . Then = .

13 9 27| |FE 8 E —28| gives exact interpolation

1 4 16 64| | F 20 F 5| byacubican,1,3,4

(&) The best line: = 1 + 4t gives the center poinlAi: 9 at center timet = 2.

(b) The first equatio®m + D>  ¢; = > b; divided bym givesC + Dt = b. This
shows : The best line goes throubylat timet.

@ a=(1,...,1) hasa¥a = m, a™d = by + --- + b,,. Thereforer = aTb/m is
themeanof thed'’s (their average value)

(b) e = b — 7a and|le||> = (by — mean)? + --- + (b,, — mean)? = variance
(denoted byr?).

111

L . 1
(c) p=(3,3,3) ande = (-2, —1,3) pTe = 0. Projection matrixP = 3111
111
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(ATA)~1AT(b — Ax) = z — x. This tells us: When the componentsA¢ — b add
to zero, so do the components®f- x : Unbiased.

The matrix(Z — z)(z — x)T is (ATA)"1AT(b — Az)(b — Ax)TA(ATA)~1. When
the average ofb — Ax)(b— Ax)" is 0?1, the average ofz — x)(Z — =)™ will be the
output covariance matrikAT A) "1 ATa2 A(AT A)~! which simplifies tar? (AT A) 1,
That gives the average of the squared output eftorse.

When A has1 column of4 ones, Problem4 gives the expected errgi; — x)? as

0?(AT A)~!' =02 /4. By takingm measurements, the variance drops fighto o2 /m.

1 9 _ 1 o . . ,
Ebw + g% = 1—0(b1 + -+ b1o). Knowingz, avoids adding all ten’s.
1 -1 7
C o 9 3 2(|C 35
1 1 = | 7/|. The solutionz = comes from =
D 4 2 6||D 42
1 2 21
p = Az = (5,13,17) gives the heights of the closest line. The vertical erroes ar

b—p=(2,—6,4). This errore hasPe = Pb— Pp=p—p = 0.
If b = errore thenb is perpendicular to the column spaceAfProjectionp = 0.
The matrixA has columng, 1,1and—1,1,2. If b = Az = (5,13,17) thenz = (9,4)

ande = 0 sinceb = 9 (columnl) + 4 (column2) is in the column space afl.

eisinN(AT); pisinC(A); zisinC(A™); N(A) = {0} = zero vector only.
|5 0 C 5 .
The least squares equation|is = . Solution:C =1, D = —1.
0 10 D —-10

The best line i$ = 1 — t. Symmetrict’s = diagonalA™ A = easy solution.

e is orthogonal tgp in R™; then|le||? = T (b—p) = e"b=b"b—b"p.

The derivatives of Az — b||2 = T AT Az — 2b" Az + b" b (this last term is constant)
are zerowheRAT Az = 2A"b, orx = (ATA)"1ATb.

3 points on a line will giveequal slopes(bs — b1)/(t2 — t1) = (bs — ba)/(ts — t2).
Linear algebra: Orthogonal to the columis1, 1) and(¢y, ta,t3) ISy = (t2 —t3, t3 —
t1,t1 — t2) in the left nullspace ofd. b is in the column space ! Thep'd = 0 is the

same equal slopes condition written(ads — b1)(ts — t2) = (bs — b2)(ta — 1).



Solutions to Problem Sets 75

26 The unsolvable equations fat+ Dz + Ey = (0,1, 3,4) at the4 corners are

1 1 0 0

C 4 0 0 8| |C 2
1 0 1 I - .

D CATA=10 2 0|;Ab=|-2|;|D|=| -1
1 -1 0 3

E 00 2 -3| |E| |-3/2
1 0 -1 4

At z,y = 0,0 the best plan@ — = — gy has height” = 2 = average 0f), 1, 3, 4.
27 The shortest link connecting two lines in spacpéspendicular to those lines

28 If A has dependent columns, thérd A is not invertable and the usual formua=
A(ATA)~1 AT will fail. ReplaceA in that formula by the matri¥s that keep®nly the

pivot columns ofA.

29 Only1 plane contain®, a;, as unlessa;, a; aredependentSame testfot, ..., a,—1.
If they are dependent, there is a vectoperpendicular to all the's. Then they all
(including0) lie on the planev z = 0 going throughe = (0,0,...,0).

30 When A has orthogonal columnél, ..., 1) and (71, ...,T},), the matrix AT A is
diagonalwith entriesm and7? + - -- + T2. Also ATb has entrie$; + - -- + b, and

Tiby +- - -+ Tyby,. The solution with that diagona™ A is just the givere = (C, D).
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Problem Set 4.4, page 186

1 (a) Independentb) Independenand orthogonal(c) Independenand orthonormal
For orthonormal vectors, (a) becom@so0), (0, 1) and (b) is(.6, .8), (.8, —.6).
5/9 2/9 —4/9

Divide by length 3 to get 10
2 QTQ = butQQ™ = | 2/9 8/9 2/9].
_ (2 2 1 _ 1 2 2
qlf(§a§a73>'q2*(7§7§7§)' 01
—4/9 2/9  5/9
3 (a) AT A will be 161 (b) AT A will be diagonal with entrieg?, 22,32 = 1,4, 9.
1 0 1 0 0
4@Q=10 1/,QQT =10 1 0| #1. AnyQ withn < m hasQQ"™ # I.
0 0 0 0 O

(b) (1,0) and(0, 0) areorthogonal notindependentNonzero orthogonal vectoese
independent. (c) From, = (1,1,1)/4/3 my favorite isq, = (1,—1,0)/v/2 and
q; = (1,1, *2)/\/6

5 Orthogonalvectors ard1, —1,0) and(1, 1, —1). Orthonormalafter dividing by their

Iengths:(%,—%,o) and(%, %,—%).

6 Q1Q- is orthogonal becaug®)1Q2)*Q1Q2 = QTQTQ1Q2 = QT Q2 = I. Another
approachis to see the®,Q;) ' = Q; Q7" = Q3 QT = (Q1Q2)".

7 When Gram-Schmidt give§ with orthonormal columnsRQTQz = Q™b becomes
Z = Q"b. No cost to solve the normal equations!!

8 If q, andg, areorthonormalvectors inR® thenp = (q] b)q, +(q3 b)q, is closest td.

The errore = b — p is orthogonal taz; andg,.

8 —.6 1 0 0
9@Q=1,6 8|hasP=QQT = |0 1 0| = projection on thery plane.
0 0 0 0 O

(b) (QRM)(QQT) =QRQTQ)QT = Q™.



Solutions to Problem Sets 77

10 (a) Ifq;, g+, g5 areorthonormaithen the dot product af; with ¢1q, +cags +c3gs =

0 givesc; = 0. Similarly co = ¢35 = 0. This proves Independeng’s
(b) Qz = 0 leads toQTQx = 0 which sayst = 0.

11 (a) Twoorthonormalvectors arey, = 15(1,3,4,5,7) andg, = 15(-7,3,4,-5,1)
(b) Closest vectot= projectionQQ*(1,0,0,0,0) = (0.5, —-0.18, —0.24,0.4, 0).

12 Multiply b = z1a1 + 12a2 + 303 by ax] :
alTb = :clalTal + :cgalTag + :cgalTag =040+ :clalTal

Divide by ala; (not necessarily equal tg to findz; = afb/ala;.

13 The multiple to subtract i§$—3. ThenB = b—gTTga: [ ! }2 [ ! }[ 2
0 1 -2
T
|t [ql q2‘| lall aib) _ |1/V2 0 1V21V2 2V = QR.
1.0 0 Bl vz —1/v2] | 0 2v2

15 (a) Gram-Schmidt chooses = a/||al| = %(1,2,—2) andg, = $(2,1,2). Then
qs = +(2,-2,-1).
(b) The nullspace ofi™ containsg,
(c) 2= (ATA)"1AT(1,2,7) = (1,2).

16 p = (a™b/aTa)a = 14a/49 = 2a/7 is the projection ob ontoa. g, = a/||al =
a/7is(4,5,2,2)/)7. B=b—p=(—1,4,—4,—4)/Thas|B|| = 1 soq, = B.

17 p = (a'b/aTa)a = (3,3,3) ande = (—2,0,2). Then Gram-Schmidt will choose
g1 = (1,1,1)/v3 andg, = (~1,0,1)/V2.

18 A=a=(1,-1,0,0;B=b-p= (1,1, -1,0;C=c—p,—pp = (% % %,71).

272

Gram-Schmidtwould go onto normalige = A/||A||, g5 = B/||B]|,q; = C/||C]||.
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If A=QRthenATA = RTQTQR = R™ R = lowertriangular timesippertriangular

(this Cholesky factorization o™ A uses the samg as Gram-Schmidt!). The example

-1 1 -1 2
3 3
hasA = 2 1| = % 2 -1 [ = @R and the samd&? appears in
0 3

2 4 2 2
AT A — |:9 9] _ |:3 0] [3 3
9 18 3 3 0 3
(@) True FromQT = Q! we find (Q")~! = (@) ~!. And always(Q™)~! =
@HT.
(b) True So the transpose @p—! = inverse ofQ~!'. We are given orthonormal

columns:QTQ = I. Then||Qz||? = 2TQ"Qx = 2Tz = ||z||*.

=RTR.

Notice : @ might be rectangular (and then not an orthogonal matrix).
The orthonormal vectors arg = (1,1,1,1)/2 andq, = (=5, —1,1,5)/+/52. Then
b = (—4,-3,3,0) projects top = (¢Tb)q; + (¢3b)q, = (—7,-3,—1,3)/2. And
b—p=(-1,-3,7,—3)/2is orthogonal to botlg, andg,.
A= (1,1,2), B = (1,-1,0), C = (-1,-1,1). These are not yet unit vectors.
Gram-Schmidt will divide byf|A|| = v/6 and||B|| = v2 and||C|| = V/3.

1 0 0 1 0 0 1 2 4
Youcanseewhy, = |0|,g2=[0]|,g35=|1|-A=1]|0 0 1| |0 3 6| =

0 1 0 01 0|0 0 5
QR. This@ is just a permutation matrix—certainly orthogonal.

(a) 1 equation4 unknownsg3 independent solutions.

We could choose the solutiofs, 0,0,1), (0,1,0,1),and(0,0,1,1).
(b) Those vectors are orthogonal§d = line through(1,1,1 — 1).
(c) The componentds = (1,1,1,1)in St is

(1,1,1,1)%(1,1,1,-1)
(1a 17 ]-a 71)T(1’ 17 ]-a -1

2 1
by = (L1 -1) =211 -1)=5(L,1,1,-1)

)

1 1
Thenb, = b—by = (1,1,1,1)~5(1,1,1,~1) = 5(1,1,1,3). Checkl +14+1-3 = 0.
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2 —1 5 3
2 1 1 2 0 1
25 =
11 Vb Vb
1 -1 2 2
1 1 1 1 0 0 g has b ol 1 1
= and R,2 has become zerad =
11 V2 V2 11
had dependent columns.
6 (g1 C*)q, ngB because, = ” I and the extra, in C* is orthogonal tay,.

27 Whena andb are not orthogonal, the projections onto these loheaot addo the pro-
jection onto the plane af andb. We must use the orthogondlandB (or orthonormal

g, andg,) to be allowed to add projections on those lines.
28 There arel m?n multiplications to find the numbers,; and the same far;;.
29 q, = %(272a —1),q, = %(2a —-1,2),q3 = %(L -2,-2).
30 W has orthonormal columns $§*W = I andW ™' = w1,

31 Choose: = % to give orthonormal columns. The projectioniof (1,1, 1, 1) onto the
first columng, = 3(1,-1,-1,-1)is (qTb)q, = —q;.
The projection ob on g is (g1 b)g, = —qs.
Sincegq, is orthogonal tag,, we add to find the projectiohrgq,; — g, onto the plane of
g, andgs,.

32 Q = I —2uut is areflection matrix (Q% = I) if w is a unit vector||u|| =

0 1 0 0
0| . 1 0 .
u= givesQ = u=|2/2|givesQ= 10 0 -1
1 0 —1
V2/2 0 -1 0

33 Orthogonal and lower triangulas +1 on the main diagonal and zeros elsewhere.

34 (@) Qu = (I — 2uu™)u = u — 2uuTu. This is—u, provided thatuTu equalsl
(b) Qu = (I —2uuT)v = v — 2uuTv = v, provided thatsTv = 0.
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35 Starting fromA = (1,-1,0,0), the orthogonal (not orthonormal) vectol® =
(1,1,-2,0)andC'=(1,1,1,—3)andD =(1,1, 1,1) are in the directions af,, g5, g.
The4 by 4 and5 by 5 matrices withinteger orthogonal column@ot orthogonal rows,

since not orthonorma)!) are

1 1 1 11
1 1 11
-1 1 1 11
-1 1 11
A B C D|= andf 0 -2 1 1 1
0 -2 1 1
0 0 -3 11
0 0 -3 1
0 0 0 —4 1

36 [Q, R] = gr(A) produces fromA (m by n of rankn) a “full-size’ squareQ =[ Q1 Q2]

R
and . The columns of); are the orthonormal basis from Gram-Schmidt of the
0

column spacef A. Them — n columns ofQ, are an orthonormal basis for theft
nullspaceof A. Together the columns @) = [Q; Q2] are an orthonormal basis

for R™.

37 This question describes the negt,, in Gram-Schmidt using the matrig) with
the columngy,, ..., g, (instead of using thosg's separately). Start from, subtract
its projectionp = QQ™a onto the earlie’s, divide by the lengtlof e = a — QQTa

to getthe nexyy,, , , = e/|le||.
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Problem Set 4.5, page 196

1 1 1
equation (7), page 195.

EHEE

1 1 1 1 1
1A = [ ] = [ ][ } = CRs0 A] = RT(CTART)~'CT from

11 0 1/4 0
0 0
T‘CTC’I’T ’I’T'T CCT
2 AtA=———_=— and AAT = —— are symmetric
(rTr)(cTe) »Tr cTe y
The first two Penrose conditions are also easy to check:
T T T
AATA = (™) —erT = A and Aataat="0_ T _ _ 4+
(er )TTT er rTr (rTr)(cTe)

A
3 Problem: Check thaB = [ hasB™T = [ At 0 }

0

Solution : Start fromB+ B = A1 A. Then the Penrose conditions are satisfiedy.

4 The column space of is R?. The row space is the-y plane inR*. ThenA+ = AT,

0 1
0 0 1/2
5 At=1| 0o o and (AT)T = / .
10 0
1/2 0
Itis always true thatA™ )7 is the transpose oi . The straightforward proof quickly
checks the Penrose conditions. We are simply reversingtheitie and right side of

the “Big Picture” of4 subspaces.

6 Given thatPT = P = P2, the pseudoinversBt is the same a®. The first two
Penrose conditions beconi® = P (true). The last two conditions beconi@?)" =

PT = P (true).
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7 We are asked to verifyAAT)2 = AAT. WatchCT ART cancel its inverse!
(AAT)?=[ART(CTART)'CT][ART(CTART)1CT|=ART (CTART) 1 CT=AAT

8 ATA=[RY(CTAR")"'CT|CR = R*(CTC RRY)"'CTCR = RY(RR")"'Ris
symmetric.

9 Delete edged ande. The graph becomes a triangle withby 3 incidence matrix.

-1 1 0 -1 1 1 0 -1
A=| -1 0 1| =CR=| -1 0 01 -1 |
0 -1 1 0 -1
-1 1 0 1 0
1 -1 0
ThenCTART = -1 0 1 0 1| =3I
1 0 -1
0 -1 1 -1 -1
-1 -1 0
A+ (1 T LT 1
From formula (7):A™ =R 3 C :gA =3 1 0 -1
0 1 1

10A:[1 o}andB:

0 .
. Certainly
10

1 :
] give AB = { 1 } andBA =
1

1 1
i 1
(AB)t = [ 1 } isnotBtAT = [ 2 2 ] ],so pesudoinverse®n't copy
0
true inversegwhere(AB)~! = B~1A~1). But they do copy inverses when ranks are

right—as they are for

(BA>+:[1 grlé ;]:H[l N

11 The four Penrose conditions fod ) are all satisfied byl. (Also (A1)1 takes the
column space ofi T to its row space. This meaid )t takes the row space of to

its column space—just likel !)
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Problem Set 5.1, page 203

10

det(24)=2"det A = 8; det(—A) = (—1)*det A = 1; det(A?) = 1; det(A™)=2.
det(3A4) = (3)3det A = —% anddet(—A) = (—1)3det A = 1; det(A?) = 1;
det(A™1) = —1. If det A = 0 thendet A/2 = det(—A) = det A2 =0; n0 AL,

(a) False det(I + I)is notl + 1 (except whem = 1)

(b) False det(4A)is4™det A

0 0 0 1 0 —-1{. . :
(c) False A = ,B = ,AB — BA = is invertible.

0 1 10 1 0
Exchange rows 1 and 3 to shelwt J; = —1. Exchange rows 1 and 4, then rows 2 and

3 to showdet J, = 1. Two exchanges even permutation.

|Js| = 1 by exchanging rowt with 5 and row2 with 4. |Js| = -1, |J7| = —1.

Determinantd, 1, —1, —1 repeat in cycles of lengthso the determinant of;o; is +1.
det A=4,det B=0,detC =0.

The6 terms become(qg+b)z—b(p+a)z+--- (4 more). The approach in the display
(using linearity to split up row2) is better. Result det does not change if row® is
added to rowd.

a p x

aqz +cpy + brx )
detAT=1|p g y|= =y = same six terms aslet A

—ary —bpz —cqr
c r =z
Key point: det PT = det P for every permutation, because the number of row

exchanges is the same (just done in reverse order). Phisreven whernPT is even.

det A = 1 from two row exchangesdet B = 2 (subtract rows 1 and 2 from row 3,

then columns 1 and 2 from column 3}t C' = 0 anddet D = 0 (equal rows).

If the entries in every row add to zero, théh 1,...,1) is in the nullspace: singular
A hasdet = 0. (The columns add to the zero column so they are linearly rodgra.)

If every row adds to one, then rows df— I add to zero (not necessariligt A = 1).
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If P, needs: exchangesto readrandP, needsV exchangestheR, P, reached after
thosen+ N exchanges. Séet(P P,) = (—1)"tN = (=1)"(=1)" = (det P) (det P»).
We can pair off even permutations with odd permutations: edelven followed by

exchangind and2. Number of even permutatioas}zn! =number of odd permutations.

A singular rank one matrix has determinaat0. The skew-symmetricl also has
det A = 0. A skew-symmetric matrix4 of odd order3: Changing every sign will
multiply det A by (—1)? but also keep the samiet A = det AT. Sodet A = 0.
When thei, j entry isi timesyj, row 2 = 2 times row 1 salet A = 0.

When theij entry isi + 7, row 3 — row 2 = row2 — row 1 soA is singular:det A = 0.

Fill a row (or column) by4 zeros to guarante&t = 0. Leave only the main diagonal
(12 zeros) to allowdet A # 0.

The cofactor formulalet A = a1,C11 + - - + a1,C1, givesdet = 0 if all cofactors
are zero. The by 2 matrix of 1's hasdet = 0 even though no cofactors are zero.
Two equal rows implydet = 0. Prooffor3 x 3ifrow 1=row 2. Thena = p,b = ¢,

¢ = r. Thenagz+brz+cpy—ary—bpz—cqr = abz+bcx+cay—acy—baz—cbx = 0.

If A has two equal rows theA™ has two equal columns (say columpandk). Then

the columns are not independent. & AT = 0 anddet A = 0. Other proofs also

reach this conclusion.

Start fromAC™ = (det A)I. Take determinants of both sides:
(det A) (det C) = (det A)" and detC = (det A)" "

Note: Ifdet A = 0 (singular matrix) them is the limit of invertible matricesl;, As, . ..
Apply det C; = (det A;)"~! and take the limit as — co. (How would you define”

for al by 1 matrix ??)

If you know C and ifdet A=1 then you knowA—!=C"/1. Theninvert4—! to find A.
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Problem Set 5.2, page 209

1

2

10

If det A = 2thendet A~! = %, det A” = 2", anddet AT = 2.

det A = —2, independent columnsjet B = 0, dependent columnsietC = 4,
independent columns bdet D = 0 because its submatri® has dependent rows (and

dependent columnsPlease omit the comment A and B are 2 by 2".

The problem suggestsways to see thatet A = 0: All cofactors of row1 are zero.
A has rank< 2. Each of the 6 terms idet A is zero. Notice also that column 2 has no
pivot.

[ 09 —09

(@ A= hasdet A = 1.62 anddet A™ = (1.62)" — oc.
09 09

2 2
(b) A= hasdet A = 0 anddet A" = 0 evenifA;; = 2.
2 2

2 5 1 5 2 1
@ A = =3, |Bi] = = —6, |By| = = 3 so
1 4 2 1 2

T = 76/3 = —2andxy = 3/3 =1 (b) |A| =4, |Bl| =3, |BQ| = -2, |Bd| =1.
Thereforer; = 3/4andzy = —1/2 andzs = 1/4.

@y = ‘2%‘ /‘gg = —c/(ad — bc) (b) y = det By/det A = (fg — id)/D.
That is becaus®, with (1,0,0) in column2 hasdet B, = fg — id.

(@) x1 = 3/0andxe = —2/0: no solution (b) z1 = 2 = 0/0: undetermined
The determinant is linear in its first column 30, a1 + 22 a2 + z3a3asas|
splits intox1 |a; a2 as| + z2]asz a2 as| + x3las a2 as|. The last two determinants are
zero because of repeated columns, leavinig a2 as| which isz; det A.

If the first column inA is also the right sidé thendet A = det B;. Both By andB3 are
singular since a column is repeated. Therefare= |B;|/|A| = 1 andze = 23 = 0.
The patternlet = 1,0, —1,—1,0, 1 repeats as i, ¢ = E,,. SOF190 = F4 after16
repeats of length. And £, = —1.
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9 3 5

If the entries ard to 9, the maximum determinantay be412=| 4 8 1

2 6 7

True. We knowthatlet AB = (det A) (det B). And we knowdet(ABC) = (det AB) (det C).

Put these together to prodet(ABC) = (det A) (det B) (det C).

The combinations of = (1,0,0) andi + j = (1, 1, 0) fill the zy planein zyz space.
(&) Sum= zero vector. (b) Sum= —2:00 vector= 8:00 vector.

(c) 2:00is 30° from horizontal= (cos Z,sin Z) = (v/3/2,1/2).

Moving the origin t06:00 addsy = (0, 1) to every vector. So the sum of twelve vectors

changes fronf to 125 = (0, 12).

(a) det P = 1 because columrix 1, 4, 3 have two exchanges froin 2, 3, 4.

(b) det P = —1 because columris 2, 1, 4 have only one exchange (8fand1).
(c) det P = —1 because columrk 2, 4, 3 have one exchangg &nd4).

The sumigv —u)+ (w—v)+ (u—w) = zero vector. Those three sides of a triangle

are in the same plane!

All vectors in3D are combinations af, v, w as drawn (notin the same plane). Start by
seeing thatu + dv fills a plane, then adding all the vectens fills all of R3. Different

answer when, v, w are in the same plane.

The only4 x 4 column orders that start with, 2 are3,2,1,4 and3, 2,4, 1 (so2 terms

in det A).
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Problem Set 5.3, page 214

1 Edge matrixE = identity matrix I for a unit cube. With edges,, e3, e out from

(0, 0, 0), the other7 corners are;,es, es,e; +ex,e1 + es,es + €3,e1 + ex + es.

2 Perpendiculae’s give an ordinary box with side lengthie, ||, ||e2]], ||es]]-

3 The largest box with edge lengths2, 3 is the ordinary0-degree box with volume.
This is Hadamard'’s inequality (see Problem 4).

4 |det E| < (|lex]]) (|lezl]) - - (|lex]]) is “Hadamard’s inequality”. One proof starts
with £ = { e ... e, } = @R from Section 4.4 (Gram-Schmidt producing
orthogonalg’s from independeng’s). Eache; is a combination of orthogongl, with
gl = 1:

a; =Y riq; | =Y rllal >3
|det E| =|detQ||det R| = (111) .- (rnn) < |l€1]] ... ||€n]]-

Wikipedia proves Hadamard’s inequality from “geometricame< “arithmetic mean”.

3 2
5 (a) The parallelogram area with edd8s2) and(1, 4) is the determinanto =
1 4
. 1 113 2
12 — 2 =10. (b) Triangle area- ; (parallelogram arga— 3 = 5.
4 6
. . 113 2
(c) The triangle area i§ (parallelogram arda= 3 =5.
1 4
6T v+w = (4,6) 6T
| I w=,4
N L w=
w = (1,4)
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6 (a) Two sides aré3,4) — (2,1) = (1,3) and(0,5) — (2,1) = (—2,4). The triangle

. 1 1 3
area is half the parallelogram area§ =5

-2 4

" . . 113 1
(b) has an additional triangle (dashed lines) of aif a =".

1 5
7 The hypercube id-dimensions has perpendicular sides of length+1 + 1+ 1 = 2.
So its volume i2* = 16. This must be det H|.

8 An n-dimensional cube h&¥ corners. This is the case = 0 in Wikipedia’s formula:

. . n! . . .
An n-dimensional cube h@é“mﬁ m-dimensional sides, edges, corners,. ..
mi{n—m):

For edgegm = 1) this rule give2" ! timesn. 12 edges for 8D cube @ = 3).
For faces of dimensiom = n — 1 this rule give2n. Six faces for 8D cube.
The cube iR™ whose edges come fro?T has volumelet(27) = 2.

. . . I 1 1 . . .
9 The3-dimensional “unit pyramid” irR® hasvolumeg—' =5 | believe thel-dimensional

“unit pyramid” hasvolumel _ !
Py 41 247
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Problem Set 6.1, page 226

(0]

The eigenvalues ofl areX = 1 and0.5 (or 3).
The eigenvalues o™ are\ = 1 and(1)".

The eigenvalues o> areX = 1 and0.

(a) Arow exchange leaves thiswith A = 1 and—0.5 (or — 1).

(b) EveryA hasn — r zero eigenvalues:(= rank) : not changed by elimination.

A has\; = —1 and), = 5 with eigenvectors; = (—2,1) andas = (1,1). The

matrix A + I has the same eigenvectors, with eigenvalues increasédd@ and6.

That zero eigenvalue correctly indicates that I is singular.

A hasA; = 2 and )X, = —1 (check trace and determinant) with = (1,1) and
@y = (2,—1). A1 has the same eigenvectors, with eigenvalyes= ; and—1.
det(A— M) = X2+ X—6= (A+3)(A—2). Thend has)\; = —3 and)\, = 2 (check
trace= —1 and determinant —6) with z; = (3, —2) andz> = (1,1). A? has the
same eigenvectoss A, with eigenvalues? = 9 and\3 = 4.

A and B have eigenvaluesand3 (their diagonal entries : triangular matriced)+ B
hasA\? + 8\ + 15 = 0 and); = 3, \» = 5. Eigenvalues ofd + B are not equalto

eigenvalues ofl plus eigenvalues aBb.

AandB have); = 1and\, = 1. AB andBA have)\?> —4\+1 = 0 and the quadratic
formula gives\ = 2+ /3. Eigenvalues ofAB are not equato eigenvalues ofl times
eigenvalues of3. Eigenvalues of AB and B A are equal (this is proved at the end of
Section 6.2).

The eigenvalues df (on its diagonal) are thgivotsof A. The eigenvalues df (on its

diagonal) are all’s. The eigenvalues ofl are notthe same as the pivots.

() Multiply Az to see\z which reveals\ (b) Solve(A — A\I)xz = 0tofinda.
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9 (a) Multiply Az = \x by A: A(Az) = A(\x) = \Ax givesA’z = X’z

(b) Multiplyby A=z = A1 Ax = A~ x = NA~ 'z givesA~ 'z = %m

() AddIz =z: (A+Dx = (A + 1)x.

10 det(A — M) = A2 — 1.4\ + 0.4 s0 A has\; = 1 and\; = 0.4 with z; = (1,2) and
2 = (1,—1). A has)\; = 1 and); = 0 (same eigenvectors a§. A% has)\; = 1
and); = (0.4)1°° which is near zero. Sal'? is very nearA>: same eigenvectors

and close eigenvalues.

11 Proof 1. A — M\ is singular so its two columns are in the same direction.
Also (A — MI)xa = (A2 — A1)xa. SOa: is in the column space and both columns
must be multiples of-. Here is also @econd proof. Columns ofA — A, I are in the
nullspace ofd — Ay becauseM = (A — A\ I)(A — M) is the zero matrifthis is
the Cayley-Hamilton Theorerim Problem 6.2.3D Notice thatM haszero eigenval-
ues(A1 — A2)(A1 — A1) = 0and (A2 — A2)(A2 — A1) = 0. So those columns solve

(A — X\oI)x = 0, they are eigenvectors.

12 The projection matrid has\ = 1,0, 1 with eigenvector$l, 2,0), (2, —1,0), (0,0, 1).
Add the first and last vectorgl, 2, 1) also has\ = 1. The whole column space @t

contains eigenvectors with= 1! Note P? = P leads toA> = AsoA =0 or 1.
13 (@) Pu=(uuT)u = utimesuTu=wu timesl. So\ = 1.

(b) Pv=(vut)v=u(uv)=0.

(€) &, = (—1,1,0,0), 22 = (—3,0,1,0), &3 = (—5,0,0,1) all havePz = 0z = 0.
14 det(Q — M) = A2 —2Xcosf+1 = 0 when\ = cosf +isinf = ¢ ande~*?. Check

Mo = cos? 0 +sin? 0 = 1 and\; + A2 = 2cosf. Two eigenvectors of this rotation

matrix arex; = (1,4) andxe = (1, —%) (or ca; anddxzs with ed # 0).

15 The other two eigenvalues ade= 1(—1 =+ i\/3). Those three eigenvalues add to

0 = trace of P. The three eigenvalues of the secdharel, 1, —1.

16 SetA = 0indet(A — AI) = (A1 — A)... (Ao — A) tofinddet A = (A1)(A2) - -+ (An).
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17 Comparing)? — (a—l—d)A—i— (ad— bC) with ()\— )\1) ()\— )\2) =\2— ()\1 —l—)\g))\—f—)\l)\g

shows:
a+d= M\ + Xy = trace ad — bc = A\ Ay = determinant

If \y =3 and)\y = 4thendet(A — A\I) = \2 — T\ + 12.

o 4 0 10 -1 4 6
18 Trace= 9. Three possibilities arel = , ,
0 5 30 -1 0 5
19 (a) rank= 2 (b) det(BTB) =0 (d) eigenvalues of B> + I)~* arel, 1, 1.
0 1 . .
20 A= has tracd 1 and determinart8, so\ = 4 and7. Moving to a3 by

—28 11
3 companion matrix, for eigenvalués2, 3 we wantdet(C — A\I) = (1 — X\)(2 — A)

(3 — X). Multiply out to get—\3 + 6% — 11\ + 6. To get those numbeis —11,6
from a companion matrix you just put them into the last row:
0 1 0
C=10 0 1| Notice the tracé = 1 + 2 + 3 and determinar = (1)(2)(3).
6 —11 6
21 (A — M) has the same determinant @ — \I)T because every square matrix has

det M = det MT. Pick M = A — \I.

1 0 1 1 ) . 1 1
and havedifferent eigenvector and
10 0 0 1 0
1 00
22 We canchoosé&/ = | 2 4 0 |. Its eigenvaluess = .1, .4, 1.0 are on the
76 1

diagonal. Clearly/ ™ has rows adding tbsoM T times the columm = [ 11 1 }T
equalsv. Challenge : A3 by 3 singular Markov matrix with tracé hasA = 0, 1, —%.
03 0 0 | 0 1 | -1 1 . Always A? is the zero matrix if\ = 0 ando,
1 0 0 0 -1 1 by the Cayley-Hamilton Theorem in Problem 6.2.30.
24 )\ = 0,0, 6 (notice rankl and trace6). Two eigenvectors ofiv™ are perpendicular to

v and the third eigenvectoris: =1 =(0,—2,1), x2=(1,-2,0), z3=(1,2,1).
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25 When A and B have the same \'s andz’s, look at any combinatiow = c¢yx; +
<o+ cpx,. Multiply by AandB: Av = ¢t \ixy + -+ + cp Ay, €quals Bv =
ciA\ixy + - - -+ e Ay, for all vectors v. SoA = B.

26 A has eigenvalues and?2 from block B (with eigenvectors ending ifi, 0). A also

has eigenvaluesand7 from block D becaused™ has eigenvalugs, 7 from block DT

(and transposing doesn’t change eigenvalues).

27 A has rank 1 with eigenvalu@s0, 0, 4 (the 4 comes from the trace df). C has rank
2 (ensuring two zero eigenvalues) afid1, 1, 1) is an eigenvector withh = 2. With
trace 4, the other eigenvalue is alse= 2, and its eigenvector i€l, —1,1, —1).

28 The4 by 4 matrix A of 1's hasA = 0,0,0,4. ThenB = A—IThas\ = —-1,-1,—1,3.
AndC =1—- AhasA=1,1,1,-3.

29 Aistriangular:\(A) = 1,4,6; A(B) = 2,v/3, —/3; C has rank oneA(C) = 0,0, 6.

a b 1

1
30 =(a+Db) whena + b = ¢+ d. Thus\; = a + b.
c d 1 1

Then)y, =trace— A\ = (a+d) — (a+b)=d—b.
31 If PA exchanges rowsand?2 of A, thenAPT exchanges columrisand?2. In fact

01 0
P=|10 0| =P'=P' and B=PAPT = PAP!.
00 1

ThenB is similar to A and they have the same eigenvalues. In this faakd tracel 1

—10 2 1
example, the eigenvaluesdfandB are0, 0, 11. FromA—111 = 3 -5 3
4 8 -7

1

the eigenvector foh = 11is | 3

4
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32

33

34

35

36

(a) u is a basis for the nullspace (we knotw. = Ou); v andw give a basis for the
column space (we knowlv and Aw are in the column space).

(b) A(v/3 4+ w/5) = 3v/3+ 5w/5 = v+ w. Sox = v/3 + w/5 is a particular
solution to Az = v + w. Add anycu from the nullspace to find all solutions.

(c) If Az = u had a solutiony would be in the column space : wrong dimensin
Always (uvT) u = u(vTu) sow is an eigenvector ofiv™ with A = vTu. (Watch
numbersvTu, vectorsu, matricesuv™ 1) If vTu = 0thenA? = u(vTu)v?T is the
zero matrix and\? = 0,0 and\ = 0,0 and tracg A) = 0. This zero trace also comes

from adding the diagonal entries df = uv™ :

(%51 U1v1 U102
A= |:’Ul ’(}2} = has traceuv; + ugvy = ’UT’LL =0
us U2V1 U2V

The vector(1, 1, 1, 1) is not changed by. Itis the eigenvector fok = 1. The othei3

eigenvectors (discussed in detail in Section 6.4) are

1 1 1

) -1 —1
L2, L3, Ty =

i? 1 (—i)?

i3 -1 (—i)3

The six3 by 3 permutation matrices includ® = I and three single row exchange
matricesP, s, P13, P»s and two double exchange matrices liRg Py 3. SinceP™P = I
gives(det P)? = 1, the determinant aP is 1 or—1. The pivots are always 1 (but there
may be row exchanges). The tracefotan be 3 (forP = I) or 1 (for row exchange)
or 0 (for double exchange). The possible eigenvalues aredt-danande?™/3 and

e—27ri/3_

AB — BA = I can happen only for infinite matrices. " = A andB™ = — B then
z'z = 2" (AB - BA)x = 2" (A"B + BT A) x < ||Az||||Bz|| + || Bz|| || Az||.

Therefore|| Az|| || Bz|| > 3||=||* and(|[Az||/[|x[]) (|| B]l/||=|]) >

1
5
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37 A1 = e2™/3 and Xy = e 2™/3 give det \j Ao, = 1 and trace\; + \y = —1.
cosf) —sinf . 2 .
A= with # = = has this trace andet. So does every/ —! AM!
sin 6 cosf 3

38 (a) Since the columns of add to 1, one eigenvalue }s= 1 and the other ig — 0.6

(to give the correct trace+ 0.4).

(b) If ¢ = 1.6 then both eigenvalues are 1, and all solutiong4o— I) x = 0 are

multiples ofz = (1, —1). In this caseA has rankl.

(c) If ¢ = 0.8, the eigenvectors fok = 1 are multiples of (1, 3). Since all powerg®

. 1|1 1 . .
also have column sums 1, A™ will approachz = rank-1 matrix A with
3 3

eigenvalueg, 0 and correct eigenvectorél, 3) and(1, —1).
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Problem Set 6.2, page 242

1 EigenvectorsinX and eigenvaluesand3 in A. ThenA = XAX lis

1 2 1 1 1 0 1 -1 .
= . The second matrix has = 0 (rank1) and

0 3 0 1]1(0 3] (0 1

1 1
A\ = 4 (trace= 4). ThenA = XAXlis [ ] =
3 3

|
— —
w =
| —
i
o o
= O
| I |
W= W
N =

A3 = XA3XtandA~! = XA-1x L

Put the eigenvectors iX 11

2 0 1 -1 2 3

A= XAX"1= .
0 1 0 5 0 1 0 5

3 If A = XAX~!then the eigenvalue matrix fotf + 27 is A + 21 and the eigenvector
matrix is still X. S0A + 2] = X(A+2)X ' = XAX '+ X(2) X1 = A+ 2I.

and eigenvalue, 5 in A.

4 (a) False: We are notgiventhés (b) True (c) True sinc& has independent columns.

(d) False: For this we would need the eigenvectorX of

5 With X = I, A = XAX ! = A is a diagonal matrix. IfX is triangular, thenX ! is

triangular, saX AX ! is also triangular.

6 The columns ofX are nonzero multiples a2,1) and (0,1): either order. The same

eigenvector matrices diagonalizeand A 1.

1 1
7 Every matrix that has eigenvectofs and has the form
1 -1

1 1 A A +X A=A
A=XAX"'= ! jo— LA AT
1 -1 A2 21 M =X M4

You could check trace- A\; + A» anddet = i 41 A2 = A1\,

11 A Ml A0 1 -\
8 A= XAX 1= ! G N 1.
1ol M= 1]lo x|l-1 N
XAkX_l _ 1 )\1 )\2 )\]f 0 1 —)\2 1 .
M=X o1 lo M- Ao
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9

10

11

12

13

14

15

16

17

Solutions to Problem Sets

The second componeistF), = (A\F — A5) /(A1 — A2).

G G b5 b
(a) The equations ar AR MU with A = . This matrix
Gry1 Gy, 1 0
has\; =1, A = -3 withz; = (1,1), @2 = (1,-2)
1 1] [1» o 112 1 2 1
(b) A" = XAPX ! = ]{ U T L
n
1 =2 |0 (=5)"] |1 —4 2 1

The ruleFy1 5 = Fi41 + Fj, produces the pattern: even, odd, odd, even, odd,.odd,

(a) True(no zero eigenvalues) (balse(repeated\ = 2 may have only one line of

eigenvectors) (c)alse(repeated\ may have a full set of eigenvectors)

(a) False: don'tknow i\ = 0 or not.
(b) True: an eigenvector is missing, which can only happea fepeated eigenvalue.
(c) True: We know there is only one line of eigenvectors.
8 3 9 4 10 5| only eigenvectors
A= (or other), A = , A= ;
-3 2 -4 1 -5 0| arex= (¢, —c).

The rank ofA — 37 is r = 1. Changing any entry except

1 makesA

diagonalizable (the new will have two different eigenvalues)

Ak = X Ak X1 approaches zeiiband only if every |A| < 1; A; is a Markov matrix

SOAmax = 1 andA¥ — A$°, A, has) = .6 + .3 s045 — 0.

6 9 . 1 0 1 1 1 0
= XAX twithA = andX = (AP .
4 .1 0 .2 1 -1 0 0

. steady state

e
. AlO = (.9)0 _
1 1 1 1
S el

= (.9)1° + (.3)10 because
0 1 -1

ThenAk¥ = XAk X! — [

(SIS
(SIS

Asis XAXtwithA = | and X =

0
3

o ©

3

10
As

3
1

6| 3
ug = is the sum of +
1 —
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18

19

20

21

22

23

24

25

97

0 3k
1—3*
1+ 3%

14 3F

. . 1
Multiply those last three matrices to gét = 3
13k

k
1 5 0 1 1

0 4 0

5k _ 4k
4k

5k
-1 0

BF = XAFX ! =
0 —1

det A = (det X)(det A)(det X~1) = det A = A1 --- \,,. This proof (et = product

of A’s) works whenA is diagonalizable The formula is always true.

traceXY = (aq + bs) + (cr + dt) is equal to(ga + rc) + (sb + td) = traceY X.
Diagonalizable case: the trace BiA X ~! = trace of(AX 1) X = trace ofA = X );.

AB — BA = I is impossible since the left side hinace = 0.

0 X 0 A O X! 0
If A= XAX "!thenB = = . So
0 24 0 X 0 2A 0 X!
B has the original’s from A and the additional eigenvaluga,, ..., 2\, from2A.

The A’s form a subspace sineed and A; + A, all have the sam&. WhenX =T
the A’s with those eigenvectors give the subspacdiafjonal matrices The dimension

of that matrix space i¢ since the matrices areby 4.

If Ahascolumng,...,x, then column by column4? = A means everyle; = x;.

All vectors in the column space (combinations of those colsimy) are eigenvectors
with A = 1. Always the nullspace has = 0 (A might have dependent columns,
so there could be less thaneigenvectors withh = 1). Dimensions of those spaces
C(A) and N(A) add ton by the Fundamental Theorem, sb is diagonalizable

(n independent eigenvectors altogether).

Two problems: The nullspace and column space can overlap,@mld be in both.

There may not be independent eigenvectors in the column space.
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s RXmX1[1 1] [3 ”1 1] /2[2 1
1 -1 1 1 -1 1 2

VB needs\ = /9 andy/—1, the trace (their sum) is not real 4B cannot be real.

hasR?=A.

0 o .
Note that the square root qf hastwo imaginary eigenvalueg—1 = i and
0 —1

0 1
—1i, real trace), real square rooRk = ] .
-1 0

27 The factorizations off and B into X AX ~! are the same. Sd = B.

28 A = XA X !'andB = XA, X~!. Diagonal matrices always give; Ay = AsA;.
ThenAB = BA from
XA X' XAX = XAJAoX ' = XAgA1 X1 = XA X ' XA X! = BA.

a—d b
0 0

0 0 11 2 1 _
= . (b)) A= hasA? = andA? — A — 1 = 0is true,
0 0 1 0 1 1

matchingdet(A — AI) = A2 — X — 1 = 0 as the Cayley-Hamilton Theorem predicts.

29 (a) A =

0 b
has\ = aand\ = d: (A—al)(A—dI) =
0 d—a

30 WhenA = XAX ! is diagonalizable, the matrid — \;7 = X (A — X\, 1) X~ will

have0 in thej, j diagonal entry o\ — A;I. The producp(A) becomes
p(A) =(A—=\I)--- (A= X)) = XA =X\ I)--- (A= N\, )X L.

That product is the zero matrix because the factors produczera in each
diagonal position. Thep(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence obdiagable matrices
approachingd.)
Comment | have also seen the following Cayley-Hamilton proof but | aot con-
vinced:
Apply the formulaAC™T = (det A)I from Section 5.1 toAd — \I with variable\. Its

cofactor matrixC' will be a polynomial in), since cofactors are determinants:
(A= ADNCT(\) = det(A — NI = p(\)I.
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“For fixed A, this is an identity between two matrix polynomials.” Set A to find
the zero matrix on the left, s9(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

| am not certain about the key step of substituting a matrifor A. If other matrices
B are substituted fok, does the identity remain true? 4B # BA, even the order

of multiplication seems unclear.

31 If AB = BA, thenB has the same eigenvectdis0) and(0,1) asA. SoB is also
diagonab = ¢ = 0. The nullspace for the following equation is 2-dimensional

1 0 a b a b 1 0 0 —-b 0 0
AB — BA = — — _
0 2 c d c d 0 2 c 0 00

Those4 equation®) = 0,—b = 0,¢c = 0,0 = 0 have & by 4 coefficient matrix with
rank=4 —2 = 2.

32 B has\ =iand—i, soB* has\* = 1and 1. TherB* = I andB1%2¢ =],
C has\ = (1 ++/3i)/2. This X is exp(£7i/3) so\* = —1 and—1. ThenC® = —T
which leads ta”19?4 = (—1)341C = —C.

. cosf) —sinf ) .
33 The eigenvalues ol = are\ = ¢ ande% (trace2cosf and

sin ¢ cos 6
determinant\; A, = 1). Their eigenvectors ard, —:) and(1,4):

1 1 ein9 1 —1
An — XA'rLX—l — ) /22
i e—me 7 1
(e + ein0) /2 ... cosnf —sinnd
(emf — e=in0) /2 ... sinnf  cosnd

Geometricallyy rotations byd give one rotation by.6.

34 Columns ofX times rows ofA X ~! gives a sum of rank-l matrices(r = rank of A).

Those matrices ar® x1y1 to Az, y? .
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35 Multiply ones(n) % ones(n) = n * ones(n). Then

AA~! = (eye(n) + ones(n)) * (eye(n) + C * ones(n))

=eye(n)+ (1 + C 4+ Cn) xones(n) = eye(n) forC = —1/(n + 1).

36 B = Afl leads toA; A; = B(A142)B~ 1. ThenAy A, is similartoA; A, : they have

the same eigenvectors (not zero becatisand A, are invertible).

37 ChooseB = A;* to show thatd, A, is similar to A; A;. Assuming invertibility (no

zero eigenvalues) this shows thit A, and A, A, have the same eigenvalues.

38 This matrix has columi = 2 (column2) sox; = (1,—2,0) is an eigenvector with
A1 = 0. Also A(1,1,1) = (1,1,1) and X2 = 1. Trace= zero so\s = —1. Then
12020 = 1 and(—1)2°2° = 1 and(0)?°2° = 0. S0 A?°'” has the same eigenvalues and

eigenvectors ad : A201° = A andA2%2° = A2, TO COMPLETE FOR 2023



Solutions to Problem Sets 101

Problem Set 6.3, page 238

1 (a) ASB stays symmetric lik&§ whenB = AT
(b) ASB is similar to.S whenB = A~!
To have both (a) and (b) we ned&l = AT = A~! to be anorthogonal matrix Q.
ThenQSQ" is similar to.S and also symmetric liks.

2 X = 0,4, —2; unit vectors+(0, 1, —1)/v/2 and+(2,1,1)/v/6 and=£(1, —1, —1) /v/3.
Those are forS. The eigenvalues of are A = 0,/5,—/5 in A (trace= 0).
The eigenvectors df are (2,2, —1) and(1+v/5,1—+/5,2) and(1 — 5,1+ /5, 4).

9 12
38 = [ has\ = 0 and25 so the columns of) are the two eigenvectors:
12 16

-6 8

8 .6 .
Q= [ or we can exchange columns or reverse the signs of any column.

1 2
4 (a) [ ] has\ = —1 and3 (b) The pivotsl, 1 — b? have the same signs as this
2 1

(c) Thetraceis\; + A2 = 2, s0.S can't have two negative eigenvalues.

5 (ATCA)T = ATCT(AT)T = ATCA. WhenA is 6 by 3, C will be 6 by 6 and the
triple productA™C A is 3 by 3.

0

) 10
6 A=10and—-5in A =
0 -5

1 2
, T = [ } and [ } have to be normalized to
2 -1

1 |1 2
unit vectors inQ = — . ThenS = QAQT.

0 1
If A3 =0thenall\® =0soallA\=0asind = [ ] . If Ais symmetricthen
0 0

A3 = QA2QT = 0 requiresA = 0. The onlysymmetricA is Q 0 QT = zero matrix.

1 1 1
3 1 1 -1 AR 64 —.48 36 .48
7 =2 % lua|® 7 =0 +25
13 1l 1ol 12 16 —48 .36 48 .64
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8 [ 1 T2 ] is an orthogonal matrix s@ + P, = z1x{ + ezl =

T

T

Ty

[ T X2 ] =QQT =1I;alsoP, P, = z(x]x2)xd = zero matrix.
)

Second proofP, P, = P;(I — P;) = P, — P, = 0 sinceP? = P,.

0 b ) A 0 0 A
9 A= has\ = ib and—:b. The block matrice and are
-b 0 0 A A 0

also skew-symmetric with = ib (twice) and\ = —ib (twice).

10 M is skew-symmetric andrthogonal; every)\ is imaginary with|A\| = 1. So\’s must

bei, i, —i, —i to have trace zero.
) 1 . .
11 A = [ ] hasA = 0,0 and only one independent eigenvector= (i,1).
1 —

The good property for complex matrices is ndt = A (symmetric) buid' = A

(Hermitian with real eigenvalues and orthogonal eigeromsgt

1 1 0 1 0 1 Perpendicular ir®)
12 ShasQ = |1 -1 0|;BhasX=|0 1 0. Notperpendicularink
0 0 1 0 0 2d sinceST = SbutBT £ B

1 3+4i| . . T )
13 S= is aHermitian matrix(S~ = S). Its eigenvalueg and—4 are
3—4: 1

real. Here is the proof that is always real whes' = S:
Sz = \z leads t05% = Az. Transpose t@'S = 7'A usingS ' = .
Thenz' Sz = ZT\x and als@ ™’ Sz = ' \x. So\ = ) is real

14 (a) False A = (d) False!

0 1| (c) TruefromS—!=QA QT

2] (b) True fromA™ = QAQT = A

(e) True. Ifx is a column of the identity matrix, then the energy Sz is a diagonal
entry ofS. SinceS is positive definite in this problem, each diagonal entryp®sitive

numberz T Sz.
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15

16

17

18

19

20

21

22

23

24

25

-1 0
has\; = i and\y = —i with &; = (1,4) first for A butx; = (1, —i) is first for AT.

0 1
A and AT have the same’s but theorder of the x’s can change.4A = [ ]

A is invertible, orthogonal, permutation, diagonalizakljs projection, diagonaliz-
able.A allowsQR, XAX 1, QAQT; B allows XAX ~' andQAQ".

Symmetry giveQAQT if b = 1; repeated\ and noX if b = —1; singular ifb = 0.
Orthogonal and symmetric requirpg = 1 and real, soA = 1. ThenS = +7J or

15— QAQT cosf —sinf 1 0 cosf sinf cos 260 sin 260
sin26 — cos 260 .

sin 0 cos 0 -1 —sinf cosf

Eigenvectorg1,0) and(1, 1) give a45° angle even witld™ very close toA.
T
a11 1S [(Ju oo q1n:| |:>\1611 ‘e )‘nal'n:| S )\max (|Q11|2 +- |q1n|2) = )\max-
(@) z¥(Az) = (Az)Tz = 2TATz = —zTAx soxT Az = 0. (b) 2" Az is pure

imaginary, its real part iz™ Az + yTAy = 0+0 (c) detA = A\;... N, >0 :
because pairs of's = ib, —ib multiply to give +b2.

SinceS is diagonalizable with eigenvalue mateix= 21, the matrixS itself has to be
XAX~! = X(2I)X~! = 2I. The unsymmetric matrij 1 ; 0 2] also has\ = 2,2
but this matrix can’t be diagonalized.

(a) ST = SandSTS = I lead toS? = I.

(b) The only possible eigenvalues®farel and—1.

I 0 QT .
(c) A= soS=|Q1 Q2|A = Q:1QT — Q2QT with QT Q. =0.
0 —I Q3

Suppose: > 0 andac > b? so that als@ > b2?/a > 0.
(i) The eigenvalues have tisame sigrbecause\; A, = det = ac — b > 0.

(i) That sign ispositivebecause\; + A2 > 0 (it equals the trace + ¢ > 0).

Only Sy =
10 101

] has two positive eigenvalues sint@l > 102

2 S1x = 522 4 1212 + T2 is negative for example when, = 4 andzy = —3:

Aj is not positive definite as its determinant confirfishas tracey; Ss hasdet = 0.
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26

27

28

29

30

31

32

33

34

35

Positive definite [1 0] [1 b ool [1 o 1[1 w

= =LDLT
for—-3<b<3 b 1|0 9—52 b 1|0 9-v2||0 1
Positive definite |1 0f |2 4 1 012 0 1 2

— =LDLT.
forc > 8 2 1 0 ¢c—8 2 1 0 ¢c—8 0 1
Positive definite 1 0 c 0

L = D = S=LDLT.

for c > |b| —b/c 1 0 c—b*ec

22 +4xy+3y? = (z+2y)? —y? = difference of squares negative at = 2,y = —1,

where the first square is zero.

0 1 0 1 T
S = producesf (z,y) = {T/ yi| = 2zxy. S hash = 1 and
1 0 1 0 Y
A = —1. ThenS is anindefinite matrixand f (x, y) = 2zy has asaddle point
2 3 3
1 2 6 5 . . .
ATA = andATA = are positive definiteATA= |3 5 4| is
2 13 5 6
3 4 5

singular (and positive semidefinite). The first twés have independent columns. The

2 by 3 A cannot have full column rank, with only 2 rows; thirdA™ A is singular.

2 -1 0 ) 2 -1 -1 1 0
has pivots o
S=1-1 92 -1 5 4 T=]-1 2 —1]issingular;T" [1]| = {0
27_7_;
0 -1 2 273 -1 -1 2 1 0

Corner determinantss, | = 2, |Sz| = 6, |S3| = 30. The pivots ar&/1,6/2, 30/6.

S is positive definite fore > 1; determinants:;, ¢ — 1, and(c — 1)%(c + 2) > 0.
T is neverpositive definite (determinants— 4 and—4d + 12 are never both positive).
1 5. . . -

S = is an example with: + ¢ > 2b butac < b2, so not positive definite.
5 10
The eigenvalues of ~! are positive because they arg\(S). Also the energy is

TS lz = (S7'z)TS(S~1z) > 0 forall z # 0.

x T Sx is zero when(z, 22, 73) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally =T Sz goesnegativefor = (1, —10, 0) because the second pivotisgative
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36

37

38

39

40

41

42

43

44

45

46

If a;; were smaller than al\'s, S — a;;1 would have all eigenvalues 0 (positive

definite). ButS — a;;I has azeroin the(j, j) position; impossible by Problem 35.

(&) The determinant is positive; al > 0 (b) All projection matrices except

are singular (c) The diagonal entriesifare its eigenvalues

(d) S = —1I hasdet = +1 whenn is even, but thisS' is negativedefinite.

S is positive definite wher > 8; T' is positive definite wheih > 5 by determinants.
1 —1| |9 11

Aol vi| |1 :[2 1];A:Q[4 o]QT:F 1]_
V2 V2 1 2 0 2 1 3

1/2

The ellipsex? + zy + y? = 1 comes fromS = [
1/2 1

with A = % and;.

The axes have half-lengthé2 and/2/3.

S=Cc'C 9 3| [4 8 1 0| (4 0] |1 2 2 4

S not A '[8 25] - [2 1] [o 9] [0 1 0 3]
3.0 0 11 1

T
The Choleskyfactoré*:(L\/ﬁ) =10 1 2(andC = |0 1 1 | have

3 5

0 0 2 00 V5
square rootf the pivots fromD. Note agairCTC = LDLT = S.

(@) det S = (1)(10)(1) = 10; (b) A = 2 and5; () 1 = (cosfsinf) and
x2 = (—sin 6, cosf); (d) TheX's are positive, s& is positive definite.
ax® + 2bxy + cy? has a saddle point ifc < b2. The matrix isindefinite(A\ < 0 and
) > 0) because the determinant — b? is negative
If ¢ > 9the graph ot is a bowl, ifc < 9 the graph has a saddle point. Whea 9 the
graph ofz = (22 + 3y)? is a “trough” staying at zero along the lige + 3y = 0.
A productST of symmetric positive definite matrices comes into many i@pfibns.
The “generalized eigenvalue problenkx = A\Mx hasST = M~ K. (Often we use
eig( K, M) without actually inverting\/.) All eigenvalues\ of ST are positive:

STx = \x gives(Tx)"STx = (Tx)"\z. Then\ = ' TTSTx /=" Tx > 0.
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47 Put parenthesesin’ ATC Az = (Az)TC(Az). SinceC is assumed positive definite,
this energy can drop to zero only whdi: = 0. SineA is assumed to have independent
columns, Az = 0 only happens whe® = 0. ThusA™C A has positive energy and is

positive definite.

My textbooksComputational Science and Engineeriagd Introduction to Ap-
plied Mathematicstart with many examples of'C A in a wide range of applications.

| believe positive definiteness af C A is a unifying concept from linear algebra.

48 (a) The eigenvalues ofi1 — S areA; — A1, A1 — A2,..., A1 — A\,. Those are> 0;

M1 — Sis semidefinite.
(b) Semidefinite matrices have enetgy (\ I — S) x > 0. Then\;ztx > =T Sx.

(c) Part (b) sayzTSx/xTx < \; for all . Equality at the eigenvector withx =

A1z. So the maximum value af ' Sz /x Tz is \;.
49 EnergyztSx = a (z1+x9+23)%+c(x2—x3)% > 0if a > 0 ande > 0: semidefinite.

S has rank< 2 and determinant 0; cannot be positive definite for amyandc.
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Problem Set 6.4, page 269

1 1+ 1
lz=1—-ileadstoz = 1+iandr = vV2and- = ——— = Z(1 +1
z i z +1 r =2 T A=A+ 2( + 1)
andf = —% = —45°,

1—X 1+ . )
2 det = A2 —3) +2 -2 = 0 gives eigenvalues = 3 ando.

1—9 2—X
3 If Qxr = Az then||Qx|| = |A| ||z||. Square both sides and u@-g-FQ = I to find
|A|> = 1. Thereforg\| = 1 for unitary matrices).

1 1 1 [ 1 1 1
4 Fy= |1 /3 43 | =11 1(-1+v3i) 3(-1-+34)
1 edml/3 e8ml/3 |1 3 (-1-V3i) i(-1+VBi)
q columns
_ I B F; 0
5 Fs = 6 by 6 matrix= 0,2,4,1,3,5
I -B 0 Fj3
. of I (6 by 6)

The3 by 3 matrix B is diagonal with entries, 27/6, e47/6

1 1 1 1 2 1 4 4 4
6CD=]1 1 1 1 1 2 |=14 4 4
1 1 1 2 1 1 4 4 4
121
111
121
121
121
convolutioncxd 1 3 4 3 1 reducesta 4 4 forcyclic convolutionc & d
4 1 1
7 ConvolutionRuleF' (¢ ® d) = (Fc) . (F'd). ThisisF | 4 | =F | 1 | .xF | 2
4 1 1

with the3 by 3 Fourier matrixt’ = F5 : Multiply components for ..
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4 11 1 4 12
Fl 4| = 1 e2mi/3  p4mi/3 4 | = 0

4 1 etmi/3 8mi/s 4 0

1] T3 1 4] 3 4 12
Fl1l=1]o0 Flo2|=|e¢m/3 |and| o | .x | 27i/3 0

1] o 1 edmi/s | 0 edmi/s 0

1 3 1 1
8 cosf+isinf = (1 — 592 —l—---)—i—i (9 — % +) = 1+i9+§(i9)2+6(i9)3+---

9 () (") = e*?is (cos O + isinf)? = cos 26 + i sin 26.
The left side isz0s2 0 + 2i cos 0 sin 0 + 72 sin? 6.
Matching the right side givess 20 = cos? # — sin® # andsin 20 = 2 cos ) sin §
10 The eigenvalues of a circulant matdxare F'c in equation (10).
If C isinvertible then all its eigenvalues must be nonzero.

In that caseC ! is also a circulant because its entries (from the formulaCfot) are

also constant down each (cyclic) diagonal. There are oftosfgtoo.
11 This problem is looking for a solution!

12 Ann byn circulant matrix ha®& = C (Hermitian) if its diagonal entries havg real,
¢1 = ¢p_1,C2 = Cn_a,... The circulant ha@TC = I (unitary) if |co + c1x 4+ -+ +
Cpo1x" 2 = 1.

13 Columns0 and2 of the Fourier matrixf, in equation (7) add t¢2, 0, 2,0). Columns
1 and3 add to(2,0, —2,0).

14 z = w? = e2™/32 would be a32nd root of1 : 232 = 1.

z = /w = €2™/128 would be al28th root of 1.

15 The4 eigenvalue$, 2,4, 2 of C' come from the eigenvaludsi, —1, —i of P;.
A=2-1-1=0 A=2-i—*=2 A=2—(-1)—(-1)* =4 N=2+i+i®=2.
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Problem Set 6.5, page 280

1
1 Eigenvalued and1 with eigenvectorg1,0) and(1, —1) give solutionsu; = e*!

0

1 5 1 1
and uy; = et . If w(0) = =3 + 2 , then use those
-1 -2 0 -1

1 1
coefficients3 and2: u(t) = 3e*t + 2¢t :
0 -1
2 z(t) = 2¢! solvesdz/dt = z with z(0) = 2. Thendy/dt = 4y — 6et with y(0) = 5

givesy(t) = 3e* + 2¢ as in Problem 1.

3 (a) If every column ofA adds to zero, this means that the rows add to the zero row.

So the rows are dependent, aAds singular, and\ = 0 is an eigenvalue.

-2 3
(b) The eigenvalues ol = are\; = 0 with eigenvectore; = (3,2) and
2 -3

Ao = —b5 (to give trace= —5)_With @2 = (1,—1). Then the usual 3 steps:

4 3 1
1. Writeu(0) = [ ] as [ + [ ] = x1 + x3 = combination of eigenvectors
1 2 -1

2. The solutions follow those eigenvector&z, ande >z,

3. The solutionu(t) = x1 + e 5tz has steady state; = (3, 2) sincee > — 0.

4dv +w)/dt = (w—v)+ (v—w) = 0, so the totalv + w is constant.

[} ]2y - L

A= has with ; = , Lo = .

1 -1 Ao = —2 1 -1

{ ’U(O)] _ [30] 50 [1 ] 10 { 1] leadsto v(1) =20+ 1072  v(00)
w(0) 10 1 -1 w(l) =20 —10e7?  w(o0)

1 -1
si{v} = { ] hasA = 0 and\ = +2: v(t) = 20 + 10e?* — —co as
-1 1

20
20
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a 1
6 A= has real eigenvaluest1 anda — 1. These are both negativedf< —1.

1 a
In this case the solutions dlu/dt = Awu approach zero.

-1
B = has complex eigenvalués-i andb — i. These have negative real parts
1 b

if b < 0. In this case all solutions @fv/dt = Bv approach zero.

7 A projection matrix has eigenvalués= 1 and\ = 0. EigenvectorPx = « fill the
subspace thaP projects onto: herae: = (¢, c). Eigenvectors withPz = 0 fill the

perpendicular subspace: hate= (¢, —c). For the solution telu/dt = — Pu,

3 2 1 . 2 ot 1 1
u(0) = = + u(t) =e" +e approache
1 2 -1 2 -1 -1

6 2 2 1
8 haS>\1 =5 a1 = , Ao =2, oy = s rabbitST'(t) = 20€5t+1062t,
2 1 1 2

w(t) = 10e° + 20e?!. The ratio of rabbits to wolves approach#s/10; (somewhat

agalnst nature)®* dominates.

1 , 1 4 cost
9 (a) = (b) Thenu(t) = 2¢* +2e % =
) —1 4sint
d ' 0 1 . :
10 LY = . . This correctly giveg’ = vy’ andy” = 4y+5y’.
d y _yll 4 5 yl
[ hasdet(A — AI) = A2 — 5\ — 4 = 0. Directly substituting) = ¢! into

=5y + 4y also gives\? = 5\ + 4 and the same two values &f Those values are

y"
%(5 + /41) by the quadratic formula.
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0 1 1 ¢
11 The series foetiseAt = [+ ¢ + zeros= . Then
0 0 0 1

y(t) = Lot v = y(0) +v'(0)¢ . Thisy(t) = y(0) + y’(0)t solves

y'(t) 0 1] |¥'(0) y'(0)
the equation—the factartells us thatd had only one eigenvector: not diagonalizable.

0 1
12 A = has trace 6det 9, A = 3 and 3 withoneindependent eigenvector
-9 6

(1,3). Substitutey = te3! to show that this gives the needed second solutjos ¢

is the first solution).

13 (a) y(t) = cos 3t andsin 3t solvey” = —9y. Itis 3 cos 3t that starts withy(0) = 3 and

0 1
y'(0) = 0. (b) A = hasdet = 9: A = 37 and—3: with eigenvectors
-9 0
1 1 , 1 , 1 3 cos 3t
x = and . Thenu(t) = 363” +%e‘3"t = .
3 -3 31 -3t —9sin 3t
14 WhenA is skew-symmetric, the derivative Bfi(t)||? iszera Then||lu(t)|| = |[lew(0)]|

stays af|u(0)||. So the matrixe“* is orthogonalwhen A is skew-symmetri¢ AT = — A).

15 w, = 4 andu(t) = ce’ +4. For the matrix equation, the particular solutiep= A~'b

4 1 0 4
is andu(t) = ciet + o€t +
2 t 1 2
16 d/dt(e?’) = A+ A%+ 2 AP + A = AT+ At + 5 A2 + S A + ),

This is exactlyAde“?, the derivative we expect fromt't.

) ) 1 4t L 0
17 eB* = I + Bt (short series witlB? = 0) = . Derivative= =
0 1 0 0
BePt = Bin this example.

18 The solution at time + 7' is e+ )4 (0). Thuse?? timeseA” equalseA(t+7),

19 A? = Agiveset =1+ At + 1 A2 + LA3 + ... =1+ (¢! — 1)A.
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21

22

23

24

25

26

e 4(e—1) 1 —4 ) o
et = from21 ande®? = from 19. By direct multiplication
0 1 0 1
0
eAeB 7& eBeA 7& eAJrB _
0 1
2 .
, 1 3 1 3
The matrix hasA? = = = A. Then allA™ = A. Soedt =
0 0 0 0
et 3(et —1) _
I+ (t+t2/21 4+ - )A=T+ (! —1)A = as in Problem 19.
0 0
(@) The inverse o#4! is e=4 (b) If Az = \x thenetx = eMa ande* # 0.

To seeeix, write (I + At + £ A%2 + )z = (1 + M+ $A}2 + -z = eMa.

1 0 1 0 [1 At 1 At
Invert to producd/J ;11 = U, = U,.

At 1 —At 1[0 1 —At 1—(At)?

1 1 . g . 5
At At = 1, has\ = ¢™/3 ande~#"/3. Both eigenvalues hav¥’ = 1 so
-1 0

A8 = I. ThereforeUs = ASU, comes exactly back t&/.

First A has\ = +i andA* = TI. 1—-2n —2n )
Linear growth.

Secondd has\ = —1,—1andA™ = (—1)" 2n 2n+1
1 1—a? 2a

With a = At/2 the trapezoidal step 8,11 = ——
a / p PEnt1 T+ | o,

U,.
1—a?

That matrix has orthonormal columas orthogonal matrix= ||U 41| = ||[U ||
For proof2, square the start of the series to $ée- A + £ A2 + $A%)2 = T+ 24 +
2(24)%+ 1 (24)3 +- - -. The diagonalizing proof is easiest when it works (but itdsee

a diagonalizablel).
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Problem Set 7.1, page 295

0 0 0 1 0 0
ATA =101 o AAT = | 0 64 0 | giveo, = 8 andoy = 1.
0 0 o664 0O 0 0

vy = (0,0,1), vy =(0,1,0), w3 = (0,1,0), w2 = (1,0,4). After removing
1 0

row 3 of A and columrs of AT, still haso? = 64 ando3 = 1.
0 64

det(B — M) = —M° + ;= = 0 givesA = 1 times1 ande?™/3 and e*™'/3.

The singular values are = 8 and1 and1/1000. So\ changed byl/5 ando only
changed byt /1000.

AT has the same singular values4sand the singular vectors change frote = ou

to Au = owv.
0 A Uk A’Uk (7% 0 A — U A’Uk — UL
= =0y and = =—0%
AT 0 Uk ATuk (% AT 0 Uk —ATuk (%

So this one symmetric matri% reveals theu's andwv’s ando’s in the SVD of A.

AT A is symmetric with\; = 25 and)\; = 0 so A haso; = 5. The eigenvectors of

AT A arev; = (2,1) andvy = (—1,2): orthogonal They are the'sin A = UXVT.

1 0 11 1 1
A AT = = produces\? — 3\ + 1 = 0 and
1 1 0 1 1 2

1 . 1
A=3 (3 £+/5). The singular values are the square raots 5 (V5 £1).

1 1
1 01 0 0 1 2 2
Ay AT = = has\?> — 6X +4 = 0 and
1 1 1 1 1 1 2 4
0 1

V2

1 . 2
A= 5 (6 +v/20) = 3+/5. The singular values are the square reots 5 (VB+1).
For the singular vectors | recommend the SVD commandgiATLAB or Julia or

Mathematica.
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7 There are0 singular values because a rand2drby 40 matrix almost surely has rar.

8 (a) The singular values of + I are square roots of eigenvaluegdf+ I)T (A + I).

They arenot eigenvalues ofiT A + I.

(b) This formula VX ~1UT is the best way to compute the pseudoinversdt.
We could check the four Penrose conditions4sh from Section 4.5. For example
AATA = (Z aiuiv;r) (E vju;r/aj) (Z akukvg) = ¥ o;u;v; .

Notice also thal A+ = S uvfvu; = Sulw; = UTU = projection.

9 The singular values af are the positive square roots of eigenvalue@ét)—and all

those eigenvalues atebecause&)™Q = I when( is orthogonal.

10 If the \'s are in descending order, the maximumitfr) = (A1c? +- -+ A\, c2) /(2 +
<+ c2)is A1 (Whenz = v1). Thency,ca, ..., ¢, is1,0,...,0. The minimum is
R(x) = A\, whenz = v,, ande = (0,0,...,0,1).

11 Tv; = 0 means that the coefficientis = 0in = ¢;v; + --- + ¢,v,,. Then

NocC2 oo\ C2
ax 20§+ + ;C”:Az.
C2+...+cn

5 3
12 The first matrix hasd™ A = with A = 8 and\ = 2. The eigenvectors of
3 5

AT A = right singular vectors);, v, of A are(1,1)/v/2 and (1, —1)/v/2. The left
singular vectors ara = Av/o = (4,0)/v/2v8 = (1,0) and(0,2)/v/2v2 = (0,1).

25 25
The second matrix hagT A = soA = 50 andX = 0. The right singular

25 25
vectors ofA are again;, = (1,1)/v/2 with o; = /50 andvs = (1, —1)/v/2 with no

o (or you could sayr» = 0 but our convention is ne,). Thenu; = Av;/v/50 =

(3,4)/5.
1 1 0
13 ThismatrixhasA™A= | 1 2 1 | witheigenvalues\ = 3,1,0 ando;, = v/3 and
0 1 1
oo = 1 and noos. The eigenvectors oATA are v; = (1,2,1)/\/(_)‘ and
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14

15

16

17

18

vy = (1,0,—1)/v/2 andvz = (1,—1,1)/v/3. ThenAv = ou givesu = (1,1)//2
anduy = (1, —1)/v/2.
A{l 1 Oli[l 1H\/§ o] {1 2 1]/\/6

01 1| V2|1 —1|{|lo 1||t 0 —1]| /2
This small question is a key to everything. Itis based on fiseaiative lawf AAT)A =
A(AT A). Here we are applying both sides to an eigenveetof AT A :

(AAT)Av = A(ATA)v = Adv = M Aw.

So Aw is an eigenvector ofA AT with the same eigenvalue= o2.

1 3] |50 o] |1 2

T
71 _ 13 -1 0 0f|2 -1

U, U2 0 V1 V2 [ 7\/_
V10 5

1 2
ThisA = is a2 by 2 matrix of rankl. Its row space has basis, its nullspace
3 6

has basis, its column space has basis, its left nullspace has basis; :

R Lt Null ! 2
OW space — ulispace —
P V5 |9 P V5| 1

Column's aceL ! N(AT) BRI

(@) The main diagonal of™ A contains the squared lengt®w 1||2, - - - , |[row m||2.

A=UxVT=

So the trace ofi" A is the sum of alk?;.

(b) If A has rankl, then ATA has rankl. So the only singular value ofl is

o1 = (traceAT A)1/2,

The numbero . (A7 )omax (A) is the same asax(A)/omin(A). This is > 1.
It equalsl if all o’s are equal, andl = UX V" is a multiple of an orthogonal matrix.

The ratioomax/omin iS the importantondition number of A.

The smallest change iA is to set its smallest singular valde to zero.
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Problem Set 7.2, page 301

1 (a) Suppose the identity matrixis N by N, and anV by N approximating matrix4
has rank- < N. ThenI — A will have N — r eigenvalues equal tb, meaning that
the error norm ||I — A|| is at least1, and[ is impossible to compress by a lower

rank matrix.

(b) A matrix with a horizontal-vertical cross looks liké:

Zeros ones zero Zeros ones zero Zeros zeros zero
ones ones one§ = Zeros ones zeros + ones zeros one
Zeros ones zero Zeros ones zero Zeros zeros zero

Those are both rank one matrices (all nonzero rows equal) kas rank 2.

12 1 1 0 0 0 0 1[1211}0{0—200}
2A=|2 4 2 2|4+l 0 =2 0 0 |= 2 +1 1
1 2 1 1 0 0 0 O 1 0
and the rank ig.
1 2 2 1 [ 1 2 2 } 0 [ 0 }
B = = + also has rank.
1 3 3 1 1
_ 1 1 i ~
1 2 2 9 13
3 BBT = 2 3 | = trace= 28 anddet = 2.
1 3 3 13 19
L 9 3 L
1 1 E 2 5 5
1 2 2
B™B=|2 3 =1|5 13 13 trace= 28 anddet = 0.
1 3 3
2 3 - | 5 13 13

The 2 nonzero eigenvalues must be the same for both matrices. aneey, o, =

14 £+ /142 — 2. I would call B compressible whea is so much smaller tham .
4 (computer questioavd(A)).

5 The Japanese flag has a circle filledits; with diameter= 2N 1's. Outside the circle

are zeros. The rank is approximaté€lyv. What is the numbef’? Alex Townsend
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contributed this key idea: The circle contains a big squaagrimfilled by 1's. The
rank of that all-ones matrix is only.

So we only have to count the rows above and below that squaraltigly by 2 to

include the columns to the left and right of the square.

. 2

N The picture shows| 1 — g N rows of 1's above the

1 0

QN square—and repeated below the square. It also shows
2
2 .

1 1 1-— % N columns ofl’s to the right of the square—and

0

repeated to the left.
Combined, thos¢2 — 1/2) N rows and columns (plus for the big square) tell us the

rank of this2N by 2N Japanese flag containing the red circle.

6 TheN by N matrix A is filled by the valuesd;; = F(i/N, j/N) of the two-variable
function F'(x, y), by taking the pointx,y) = (i¢/N,j/N) on a uniform square grid

(z andy go from0 to 1). Three choices of that functiafi:

1) F = xy produces a symmetriank-1 matrix. Its ¢, j entry is a multiple of the

product; timesj. All rows of F' contain a multiple of the vectdd, 2,..., N).

2) F», = x + y gives a sum of rank-one matricedife rank is 2). One matrix has

constants along each row. The other has constants down elachrc

3) F3 = (z,y) = 2% + y? will also produce a sum of constant rows (frarf) and

constant columns (from?). Again rank= 2.

7 Symmetric matrixS if F(z,y) = F(y, z). ExampleF =z + y.
Antisymmetric matrixA if F'(z,y) = —F(y,z). ExampleF = = — y.
Matrix of rank2 if F(x,y) = F(x) + F(y) (and other possibilities too ?)

Singular matrixM from a sum of less than rank-one matrices (please expand this

part of the answer).
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Problem Set 7.3, page 307

1 The row averages ol are3 and0. Therefore

21 0 -1 -2 T 10 O
A{ ] and S:AA 1[ ]

-1 10 1 -1 4 419 4
. 10 4 . .
The eigenvalues of are \; = T and )\, = 1= 1. The top eigenvector of' is
[ ] . | think this means that khorizontal line (the x axis) is closer to the five points
0

(2,-1),...,(—=2,—1) inthe columns ofd than any other line through the origif, 0).

2 Now the row averages oA are% and2. Therefore

FUER I e A ] .t e -
-1 0 1 1 0 -1 5 510 4

Again the rows ofA are accidentally orthogonal (because of the special peattef

0
those rows). This time the top eigenvectoris . So ahorizontal line is closer

1

to the six points(3,—1),..., (=%, —1) from the columns of4 than any other line
through the center poirfd, 0).

1 2 3 -1 0 1

34 = has row averageg and 3 so A = .
5 2 2 2 -1 -1
2 -3

Thens — ~AAT — *

2 2 _3 6

Then tracgS) =  (8) anddet(S) = (%)2 (3). The eigenvalues(S) arei times the
roots of A2 — 8\ + 3 = 0. Those roots aré + /16 — 3. Then thes's are,/)\; and
Vs,

2 00
AAT

. . . 1
4 This matrix A with orthogonal rows ha$§ = 1= 3 0 8 0.
n—

0 0 4
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With X's in descending ordex; > Ay > A3, the eigenvectors ar@, 1,0) and(0,0, 1)
and(1,0,0). The first eigenvector shows thg direction= y axis. Combined with

the second eigenvectas in the z direction, the best plane is the plane.

These problems are examples where the saogrielation matrix (rescalings so all
its diagonal entries arg) would be the identity matrix. If we think the original saaj
is not meaningful and the rows should have the same length,ttiere is no reason to

chooseu; = (0,1, 0) from the8 in row 2.

5 Recall that least squares measures vertical errors (dfjdaances up or down from
data points to the closest line) while PCA measures perpalatidistances to the line.
They are different problems. Ordinary least squares i®wifit from PCA= perpen-

dicular least squares.

e |3 0] |0 _ 0 5
A Ax=A"bis = leads tox = . Bestline isy = —t.
0 14 5 5/14 14

PCA finds the line througf0, 0) whose perpendicular distances to the pofrt8, —1),
(1,0),(2,1) is smallest. The computation finds the top eigenvectot bfi, whereA

is now the2 by 3 matrix of data points:

-3 -1
T -3 1 2 14 5
AAT = 1 0| = has\? — 16X+ 3 = 0.
-1 0 1 5 2
2 1

Then) = 8 & /61 and the top eigenvector ofA™ is in the direction of5, v61 — 6)
. . . . . 1.
~ (5,1.8). That is the (approximate) direction of the lipe= ?815.

6 Seeeigenfaceon Wikipedia.

7 The closest matrixl; of rank3 has the3 top singular values, 4, 3. ThenA — A3 has
singular value® and1.

8 If Ahaso; = 9 andB haso; = 4, thenA + B haso; < 13 becauseé|A + BJ| <
[|Al| +||B]|- Alsoo; > 5 for A+ B becausé|A + B|| + || — B|| > ||4]].
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Problem Set 8.1, page 315

1

10

11

12

13

14

With w = 0 linearity givesT' (v 4+ 0) = T'(v) + T(0). ThusT(0) = 0. Withc = —1
linearity givesT'(—0) = —7(0). But—0 = 0. This is a second proof thdt(0) = 0.
CombiningT (cv) = ¢T'(v) andT (dw) = dT'(w) with addition givesI'(cv + dw) =
cT'(v) + dT (w). Then one more addition gived'(v) + dT'(w) + eT'(u).

(d)T(v) = (0,1) = constant andf) T'(v) = v1v, are not linear.

(@ S(T(v)) =w (b) S(T(v1) + T(v2)) = S(T(v1)) + S(T(v2)): linear.
Choosev = (1,1) andw = (—1,0). ThenT(v) + T'(w) = (v + w) = (0,1) but
T (v +w) =T(2,1) was defined ag, 0).

(a) T'(v) = v/||lv| does not satisf{f’ (v + w) = T'(v) + T'(w) or T'(cv) = cT'(v)
(b) and (c) are linear (d) satisfidgcv) = ¢I'(v) only forc > 0

(@7 (T(v))=v (b) Nonlinearv+(2,2) (c) T(T(v))=—v (d) T(T(v))=T(v).
(@) The range of (v1,v2) = (v1 — v, 0) is the line of vectorge, 0). The nullspace
is the line of vectorgc, ¢). (b) T(v1,v2,v3) = (v1,v2) has rangeR?, kernel
{(0,0, v3)} () T(v) = 0 hasrangg0}, kernelR? (d) T'(vy,v2) = (v1,v1)
has range = multiples df., 1), kernel = multiples of 1, —1).

If T'(v1,v2,v3)=(ve,vs3,v1) thenT (T (v))=(v3,v1,v2); T3(v)=v; T(v)=T(v).
T(v)=(4,4);(2,2); (2,2); if v=(a,b)=b(1,1)+%52(2,0) thenT (v)=b(2,2)+ (0, 0).
(@ T(1,0)=0 (b) (0,0,1) is notin the range (c)yr'(0,1)=0.

For multiplicationT (v) = Av: V. = R", W = R™; the outputs fill the column
spacew is in the kernel ifAv = 0.

Thedistributive law(page 69) givesA(M; + My) = AM; + AM,. Thedistributive
law overc’s givesA(cM) = ¢(AM).

Now T'(M) = AM with an invertibleA. Multiply AM = 0 andAM = B by A1
to getM = 0 andM = A~!B. The kernel contains only the zero matfix = 0.
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-1 -1 0 0
range ofT" contains only matriced M whose columns are multiples ¢f, 3).

2 2 0 0
15 This A is not invertible. AM = I is impossible. A ] = [ ] The

0 0 0 1
16 No matrix A gives A = . To professors: Linear transformations on

10 0 0
matrix space come fronrt by 4 matrices. Those in Problems 13-15 were special.

17 ForT(M) =M™ (a) T? = I is True (b) True (c) True  (d) False.

0 b 0
18 T'(I) =0butM = = T(M); theseMs fill the range. EvenyMl =
0 0 c d

is in the kernel. Notice thatim (range)+ dim (kernel)= 3 + 1 = dim (input space
of 2 by 2 M’s).

19 Linear transformations keep straight lines straight! Awnd parallel edges of a square
(edges differing by a fixed) go to two parallel edges (edges differing Byv)). So

the output is a parallelogram.

20 (a) Horizontal lines stay horizontal, vertical lines staytical (b) House squashes

onto aline (c) Vertical lines stay vertical becadsgd, 0) = (a11,0).

2 0 N
21 D = doubles the width of the housed = projectsthe house
0 1 33

(sinceAd? = A from trace= 1 and\ = 0, 1). The (non-orthogonal) projection is onto

the column space oft = line through(.7,.3). U =
0 1

horizontally: The point afz, y) moves over tdx + y, ).

1
] will shearthe house

a 0
22 (a) A= } with d > 0 leaves the housa H sitting straight up

0 d
_cos 0 —sind
(b) A= rotates the house.
sin 6 cosf

23 T'(v) = —wv rotates the house l80° around the origin. Then the affine transformation

T(v) = —v + (1, 0) shifts the rotated house one unit to the right.

24 A code to add a chimney will be gratefully received!
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25 This code needs a correction: add spaces betwdén 10 —10 10

10 55
26 compresses vertical distanceslioyo 1. projects onto thd5° line.
55

0 .1

rotates byl5° clockwise and contracts by a factorg® (the columns have
-5 b

11
length1/+/2). has determinant 1 so the house is “flipped and sheared.” One
10

way to see this is to factor the matrix &9 LT

1 1
= = (shear) (flip left-right) (shear)
10 11 -1] ({0 1

27 Linear transformations d®? take circles to ellipses (see figure in Section 6.7).

28 (@) ad —bc =0 (b) ad — bc > 0 (€) |ad — be| = 1. If vectors to two
corners transform to themselves then by linedfity: 1. (This is not always true if one

corner is(0, 0).)
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Problem Set 8.2, page 324

1

10

0 0 2 0
For Sv = d?v/dz?
. . 0 00 6
Basisvi, va, v3, v4 = 1, x, 22, 23 The matrixforSis B =
0 00 O
Sv; = Svy, =0, S’U3 = 2v1, Sv4 = 6v2;
0 00 O

Sv = d*v/dx? = 0 for linear functionsv(z) = a + bx. All (a,b,0,0) are in the

nullspace of the second derivative matiBx
(Matrix A)?> = B when transformatiof’(7'(v)) = S(v) and output basis input basis.

The third derivative matrix ha in the (1, 4) position; since the third derivative af
is 6. This matrix also comes fromd B. The fourth derivative of a cubic is zero, and

is the zero matrix.

T(v1 + va + v3) = 2w + wa + 2ws; Atimes(1,1,1) gives(2,1,2).

v = c¢(vy —v3) givesT'(v) = 0; nullspace ig0, ¢, —c); solutions(1, 0, 0) + (0, ¢, —c).
(1,0,0) is not in the column space of the matrik andw; is not in the range of

the linear transformatiofi’. Key point: Column spaceof matrix matchegange of

transformation. Nullspace matches normal.

We don’t knowT'(w) unless thaw'’s are the same as thes. In that case the matrix is
A2,

Rank of A = 2 = dimension of theangeof T'. The outputsdv (column space) match

the outputsl'(v) (the range off"). The “output spaceW is like R™: it contains all

outputs but may not be filled up by the column space.

1 00 1 1
The matrixforl'isA= |1 1 0. Fortheoutput o | chooseinpub = | —1| =
1 1 1 0 0

1

A~1 [ o|. This means: For the output; choose the input, — vs.

0
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11

12

13

14

15

16

17

18

19

20

1 0 0
Al = —1 1 0 SOT‘l(wl) = v — ’UQ,T_l(’wQ) = Vo — 1)3,T_1(’UJ3) =
0 -1 1

v3. The columns ofd~! describeT~! from W back toV. The only solution to

T(v)=0isv =0.
(c) T~YT(wy)) = w; is wrong because; is not generally in the input space.

(@) T'(v1) = v2,T(v2) = vy isits own inverse (b)I'(vy) = v1,T(v2) = 0 has

T? =T (c) If T? = I for part (@) and™®> = T for part (b), theril’ must bel.

€)) (b) = inverse of (a) (c)A must be2 A .
) 3_ -5 2 6 3

_7" S 1 0 r S L
@ M = transforms and to and ; this is the “easy”
t u 0 1 t U

a b
direction. (b) N = transforms in the inverse direction, back to the stan-
c d

dard basis vectors. (@)Y = bc will make the forward matrix singular and the inverse

impossible.

—1
1 0] (|2 1 3 -1
1 2115 3 -7 3
Reordering basis vectors is done byexmutation matrix Changing lengths is done by

apositive diagonal matrix

(a,b) = (cos 6, —sin @). Minus sign fromQ ! = Q™.

11 a 5 ) ) 1. .
M= : = = first column ofM ~! = coordinates o in basis
4 5 b —4 0

L=l ) L)

(22 — z); y = 4w + Sws + 6ws.
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21

22

23

24

25

26

27

28

29

30

31

0 1 0 1 11

wstov's:| .5 0 —.5|.v'stow's: inverse matrix= |1 0 0|. The key

bHo—1 %) 1 -1 1
idea The matrix multiplies the coordinates in théasis to give the coordinates in the

w basis.

1 a a?

A
The 3 equations to match, 5,6 atx = a,b,care |1 b b2 B| = |5]|. This

¥}

1 ¢ c

Q
o

Vandermonde determinant equélls— a)(c — a)(c — b). Soa, b, c must be distinct to

havedet # 0 and one solutiom, B, C'.
The matrixM with these nine entries must be invertible.

Start fromA = QR. Column2is ay = r12q; +r22q,. This givesa, as a combination

of theg’s. So the change of basis matrix#&

Start fromA = LU. Row 2 of A is ¢51(row 1 of U') 4 ¢35 (row 2 of U). The change of

basis matrix is alwaymvertible, because basis goes to basis.

The matrix forT (v;) = A\jv; is A = diag(A1, A2, A3).

If Tis notinvertible'(vy),...,T(v,) is nota basis. We couldn’'tchooag = T'(v;).
0 3| | 1 0| |

(@) givesT(v1) = 0 andT'(v3) = 3vy. (b) givesT(v1) = vy
0 0 0 0

andT'(vi + v2) = v1 (which combine intdl'(v,) = 0 by linearity).

T(z,y) = (z,—y) is reflection across the-axis. Then reflect across thyeaxis to get

S(z,—y) = (—z,—y). ThusST = —1.
S takes(z,y) to (—x,y). S(T'(v))=(-1,2). S(v)=(-2,1) andT (S(v))=(1, —2).

] ) cos2(f —a) —sin2(f —a) o ]
Multiply the two reflections to ge which isrotation
sin2(6 —a)  cos2(f — )

by2(6 — ). Inwords: (1, 0) is reflected to have anglgy, and that is reflected again

to angle26 — 2a.
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10 00
32 The matrix forT" inthisbasisisA= |0 1 0 0].

0 00O
33 The basiw, vo, v3, v4 for the space o by 2 matrices is meant to be

1 0 0 1 0 0 0 0
V1 = Vo = V3 = Vg =
0 0 0 0 1 0 0 1

Apologies for the reference to Worked Example 8.2A, whichs vemitted in final

editing of the book. Question 33 asks for thby 4 matrix A that represent®' (M) =

a a
M in this basis ofv's. As always, multiply each basis matrix hy
c d c d
to findT'(v1), ..., T(v4). Write each output as a conbination of the output basis (also

v tovy). The coefficients ob; to v, tell you each column ofi.

o a b| . 1 0 a 0 o
Multiplying by givesT(v1) = A = = avy + cvz. Simi-
c d 0 0 c 0
larly T'(va) = avs + cvs andT (vs) = bvy +dvs andT (v4) = bvs +dvs. The matrix
a 0 b O
) ) o a 0 b
for T in this basis is
c 0 d O
0 ¢ 0 d

34 False: We will not knowl"(v) for everyv unless the: v's are linearly independent.
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Problem Set 8.3, page 334

1 For this matrix.J, the rank ofJ — 31 is 3 so the dimension of the nullspace is only
1. There is onlyl independent eigenvector even though= 3 is a double rootof

det(J — AI) = 0: arepeated eigenvalue.

2
2
J =
31
3
o 1. . . , .
2 J= is similar to all othe® by 2 matricesA that have2 zero eigenvalues but
0 0

only 1 independent eigenvector. Thén= Bl‘lAlBl isthe same a®,J = A1 By :

4 0 0 1 0 4 4 0

ByJ = = =A1B
0 1 0 0 0 0 0 1
4 1 0 1 4 =8 4 1

ByJ = = = A2 Bo
2 0 0 0 2 -4 2 0

3 Every matrix is similar to its transpose (same eigenvalsgsie multiplicity, more than

that the same Jordan form). In this example

1 2 10 2 0 0 1
BJ = 1 02 1]=1]120 1 =J'B.
1 00 2 01 2 1

4 HereJ andK aredifferentJordan forms (block sizex 2 versus block size3, 1). Even
thoughJ and K have the sama’s (all zero) and same rank, and K" arenot similar.

If BK = JB thenB is not invertible:
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01 0 0 0 b1 b2 O
0 0 1 0 0 b b 0
B — B _ o1 boo
0 0 0 O 0 b3y b3a O
0 0 0 O 0 by bax O
01 0 0 b1 baz b2z bos
0 0 0 O 0 0 0 0
JB = B =
0 0 01 byr baz bz bag
0 0 0 O 0 0 0 0

Those right hand sides agree onlybifi = 0,647 = 0,bos4 = 0,b44 = 0,b20 = O,
bsx = 0. But then alsd; = byy = 0 andbs; = bss = 0. So the first column has
b11 = ba1 = b31 = by = 0 andB is not invertible.

5 If A3 is the zero matrix then every eigenvaluedfs A = 0 (becausedx = Az leads
to @ = A3z = \3z). The Jordan forny will also haveJ? = 0 because/ = B~'AB
hasJ? = B~1A3B = 0. The blocks of/ must become zero blocks if*. So those

blocks ofJ can be

01 00
01 0
0 1 0 010 third power
[ 0 } 0 0 1 but not
0 0 0 0 01 is not zero
0 0 O
0 0 00

The rank ofJ (and A) is largest if every block i8 by 3 of rank2. Then rank< %n
If A™ = zero matrix therd is not invertibleand rank(A4) < n.

6 This question substitutes = te anduy = e to show thatu,, u, solve the system

u' = Ju:
u] = \ug + us eM e = A(ter) + (eM)

uy = Az e = A(er).
Certainlyu; = 0 andu, = 1 att = 0, so we have the solution and it involves* (the

factort appears becauseis a double eigenvalue of).
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7 The equationu; o — 2\us1 + Auy is certainly solved by, = A\*. But this is a
second order equation and there must be another soluti@mallogy withze! for the

differential equation ir8.3.6, that second solution ig, = k\*. Check:

(k4 2)N 2 —2X(k + DA £ A2 (k)AF = [k +2 — 2(k + 1) + k] A" = 0.

8 A3 = 1 has3 roots\ = 1 ande2™/3 ande*™/3. Those arel, A\, A2 if we take

A = e27/3_ The Fourier matrix is

1 1 1 1 1 1
Fr = 1 A A2 — 1 627ri/3 e47ri/3
1 A2 )\ 1 6471'2'/3 687ri/3

9 A 3 by 3 circulant matrix has the form on pade5 :

Co C1 C2 1 1

C=1|¢ ¢ ¢ | WthC| 1 |=(co+caa+ec)]| 1

c1 Cc2 Co 1 1
1 1 1 1
C| X | =(cotarteX?) | A C| A2 | = (coter N +ead?) | A2
A2 A2 A A

Co
Those3 eigenvalues of’ are exactly th& componentsof'c=F | ¢; |,
2
10 The Fourier cosine coefficient is in formula (7) with integrals from—= to 7. Because

f drops to zero at: = L, the integral stops &t :

[ f(x)cos3zdz 1 /L 1. e=L 2sin3L
as Tlcos32)2 da - L( )(cos 3z) dx 3. | S 3x . 3

Note that we should have defingé¢z) = 0 for L < |z| < 7 (not2z!).
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Problem Set 9.1, page 345

1 Equations (1) and (2) give the first three terms in the TayéoieS forF'(«) andF (x) =
one variabler or several variableg = (x1,...,x,). The formulas are exact when
F is aquadratic function (powersl,z,z? or in N dimensionsl, z; to zx and all

productsz;z; from 22 to z1 2y t0 23 to zoxy and eventually: y 1z andzy).

2 f(z)=2%+1, f'(z) = 2, f” = 2. Then Newton’s method computes. ; fromz,, :

f(zy) w241 1 (xn 1 ) .

:xn— =

Tn41 = Tn — =
2x, 2

n

This iteration stays with real numbers so it can’t conveméhe solutionse = 4 or

z = —1i. Instead the numbers, are“chaotic” .

The key insight is that the cotangent functiop = cot 26 gives the correct;, 1

fromz, :
cos20 1 (cosf sinf 1 1
sin20 2 ( sinfd  cos 9) or cot20 2 (COt o cot 9)

In the left equation, the common denominato? isn 6 cos @ = sin 26. The numerator

is cos? @ — sin? # = cos 260. The identity says this about the iteration :

1 1
If g =cotf thenz; = = (Jco — —) = cot 26.
2 i)

Thenzy = cot 46. Thenz,, = cot 2™6. This is the formula.

Example 1 Start withé = x/4 (cotangent iso = 1). The first step give8 = x/2

(cotangent equal®). The next step i = = (iteration blows up becausén = = 0).

Example 2 Start withd = 7/3 (cotangent isto = 1/+/3). The first step gives
0 = 27/3 (cotangent equals 1/+/3). The next step i§ = 47/3 (which is the original
6 plusT). The iteration cycles betwedn/+/3 and—1/+/3.

Example 3 Start with a smalb (a large cotangent). After the first stemt 26 is

approximately cut in half (use calculus). The cotangentekeses until the ang&'o

passesr/3. Then the next step makes it larger.
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The iteration eventually blows up /7 = integer2™.

The iteration eventually cycles#/m = any other fraction/q.

The iteration is not periodic (or convergentifr is irrational. Chaos
We can't findy/—1 by Newton’s method which stays real.

3 The derivative of— log x4, with respect tar1; is —1/x1;. The second derivative is

+1/x3, > 0. So—logz is a convex function—its slopel/z is increasing.
4 For the function” = — logdet A = — log(ac — b?) the first derivatives are

or  —c oF +2b oF —a

da  ac— b2 b ac— b2 dc  ac— b2

Then all second derivatives involig2 = ac — b? =

0*’F ¢ 0 [(OF +2bc 0 (OF -1  ac

9a2 ~ D? %(%)W a_<a_> DD
This already shows that the matrix of second derivativesmsplicated and we need a
new idea.

5 The gradient off'(z) = % (mTATAm — 26T Az + bTb) is VF = AT Az — ATb,
So the minimizing vecto® solvesA™ Az = ATb as we know from Chapter 4. That
givesz in one step, where gradient descent takes a sequence oesistgps of sizes
sy, to approaclz :

Lp+1 = Tk — skVF(mk) = T — sk(ATAmk - ATb)

1 __[OF OF y
2 2 — Z =
¥+ 7y ) has grad|en< — y) = (x, 4). One step fronfzo, yo)

1 1 11
1,1) goes to(z1,y1) = (Z’l) —s (Z’ Z)'

8 Certainlyz? is minimized atz = 0 ande ™ is minimized aty = co. ThenFyin = 0+
0. At (zo,50) = (1, 1) the functionisF' = § +1 and the gradienti¥ F = (2z, —e™¥)
and descentgoes{e;,y1) = (1,1) = —sVF = (1,1) — s(2,—1/e).
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Problem Set 9.2, page 353

1 The two equations have roves = [1 2] andas = {2 3}. The right hand sides

of Ax = b areb; = 3 andbs = 5. The classical Kaczmarz method updata® solve

0

a;x = by and themx = by (and repeat indefinitely). Starting fromy = [ ] here
0

is the first cycle from equation (6)z; solves the first equatior{1 2} =3

st

12 + 22

1 =T+

Note thatx; solves the first equatio[n 2} x; = 3 but notasxy = 5.

Thenx, modifiesz; to solve that equation but now the first equation fails :

s-[2 8] |7°
_|3/5 . 6/5] [2| |3/5 15 C1]3+2/13
65 22 432 3| less| 13 (3| 5 |6+3/13]

This vectorz, solves the second equati(%a 3} xo = 5 but not the first equation.

1
Repeating the Kaczmarz double step brings us closer toubestilutionz,, = [ ] .
1

With a computer you can take more Kaczmarz stepstacs, . . . and compare the con-
vergence rate wittrandom Kaczmarz” —when the order of the equations and updates

jumps randomly between equatiohand?2.
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2 The problem (least squares) is to minimize) = (1—F(z))? whereF(z) = Fy(Fi(x)).

. F
Backpropagation comput%%é andg—m :

F Fy OF F:
5‘8_}{' =2(1-F(x)) ?9_:15 = g—Fj % = (g—Fj) (—sin(sinz))cosz =0 at z =0
3 (a) The limits oftanh(x) atx = 0, co, —oo are0, 1, —1.

(b) The graph has an inflection pointaat= 0, where the second derivative fnh(x)
is zero.

(c) The derivative ofanh(z) = (e — e~ *)/(e® + e~ ") by the quotient rule is

(ez + efx)Q _ (ez _ 67:6)2 B 4

= > 0 so tanh isincreasin
(ea; +e—a;)2 (ea; +e—a;)2 an g

4 Component of tanh(Az + b) is y = tanh(aj  + b;). The scalar functiomanh(z)

has the derivativé/(e® + e~*)? from Problem 3. Then the chain rule gives

0 (tanh(Ax + b)) =

ith z = a; ;.
a0, with x =a;x +b;

(ex + efx)Q

5 The partial derivatives of'(z,y) = Fa(x, F1(y)) area—F = %(zl,Fl(y)) and

ox ox
OF  0F; 0Fy

dy  OF 9y
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Problem Set 9.3, page 363

1 To minimize with a constrairtz+4y = 1, introduce a Lagrange multiplier ib(z, y, \) =

|z|P + |y|P — A3z + 4y — 1).

OL/0x = pxP~1 — 31 =0 P~ =3\/p
OL/Oy = pyP~1 —4X =0 yP~l =4)\/p
—OL/ON=3z+4y—1=0 3(3\/p)? 4+ 4(4X\/p)1= 1

Hereq = 1/(p—1)andg+1 = p/(p—1). The bold equation i€37+* +49+t1)\7 = pa,
The solution is\ = p/E with E = (39+1 4-49t1)1/4, Knowing A we can findr andy.

2 Supposev; andw, are in the unit ball : their norms are 1. We want to show that any
pointw = cv; + (1 — ¢)vs betweernv; andwv, (which mean$ < ¢ < 1) is also in the
ball (which meansjw|| < 1). Use the triangle inequality :

[lw|] < |levi|| +]|(1 = c)vz|| < |e|+ |1 —¢| =1 because0 < ¢ < 1.

3 (@) L(X,\) = %x% + 223 — M(x1 + 322 — b).

(b) OL/0x1 = 21 —A=0

OL)Oxy =  Axy —3XA=0

OL/ON =21 +3x2—-b=0=(N\)+3(3)\/4)—b
Solve the last equation(4/4 + 9/4)A = bor A = 4b/13. Thenz; = 4b/13 and
zy = 3b/13.

- 1, . 1[4b\? 3b\ > o s
(d) The minimum ofF" = 5%+ 23 is AGE +2 5 = (84 18)b°/13° =
2b%/13. The derivative of thatyip, iS 0Fpin/0b = 4b/13. This is exactly\ !

1
4 [ = 5(%% +4x§) — )\(2%1 + 19 — 5)

8L/8:cl = 35'172)\:0 £C1:2)\
8L/8$2 = 4.232—)\:0 $2:A/4
1
—O0L/ON=2x1 +22—5=0 <4+Z)>\5 or A=20/17

(1700) /17? = 50/17.

|~

1
Thenx; = 40/17 andzs = 5/17 andF = 3 (23 4+ 423) =
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5 K has2 positive pivots and negative pivot. Then it must haepositive eigenvalues

and1 negative eigenvalue.

6 Line 4 of this problem proves the Law of Inertia for the number ofipes pivots of S
(= number of positive eigenvalues, becausas symmetric). Then the problem asks

for a straightforward and basic proof whérs 2 by 2: There are steps.
1 Determinantsof = LDLT = QAQT are(det D) (det L)? and(det A) (det Q)?.

Sodet D has the same sign dst A. If those diagonal matrice® andA are2 by

2, then negative determinants melapositive pivot and positive eigenvalue.

2 If D andA both have positive determinants, then the two pivots hageséme
sign and the two eigenvalues have the same sign. Then posigignvalues means

positive trace (sum of eigenvaluessum of diagonal entries).

7 By symmetry the minimum ofF = 1 (2% +23+2%) with 21 + 22 + 3

= 3isi(14+1+1) = 1.5. With the added constraint; + 2z, + 3z3 = 12, we

have two multipliers\ ando :

Lagrange functiol. = F — A(z1 + z2 + 25 — 3) — o(x1 + 2x2 + 3z5 — 12).

OL/0xy = 1 —A—o0c=0 T = —2
OL/0xs = To—A—20=0 o= 1
OL/0xs3 = 3 —A—30=0 3= 4
—0L/ON= x14+22+235—3=0 — 3\+ 60= 3 — A=-5

—0L/0o =21 +2290+323—12=0 — 6A+1d0=12 — o= 3

- . 1
The second minimum i§" = 5(4 + 1+ 16) = 10.5 = larger thanl.5 from extra

constraint!

8 The constraintsare; <1, —z1 < 1,25 <1,—25 < 1. ThisisAz < b for

1 0 1
-1 0 X1 1

A: xr = b:
0 1 xTo 1

o
\
_
—



136 Solutions to Problem Sets

Problem Set 9.4, page 369

1 Yes,z > 0 is needed for this step: Ty < cthen(ATy)Tz < c'x.
3 < 4leadsta3x < 4z if x > 0. Butz = —1 would give a wrong output3 < —4.
2 The cornersz, x2, x3) With 21 + 222+ 223 = 4 are(4,0,0) and(0, 2,0) and(0, 0, 2).
When the costig™x = 511 + 323 + 8x3, the corner0, 2, 0) gives the minimum cost

cTz = 6. The other cornert, 0,0) and(0, 0, 2) cost20 and16.

3 The dual problem maximizeg'b = 4y, subject toy; > 5,2y; > 3,2y; > 8. The
besty; isy; = 3/2 leading toyTh = 4(3/2) = 6. Notice strong duality: min of*b
equals max otTz in Problem2 = 6.

4 With 2 constraints o, to x4, we can sett — 2 = 2 of thex’s to zero and see if the
other2 z’s are> 0 as required. The problem asks abui, x5,0,0) = (4,2,0,0)
which satisfies the constraints. The cost at the corner disgamthe cost functioa® =

which the problem statement forgot to include.

5 First payoff matrix : R chooses rowt every time and” chooses colum@ every time.

The payoff toC is 2 every time.

Second matrix : IfR chooses rows and2 with probabilitiesz and1 — z, the payoffs
to C arex + 8(1 — z) for columnl and4z + 2(1 — z) for column2. Those payoffs are

equal if8 — 7z =24 2z or6 = 9z orz = 2/3: payoff= 10/3.

If C' chooses columns and2 with probabilitiesy and1 — y, the payoffs toC are
y + 4(1 —y) = 4 — 3y whenR chooses rowl and8y + 2(1 — y) = 2 + 6y when
R chooses rov2. Those are equal wheh— 3y = 2 + 6y or y = 2/9 and the payoff
to C is agaird — 2/3 = 10/3. Duality holds and the game is wortb /3 to playerC.
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6

10

If AT = — A (square antisymmetric matrix) then any chaicef the row frequencies
by the row playeR can be matched by the same probabilitiefor the column player
C (and vice versa). ButT(Az) = (Az)'xz = —xT Az is always zero! So both

players can avoid any loss and the value of this antisymmgatne is zero.

0
Example: A = has optimal strategies = (1,0) for row playerR
1 0

andy = (1, 0) for column playeiC and all payoffs= 0.

Player R chooses row with probability o, /(01 + o,,) and rown with probability
o1/(o1+ 0,,). PlayerC chooses columih and columm: with those same probabilities
and expects the same average payments. (This is effectiely 2 diagonal matrix
with the same mixed strategy for both players.) The averagenpnt fromR to C will
becio, /(01 + on).

[|(z1, 22, 23)||1 < 2is equivalent totxz; + x5 + 23 < 2. Those3 choices of plus or
minus sign gives linear inequalities.

We have not explained semidefinite programming well enowgmake this a fair

guestion.

If Az < bandz > 0andAX < bandX > 0, theniA(z + X) < b and

%(m + X) > 0. Convexity is a crucial property in the theory of optimizeti
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Problem Set 10.1, page 372

10
11
12
13
14
15
16
17
18
19

20

Solutions to Problem Sets



Solutions to Problem Sets

Problem Set 10.2, page 381

10
11
12
13
14
15
16
17
18
19

20
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Problem Set 10.3, page 386

1 If all sample values are = 20, then the sample mean js = 20 and the sample
variance isS? = 0. If x = 20 or 21 (12 samples each) then= 20.5 and

1 6
2 = — 2 = —
§? = 52(24) (0.5)* = .

2 The sample mean and the expected value both increa%e bje variance does not

change.

1 1 1 9 3
Fraction of in rs divisibl rfrorboth=-+-— —=— = _.
3 Fraction of integers divisible by or 7 or bot 3+7 51 =20 = 7

. 1 . L .
Slnceﬁ of the integers are divisible Hyoth 3 and 7, those were double counted in
1 1

1
— and=. Then— must be subtracted off.
3 7 21
4 The probabilitieg, to pg that a random number fromto 10 (and1 to 100 and1 to
. 1 .
1000) endsin0, 1,,...,9 arel—O for each case. The expected mean of that digitfis
. . 2
The expected varianceis = T (0.52 4+ 1.52 + 2.5% + 3.5% + 4.5%).

s . - 1
5 By Problemd, the last digit is0, 1, . .., 9 with equal probabilityp = 0 The squares
of0to9endin0,1,4,9,6,5,6,9,4, 1. So the probabilitieg, to pg for those squares to
1 2 2 2 2 1

ndin0, 1,4 re—, —, —, —,—, — . The mean of th n ending digi
end in0, 1, ,9,6,5ae10,10,10,10,10,10 e mean of those ten ending digits

1 2 1 45
O<E)+(1+4+9+6) <1—0>+5<1—0> 7E74.5_

. 1
The variance? is ) [4.52 +2(3.52 4 0.5% + 4.5% + 1.5%) + 0.52] )

is

Crazy question.

6 Thefirst digit of the numbers from to 1000 is 1(112 times). Itis2to9 111 times
each. Reason: The first digit2sto 9 in 1 + 10 + 100 cases. First digi= 1 in 1 extra
case. Total counti8(111) + 1(112) = 1000.

1 1
Mean m = —— (1124 111(24+ 3+ -+ 9)) = ——[1 + 111(45
m = oo M2+ H1R+ 3+ +9)) = o5l + 111(45)]

Variance :0? = prize for this computation!
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7 The squares af57, 312, 696, 602 start with2, 9, 4, 3. The sample meamn (the average)

is 18/4. The sample variance is
2 2 2 2
1 18 18 18 18
=" |(2-= 9 - — /R — 3——) |.
=3 l( 4 ) * ( )" i) " 4
8 02 =3 pi(z; —m)? =3 pix? =23 pixim+ Y. pim? =Y pix? —2m? +m? =
>opir} —m?
9 How long did the experiment take ? On what defice

10 The key formulais Ex —m)]? = E[z?] — (E[z])? as in Problem 8. The only difference
is that expected values E are given by integrals (not sunis).useful identity Ex —
m))? = E[z?] — m? is still true withm = E[z].

11 To integrate over the:-y plane, the problem statement shows the correct change of
variables fromdzdy to rdrdf. Then—oo < x, y < oo becomed) < roog oo and

0 < 6 < 2. The integral ofld gives2r and/e*ﬁ/2 rdr = [ e’”2/2] =1.
0



