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Solutions to Problem Sets 1

Problem Set 1.1, page 6

1 c = ma and d = mb lead to ad = amb = bc. With no zeros, ad = bc is the equation

for a 2× 2 matrix to have rank 1.

2 The three edges going around the triangle are u = (5, 0),v = (−5, 12),w = (0,−12).
Their sum is u + v + w = (0, 0). Their lengths are ||u|| = 5, ||v|| = 13, ||w|| = 12.

This is a 5− 12− 13 right triangle with 52 + 122 = 25 + 144 = 169 = 132—the best

numbers after the 3− 4− 5 right triangle if we don’t count 6− 8− 10.

3 The combinations give (a) a line in R3 (b) a plane in R3 (c) all of R3.

4 v +w = (2, 3) and v −w = (6,−1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

w =

[
−2
2

] v +w =

[
2

3

]

v =

[
4

1

]

v −w =

[
6

−1

]

−w

5 This problem gives the diagonals v + w = (5, 1) and v − w = (1, 5) of the paral-

lelogram and asks for the sides v and w : The opposite of Problem 4. In this example

v = (3, 3) and w = (2,−2). Those come from v = 1
2 (v + w) + 1

2 (v − w) and

w = 1
2 (v +w)− 1

2 (v −w).

v −w

v

v +w

w



2 Solutions to Problem Sets

6 3v +w = (7, 5) and cv + dw = (2c+ d, c+ 2d).

7 u+v = (−2, 3, 1) andu+v+w = (0, 0, 0) and 2u+2v+w = ( add first answers) =

(−2, 3, 1). The vectors u,v,w are in the same plane because a combination u+v+w

gives (0, 0, 0). Stated another way : u = −v −w is in the plane of v and w.

8 The components of every cv+dw add to zero because the components of v = (1,−2, 1)
and of w = (0, 1,−1) add to zero. c = 3 and d = 9 give 3v+9w = (3, 3,−6). There

is no solution to cv + dw = (3, 3, 6) because 3 + 3 + 6 is not zero.

9 The nine combinations c(2, 1) + d(0, 1) with c = 0, 1, 2 and d = 0, 1, 2 will lie on a

lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

c = 2, d = 2

c = 2, d = 0c = 0, d = 2

c = 0, d = 1

c = 0, d = 0

10 The question is whether (a, b, c) is a combination x1u+ x2v. Can we solve

x1




1

1

0


+ x2




0

1

1


 =




a

b

c


 ?

Certainly x1 has to be a. Certainly x2 has to be c. So the middle components give the

requirement a + c = b.

11 The fourth corner can be (4, 4) or (4, 0) or (−2, 2). Draw 3 possible parallelograms !

12 Four more corners (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is
(
1
2 ,

1
2 ,

1
2

)
.

Centers of 6 faces :
(
1
2 ,

1
2 , 0
)
,
(
1
2 ,

1
2 , 1
)

&
(
0, 12 ,

1
2

)
,
(
1, 1

2 ,
1
2

)
&
(
1
2 , 0,

1
2

)
,
(
1
2 , 1,

1
2

)
.12 edges.

13 The combinations of i = (1, 0, 0) and i+ j = (1, 1, 0) fill the xy plane in xyz space.

14 (a) Sum = zero vector. (b) Sum = −2:00 vector = 8:00 vector.

(c) 2:00 is 30◦ from horizontal = (cos π
6 , sin

π
6 ) = (

√
3/2, 1/2).
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15 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 12j = (0, 12).

16 First part : u,v,w are all in the same direction.

Second part : Some combination of u,v,w gives the zero vector but those 3 vectors

are not on a line. Then their combinations fill a plane in 3D.

17 The two equations are c+ 3d = 14 and 2c+ d = 8. The solution is c = 2 and d = 4.

18 The point
3

4
v +

1

4
w is three-fourths of the way to v starting from w. The vector

1

4
v +

1

4
w is halfway to u =

1

2
v +

1

2
w. The vector v +w is 2u (the far corner of the

parallelogram).

19 The combinations cv + dw with 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 fill the parallelogram with

sides v and w. For example, if v = (1, 0) and w = (0, 1) then cv + dw fills the unit

square. In a special case like v = (a, 0) and w = (b, 0) these combinations only fill a

segment of a line.

With c ≥ 0 and d ≥ 0 we get the infinite “cone” or “wedge” between v and w.

For example, if v = (1, 0) and w = (0, 1), then the cone is the whole first quadrant

x ≥ 0, y ≥ 0. Question: What if w = −v? The cone opens to a half-space. But the

combinations of v = (1, 0) and w = (−1, 0) only fill a line.

20 (a) 1
3u + 1

3v + 1
3w is the center of the triangle between u,v and w; 1

2u + 1
2w lies

halfway between u and w (b) To fill the triangle keep c ≥ 0, d ≥ 0, e ≥ 0, and

c+ d+ e = 1.

21 The sum is (v−u)+(w−v)+(u−w) = zero vector. Those three sides of a triangle

are in the same plane !

22 The vector 1
2 (u+ v+w) is outside the pyramid because c+ d+ e = 1

2 +
1
2 + 1

2 > 1.

23 All vectors in 3D are combinations of u,v,w as drawn (not in the same plane). Start by

seeing that cu+dv fills a plane, then adding all the vectors ew fills all of R3. Different

answer when u,v,w are in the same plane.
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24 A four-dimensional cube has 24 = 16 corners and 2 · 4 = 8 three-dimensional faces

and 24 two-dimensional faces and 32 edges.

25 Fact : For any three vectors u,v,w in the plane, some combination cu + dv + ew is

the zero vector (beyond the obvious c = d = e = 0). So if there is one combination

Cu+Dv+Ew that produces b, there will be many more—just add c, d, e or 2c, 2d, 2e

to the particular solution C,D,E.

The example has 3u − 2v + w = 3(1, 3) − 2(2, 7) + 1(1, 5) = (0, 0). It also has

−2u+ 1v + 0w = b = (0, 1). Adding gives u − v +w = (0, 1). In this case c, d, e

equal 3,−2, 1 and C,D,E = −2, 1, 0.

Could another example have u,v,w that could NOT combine to produce b ? Yes. The

vectors (1, 1), (2, 2), (3, 3) are on a line and no combination produces b. We can easily

solve cu+ dv + ew = 0 but not Cu+Dv + Ew = b.

26 The combinations of v and w fill the plane unless v and w lie on the same line through

(0, 0). Four vectors whose combinations fill 4-dimensional space: one example is the

“standard basis” (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1).

27 The equations cu+ dv + ew = b are

2c −d = 1

−c +2d −e = 0

−d+2e = 0

So d = 2e

then c = 3e

then 4e = 1

c = 3/4

d = 2/4

e = 1/4



Solutions to Problem Sets 5

Problem Set 1.2, page 15

1 u · v = −2.4 + 2.4 = 0, u ·w = −.6 + 1.6 = 1, u · (v + w) = u · v + u · w =

0 + 1,w · v = 4 + 6 = 10 = v ·w.

2 The lengths are ‖u‖ = 1 and ‖v‖ = 5 and ‖w‖ =
√
5. Then |u · v| = 0 < (1)(5) and

|v ·w| = 10 < 5
√
5, confirming the Schwarz inequality.

3 Unit vectors v/‖v‖ = (45 ,
3
5 ) = (0.8, 0.6) and w/‖w‖ = (1/

√
5, 2/
√
5). The vectors

w, (2,−1), and −w make 0 ◦, 90 ◦, 180 ◦ angles with w. The cosine of θ is v
‖v‖ ·

w
‖w‖ = 10/5

√
5 = 2/

√
5.

4 For unit vectors u,v,w : (a) v · (−v) = −1 (b) (v +w) · (v −w) = v · v +

w · v − v ·w −w ·w = 1+ ( )− ( )− 1 = 0 so θ = 90◦ (notice v ·w = w · v)

(c) (v − 2w) · (v + 2w) = v · v − 4w ·w = 1− 4 = −3.

5 u1 = v/‖v‖ = (1, 3)/
√
10 and u2 = w/‖w‖ = (2, 1, 2)/3. U1 = (3,−1)/

√
10 is

perpendicular to u1 (and so is (−3, 1)/
√
10). U2 could be (1,−2, 0)/

√
5: There is a

whole plane of vectors perpendicular to u2, and a whole circle of unit vectors in that

plane.

6 All vectors w = (c, 2c) are perpendicular to v = (2,−1). They lie on a line. All

vectors (x, y, z) with x + y + z = 0 lie on a plane. All vectors perpendicular to both

(1, 1, 1) and (1, 2, 3) lie on a line in 3-dimensional space.

7 (a) cos θ = v · w/‖v‖‖w‖ = 1/(2)(1) so θ = 60◦ or π/3 radians (b) cos θ =

0 so θ = 90◦ or π/2 radians (c) cos θ = 2/(2)(2) = 1/2 so θ = 60◦ or π/3

(d) cos θ = −5/
√
10
√
5 = −1/

√
2 so θ = 135◦ or 3π/4 radians.

8 (a) False: v and w are any vectors in the plane perpendicular to u (b) True :

u · (v + 2w) = u · v + 2u · w = 0 (c) True, ‖u − v‖2 = (u − v) · (u − v)

splits into u · u+ v · v = 2 when u · v = v · u = 0.

9 If v2w2/v1w1 = −1 then v2w2 = −v1w1 or v1w1+v2w2 = v ·w = 0: perpendicular !

The vectors (1, 4) and (1,− 1
4 ) are perpendicular because 1− 1 = 0.
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10 Slopes 2/1 and −1/2 multiply to give −1. Then v · w = 0 and the two vectors

(the arrow directions) are perpendicular.

11 v · w < 0 means angle > 90◦; these w’s fill half of 3-dimensional space. Draw a

picture to show v and the w’s.

12 (1, 1) is perpendicular to (1, 5)− c(1, 1) if (1, 1) · (1, 5)− c(1, 1) · (1, 1) = 6− 2c = 0

(then c = 3). v · (w − cv) = 0 if c = v · w/v · v. Subtracting cv is the key to

constructing a perpendicular vector w − cv.

13 One possibility among many: u = (1,−1, 0, 0),v = (0, 0, 1,−1),w = (1, 1,−1,−1)
and (1, 1, 1, 1) are perpendicular to each other. “We can rotate those u,v,w in their

3D hyperplane and they will stay perpendicular.”

14
1
2 (x + y) = (2 + 8)/2 = 5 and 5 > 4; cos θ = 2

√
16/
√
10
√
10 = 8/10.

15 ‖v‖2 = 1+1+ · · ·+1 = 9 so ‖v‖ = 3;u = v/3 = (13 , . . . ,
1
3 ) is a unit vector in 9D;

w = (1,−1, 0, . . . , 0)/
√
2 is a unit vector in the 8D hyperplane perpendicular to v.

16 cosα = 1/
√
2, cosβ = 0, cos γ = −1/

√
2. For any vector v = (v1,v2,v3) the

cosines with the 3 axes are cos2 α+ cos2 β + cos2 γ=(v21 + v22 + v23)/‖v‖2= 1.

17 ‖v‖2 = 42 + 22 = 20 and ‖w‖2 = (−1)2 + 22 = 5. Pythagoras is ‖(3, 4)‖2 = 25 =

20 + 5 for the length of the hypotenuse v +w = (3, 4).

18 ||v + w||2 = (v + w) · (v + w) = v · (v + w) + w · (v + w). This expands to

v · v + 2v ·w +w ·w = ||v||2 + 2||v|| ||w|| cos θ + ||w||2.

19 We know that (v−w) · (v−w) = v ·v− 2v ·w+w ·w. The Law of Cosines writes

‖v‖‖w‖ cos θ for v · w. Here θ is the angle between v and w. When θ < 90◦ this

v ·w is positive, so in this case v · v +w ·w is larger than ‖v −w‖2.

Pythagoras changes from equality a2+b2 = c2 to inequality when θ < 90 ◦ or θ > 90 ◦.

20 2v ·w ≤ 2‖v‖‖w‖ leads to ‖v+w‖2 = v ·v+2v ·w+w ·w ≤ ‖v‖2+2‖v‖‖w‖+
‖w‖2. This is (‖v‖+ ‖w‖)2. Taking square roots gives ‖v +w‖ ≤ ‖v‖+ ‖w‖.

21 v21w
2
1 + 2v1w1v2w2 + v22w

2
2 ≤ v21w

2
1 + v21w

2
2 + v22w

2
1 + v22w

2
2 is true (cancel 4 terms)

because the difference is v21w
2
2 + v22w

2
1 − 2v1w1v2w2 which is (v1w2 − v2w1)

2 ≥ 0.
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22 Example 6 gives |u1||U1| ≤ 1
2 (u

2
1 + U2

1 ) and |u2||U2| ≤ 1
2 (u

2
2 + U2

2 ). The whole line

becomes .96 ≤ (.6)(.8) + (.8)(.6) ≤ 1
2 (.6

2 + .82) + 1
2 (.8

2 + .62) = 1. True : .96 < 1.

23 The cosine of θ is x/
√
x2 + y2, near side over hypotenuse. Then | cos θ|2 is not greater

than 1 : x2/(x2 + y2) ≤ 1.

24 These two lines add to 2||v||2 + 2||w||2 :

||v +w||2 = (v +w) · (v +w) = v · v + v ·w +w · v +w ·w

||v −w||2 = (v −w) · (v −w) = v · v − v ·w −w · v +w ·w

25 The length ‖v−w‖ is between 2 and 8 (triangle inequality when ‖v‖ = 5 and ‖w‖ =
3). The dot product v ·w is between −15 and 15 by the Schwarz inequality.

26 Three vectors in the plane could make angles greater than 90◦ with each other: for

example (1, 0), (−1, 4), (−1,−4). Four vectors could not do this (360◦ total angle).

How many can can be perpendicular to each other in R3 or Rn? Ben Harris and Greg

Marks showed me that the answer is n + 1. The vectors from the center of a regular

simplex in Rn to its n+1 vertices all have negative dot products. If n+2 vectors in Rn

had negative dot products, project them onto the plane orthogonal to the last one. Now

you have n+1 vectors in Rn−1 with negative dot products. Keep going to 4 vectors in

R2 : no way!

27 The columns of the 4 by 4 “Hadamard matrix” (times 1
2 ) are perpendicular unit

vectors:

1

2
H =

1

2




1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




The columns have

1
4 + 1

4 + 1
4 + 1

4 = 1.

Their dot products

are all zero.

.

28 The commands V = randn (3, 30);D = sqrt (diag (V ′ ∗ V )); U = V \D; will give

30 random unit vectors in the columns of U . Then u ′ ∗ U is a row matrix of 30 dot

products whose average absolute value should be close to 2/π.
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29 The four vectors v1,v2,v3,v4 must add to zero. Then the four corners of the quadri-

lateral could be 0 and v1 and v1 + v2 and v1 + v2 + v3. We are allowing the side

vectors v to cross each other—can you answer if that is not allowed ?
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Problem Set 1.3, page 24

1 The column space C(A1) is a plane in R3 : the two columns of A1 are independent

The column space C(A2) is all of R3

The column space C(A3) is a line in R3

2 The combination Ax = column 1−2 (column 2) + column 3 is zero for both matrices.

This leaves 2 independent columns. So C(A) is a (2-dimensional) plane in R3.

3 B has 2 independent columns so its column space is a plane. The matrix C has the

same 2 independent columns and the same column space as B.

4 Ax =




14

28

2




Typical dot product is

2(1) + 1(2) + 2(5) = 14
By =




4

8

18


 Iz = z =




z1

z2

z3




5 Ax = 1




2

4

0


+ 2




1

2

1


+ 5




2

4

0


 =




14

28

2




By = 4




1

1

1


+ 4




0

1

1


+ 10




0

0

1


 =




4

8

18




Iz = z1




1

0

0


+ z2




0

1

0


+ z3




0

0

1


 =




z1

z2

z3




6 A has 2 independent columns, B has 3, and A+B has 3. These are the ranks of A and

B and A+B. The rule is that rank(A+B) ≤ rank(A) + rank(B).

7 (a) A =


 1 3

2 4


 B =


 3 1

4 2


 A+B =


 4 4

6 6


 = rank 1

(b) A =


 1 3

2 4


 B =


 −1 −3

−2 −4


 A+B =


 0 0

0 0


 = rank 0
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(c) A =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




B =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




A+B = I = rank 4

8 The column space of A is all of R3. The column space of B is a line in R3. The

column space of C is a 2-dimensional plane in R3. If C had an additional row of zeros,

its column space would be a 2-dimensional plane in R4.

9 A =




1 1 2

1 1 1

1 2 1




Seven ones is the maximum for

rank 3. With eight ones, two

columns will be equal

10 A =


 3 9

5 15


 has rank 1 : 1 independent column,

1 independent row

B =


 1 2 −5

4 8 −20


 has 1 independent column in R2,

1 independent row in R3

11 (a) If B has an extra zero column, A and B have the same column space. Different row

spaces because of different row lengths !

(b) If column 3 = column 2− column 1, A and B have the same column spaces.

(c) If the new column 3 in B is (1, 1, 1), then the column space is not changed or

changed depending whether (1, 1, 1) was already in C(A).

12 If b is in the column space of A, then b is a combination of the columns of A and

the numbers in that combination give a solution x to Ax = b. The examples are solved

by (x1, x2) = (1, 1) and (1,−1) and
(
− 1

2 ,
1
2

)
.

13 A =




1 0

−1 1

0 −1


 B =




1 0

0 2

−1 −2


 A + B =




2 0

−1 3

−1 −3


 has the

same column space as A and B (other examples could have a smaller column space :

for example if B = −A in which case A+B = zero matrix).
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14 A =




1 0 2

3 1 9

5 0 10


 has column 3 = 2 (column 1) +3 (column 2)

A =




1 4 7

2 5 8

3 6 9


 has column 3 = −1 (column 1) +2 (column 2)

A =




1 1 2

2 2 4

0 0 q


 has 2 independent columns if q 6= 0

15 If Ax = b then the extra column b in
[
A b

]
is a combination of the first columns,

so the column space and the rank are not changed by including the b column.

16 (a) False : B could be −A, then A+B has rank zero.

(b) True : If the n columns of A are independent, they could not be in a space Rm with

m < n. Therefore m ≥ n.

(c) True : If the entries are random and the matrix has m = n (or m ≥ n), then the

columns are almost surely independent.

17 rank 2 :


 1 0

0 0


+


 0 0

0 1


 rank 1 :


 1 0

0 0


+


 1 0

0 0




rank 0 :


 1 0

0 0


−


 1 0

0 0




18 3




1

1

1


+ 4




0

1

1


+ 5




0

0

1


 =




3

7

12


 = Sx = b

S =




1 0 0

1 1 0

1 1 1


 and the 3 dot products in Sx are 3, 7, 12
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19 Suppose a = mc and b = md (all nonzero). Then amd = bmc. Then a/b = c/d.

If those ratios are M , then (a, c) = M(b, d).

20 Sy =




1 0 0

1 1 0

1 1 1







y1

y2

y3


 =




c1

c2

c3


 is solved by y =




c1

c2 − c1

c3 − c2


. This is

y = S−1c =




1 0 0

−1 1 0

1 −1 1







c1

c2

c3


. S is square with independent columns. So S

has an inverse with SS−1 = S−1S = I .

21 To solve Ax = 0 we can simplify the 3 equations (this is the subject of Chapter 2).

Start from Ax = 0

x1 +2x2+3x3= 0

3x1 +5x2+6x3= 0

4x1 +7x2+9x3= 0

Row 2− 3(row 1)

row 3− 4(row 1)

x1 +2x2+3x3 = 0

− x2− 3x3 = 0

− x2− 3x3 = 0

If x3 = 1 then x2 = −3 and x1 = 3. Any answer x = (3c,−3c, c) is correct.

22




1 1 0

3 2 1

7 4 c = 3







1 0 c = −1

1 1 0

0 1 1







0 0 0

2 1 5

3 3 6





 2 −1
−4 2





 −2 1

4 −2




have

dependent

columns

23 The equation Ax = 0 says that x is perpendicular to each row of A (three dot products

are zero). So x is perpendicular to all combinations of those rows. In other words, x is

perpendicular to the row space (here a plane).

An important fact for linear algebra : Every x in the nullspace of A (meaning Ax = 0)

is perpendicular to every vector in the row space.



Solutions to Problem Sets 13

Problem Set 1.4, page 35

1 Here are the 4 ways to multiply AB and the operation counts. A is m by n, B is n by p.

Row i times column k mp dot products, n multiplications each

Matrix A times column k p columns, mn multiplications each

Row i times matrix B m rows, np multiplications each

Column j of A times row j of B n (columns) (rows), mp multiplications each

2 A =
[
a a a

]
factors into CR =

[
a
][

1 1 1
]

3




1 0 0

1 1 0

1 1 1







1 0 0

−1 1 0

1 −1 1


 =




1 0 0

0 1 0

1 0 1




[
1 2 3

]


4

5

6


 =

[
32
]




4

5

6




[
1 2 3

]

=




4 8 12

5 10 15

6 12 18




4 (a)
[
1 1

]
 1

1



[
1 1 1

]

= 2
[
1 1 1

]
=
[
2 2 2

]

[
1 1

]


1

1

1




[
1 1 1

]

=
[
1 1

]



1 1 1

1 1 1

1 1 1


=

[
2 2 2

]

(b)


 1 2

0 1




 1 3

0 1




 1 4

0 1


 =


 1 5

0 1




 1 4

0 1


 =


 1 9

0 1





 1 2

0 1




 1 3

0 1




 1 4

0 1


 =


 1 2

0 1




 1 7

0 1


 =


 1 9

0 1




5 A has 7 columns and 4 rows. Those columns are vectors in 4-dimensional space. We

cannot have 5 independent column vectors because we cannot have 5 independent vec-

tors in 4-dimensional space. (This is really just a restatement of the problem. The proof
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comes in Section 3.2 : Every m by n matrix C, with m < n has a nonzero solution to

Cx = 0. Here m = 4 and n = 5 and 5 columns of C cannot be independent.)

6 A =




2 −2 1 6 0

1 −1 0 2 0

3 −3 0 6 1


 C =




2 1 0

1 0 0

3 0 1




7 CR =




2 1 0

1 0 0

3 0 1







1 −1 0 2 0

0 0 1 2 0

0 0 0 0 1


 = A in Problem 6.

8 A =




2 2 2

0 4 4

0 0 6


 =




2 2 2

0 4 4

0 0 6







1

1

1


 = AI

A = C

and

R = I

B =




2 2 2

0 0 4

0 0 6


 =




2 2

0 4

0 6





 1 1 0

0 0 1



= CR

9 A random 4 by 4 matrix has independent columns (C=A andR=I) with probability 1.

(We could be choosing the 16 entries of A between 0 and 1 with uniform probability

by A = rand(4, 4). We could be choosing those 16 entries of A from a “bell-shaped”

normal distribution by A = rand(4, 4). If we were choosing those 16 entries from

a finite list of numbers, then there is a nonzero probability that the columns of A are

dependent. In fact a nonzero probability that all 16 numbers are the same.)

10 If A is a random 4 by 5 matrix, then (using rand or randn as above) with probability 1

the first 4 columns are independent and go into C. With probability zero (this does not

mean it can’t happen !) the first 4 columns will be dependent and C will be different

(C will have r columns with r ≤ 4).

11 A=




1 0 a c

0 1 b d

0 0 0 0

0 0 0 0



=




1 0

0 1

0 0

0 0





 1 0 a c

0 1 b d




= CR. Many other possibilities !
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12 A1 =


 1 2

1 3




 1 0 1

0 1 1


 A2 =


 1 2

1 3




 0 1 0 −1

0 0 1 2




A3 =


 2

6



[
1 0.5 1.5

]

A4 =


 1 0

0 2




 1 0 0 4

0 1 1 0




13 C =


 1

3


 and R =

[
2 4

]
have CR =


 2 4

6 12


 and RC =

[
14
]

and CRC =


 14

42


 and RCR =

[
28 56

]
.

Here is an interesting fact when A is m by n and B is n by m. The m numbers on

the main diagonal of AB have the same total as the n numbers on the main diagonal of

BA. Example :

A =


 1 2 3

4 5 6


 B =




0 3

1 4

2 5


 AB =


 8 26

17 62


 BA =




12 15 18

17 22 27

22 29 36




8 + 62 = 12 + 22 + 36

14


 3 6

5 10





 6 −7

7 6





 2 0

3 6





 3 4

−2 −3




rank one orthogonal columns rank 2 A2 = I

15 1. Column j of A equals the matrix C times column j of R.

This is a combination of the columns of C.

2. Row i of A is row i of C times the matrix R.

This is a combination of the rows of R.

3. (row i of C) · (column j of R) gives Aij

That dot product requires the number of columns of C to equal the number of

rows of R.
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4. C has r columns so R has r rows (to multiply CR). Those columns of C are

independent (by construction). Those rows of R are independent (because R

contains the r by r identity matrix).

16 (a) The vector ABx is the matrix A times the vector Bx. So it is a combination of the

columns of A. Therefore C(AB) ⊆ C(A).

(b) A=


 1 0

0 0


 B=


 0 0

0 1


 give AB = zero matrix and C(AB)= zero vectors.

17 (a) If A and B have rank 1, then AB has rank 1 or 0. A = uvT and B = xyT give

AB = u(vTx)yT so AB = zero matrix if the dot product vTx happens to be zero.

(b) If A and B are 3 by 3 matrices of rank 3, then it is true that AB has rank 3.

One approach : If ABx = 0 then Bx = 0 because A has 3 independent columns.

But Bx = 0 only when x = 0, because B has 3 independent columns.

(c) Suppose AB = BA for all 2 by 2 matrices B. Choose B =


 1 0

0 0


 so that

AB=


 c d

e f




 1 0

0 0


=


 1 0

0 0




 c d

e f


. This tells us that


 c 0

e 0


=


 c d

0 0




and therefore d = e = 0. Now chooseB =


 0 1

0 0


 so that AB =


 c 0

0 f




 0 1

0 0




=


 0 1

0 0




 c 0

0 f


. This tells us that


 0 c

0 0


=


 0 f

0 0


and c = f andA = cI .

18 (a) AB =


 3 4

1 2


 and BC =


 2 1

4 3


.

(b) (AB)C = column exchange of AB =


 4 3

2 1




A(BC) = row exchange of BC =


 4 3

2 1


 = same result ABC.
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19 AB =




1 0 0

1 1 0

1 1 1







1 1 1

0 1 1

0 0 1


 =




1

1

1




[
1 1 1

]

+




0

1

1




[
0 1 1

]

+




0

0

1




[
0 0 1

]

=




1 1 1

1 1 1

1 1 1


+




0 0 0

0 1 1

0 1 1


+




0 0 0

0 0 0

0 0 1


 =




1 1 1

1 2 2

1 2 3




BA =




1

0

0




[
1 0 0

]

+




1

1

0




[
1 1 0

]

+




1

1

1




[
1 1 1

]

=




3 2 1

2 2 1

1 1 1




20 AB = (4× 3) (3× 2) needs mnp = (4) (3) (2) = 24 multiples.

Then (AB)C = (4× 2) (2× 1) needs (4) (2) (1) = 8 more : TOTAL 32.

BC = (3× 2) (2× 1) needs mnp = (3) (2) (1) = 6 multiplies.

Then A(BC) = (4× 3) (3× 1) needs (4) (3) (1) = 12 more : TOTAL 18.

Best to start with C = vector. Multiply by B to get the vector BC, and then the vector

A(BC). Vectors need less computing time than matrices !
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Problem Set 2.1, page 46

1 Multiply equation 1 by ℓ21 = 10
2 = 5 and subtract from equation 2 to find 2x+3y = 1

(unchanged) and −6y = 6. The pivots to circle are 2 and −6. Back substitution in

−6y = 6 gives y = −1. Then 2x+ 3y = 1 gives x = 2.

2 The row picture and column picture and coefficient matrix are changed. The solution

has not changed.

3 Subtract − 1
2 (or add 1

2 ) times equation 1. The new second equation is 3y=3. Then

y=1 and x=5. If the right sides change sign, so does the solution: (x, y)=(−5,−1).

4 Subtract ℓ = c
a times equation 1 from equation 2. The new second pivot multiplying y

is d− (cb/a) or (ad− bc)/a. Then y = (ag− cf)/(ad− bc). Notice the “determinant

of A” = ad− bc. It must be nonzero for this division.

5 6x + 4y is 2 times 3x + 2y. There is no solution unless the right side is 2 · 10 = 20.

Then all the points on the line 3x+2y = 10 are solutions, including (0, 5) and (4,−1).
The two lines in the row picture are the same line, containing all solutions.

6 Singular system if b = 4, because 4x+ 8y is 2 times 2x+ 4y. Then g = 32 makes the

lines 2x+4y = 16 and 4x+ 8y = 32 become the same: infinitely many solutions like

(8, 0) and (0, 4).

7 If a = 2 elimination must fail (two parallel lines in the row picture). The equations

have no solution. With a = 0, elimination will stop for a row exchange. Then 3y = −3
gives y = −1 and 4x+ 6y = 6 gives x = 3.

8 If k = 3 elimination must fail: no solution. If k = −3, elimination gives 0 = 0 in

equation 2: infinitely many solutions. If k = 0 a row exchange is needed: one solution.

9 On the left side, 6x− 4y is 2 times (3x− 2y). Therefore we need b2 = 2b1 on the right

side. Then there will be infinitely many solutions (two parallel lines become one single

line in the row picture). The column picture has both columns along the same line.
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10 The equation y = 1 comes from elimination (subtract x + y = 5 from x + 2y = 6).

Then x = 4 and 5x− 4y = 20− 4 = c = 16.

11 (a) Another solution is 1
2 (x+X, y+Y, z+Z). (b) If 25 planes meet at two points,

they meet along the whole line through those two points.

12 Elimination leads to an upper triangular system; then comes back substitution.

2x + 3y + z = 8

y + 3z = 4

8z = 8

gives

x = 2

y = 1 If a zero is at the start of row 2 or row 3,

z = 1 that avoids a row operation.

2x − 3y = 3

4x − 5y + z = 7

2x − y − 3z = 5

gives

2x − 3y = 3

y + z = 1

2y + 3z = 2

and

2x − 3y = 3

y + z = 1

− 5z = 0

and

x = 3

y = 1

z = 0

13 Subtract 2 times row 1 from row 2 to reach (d − 10)y − z = 2 along with y − z = 3.

If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular.

14 The second pivot position will contain −2 − b. If b = −2 we exchange with row 3.

If b = −1 (singular case) the second equation is −y − z = 0. But equation (3) is the

same so there is a line of solutions (x, y, z) = (1, 1,−1) when b = −1.

15 (a)

Example of

2 exchanges

0x + 0y + 2z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(exchange 1 and 2, then 2 and 3)

(b)

Exchange

but then

breakdown

0x + 3y + 4z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(rows 1 and 3 are not consistent)

16 If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row

3. The new row 3 has no pivot. If column 2 = column 1, then column 2 has no pivot.

17 Example x + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different

coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions to Ax = 0 but

almost surely no solution to Ax = b for a random b.
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18 Row 2 becomes 3y − 4z = 5, then row 3 becomes (q + 4)z = t − 5. If q = −4 the

system is singular—no third pivot. Then if t = 5 the third equation is 0 = 0 which

allows infinitely many solutions. Choosing z = 1 the equation 3y−4z = 5 gives y = 3

and equation 1 gives x = −9.

19 Elimination fails on


a 2

a a


 if a = 2 or a = 0. (You could notice that the determinant

a2 − 2a is zero for a = 2 and a = 0.)

20 a = 2 gives equal columns, a = 4 gives equal rows, a = 0 gives a zero column.

21 Solvable for s = 10 (add the two pairs of equations to get a+b+c+d on the left sides,

12 and 2+s on the right sides). So 12 must agree with 2+s, which makes s = 10. The

four equations for a, b, c, d are singular! Two solutions are


1 3

1 7


 and


0 4

2 6


,

A =




1 1 0 0

1 0 1 0

0 0 1 1

0 1 0 1




and b =




4

2

8

s




and U =




1 1 0 0

0 −1 1 0

0 0 1 1

0 0 0 0




.

22 A(2, :) = A(2, :)− 3 ∗A(1, :) subtracts 3 times all of row 1 from all of row 2.

23 The average pivots for rand(3) without row exchanges were 1
2 , 5, 10 in one experiment—

but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite ! With

row exchanges in MATLAB’s lu code, the averages .75 and .50 and .365 are much more

stable (and should be predictable, also for randn with normal instead of uniform prob-

ability distribution for the numbers in A).

24 If A(5, 5) is 7 not 11, then the last pivot will be 0 not 4.

25 Row j of U is a combination of rows 1, . . . , j of A (when there are no row exchanges).

If Ax = 0 then Ux = 0 (not true if b replaces 0). U just keeps the diagonal of A when

A is lower triangular, all entries below that diagonal go to zero.

26 The question deals with 100 equations Ax = 0 when A is singular.
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(a) Some linear combination of the 100 columns is the column of zeros.

(b) A very singular matrix has all ones: A = ones (100). A better example has 99

random rows (or the numbers 1i, . . . , 100i in those rows). The 100th row could

be the sum of the first 99 rows (or any other combination of those rows with no

zeros).

(c) The row picture has 100 planes meeting along a common line through 0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.
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Problem Set 2.2, page 53

0 If columns 1 and 2 of A are exchanged then rows 1 and 2 of A−1 are exchanged.

To keep A−1A = I , we have to keep

(
row i of A−1

)
·
(
column i of A

)
=1

(
row i of A−1

)
·
(
column j of A

)
=0 if i 6= j

1 E21 =




1 0 0

−5 1 0

0 0 1


 , E32 =




1 0 0

0 1 0

0 7 1


 , P =




1 0 0

0 0 1

0 1 0







0 1 0

1 0 0

0 0 1


 =




0 1 0

0 0 1

1 0 0


.

2 E32E21b = (1,−5,−35) but E21E32b = (1,−5, 0). When E32 comes first, row 3

feels no effect from row 1.

3




1 0 0

−4 1 0

0 0 1


 ,




1 0 0

0 1 0

2 0 1


 ,




1 0 0

0 1 0

0 −2 1




← E21, E31E32

E = E32E31E21 =




1 0 0

−4 1 0

10 −2 1


 .

Those E’s are in the right order to give EA = U .

E−1 = E−1
21 E−1

31 E−1
32 = L =




1 0 0

4 1 0

−2 2 1




4 Elimination on column 4: b =




1

0

0




E21→




1

−4

0




E31→




1

−4

2




E32→




1

−4

10




. The

original Ax = b = (1, 0, 0) has become Ux = c = (1,−4,10). Then back substitu-

tion gives z = −5, y = 1

2
, x = 1

2
. This solves Ax = (1, 0, 0).

5 Changing a33 from 7 to 11 will change the third pivot from 5 to 9. Changing a33 from

7 to 2 will change the pivot from 5 to no pivot.
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6 Example:




2 3 7

2 3 7

2 3 7







1

3

−1



=




4

4

4




. If all columns are multiples of column 1, there

is no second pivot.

7 To reverse E31, add 7 times row 1 to row 3. The inverse of the elimination matrix

E =




1 0 0

0 1 0

−7 0 1




is E−1 =




1 0 0

0 1 0

7 0 1




. Multiplication confirms EE−1 = I.

8 M =


a b

c d


 and M* =


 a b

c− ℓa d− ℓb


. detM* = a(d − ℓb) − b(c − ℓa)

reduces to ad− bc ! Subtracting row 1 from row 2 doesn’t change detM .

9 M=




1 0 0

0 0 1

−1 1 0




for both parts (a) and (b).

After the exchange, we need E31 (not E21) to act on the new row 3.

10 At the same time




1 0 1

0 1 0

1 0 1


 ;E31E13=




2 0 1

0 1 0

1 0 1


 . Test on the identity matrix!

11 An example with two negative pivots is A =




1 2 2

1 1 2

1 2 1


. The diagonal entries can

change sign during elimination.

12 For the first, a simple row exchange has P 2 = I so P−1 = P . For the second,

P−1 =




0 0 1

1 0 0

0 1 0


. Always P−1 = “transpose” of P , coming in Section 2.4.
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13


x

y


 =


 .5

−.2


 and


 t

z


 =


−.2

.1


 so A−1 =

1

10


 5 −2

−2 1


. This question

solved AA−1 = I column by column, the main idea of Gauss-Jordan elimination.

14 An upper triangular U with U2 = I is U =


1 a

0 −1


 for any a. And also −U .

15 (a) Multiply AB = AC by A−1 to find B = C (since A is invertible) (b) As long as

B − C has the form


 x y

−x −y


, we have AB = AC for A =


1 1

1 1


.

16 (a) If Ax = (0, 0, 1) then equation 1 + equation 2 − equation 3 is 0 = 1

(b) Right sides must satisfy b1 + b2 = b3

(c) In elimination, Row 3 becomes a row of zeros—no third pivot.

17 (a) The vector x = (1, 1,−1) solves Ax = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

18 Yes, B is invertible (A was just multiplied by a permutation matrix P ). If you exchange

rows 1 and 2 of A to reach B, you exchange columns 1 and 2 of A−1 to reach B−1. In

matrix notation, B = PA has B−1 = A−1P−1 = A−1P for this P .

19 (a) If B = −A then A,B can be invertible but A+B = zero matrix is not invertible.

(b) A =


1 0

0 0


 and B =


0 0

0 1


 are both singular but A+B = I is invertible.

20 Multiply C = AB on the left by A−1 and on the right by C−1. Then A−1 = BC−1.

21 M−1 = C−1B−1A−1 so multiply on the left by C and the right by A : B−1 =

CM−1A.

22 B−1 = A−1


1 0

1 1



−1

= A−1


 1 0

−1 1


: subtract column 2 of A−1 from column 1.

23 If A has a column of zeros, so does BA. Then BA = I is impossible. There is no A−1.

24


a b

c d




 d −b

−c a


 =


ad− bc 0

0 ad− bc


.

The inverse of each matrix is

the other divided by ad− bc
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25 E32E31E21 =




1

1

−1 1







1

1

−1 1







1

−1 1

1


 =




1

−1 1

0 −1 1


 = E.

Reverse the order and change−1 to +1 to get inversesE−1
21 E−1

31 E−1
32 =




1

1 1

1 1 1


 =

L = E−1. The off-diagonal 1’s are unchanged by multiplying inverses in this order.

26 A2B = I can also be written as A(AB) = I . Therefore A−1 is AB.

27 A ∗ ones(4, 1) =
[
4 4 4 4

]T
−
[
4 4 4 4

]T
=
[
0 0 0 0

]
so A

cannot be invertible.

28 Six of the sixteen 0− 1 matrices are invertible : I and P and all four with three 1’s.

29


1 3 1 0

2 7 0 1


→


1 3 1 0

0 1 −2 1


→


1 0 7 −3

0 1 −2 1


 =

[
I A−1

]
;


1 4 1 0

3 9 0 1


→


1 4 1 0

0 −3 −3 1


→


1 0 −3 4/3

0 1 1 −1/3


 =

[
I A−1

]
.

30 A can be invertible with diagonal zeros (example to find). B is singular because each

row adds to zero. The all-ones vector x = (1, 1, 1, 1) has Bx = 0.

31




2 1 1

1 2 1

1 1 2




−1

=
1

4




3 −1 −1
−1 3 −1
−1 −1 3


 ; B




1

1

1


 =




2 −1 −1
−1 2 −1
−1 −1 2







1

1

1


 =




0

0

0




so B−1 does not exist.

32

[
U I

]
=




1 a b 1 0 0

0 1 c 0 1 0

0 0 1 0 0 1


→




1 a 0 1 0 −b
0 1 0 0 1 −c
0 0 1 0 0 1




→




1 0 0 1 −a ac− b

0 1 0 0 1 −c

0 0 1 0 0 1


 =

[
I U−1

]
.
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33 (a) True (If A has a row of zeros, then so does every AB, and AB = I is impossible).

(b) False (the matrix of all ones is singular even with diagonal 1’s).

(c) True (the inverse of A−1 is A and the inverse of A2 is (A−1)2).

34 Elimination produces the pivots a and a−b and a−b. A−1 =
1

a(a− b)




a 0 −b
−a a 0

0 −a a


.

The matrix C is not invertible if c = 0 or c = 7 or c = 2.

35 A−1 =




1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1




and x = A−1




1

1

1

1



=




2

2

2

1




. When the triangular A alternates

1 and −1 on its diagonals, A−1 has 1’s on the main diagonal and next diagonal.

36 x = (1, 1, . . . , 1) has x = Px = Qx so (P −Q)x = 0. Permutations do not change

this all-ones vector. Then P −Q is not invertible.

37 The block inverses are


 I 0

−C I


 and


 A−1 0

−D−1CA−1 D−1


 and


−D I

I 0


.

38 A is invertible when elimination (with row exchanges allowed) produces 3 nonzero

pivots.

39

(
I − uvT

)(
I + uvT

(
I − vTu

)−1
)

= I − uvT + uvT
(
I − vTu

)−1 −
(
vTu

)
uvT

(
I − vTu

)−1

= I − uvT + uvT = I
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Problem Set 2.3, page 61

1 ℓ21 = 1 multiplied row 1 and subtracted from row 2; in reverse L =


1 0

1 1


 times

Ux =


1 0

1 1




x

y


 =


5

2


 = c is Ax = b =


1 1

1 2




x

y


 =


5

7


.

In letters, L multiplies Ux = c to give Ax = b.

2 Lc = b is


1 0

1 1




c1
c2


 =


5

7


, solved by c =


5

2


 as elimination goes forward.

Ux = c is


1 1

0 1




x

y


 =


5

2


, solved by x =


3

2


 in back substitution.

3 EA =




1

0 1

−3 0 1







2 1 0

0 4 2

6 3 5


 =




2 1 0

0 4 2

0 0 5


 = U .

With E−1 as L, A = LU =




1

0 1

3 0 1







2 1 0

0 4 2

0 0 5


 =




2 1 0

0 4 2

6 3 5


.

4




1

0 1

0 −2 1







1

−2 1

0 0 1


A =




1 1 1

0 2 3

0 0 −6


 = U . Then A =




1 0 0

2 1 0

0 2 1


 U is

the same as E−1
21 E−1

32 U = LU . The multipliers ℓ21 = ℓ32 = 2 fall into place in L.

5 E32E31E21 A =




1

1

−2 1







1

1

−3 1







1

−2 1

1







1 0 1

2 2 2

3 4 5


. This is




1 0 1

0 2 0

0 0 2


 = U . Put those multipliers 2, 3, 2 intoL.ThenA =




1 0 0

2 1 0

3 2 1


U = LU .
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6 A =


2 4

4 11


 =


1 0

2 1




2 4

0 3


 =


1 0

2 1




2 0

0 3




1 2

0 1


=LDU ; U is LT




1

4 1

0 −1 1







1 4 0

0 −4 4

0 0 4


 =




1

4 1

0 −1 1







1

−4
4







1 4 0

0 1 −1

0 0 1


=LDLT.

7




a a a a

a b b b

a b c c

a b c d



=




1

1 1

1 1 1

1 1 1 1







a a a a

b− a b− a b− a

c− b c− b

d− c




. Need

a 6= 0 All of the

b 6= a multipliers

c 6= b are ℓij = 1

d 6= c for this A

8 Correction : Problem 8 has the same L as Problem 7.


a r r r

a b s s

a b c t

a b c d



=




1

1 1

1 1 1

1 1 1 1







a r r r

b− r s− r s− r

c− s t− s

d− t




. Need

a 6= 0

b 6= r

c 6= s

d 6= t

9


1 0

4 1


 c =


 2

11


 gives c =


2

3


. Then


2 4

0 1


x =


2

3


 gives x =


−5

3


.

Ax = b is LUx =


2 4

8 17


 x =


 2

11


. Eliminate to


2 4

0 1


x =


2

3


 = c.

10




1 0 0

1 1 0

1 1 1


 c =




4

5

6


 gives c =




4

1

1


. Then




1 1 1

0 1 1

0 0 1


x =




4

1

1


 gives x =




3

0

1


.

Those are forward elimination and back substitution for




1 1 1

1 2 2

1 2 3


x =




4

5

6


.

11 (a)L goes to I (b)I goes to L−1 (c)LU goes to U . Elimination multiplies by L−1.

12 (a) Multiply LDU = L1D1U1 by inverses to get L−1
1 LD = D1U1U

−1. The left side

is lower triangular, the right side is upper triangular⇒ both sides are diagonal.

(b) L,U, L1, U1 have diagonal 1’s so D = D1. Then L−1
1 L and U1U

−1 are both I .
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13




1

1 1

0 1 1







1 1 0

1 1

1


 = LIU ;




a a 0

a a+ b b

0 b b+ c


 = L




a

b

c


U .

A tridiagonal matrix A has bidiagonal factors L and U .

14 For the first matrix A,L keeps the 3 zeros at the start of rows. But U may not have the

upper zero where A24 = 0. For the second matrix B,L keeps the bottom left zero at

the start of row 4. U keeps the upper right zero at the start of column 4. One zero in A

and two zeros in B are filled in.

15 The 2 by 2 upper submatrix A2 has the first two pivots 5, 9. Reason: Elimination on A

starts in the upper left corner with elimination on A2.

16




1 2 0

1 2 0

0 0 0


+




0 0 0

0 3 1

0 6 2


+




0 0 0

0 0 0

0 0 2


 = A =




1 2 0

1 5 1

0 6 4




17 LTL =




1 1 1

0 1 1

0 0 1







1 0 0

1 1 0

1 1 1


=




3 2 1

2 2 1

1 1 1


 andLLT =




1 0 0

1 1 0

1 1 1







1 1 0

0 1 1

0 0 1




=




1 1 1

1 2 2

1 2 3



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Problem Set 2.4, page 71

1 A =


1 0

9 3


 has AT =


1 9

0 3


 , A−1 =


 1 0

−3 1/3


 , (A−1)T = (AT)−1 =


1 −3
0 1/3


; A =


1 c

c 0


 has AT = A and A−1 =

1

c2


0 c

c −1


 = (A−1)T.

2 (AB)T =


1 2

3 7


 = BTAT. This answer is different from ATBT =


7 2

3 1




(except whenAB = BA). AAT =


1 0

2 1




2 1

0 1


=


1 2

2 5


 andATA =


5 2

2 1




3 (a) ((AB)−1)T = (B−1A−1)T = (A−1)T(B−1)T. This is also (AT)−1(BT)−1.

(b) If U is upper triangular, so is U−1: then (U−1)T is lower triangular.

4 A =


0 1

0 0


 has A2 = 0. But the diagonal of ATA has dot products of columns of A

with themselves. If ATA = 0, zero dot products⇒ zero columns⇒ A = zero matrix.

5 (a) xTAy=
[
0 1

]

1 2 3

4 5 6







0

1

0


=5

(b) This answer 5 is the row xTA =
[
4 5 6

]
times y




0

1

0


.

(c) This is also the row xT =
[
0 1

]
times Ay=


2

5


.

6 MT =


A

T CT

BT DT


; MT = M needs AT = A and BT = C and DT = D.
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7 (a) False:


 0 A

A 0


 is symmetric only if A = AT.

(b) False: The transpose of AB is BTAT = BA. So (AB)T = AB needs BA = AB.

(c) True: Invertible symmetric matrices have symmetric inverses ! Easiest proof is to

transpose AA−1 = I . So unsymmetric A has unsymmetric A−1.

(d) True: (ABC)T is CTBTAT(= CBA for symmetric matrices A,B, and C).

8 The 1 in row 1 has n choices; then the 1 in row 2 has n− 1 choices . . . (n! overall).

9 P1P2 =




0 1 0

0 0 1

1 0 0







1 0 0

0 0 1

0 1 0


 =




0 0 1

0 1 0

1 0 0


 but P2P1 =




0 1 0

1 0 0

0 0 1


.

If P3 and P4 exchange different pairs of rows, then P3P4 = P4P3 = both exchanges.

10 (3, 1, 2, 4) and (2, 3, 1, 4) keep 4 in place; 6 more even P ’s keep 1 or 2 or 3 in place;

(2, 1, 4, 3) and (3, 4, 1, 2) and (4, 3, 2, 1) exchange 2 pairs. (1, 2, 3, 4) makes 12 evens.

11 The “reverse identity” P takes (1, . . . , n) into (n, . . . , 1). When rows and also columns

are reversed, the 1, 1 and n, n entries of A change places in PAP . So do the 1, n and

n, 1 entries. In general (PAP )ij is (A)n − i+ 1, n− j + 1.

12 (Px)T(Py)=xTPTPy=xTy since PTP =I . In general Px·y=x·PTy 6= x·Py:

Non-equality where P 6= PT:




0 1 0

0 0 1

1 0 0







1

2

3


 ·




1

1

2


 6=




1

2

3


 ·




0 1 0

0 0 1

1 0 0







1

1

2


.

13 PA =




0 1 0

0 0 1

1 0 0







0 0 6

1 2 3

0 4 5


 =




1 2 3

0 4 5

0 0 6


 is upper triangular. Multiplying A

on the right by a permutation matrix P2 exchanges the columns of A. To make this A

lower triangular, we also need P1 to exchange rows 2 and 3:

P1AP2 =




1

1

1


A




1

1

1


 =




6 0 0

5 4 0

3 2 1


.
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14 A cyclic P =




0 1 0

0 0 1

1 0 0


 or its transpose will have P 3 = I : (1, 2, 3)→ (2, 3, 1)→

(3, 1, 2)→ (1, 2, 3). The permutation P̂ =


1 0

0 P


 for the same P has P̂ 4 = P̂ 6= I .

Simple row exchanges have P 2 = I and P 3 = P .

15 (a) If P sends row 1 to row 4, then PT sends row 4 to row 1 (b) P =


E 0

0 E


 =

PT with E =


0 1

1 0


 moves all rows: 1 and 2 are exchanged, 3 and 4 are exchanged.

16 A2−B2 and also ABA are symmetric if A and B are symmetric. But (A+B)(A−B)

and ABAB are generally not symmetric. Transposes (A − B) (A + B) and BABA.

17 (a) 5+ 4+ 3+ 2+ 1 = 15 independent entries if S = ST (b) L has 10 and D has 5;

total 15 in LDLT (c) Zero diagonal if AT = −A, leaving 4+3+2+1 = 10 choices.

(d) The diagonal of ATA contains ||row 1||2, ||row 2||2, . . .⇒ never negative.

18


1 3

3 2


 =


1 0

3 1




1 0

0 −7




1 3

0 1


;


1 b

b c


 =


1 0

b 1




1 0

0 c− b2




1 b

0 1







2 −1 0

−1 2 −1
0 −1 2


 =




1

−
1

2
1

0 −
2

3
1







2

3

2

4

3







1 −
1

2
0

1 −
2

3

1


 = LDLT.

19




1

1

1


A =




1 0 1

0 1 1

2 3 4


 =




1

0 1

2 3 1







1 0 1

1 1

−1


;




1

1

1


A =




1 2 0

1 1 1

2 4 1


 =




1

1 1

2 0 1







1 2 0

−1 1

1



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20 A =




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



= P and L = U = I .

Elimination on this A = P exchanges

rows 1-2 then rows 2-3 then rows 3-4.

21 One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange

always switches that count! Then 3 or 5 exchanges will leave that count odd.

22 A =




0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2




= AT has 0, 1, 2, 3 in every row. I don’t know any rules for a

symmetric construction like this “Hankel matrix” with constant antidiagonals.

23 Reordering the rows and/or the columns of
[
a b

c d

]
will move the entry a. So the result

cannot be the transpose (which doesn’t move a).

24 (a) Total currents are ATy =




1 0 1

−1 1 0

0 −1 −1







yBC

yCS

yBS


 =




yBC + yBS

−yBC + yCS

−yCS − yBS


.

(b) Either way (Ax)Ty = xT(ATy) = xByBC + xByBS − xCyBC + xCyCS −
xSyCS − xSyBS . Six terms.

25 P =




0 1 0

0 0 1

1 0 0


 and P 3 = I so three rotations for 360◦; P rotates every v around

the (1, 1, 1) line by 120◦.

26 L(UT)−1 is lower triangular times lower triangular, so lower triangular. The transpose

of UTDU is UTDTUT T = UTDU again, so UTDU is symmetric. The factorization

multiplies lower triangular by symmetric to get LDU which is A.

27 These are groups: Lower triangular with diagonal 1’s, diagonal invertible D, permuta-

tions P , orthogonal matrices with QT = Q−1.
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28 There are n! permutation matrices of order n. Eventually two powers of P must be

the same permutation. And if P r = P s then P r − s = I . Certainly r − s ≤ n!

P =


P2

P3


 is 5 by 5 with P2 =


0 1

1 0


 and P3 =




0 1 0

0 0 1

1 0 0


 and P 6 = I .

29 To split the matrix M into (symmetric S) + (anti-symmetric A), the only choice is

S = 1
2 (M +MT) and A = 1

2 (M −MT).

30 Start from QTQ = I , as in




qT
1

qT
2





q1 q2


 =




1 0

0 1




(a) The diagonal entries give qT
1 q1 = 1 and qT

2 q2 = 1: unit vectors

(b) The off-diagonal entry is qT
1 q2 = 0 (and in general qT

i qj = 0)

(c) The leading example for Q is the rotation matrix


cos θ − sin θ

sin θ cos θ


.
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Problem Set 2.5, page 81

1 ∆y= y(x+ h)− y(x) = (x+ h)3 − x3

= x3 + 3x2h+ 3xh2 + h3 − x3

First order term = 3xh2 matches h dy/dx.

Second order term = 3xh2 matches 1
2h

2d2y/dx2 = 1
2h

2(6x).

2 y = ex has dy/dx = ex = 1 at the point x = 0. The tangent line at x = 0 is y = 1+x.

3 y = ex has d2y/dx2 = ex = 1 at x = 0. The tangent parabola at x = 0 is

y = 1 + x+ 1
2x

2. At x = h this parabola is 1 + h+ 1
2 h

2 = eh to second order.

4 y = ex has all dny/dxn = ex = e0 = 1 at x = 0. So the Taylor series is y(h) = eh =

1 + h+ 1
2h

2 + · · ·+ 1
n!h

n + · · · .

5 sinh = h− 1
6h

3 + 1
5!h

5 − · · · so the error in sinh− h is order h3.

6 Separate the real and imaginary parts of eix (even and odd powers of i). Those two parts

are exactly the Taylor series for cosx and sinx. So comparing Taylor series produces

eix = cosx+ i sinx.

7 Centered
(1/10)3 − (−1/10)3

2/10
=

1

100
is approximating

dy

dx
= 3x2 = 0 at x = 0.

Forward
(1/10)3 − 0

1/10
=

1

100
Backward

0− (−1/10)3
1/10

=
1

100
.

By chance all three give the same answer.

8 Substitute y(h) and also y(−h) in the 3 options of Problem 7,:

Centered gives
2h dy/dx(0)

2h
= exact through the h2 term.

Forward gives
dy

dx
(0) +

1

2
h
d2y

dx2
(0) = error of order h.

Backward gives
dy

dx
(0)− 1

2
h
d2y

dx2
(0) = error of order h.

9 Compare
e− e−1

2
and

e− 1

1
and

1− e−1

1
as approximations to dy/dx(0) = e0 = 1.

Taking e ≈ 2.8 and e−1 ≈ .35, the first (centered) difference wins easily.
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10 (e − 2 + e−1) ≈ (2.78 − 2 + 0.36) = 1.14. The correct second derivative of ex at

x = 0 is 1.00 : 14% error.

11 The 3rd difference uses numbers 1,−3, 3,−1.

Test on y = x3 33−3(23)+3(13)− (03) = 27−24+3 = 0 = correct at x = 0.

Test on y = x4 34 − 3(24) + 3(14)− (04) = 81− 48 + 3 6= 0 at x = 0.

12

∞∑

−∞
fi gi+1 =

∞∑

−∞
fi−1 gi (just shifting i by 1 in infinite series).

∞∑

−∞
fi gi−1 =

∞∑

−∞
fi+1 gi (same idea).

Summation by parts is true : Subtract second line from first line.

13 Test u = x2 − 4 + 8− 8 + 4 = 0 = correct derivative
du

dx
= 2x at x = 0.

Test u = x4 − 24 + 8 · 14 − 8(−1)4 + (−2)4 = 0 = also correct
du

dx
= 4x3 = 0

at x = 0.

14 The pattern of determinants indicates detK5 = 6 (correct !). The inverse is

K−1 =
1

6




5 4 3 2 1

4 2

3 3

2 4

1 2 3 4 5




=
1

6




5 4 3 2 1

4 8 6 4 2

3 6 6 3

2 4 6 8 4

1 2 3 4 5




=
1

6




5 4 3 2 1

4 8 6 4 2

3 6 9 6 3

2 4 6 8 4

1 2 3 4 5




15 Remove column 1 of A0 to produce A1 with T = AT
1 A1. Remove columns 1 and 4

to produce A2 with K = AT
2 A2. Check :

AT
2 =


 1 −1 0

0 1 −1






1 0

−1 1

0 −1


 =


 2 −1
−1 2




.

16 D4D
T
4 =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1

−1 0 −1 2



=C4= periodic circulant matrix (not invertible)
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17 The solution to −d2u

dx2
= cos 4πx is u(x) =

(
1

4π

)2
cos 4πx+A+Bx.

The boundary conditions u = 0 at x = 0 and x = 1 give

u(0) =

(
1

4π

)2
+A = 0 and u(1) =

(
1

4π

)2
+A+B = 0.

Then A = −
(

1

4π

)2
and B = 0 and u(x) =

(
1

4π

)2
(cos 4πx− 1).

18 ∆3 =




0 1 0

−1 0 1

0 −1 0


 has column 3 = − column 1 : not invertible.

∆4 =




0 1 0 0

−1 0 1 0

0 −1 0 1

0 0 −1 0




has 4 independent columns : invertible.
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Problem Set 3.1, page 79

Note An interesting “max-plus” vector space comes from the real numbers R combined

with −∞. Change addition to give x + y = max(x, y) and change multiplication to

xy=usual x+y. Which y is the zero vector that gives x+0=max(x,0)=x for every x?

1 x+ y 6= y + x and x+ (y + z) 6= (x+ y) + z and (c1 + c2)x 6= c1x+ c2x.

2 When c(x1, x2) = (cx1, 0), the only broken rule is 1 times x equals x. Rules (1)-(4)

for addition x+ y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no −x
(b) c(x+ y) is the usual (xy)c, while cx+ cy is the usual (xc)(yc). Those are equal.

With c = 3, x = 2, y = 1 this is 3(2+ 1) = 8. The zero vector is the number 1.

4 The zero vector in matrix spaceM is


0 0

0 0


 ; 1

2A =


1 −1
1 −1


 and−A =


−2 2

−2 2


.

The smallest subspace of M containing the matrix A consists of all matrices cA.

5 (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the

subspace must contain A−B = I (c) Matrices whose main diagonal is all zero.

6 When f(x) = x2 and g(x) = 5x, the combination 3f − 4g in function space is

h(x) = 3f(x) − 4g(x) = 3x2 − 20x.

7 Rule 8 is broken: If cf(x) is defined to be the usual f (cx) then (c1 + c2)f =

f ((c1 + c2)x) is not generally the same as c1f + c2f = f (c1x) + f (c2x).

8 (a) The vectors with integer components allow addition, but not multiplication by 1
2

(b) Remove the x axis from the xy plane (but leave the origin). Multiplication by any

c is allowed but not all vector additions : (1, 1) + (−1, 1) = (0, 2) is removed.

9 The only subspaces are (a) the plane with b1 = b2 (d) the linear combinations of v

and w (e) the plane with b1 + b2 + b3 = 0.

10 (a) All matrices


a b

0 0


 (b) All matrices


a a

0 0


 (c) All diagonal matrices.
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11 For the plane x+ y− 2z = 4, the sum of (4, 0, 0) and (0, 4, 0) is not on the plane. (The

key is that this plane does not go through (0, 0, 0).)

12 The parallel plane P0 has the equation x + y − 2z = 0. Pick two points, for example

(2, 0, 1) and (0, 2, 1), and their sum (2, 2, 2) is in P0.

13 The smallest subspace containing a plane P and a line L is either P (when the line L

is in the plane P) or R3 (when L is not in P).

14 (a) The invertible matrices do not include the zero matrix, so they are not a subspace

(b) The sum of singular matrices


1 0

0 0


+


0 0

0 1


 is not singular: not a subspace.

15 (a) True: The symmetric matrices do form a subspace (b) True: The matrices with

AT = −A do form a subspace (c) True: Any set of vectors from a vector space will

span a subspace of that space.

16 The column space of A is the x-axis = all vectors (x, 0, 0) : a line. The column space

of B is the xy plane = all vectors (x, y, 0). The column space of C is the line of vectors

(x, 2x, 0).

17 (a) Elimination leads to 0 = b2 − 2b1 and 0 = b1 + b3 in equations 2 and 3:

Solution only if b2 = 2b1 and b3 = −b1 (b) Elimination leads to 0 = b1 + b3

in equation 3: Solution only if b3 = −b1.

18 A combination of the columns of C is also a combination of the columns of A. Then

C =


1 3

2 6


 and A =


1 2

2 4


 have the same column space. B =


1 2

3 6


 has a

different column space. The key word is “space”.

19 (a) Solution for every b (b) Solvable only if b3 = 0 (c) Solvable only if b3 = b2.

20 The extra column b enlarges the column space unless b is already in the column space.

[A b ] =


1 0 1

0 0 1


 (larger column space)

(no solution to Ax = b)


1 0 1

0 1 1


 (b is in column space)

(Ax = b has a solution)

21 The column space of AB is contained in (possibly equal to) the column space of A.

The example B = zero matrix and A 6= 0 is a case when AB = zero matrix has a

smaller column space (it is just the zero space Z) than A.
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22 The solution to Az = b+ b∗ is z = x+ y. If b and b∗ are in C(A) so is b+ b∗.

23 The column space of any invertible 5 by 5 matrix is R5. The equation Ax = b is

always solvable (by x = A−1b) so every b is in the column space of that invertible

matrix.

24 (a) False: Vectors that are not in a column space don’t form a subspace.

(b) True: Only the zero matrix has C(A) = {0}. (c) True: C(A) = C(2A).

(d) False: C(A− I) 6= C(A) when A = I or A =


1 0

0 0


 (or other examples).

25 A =




1 1 0

1 0 0

0 1 0


 and




1 1 2

1 0 1

0 1 1


 do not have




1

1

1


 in C(A). A =




1 2 0

2 4 0

3 6 0


 has

C(A) = line in R3.

26 When Ax = b is solvable for all b, every b is in the column space of A. So that space

is C(A) = R9.

27 (a) If u and v are both in S + T, then u = s1 + t1 and v = s2 + t2. So u + v =

(s1 + s2)+ (t1 + t2) is also in S+T. And so is cu = cs1 + ct1 : S+T = subspace.

(b) If S and T are different lines, then S ∪ T is just the two lines (not a subspace) but

S + T is the whole plane that they span.

28 If S = C(A) and T = C(B) then S + T is the column space of M = [A B ].

29 The columns of AB are combinations of the columns of A. So all columns of [A AB ]

are already in C(A). But A =


0 1

0 0


 has a larger column space than A2 =


0 0

0 0


.

For square matrices, the column space is Rn exactly when A is invertible.

30 y − e−x and y = ex are independent solutions to d2y/dx2 = y. Also y = cosx and

y = sinx are independent solutions to d2y/dx2 = −y. The solution space contains all

combinations A cosx+B sinx.

31 If x and y are in the vector space V ∩ W, then they are in both V and W. So all

combinations cx+ dy are in both V and W. So all combinations are in V ∩W.
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Problem Set 3.2, page 100

1 If Ax = 0 then EAx = 0. If EAx = 0, multiply by E−1 to find Ax = 0.

2 (a) If c = 4 then A has rank 1 and column 1 is its pivot column and (−2, 1, 0) and

(−1, 0, 1) are special solutions to Ax = 0. If c 6= 4 then A has rank 2 and columns 1

and 3 are pivot columns and (−2, 1, 0) is a special solution. If c = 0 then B = zero

matrix with rank 0 and (1, 0) and (0, 1) are special solutions to Bx = 0. If c 6= 0 then

B has rank 1 and column 1 is its pivot column and (−1, 1) is the special solution to

Bx = 0.

3 R =


 1 3 0 2

0 0 1 6


. All matrices A = CR with C = 2 by 2 invertible matrix have

the same nullspace as R.

4 (a) R=


1 2 0 0 0

0 0 1 2 3


 Free variables x2, x4, x5

Pivot variables x1, x3

(b) R=


1 0 −1
0 1 1


Free x3

Pivot x1, x2

5 Free variables x2, x4, x5 and solutions (−2, 1, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1).

6 (a) False: Any singular square matrix would have free variables (b) True: An in-

vertible square matrix has no free variables. (c) True (only n columns to hold pivots)

(d) True (only m rows to hold pivots)

7 A =
[
C
] [

I I
]

(notice that F = I). The r special solutions to Ax = 0 are the

r columns of


 −I

I


.

8 R =




1 1 0 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




,




0 1 1 0 0 1 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0




.

Notice the identity matrix in the pivot columns of these reduced row echelon forms R.

9 If column 4 of a 3 by 5 matrix is all zero then x4 is a free variable. Its special solution

is x = (0, 0, 0, 1, 0), because 1 will multiply that zero column to give Ax = 0.
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10 If column 1 = column 5 then x5 is a free variable. Its special solution is (−1, 0, 0, 0, 1).

11 The nullspace contains only x = 0 when A has 5 pivots. Also the column space is R5,

because we can always solve Ax = b and every b is in the column space.

12 If a matrix has n columns and r pivots, there are n−r special solutions. The nullspace

contains only x = 0 when r = n. The column space is all of Rm when r = m. All

those statements are important!

13 Fill in 12 then 3 then 1 to get the complete solution in R3 to x − 3y − z = 12


x

y

z


 =




12

0

0


+ y




3

1

0


+ z




1

0

1


 = one particular solution + all nullspace solutions.

14 Column 5 is sure to have no pivot since it is a combination of earlier columns. With

4 pivots in the other columns, the special solution is s = (1, 0, 1, 0, 1). The nullspace

contains all multiples of this vector s (this nullspace is a line in R5).

15 To produce special solutions (2, 2, 1, 0) and (3, 1, 0, 1) with free variables x3, x4:

R =


1 0 −2 −3
0 1 −2 −1


 and A can be any invertible 2 by 2 matrix times this R.

16 The nullspace ofA =




1 0 0 −4
0 1 0 −3

0 0 1 −2




The rank is 3

is the line through the special solution




4

3

2

1




.

17 A =




1 0 −1/2
1 3 −2
5 1 −3


 has




1

1

5


 and




0

3

1


 in C(A) and




1

1

2


 in N(A). Which other A’s?

18 A =




1 0 −1
1 1 −1
0 1 0




19 A =


0 1

0 0


 has N(A) = C(A). Notice that rref(AT)=


1 0

0 0


 is not AT.
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20 If nullspace = column space (with r pivots) then n − r = r. If n = 3 then 3 = 2r is

impossible. Only possible when n is even.

21 If A times every column ofB is zero, the column space ofB is contained in the nullspace

of A. An example is A =


1 1

1 1


 and B =


 1 1

−1 −1


. Here C(B) equals N(A).

For B = 0,C(B) is smaller than N(A).

22 For A = random 3 by 3 matrix, R is almost sure to be I . For 4 by 3, R is most likely

to be I with a fourth row of zeros. What is R for a random 3 by 4 matrix?

23 If N(A) = line through x = (2, 1, 0, 1), A has three pivots (4 columns and 1 special

solution). Its reduced echelon form can be R =




1 0 0 −2
0 1 0 −1
0 0 1 0


 (add any zero rows).

24 R = [ 1 −2 −3 ], R =


1 0 0

0 1 0


, R = I . Any zero rows come after those rows.

25 (a)


1 0

0 1


 ,


1 0

0 0


,


1 1

0 0


,


0 1

0 0


,


0 0

0 0


 (b) All 8 matrices areR’s !

26 The nullspace of B = [A A ] contains all vectors x =


 y

−y


 for y in R4.

One reason that R is the same for A and −A: They have the same nullspace. (They

also have the same row space. They also have the same column space, but that is not

required for two matrices to share the same R. R tells us the nullspace and row space.)

27 If Cx = 0 then Ax = 0 and Bx = 0. So N(C) = N(A) ∩ N(B) = intersection.

28 A has R0 =


1 2 3

0 0 0


 andR =

[
1 2 3

]
. B andC haveR0 =




1 2 3 0 0 0

0 0 0 1 2 3

0 0 0 0 0 0

0 0 0 0 0 0




And R =


1 2 3 0 0 0

0 0 0 1 2 3


.
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29 R =


0 1 0

0 0 1


 and N =




1

0

0




30 A and AT have the same rank r = number of pivots. But the pivot column is column 2

for this matrix A and column 1 for AT: A =




0 1 0

0 0 0

0 0 0


.

31 The new entries keep rank 1 : A =




a b c

d bd
a

cd
a

g bg
a

cg
a


 if a 6= 0, B =




3 9 −4.5
1 3 −1.5
2 6 −3


 ,

M =


a b

c bc/a


 if a 6= 0.

32 With rank 1, the second row of R does not exist !

33
Invertible r by r submatrices

Use pivot rows and columns
S =


1 3

1 4


 and S = [ 1 ] and S =


1 0

0 1


.

34 (a) A and B will both have the same nullspace and row space as the R they share.

(b) A equals an invertible matrix times B, when they share the same R. A key fact!

35 CORRECTED : ATy = 0 : y1 − y3 + y4 = −y1 + y2 + y5 = −y2 + y3 + y6 =

−y4 − y5 − y6 = 0.

These equations add to 0 = 0. Free variables y3, y5, y6: watch for flows around loops.

The solutions toATy = 0 are combinations of (−1, 0, 0, 1,−1, 0) and (0, 0,−1,−1, 0, 1)
and (0,−1, 0, 0, 1,−1). Those are flows around the 3 small loops.

36 C =




1 3

2 6

2 7


CT has pivot columns


1 2

3 7


. The invertible S inside C is


1 3

2 7




37 The column space of AB contains all vectors (AB)x. Those vectors are the same as

A(Bx) so they are also in the column space of A.
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38 By matrix multiplication, each column of AB is A times the corresponding column of

B. So if column j of B is a combination of earlier columns of B, then column j of AB

is the same combination of earlier columns of AB. Then rank (AB) ≤ rank (B). No

new pivot columns !

39 We are given AB = I which has rank n. Then rank(AB) ≤ rank(A) forces rank(A) =

n. This means that A is invertible. The right-inverse B is also a left-inverse: BA = I

and B = A−1.

40 Certainly A and B have at most rank 2. Then their product AB has at most rank 2.

Since BA is 3 by 3, it cannot be I even if AB = I . Example A =


1 0 0

0 1 0


,

B =




1 0

0 1

0 0


, BA =




1 0 0

0 1 0

0 0 0


.

41 A =
[
I I

]
has N =


 I

−I


 ;B =


I I

0 0


 has the same N ; C =

[
I I I

]
has

N =




−I −I
I 0

0 I


.

42 The m by n matrix Z has r ones to start its main diagonal. Otherwise Z is all zeros.

43 R0 =


I F

0 0


=


 r by r r by n−r

m−r by r m−r by n−r


; (b) B =


I

0


 (c) C =

[
I 0

]

rref(RT
0 )=


I 0

0 0


; rref(RT

0 R0)=same R0
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44 R0 =


1 2 0

0 0 1


 has RT

0 R0 =




1 2 0

2 4 0

0 0 1


 and this matrix row reduces to




1 2 0

0 0 1

0 0 0


 =


 R0

zero row


. Always RT

0 R0 has the same nullspace as R0, so its row reduced form

must be R0 with n−m extra zero rows. R0 is determined by its nullspace and shape !

45 A =




1 4 7

2 5 8

3 6 9


 =




1 4

2 5

3 6





 1 0 −1

0 1 2



=




1 4

2 5

3 6





 1 4

2 5



−1
 1 4 7

2 5 8




Notice 2 rows of A are in the matrix B.

46 Multiply block row 1 by JW−1 to produce row 2.
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Problem Set 3.3, page 111

1




2 4 6 4 b1

2 5 7 6 b2

2 3 5 2 b3


→




2 4 6 4 b1

0 1 1 2 b2 − b1

0 −1 −1 −2 b3 − b1


→




2 4 6 4 b1

0 1 1 2 b2 − b1

0 0 0 0 b3 + b2 − 2b1




4

−1

0

Ax = b has a solution when b3 + b2 − 2b1 = 0; the column space contains all combi-

nations of (2, 2, 2) and (4, 5, 3). This is the plane b3+ b2− 2b1 = 0 (!). The nullspace

contains all combinations of s1 = (−1,−1, 1, 0) and s2 = (2,−2, 0, 1);xcomplete =

xp + c1s1 + c2s2;

[
R0 d

]
=




1 0 1 −2 4

0 1 1 2 −1
0 0 0 0 0


 gives the particular solution xp = (4,−1, 0, 0).

2




2 1 3 b1

6 3 9 b2

4 2 6 b3


→




2 1 3 b1

0 0 0 b2 − 3b1

0 0 0 b3 − 2b1


 Then [R0 d ] =




1 1/2 3/2 5

0 0 0 0

0 0 0 0




Ax = b has a solution when b2 − 3b1 = 0 and b3 − 2b1 = 0; C(A) = line through

(2, 6, 4) which is the intersection of the planes b2 − 3b1 = 0 and b3 − 2b1 = 0;

the nullspace contains all combinations of s1 = (−1/2, 1, 0) and s2 = (−3/2, 0, 1);
particular solution xp = d = (5, 0, 0) and complete solution xp + c1s1 + c2s2.

3 (a) x+ 3y = 7

2x+ 6y= 14

x+ 3y= 7

0= 0
xp =


 7

0


 xn = cs = c


 −3

1


 for any c .

(b) x
complete

=


7

0


+ c


−3

1


; x

complete
=




−2

0

1


+ c




−3

1

0


.

4 x
complete

= xp + xn = (1
2
, 0, 1

2
, 0) + x2(−3, 1, 0, 0) + x4(0, 0,−2, 1).
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5




1 2 −2 b1

2 5 −4 b2

4 9 −8 b3


→




1 2 −2 b1

0 1 0 b2 − 2b1

0 0 0 b3 − 2b1 − b2


 solvable if b3 − 2b1 − b2 = 0.

Back-substitution gives the particular solution to Ax = b and the special solution to

Ax = 0: x =




5b1 − 2b2

b2 − 2b1

0


+x3




2

0

1


 .




2 0 2 b1

4 4 0 b2

8 8 0 b3


→




1 0 1 b1/2

0 1 −1 b2/4− b1/2

0 0 0 b3 − 2b2




is solvable if b3 = 2b2. Then x =




b1/2

b2/4− b1/2

0


+ x3




−1

1

1


.

6 (a) Solvable if b2 = 2b1 and 3b1 − 3b3 + b4 = 0. Then x =


5b1 − 2b3

b3 − 2b1


 = xp

(b) Solvable if b2 = 2b1 and 3b1 − 3b3 + b4 = 0. x =




5b1 − 2b3

b3 − 2b1

0


+ x3




−1
−1

1


.

7




1 3 1 b1

3 8 2 b2

2 4 0 b3


→




1 3 1 b2

0 −1 −1 b2 − 3b1

0 −2 −2 b3 − 2b1




One more step gives [ 0 0 0 0 ] =

row 3− 2 (row 2) + 4(row 1)

provided b3−2b2+4b1=0.

8 (a) Every b is in C(A): independent rows, only the zero combination gives 0.

(b) We need b3 = 2b2, because (row 3)− 2(row2) = 0.

9 (a)




x

y

z


 =




4

0

0


+ y




−1
1

0


 + z




−1
0

1


 (b)




x

y

z


 =




4

0

0


+ z




−1
0

1


. The second

equation in part (b) removed one special solution from the nullspace.

10


1 0 −1
0 1 −1


x =


2

4


 has xp = (2, 4, 0) and xnull = (c, c, c). Many possible A !

11 A 1 by 3 system has at least two free variables. But xnull in Problem 10 only has one.

12 (a) If Ax1 = b and Ax2 = b then x = x1 − x2 and also x = 0 solve Ax = 0

(b) A(2x1 − 2x2) = 0, A(2x1 − x2) = b
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13 (a) The particular solution xp is always multiplied by 1. 2xp would solve Ax = 2b

(b) Any solution can be xp. If A has rank = m, the only xp is 0.

(c)


3 3

3 3




x

y


 =


6

6


. Then


1

1


 is shorter (length

√
2) than


2

0


 (length 2)

(d) The only “homogeneous” solution in the nullspace is xn = 0 when A is invertible.

14 If column 5 has no pivot, x5 is a free variable. The zero vector is not the only solution

to Ax = 0. If this system Ax = b has a solution, it has infinitely many solutions.

15 If row 3 of U has no pivot, that is a zero row. Ux = c is only solvable provided

c3 = 0. Ax = b might not be solvable, because U may have other zero rows needing

more ci = 0.

16 The largest rank is 3. Then there is a pivot in every row. The solution always exists.

The column space is R3. An example is A = [ I F ] for any 3 by 2 matrix F .

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The

columns are independent. The solution is unique (if there is a solution). The nullspace

contains only the zero vector. Then R0 = rref(A) =


 I (4 by 4)

0 (2 by 4)


.

18 Rank = 2; rank = 3 unless q = 2 (then rank = 2). Transpose has the same rank!

19 If Ax1 = b and also Ax2 = b then A(x1 − x2) = 0 and we can add x1 − x2 to any

solution of Ax = B: the solution x is not unique. But there will be no solution to

Ax = B if B is not in the column space.

20 For A, q = 3 gives rank 1, every other q gives rank 2. For B, q = 6 gives rank 1, every

other q gives rank 2. These matrices cannot have rank 3.

21 (a)


1

1


 [x ] =


b1
b2


 has 0 or 1 solutions, depending on b (b)

[
1 1

] 
x1

x2


 =

[ b ] has infinitely many solutions for every b (c) There are 0 or∞ solutions when A

has rank r < m and r < n: the simplest example is a zero matrix. (d) one solution

for all b when A is square and invertible (like A = I).

22 (a) r < m, always r ≤ n (b) r = m, r < n (c) r < m, r = n (d) r = m = n.



50 Solutions to Problem Sets

23




2 4 4

0 3 6

0 0 0


→ R0 =




1 0 −2

0 1 2

0 0 0


 and




2 4 4

0 3 6

0 0 5


→ R0 = I = R and


0 0 4

0 1 0


→ R0 =


0 1 0

0 0 1


 = R.

24 R0 = I when A is square and invertible—so for a triangular matrix, all diagonal entries

must be nonzero.

25


1 2 3 0

0 0 4 0


→


1 2 0 0

0 0 1 0


; xn =




−2
1

0


;


1 2 3 5

0 0 4 8


→


1 2 0 −1
0 0 1 2


.

Free x2 = 0 gives xp = (−1, 0, 2) because the pivot columns contain I . Note : R0=R.

26 [R0 d ] =




1 0 0 0

0 0 1 0

0 0 0 0


 leads to xn =




0

1

0


; [R0 d ] =




1 0 0 −1
0 0 1 2

0 0 0 5




leads to no solution because of the 3rd equation 0 = 5.

27




1 0 2 3 2

1 3 2 0 5

2 0 4 9 10


→




1 0 2 3 2

0 3 0−3 3

0 0 0 3 6


→




1 0 2 0 −4

0 1 0 0 3

0 0 0 1 2


;




−4
3

0

2




; xn = x3




−2
0

1

0




.

28 For A =




1 1

0 2

0 3


, the only solution to Ax =




1

2

3


 is x =


0

1


.

B cannot exist since 2 equations in 3 unknowns cannot have a unique solution.
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29 A =




1 3 1

1 2 3

2 4 6

1 1 5




factors into LU =




1

1 1

2 2 1

1 2 0 1







1 3 1

0 −1 2

0 0 0

0 0 0




and the rank is

r = 2. The special solution to Ax = 0 and Ux = 0 is s = (−7, 2, 1). Since

b = (1, 3, 6, 5) is also the last column of A, a particular solution to Ax = b is

(0, 0, 1) and the complete solution is x = (0, 0, 1)+ cs. (Another particular solution is

xp = (7,−2, 0) with free variable x3 = 0.)

For b = (1, 0, 0, 0) elimination leads to Ux = (1,−1, 0, 1) and the fourth equa-

tion is 0 = 1. No solution for this b.

30 If the complete solution to Ax =


1

3


 is x =


1

0


+


0

c


 then A =


1 0

3 0


.

31 (a) If s = (2, 3, 1, 0) is the only special solution to Ax = 0, the complete solution is

x = cs (a line of solutions). The rank of A must be 4− 1 = 3.

(b) The fourth variable x4 is not free in s, and R0 must be




1 0 −2 0

0 1 −3 0

0 0 0 1


.

(c) Ax = b can be solved for all b, because A and R0 have full row rank r = 3.

32 If Ax = b and Cx = b have the same solutions, A and C have the same shape and

the same nullspace (take b = 0). If b = column 1 of A, x = (1, 0, . . . , 0) solves

Ax=b so it solves Cx=b. ThenA andC share column 1. Other columns too: A=C!

33 The column space of R0 (m by n with rank r) is spanned by its r pivot columns (the

first r columns of an m by m identity matrix). The column space of R (after m − r

zero rows are removed from R0) is r-dimensional space Rr.
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Problem Set 3.4, page 124

1




1 1 1

0 1 1

0 0 1







c1

c2

c3



= 0 gives c3 = c2 = c1 = 0. So those 3 column vectors are

independent : no other combination gives 0




1 1 1 2

0 1 1 3

0 0 1 4


c=




0

0

0


 is solved by c=




1

1

−4
1




. Then v1 + v2 − 4v3 + v4=0 (dependent).

2 v1,v2,v3 are independent (the −1’s are in different positions). All six vectors in R4

are on the plane (1, 1, 1, 1) · v = 0 so no four of these six vectors can be independent.

3 If a = 0 then column 1 = 0; if d = 0 then b(column 1) − a(column 2) = 0; if f = 0

then all columns end in zero (they are all in the xy plane, they must be dependent).

4 Ux =




a b c

0 d e

0 0 f







x

y

z


 =




0

0

0


 gives z = 0 then y = 0 then x = 0 (by back

substitution). A square triangular matrix has independent columns (invertible matrix)

when its diagonal has no zeros.

5 (a)




1 2 3

3 1 2

2 3 1


→




1 2 3

0 −5 −7

0 −1 −5


→




1 2 3

0 −5 −7

0 0 −18/5




: invertible⇒ independent

columns.

(b)




1 2 −3
−3 1 2

2 −3 1


→




1 2 −3
0 7 −7

0 −7 7


→




1 2 −3
0 7 −7

0 0 0


 ;A




1

1

1


 =




0

0

0




columns

add to 0.

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).

Same column numbers (not same columns!) for A. This is because EA = U for the

matrix E that subtracts 2 times row 1 from row 4. So A and U have the same nullspace

(same dependencies of columns).
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7 The sum v1−v2+v3 = 0 because (w2−w3)− (w1−w3)+(w1−w2) = 0. So the

differences are dependent and the difference matrix is singular: A =




0 1 1

1 0 −1
−1 −1 0


.

8 If c1(w2+w3)+c2(w1+w3)+c3(w1+w2) = 0 then (c2+c3)w1+(c1+c3)w2+

(c1 + c2)w3 = 0. Since the w’s are independent, c2 + c3 = c1 + c3 = c1 + c2 = 0.

The only solution is c1 = c2 = c3 = 0. Only this combination of v1,v2,v3 gives 0.

(changing−1’s to 1’s for the matrix A in solution 7 above makes A invertible.)

9 (a) The four vectors in R3 are the columns of a 3 by 4 matrix A. There is a nonzero

solution to Ax = 0 because there is at least one free variable (b) Two vectors are

dependent if [v1 v2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one

is a multiple of the other” but not “v2 is a multiple of v1” —since v1 might be 0.)

(c) A nontrivial combination of v1 and 0 gives 0: 0v1 + 3(0, 0, 0) = (0, 0, 0).

10 The plane is the nullspace of A = [ 1 2 −3 −1 ]. Three free variables give three

independent solutions (x, y, z, t) = (−2, 1, 0, 0) and (3, 0, 1, 0) and (1, 0, 0, 1).

Combinations of those special solutions give more solutions (all solutions).

11 (a) Line in R3 (b) Plane in R3 (c) All of R3 (d) All of R3.

12 b is in the column space when Ax = b has a solution; c is in the row space when

ATy = c has a solution. False because the zero vector is always in the row space.

13 The column space and row space of A and U all have the same dimension = 2.

The row spaces of A and U are the same, because the rows of U are combinations of

the rows of A (and vice versa !).

14 v = 1
2 (v +w) + 1

2 (v −w) and w = 1
2 (v +w)− 1

2 (v −w). The two pairs span the

same space. They are a basis for the same space when v and w are independent.

15 The n independent vectors span a space of dimension n. They are a basis for that space.

If they are the columns of A then m is not less than n (m ≥ n). Invertible if m = n.



54 Solutions to Problem Sets

16 These bases are not unique! (a) (1, 1, 1, 1) for the space of all constant vectors

(c, c, c, c) (b) (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1) for the space of vectors with

sum of components = 0 (c) (1,−1,−1, 0), (1,−1, 0,−1) for the space perpendic-

ular to (1, 1, 0, 0) and (1, 0, 1, 1) (d) The columns of I are a basis for its column

space, the empty set is a basis (by convention) for N(I) = Z = {zero vector}.

17 The column space of U =


1 0 1 0 1

0 1 0 1 0


 is R2 so take any bases for R2;

(row 1 and row 2) or (row 1 and row 1+ row 2) or (row 1 and − row 2) are bases

for the row space of U .

18 (a) The 6 vectors might not span R4 (b) The 6 vectors are not independent

(c) Any four might be a basis.

19 n independent columns⇒ rank n. Columns span Rm ⇒ rank m. Columns are basis

for Rm ⇒ rank = m = n. The rank counts the number of independent columns.

20 One basis is (2, 1, 0), (−3, 0, 1). A basis for the intersection with the xy plane is

(2, 1, 0). The normal vector (1,−2, 3) is a basis for the line perpendicular to the plane.

21 (a) The only solution to Ax = 0 is x = 0 because the columns are independent

(b) Ax = b is solvable because the columns span R5. Their combinations give every b.

Key point: A basis gives exactly one solution for every b.

22 (a) True (b) False because the basis vectors for R6 might not be in S.

23 Columns 1 and 2 are bases for the (different) column spaces of A and U ; rows 1 and

2 are bases for the (equal) row spaces of A and U ; (1,−1, 1) is a basis for the (equal)

nullspaces. Row spaces and nullspaces stay fixed in elimination.

24 (a) False A = [ 1 1 ] has dependent columns, independent row (b) False Column

space 6= row space for A =


0 1

0 0


 (c) True: Both dimensions = 2 if A is

invertible, dimensions= 0 if A = 0, otherwise dimensions= 1 (d) False, columns

may be dependent, in that case not a basis for C(A).
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25 (a) Make v1, . . .vk the columns of A. Then find the first n independent columns (we

are told they span Rn).

(b) Make v1, . . .vj the rows of A and then include the n rows of the identity matrix.

Row elimination will keep the first j independent rows and find n − j more rows to

form a basis for Rn.

26 A has rank 2 if c = 0 and d = 2; B =


 c d

d c


 has rank 2 except when c = d or

c = −d.

27 (a) Basis for all diagonal matrices :




1 0 0

0 0 0

0 0 0


 ,




0 0 0

0 1 0

0 0 0


 ,




0 0 0

0 0 0

0 0 1




(b) Add




0 1 0

1 0 0

0 0 0


 ,




0 0 1

0 0 0

1 0 0


,




0 0 0

0 0 1

0 1 0


 = basis for symmetric matrices.

(c)




0 1 0

−1 0 0

0 0 0


 ,




0 0 1

0 0 0

−1 0 0


 ,




0 0 0

0 0 1

0 −1 0


.

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric

matrices (c) skew-symmetric matrices. The dimensions are 3, 6, 3.

28




1 0 0

0 1 0

0 0 1


,




1 0 0

0 1 0

0 0 2


,




1 0 0

0 2 0

0 0 1


,




1 1 0

0 1 0

0 0 1


,




1 0 1

0 1 0

0 0 1


,




1 0 0

0 1 1

0 0 1


;

Echelon matrices do not form a subspace; they span the upper triangular matrices (not

every U is an echelon matrix).

29


 1 0 0

−1 0 0


,


0 1 0

0 −1 0


,


0 0 1

0 0 −1


;


 1 −1 0

−1 1 0


 and


 1 0 −1
−1 0 1


.

30 (a) The invertible matrices span the space of all 3 by 3 matrices (b) The rank one

matrices also span the space of all 3 by 3 matrices (c) I by itself spans the space of

all multiples cI .
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31


−1 2 0

0 0 0


,


−1 0 2

0 0 0


,


 0 0 0

−1 2 0


,


 0 0 0

−1 0 2


. Dimension = 4.

32 (a) y(x)= constant C (b) y(x)=3x. (c) y(x)=3x+C=yp + yn solves y ′ = 3.

33 y(0) = 0 requires A+B + C = 0. One basis is cosx− cos 2x and cosx− cos 3x.

34 (a) y(x) = e2x is a basis for all solutions to y′ = 2y (b) y = x is a basis for all

solutions to dy/dx = y/x (First-order linear equation⇒ 1 basis function in solution

space).

35 y1(x), y2(x), y3(x) can be x, 2x, 3x (dim 1) or x, 2x, x2 (dim 2) or x, x2, x3 (dim 3).

36 Basis 1, x, x2, x3, for cubic polynomials; basis x− 1, x2 − 1, x3 − 1 for the subspace

with p(1) = 0. (4-dimensional space and 3-dimensional subspace).

37 Basis forS: (1, 0,−1, 0), (0, 1, 0, 0), (1, 0, 0,−1); basis forT: (1,−1, 0, 0) and (0, 0, 2, 1);

S∩T= multiples of (3,−3, 2, 1)= nullspace for 3 equations in R4 has dimension 1.

38 If the 5 by 5 matrix [A b ] is invertible, b is not a combination of the columns of A :

no solution to Ax = b. If [A b ] is singular, and the 4 columns of A are independent

(rank 4), b is a combination of those columns. In this case Ax = b has a solution.

39 One basis for y ′′ = y is y = ex and y = e−x. One basis for y ′′ = −y is y = cosx and

y = sinx.

40 I =




1

1

1


 −




1

1

1


 +




1

1

1


 +




1

1

1


 −




1

1

1


.

The six P ’s

are dependent
.

Those five are independent: The 4th has P11 = 1 and cannot be a combination of the

others. Then the 3rd cannot be (from P22 = 1) and also 1st (P33 = 1). Continuing,

a nonzero combination of all five could not be zero. Further challenge: How many

independent 4 by 4 permutation matrices?

41 The dimension of S spanned by all rearrangements of x is (a) zero when x = 0

(b) one when x = (1, 1, 1, 1) (c) three when x = (1, 1,−1,−1) because all rear-

rangements of this x are perpendicular to (1, 1, 1, 1) (d) four when the x’s are not
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equal and don’t add to zero. No x gives dim S = 2. I owe this nice problem to Mike

Artin—the answers are the same in higher dimensions: 0 or 1 or n− 1 or n.

42 The problem is to show that the u’s, v’s, w’s together are independent. We know the

u’s and v’s together are a basis for V , and the u’s and w’s together are a basis for W .

Suppose a combination of u’s, v’s, w’s gives 0. To be proved: All coefficients = zero.

Key idea: In that combination giving 0, the part x from the u’s and v’s is in V . So the

part from the w’s is −x. This part is now in V and also in W . But if −x is in V ∩W
it is a combination of u’s only. Now the combination giving 0 uses only u’s and v’s

(independent in V !) so all coefficients of u’s and v’s must be zero. Then x = 0 and

the coefficients of the w’s are also zero.

43 If the left side of dim(V) + dim(W) = dim(V ∩W) + dim(V+W) is greater than

n, then dim(V ∩W) must be greater than zero. So V ∩W contains nonzero vectors.

Here is a more basic approach : Put a basis for V and then a basis for W in the columns

of a matrix A. Then A has more columns than rows and there is a nonzero solution

to Ax = 0. That x gives a combination of the V columns = a combination of the

W columns.

44 If A2 = zero matrix, this says that each column of A is in the nullspace of A. If the

column space has dimension r, the nullspace has dimension 10 − r by the Counting

Theorem. So we must have r ≤ 10− r and this leads to r ≤ 5.
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Problem Set 3.5, page 137

1 (a) Row and column space dimensions 9−5 = 5, nullspace dimension= 4, dim(N(AT))

= 9− 7 = 2 sum 5 + 5 + 4 + 2 = 16 = m+ n

(b) Column space is R3; left nullspace contains only 0 (dimension zero).

2 A: Row space basis = row 1 = (1, 2, 4); nullspace (−2, 1, 0) and (−4, 0, 1); column

space basis = column 1 = (1, 2); left nullspace (−2, 1). B: Row space basis =

both rows = (1, 2, 4) and (2, 5, 8); column space basis = two columns = (1, 2) and

(2, 5); nullspace (−4, 0, 1); left nullspace basis is empty because the space contains

only y = 0 : the rows of B are independent.

3 Row space basis = first two rows of R; column space basis = pivot columns (of A not R)

= (1, 1, 0) and (3, 4, 1); nullspace basis (1, 0, 0, 0, 0), (0, 2,−1, 0, 0), (0, 2, 0,−2, 1);
left nullspace (1,−1, 1) = last row of the elimination matrix E−1 = L.

4 (a)




1 0

1 0

0 1


 (b) Impossible: r+(n−r) must be 3 (c) [ 1 1 ] (d)


9 −3

3 −1




(e) Impossible Row space= column space requires m = n. Then m − r = n − r;

nullspaces have the same dimension. Section 4.1 will prove N(A) and N(AT)

orthogonal to the row and column spaces respectively—here those are the same space.

5 A =


1 1 1

2 1 0


 has those rows spanning its row space. B =

[
1 −2 1

]
has the

same vectors spanning its nullspace and ABT = zero matrix (not AB).

6 A: dim 2,2,2,1: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns (3, 0, 1) and (3, 0, 0);

nullspace (1, 0, 0, 0) and (0,−1, 0, 1); N(AT) (0, 1, 0). B: dim 1,1,0,2 Row space

(1), column space (1, 4, 5), nullspace: empty basis, N(AT) (−4, 1, 0) and (−5, 0, 1).
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7 Invertible 3 by 3 matrix A: row space basis = column space basis = (1, 0, 0), (0, 1, 0),

(0, 0, 1); nullspace basis and left nullspace basis are empty. Matrix B =
[
A A

]
: row

space basis (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1); column space basis

(1, 0, 0), (0, 1, 0), (0, 0, 1); nullspace basis (−1, 0, 0, 1, 0, 0) and (0,−1, 0, 0, 1, 0) and

(0, 0,−1, 0, 0, 1); left nullspace basis is empty.

8

[
I 0

]
and

[
I I; 0T 0T

]
and

[
0
]
= 3 by 2 have row space dimensions= 3, 3, 0 =

column space dimensions; nullspace dimensions 2, 3, 2; left nullspace dimensions 0, 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same

(b) Same column space and left nullspace. Same rank (dimension of column space).

10 For rand(3), almost surely rank= 3, nullspace and left nullspace contain only (0, 0, 0).

For rand(3, 5) the rank is almost surely 3 and the dimension of the nullspace is 2.

11 (a) No solution means that r < m. Always r ≤ n. Can’t compare m and n here.

(b) Since m− r > 0, the left nullspace must contain a nonzero vector.

12 A neat choice is




1 1

0 2

1 0





1 0 1

1 2 0


 =




2 2 1

2 4 0

1 0 1


; r + (n − r) = n = 3 does

not match 2 + 2 = 4. Only v = 0 is in both N(A) and C(AT).

13 (a) False: Usually row space 6= column space.

(b) True: A and −A have the same four subspaces

(c) False (choose A and B same size and invertible: then they have the same four

subspaces)

14 Row space basis can be the nonzero rows of U : (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2);

nullspace basis (0, 1,−2, 1) as for U ; column space basis (1, 0, 0), (0, 1, 0), (0, 0, 1)

(happen to have C(A) = C(U) = R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the same; (2, 1, 3, 4) is in the

new left nullspace after the row exchange.

16 If Av = 0 and v is a row of A then v · v = 0. So v is perpendicualr to v : v = 0.
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17 Row space of A = yz plane; column space of A = xy plane; nullspace = x axis; left

nullspace = z axis. For I + A: Row space = column space = R3, both nullspaces

contain only the zero vector.

18 a11 = 1, a12 = 0, a13 = 1, a22 = 0, a32 = 1, a31 = 0, a23 = 1, a33 = 0, a21 = 1.

(Need to specify the five moves).

19 Row 3−2 row 2+ row 1 = zero row so the vectors c(1,−2, 1) are in the left nullspace.

The same vectors happen to be in the nullspace (an accident for this matrix).

20 The steps from A to R0 are described on page 96 (Section 3.2). I don’t think I can

do better—but you could put those ideas into different words. By all means give an

example that needs row exchanges.

21 (a) u and w (b) v and z (c) rank < 2 if u and w are dependent or if v and z

are dependent (d) The rank of uvT +wzT is 2.

22 A =


u w





 vT

zT


 =




1 2

2 2

4 1





1 0

1 1


 =




3 2

4 2

5 1




u,w span column space;

v, z span row space

23 As in Problem 22: Row space basis (3, 0, 3), (1, 1, 2); column space basis (1, 4, 2),

(2, 5, 7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either

factor, so rank ≤ 2 and the 3 by 3 product is not invertible.

24 ATy = d puts d in the row space of A; unique solution if the left nullspace (nullspace

of AT) contains only y = 0.

25 (a) True (A and AT have the same rank) (b) False A = [ 1 0 ] and AT have very

different left nullspaces (c) False (A can be invertible and unsymmetric even if

C(A) = C(AT)) (d) True (The subspaces for A and −A are always the same. If

AT = A or AT = −A they are also the same for AT)

26 Choose d = bc/a to make
[
a b

c d

]
a rank-1 matrix. Then the row space has basis (a, b)

and the nullspace has basis (−b, a). Those two vectors are perpendicular !
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27 B and C (checkers and chess) both have rank 2 if p 6= 0. Row 1 and 2 are a basis for the

row space of C, BTy = 0 has 6 special solutions with −1 and 1 separated by a zero;

N(CT) has (−1, 0, 0, 0, 0, 0, 0, 1) and (0,−1, 0, 0, 0, 0, 1, 0) and columns 3, 4, 5, 6 of

I; N(C) is a challenge : one vector in N(C) is (1, 0, . . . , 0,−1).

28 The subspaces for A = uvT are pairs of orthogonal lines (v and v⊥, u and u⊥).

If B has those same four subspaces then B = cA with c 6= 0.

29 (a) AX = 0 if each column of X is a multiple of (1, 1, 1); dim(nullspace) = 3.

(b) If AX = B then all columns of B add to zero; dimension of the B’s = 6.

(c) 3 + 6 = dim(M3×3) = 9 entries in a 3 by 3 matrix.

30 The key is equal row spaces. First row of A = combination of the rows of B : the

only possible combination (notice I) is 1 (row 1 of B). Same for each row so F = G.

31 A =




−1 1 0 0

−1 0 1 0

0 −1 1 0

0 −1 0 1

0 0 −1 1

−1 0 0 1




N(A)




1

1

1

1




Row space C(AT)




−1
1

0

0




C(A)




0

0

0

1

1

1




N(AT)




1

−1
1

0

0

0




32 (a) N(BA) contains N(A).

(b) C(AB) is contained in C(A).

33 (a) N(A) and N(B) contain N(T ).

(b) Row spaces of A and B are contained in the row space of T .
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34 Fundamental subspaces for A (m× n).

Row space C(AT) perpendicular to Nullspace N(A) : Dimensions r and n− r.

Column space C(A) perpendicular to N(AT) : Dimensions r and m− r.

Subspaces for W =
[
A A

]
− same rank r.

Row space of W contains all
[
v v

]
v in C(AT) (Dimension r).

Nullspace of W contains all


 y

z


 with y + z in N(W ) (Dimension 2n− r).

Column space of W = Column space of A (Dimension r).

Nullspace of WT = Nullspace of A (Dimension m− r).

35 Please send a proof or counterexample. Thank you.
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Problem Set 4.1, page 148

1 Both nullspace vectors will be orthogonal to the row space vector in R3. The column

space of A and the nullspace of AT are perpendicular lines in R2 because rank = 1.

2 The nullspace of a 3 by 2 matrix with rank 2 is Z (only the zero vector because the 2

columns are independent). So xn = 0, and row space = R2. Column space = plane

perpendicular to left nullspace = line in R3 (because the rank is 2).

3 (a) One way is to use these two columns directly

and make col 3 = − col 1− col 2.

A =




1 2 −3
2 −3 1

−3 5 −2




(b)
Impossible because N(A) and C(AT)

are orthogonal subspaces :




2

−3

5


 is not orthogonal to




1

1

1




(c)




1

1

1


 and




1

0

0


 in C(A) and N(AT) is impossible: not perpendicular

(d) Rows orthogonal to columns makes A times A = zero matrix. An example is A =
[
1 −1

1 −1

]

(e) (1, 1, 1) in the nullspace (columns add to the zero vector) and also (1, 1, 1) is in

the row space: no such matrix.

4 If AB = 0, the columns of B are in the nullspace of A and the rows of A are in the left

nullspace of B. If rank = 2, all those four subspaces have dimension at least 2 which

is impossible for 3 by 3.

5 (a) If Ax = b has a solution and ATy = 0, then y is perpendicular to b. bTy =

(Ax)Ty = xT(ATy) = 0. This says again that C(A) is orthogonal to N(AT).

(b) If ATy = (1, 1, 1) has a solution, (1, 1, 1) is a combination of the rows of A.

It is in the row space and is orthogonal to every x in the nullspace.
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6 Multiply the equations by y1, y2, y3 = 1, 1,−1. Now the equations add to 0 = 1 so

there is no solution. In subspace language, y = (1, 1,−1) is in the left nullspace.

Ax = b would need 0 = (yTA)x = yTb but here yTb = 1.

7 Multiply the 3 equations by y = (1, 1,−1). Then x1−x2 = 1 plus x2−x3 = 1 minus

x1 − x3 = 1 is 0 = 1. Key point: This y in N(AT) is not orthogonal to b = (1, 1, 1)

so b is not in the column space and Ax = b has no solution.

8 Figure 4.1 has x = xr + xn, where xr is in the row space and xn is in the nullspace.

Then Axn = 0 and Ax = Axr + Axn = Axr. The example has x = (1, 0) and row

space = line through (1, 1) so the splitting is x = xr + xn =
(
1
2 ,

1
2

)
+
(
1
2 ,− 1

2

)
. All

Ax are in C(A).

9 Ax is always in the column space of A. If ATAx = 0 then Ax is also in the nullspace

of AT. Those subspaces are perpendicular. So Ax is perpendicular to itself. Conclu-

sion: Ax = 0 if ATAx = 0.

10 (a) With AT = A, the column space and row space are the same. The nullspace is

always perpendicular to the row space. (b) x is in the nullspace and z is in the

column space = row space: so these “eigenvectors” x and z have xTz = 0.

11 For A: The nullspace is spanned by (−2, 1), the row space is spanned by (1, 2). The

column space is the line through (1, 3) and N(AT) is the perpendicular line through

(3,−1). For B: The nullspace of B is spanned by (0, 1), the row space is spanned by

(1, 0). The column space and left nullspace are the same as for A.

12 x = (2, 0) splits into xr + xn = (1,−1) + (1, 1).

13 V TW = zero matrix makes each column of V orthogonal to each column of W . This

means : each basis vector for V is orthogonal to each basis vector for W. Then every

v in V (combinations of the basis vectors) is orthogonal to every w in W.
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14 Ax = Bx̂ means that [A B ]


 x

−x̂


 = 0. Three homogeneous equations (zero right

hand sides) in four unknowns always have a nonzero solution. Here x = (3, 1) and

x̂ = (1, 0) and Ax = Bx̂ = (5, 6, 5) is in both column spaces. Two planes in R3 must

share a line.

15 A p-dimensional and a q-dimensional subspace ofRn share at least a line if p + q > n.

(The p + q basis vectors of V and W cannot be independent, so some combination of

the basis vectors of V is also a combination of the basis vectors of W .)

16 ATy = 0 leads to (Ax)Ty = xTATy = 0. Then y ⊥ Ax and N(AT) ⊥ C(A).

17 If S is the subspace of R3 containing only the zero vector, then S⊥ is all of R3.

If S is spanned by (1, 1, 1), then S⊥ is the plane spanned by (1,−1, 0) and (1, 0,−1).
If S is spanned by (1, 1, 1) and (1, 1,−1), then S⊥ is the line spanned by (1,−1, 0).

18 S⊥ contains all vectors perpendicular to those two given vectors. So S⊥ is the nullspace

of A =


1 5 1

2 2 2


. Therefore S⊥ is a subspace even if S is not.

19 L⊥ is the 2-dimensional subspace (a plane) in R3 perpendicular to L. Then (L⊥)⊥ is

a 1-dimensional subspace (a line) perpendicular to L⊥. In fact (L⊥)⊥ is L.

20 If V is the whole space R4, then V⊥ contains only the zero vector. Then (V⊥)⊥ =

all vectors perpendicular to the zero vector = R4 = V.

21 For example (−5, 0, 1, 1) and (0, 1,−1, 0) span S⊥=nullspace ofA=


1 2 2 3

1 3 3 2


.

22 (1, 1, 1, 1) is a basis for the line P⊥ orthogonal to the hyperplane P.

A =
[
1 1 1 1

]
has P as its nullspace and P⊥ as its row space.

23 x in V⊥ is perpendicular to every vector in V. Since V contains all the vectors in S,

x is perpendicular to every vector in S. So every x in V⊥ is also in S⊥.

24 AA−1 = I: Column 1 of A−1 is orthogonal to rows 2, 3, . . . , n of A and therefore it is

orthogonal to the space spanned by those rows.
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25 If the columns of A are unit vectors, all mutually perpendicular, then ATA = I . Simple

but important ! We write Q for such a matrix.

26 A =




2 2 −1
−1 2 2

2 −1 2


,

This example shows a matrix with perpendicular columns.

ATA = 9I is diagonal: (ATA)ij = (column i of A) · (column j of A).

When the columns are unit vectors, then ATA = I .

27 The lines 3x + y = b1 and 6x + 2y = b2 are parallel. They are the same line if

b2 = 2b1. In that case (b1, b2) is perpendicular to (−2, 1). The nullspace of the 2 by 2

matrix is the line 3x+ y = 0. One particular vector in the nullspace is (−1, 3).

28 (a) (1,−1, 0) is in both planes. Normal vectors are perpendicular to each other,

but planes can still intersect ! Two planes in R3 can’t be orthogonal.

(b) Need three orthogonal vectors to span the whole orthogonal complement in R5.

(c) Lines in R3 can meet at the zero vector without being orthogonal.

29 A =




1 2 3

2 1 0

3 0 1


 , B =




1 1 −1
2 −1 0

3 0 −1


;

A has v = (1, 2, 3) in row and column spaces

B has v in its column space and nullspace.

v can not be in the nullspace and row space,

or in the left nullspace and column space. These spaces are orthogonal and vTv 6= 0.

30 When AB = 0, every column of B is multiplied by A to give zero. So the column

space of B is contained in the nullspace of A. Therefore the dimension of C(B) ≤
dimension of N(A). This means rank(B) ≤ 4 − rank(A).

31 null(N ′) produces a basis for the row space of A (perpendicular to N(A)).

32 We need rTn = 0 and cTℓ = 0. All possible examples have the form A = acrT with

a 6= 0.

33 Both r’s must be orthogonal to both n’s, both c’s must be orthogonal to both ℓ’s, each

pair (r’s, n’s, c’s, and ℓ’s) must be independent. Fact : All A’s with these subspaces

have the form [c1 c2]M [r1 r2]
T for a 2 by 2 invertible M .
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Problem Set 4.2, page 159

0 (a) P 2 = P is true but PT 6= P . This question is about nonsymmetric projections (the

error e is no longer perpendicular to the projection p). Same for I − P .

(b) v=


 1

1


 is in C(P ) and w=


 1

0


 is in C(I −P ). But v is not perpendicular to w.

(c) If P 2 = P and PT = P , then the column spaces of P and I−P are perpendicular :

(Pv)T(I − P )w = vTP (I − P )w = 0 since P − P 2 = 0.

1 (a) aTb/aTa = 5/3; projection p = 5a/3 = (5/3, 5/3, 5/3); e = (−2, 1, 1)/3

(b) aTb/aTa=−1; projection p=−a; e=0.

2 (a) The projection of b = (cos θ, sin θ) onto a = (1, 0) is p = (cos θ, 0)

(b) The projection of b = (1, 1) onto a = (1,−1) is p = (0, 0) since aTb = 0.

The picture for part (a) has the vector b at an angle θ with the horizontal a. The picture

for part (b) has vectors a and b at a 90◦ angle.

3 P1 =
1

3




1 1 1

1 1 1

1 1 1


 and P1b =

1

3




5

5

5


. P2 =

1

11




1 3 1

3 9 3

1 3 1


 and P2b =




1

3

1


.

4 P1 =


1 0

0 0


, P2 =

aaT

aTa
=

1

2


 1 −1
−1 1


.

P1 projects onto (1, 0), P2 projects onto (1,−1)
P1P2 6= 0 and P1 + P2 is not a projection matrix.

(P1 + P2)
2 is different from P1 + P2.

5 P1 =
1

9




1 −2 −2
−2 4 4

−2 4 4


 and P2 =

1

9




4 4 −2
4 4 −2
−2 −2 1


.

P1 and P2 are the projection matrices onto the lines through a1 = (−1, 2, 2) and

a2 = (2, 2,−1). P1P2 = zero matrix because a1 ⊥ a2.

6 p1=(19 ,− 2
9 ,− 2

9 ) and p2=(49 ,
4
9 ,− 2

9 ) and p3 = (49 ,− 2
9 ,

4
9 ). So p1 + p2 + p3 = b.
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7 P1 + P2 + P3 =
1

9




1 −2 −2

−2 4 4

−2 4 4


+

1

9




4 4 −2

4 4 −2
−2 −2 1


+

1

9




4 −2 4

−2 1 −2
4 −2 4


 = I .

We can add projections onto orthogonal vectors to get the projection matrix onto the

larger space. This is important.

8 The projections of (1, 1) onto (1, 0) and (1, 2) are p1 = (1, 0) and p2 = 3
5 (1, 2). Then

p1 + p2 6= b. The sum of projections is not a projection onto the space spanned by

(1, 0) and (1, 2) because those vectors are not orthogonal.

9 Since A is invertible, P = A(ATA)−1AT separates into AA−1(AT)−1AT = I . And

I is the projection matrix onto all of R2.

10 P2 =
a2a

T
2

aT
2 a2

=


0.2 0.4

0.4 0.8


,P2a1 =


0.2

0.4


,P1 =

a1a
T
1

aT
1 a1

=


1 0

0 0


,P1P2a1 =


0.2

0


.

This is not a1 = (1, 0)

No, P1P2 6= (P1P2)
2.

11 Here P is the usual projection (P 2 = P = PT) of the whole space Rm onto its

subspace S.

S is the row space and column space of P .

S⊥ is the nullspace of P and PT.

12 (a) p=A(ATA)−1ATb=(2, 3, 0), e=(0, 0, 4), ATe=0

(b) p = (4, 4, 6) and e=0 because b is in the column space of A.

13 P1 =




1 0 0

0 1 0

0 0 0


 = projection matrix onto the column space of A (the xy plane)

P2 =




0.5 0.5 0

0.5 0.5 0

0 0 1


=

Projection matrix A(ATA)−1AT onto the second column space.

Certainly (P2)
2 = P2. A true projection matrix.
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14 A =




1 0 0

0 1 0

0 0 1

0 0 0




, P = square matrix =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




, p = P




1

2

3

4



=




1

2

3

0




.

15 The projection of this b onto the column space of A is b itself because b is in that

column space. But P is not necessarily I . Here b = 2(column 1 of A) :

A =




0 1

1 2

2 0


 gives P =

1

21




5 8 −4
8 17 2

−4 2 20


 and b = Pb = p =




0

2

4


.

16 2A has the same column space as A. Then P is the same for A and 2A, but x̂ for 2A

is half of x̂ for A.

17
1
2 (1, 2,−1) + 3

2 (1, 0, 1) = (2, 1, 1). So b is in the plane. Projection shows Pb = b.

18 If P 2 = P then (I − P )2 = (I −P )(I −P ) = I −PI − IP +P 2 = I − P . When

P projects onto the column space, I − P projects onto the left nullspace.

19 (a) I − P is the projection matrix onto (1,−1) in the perpendicular direction to (1, 1)

(b) I − P projects onto the plane x+ y + z = 0 perpendicular to (1, 1, 1).

20
For any basis vectors in the plane x− y − 2z = 0,

say (1, 1, 0) and (2, 0, 1), the matrix P = A(ATA)−1AT is




5/6 1/6 1/3

1/6 5/6 −1/3
1/3 −1/3 1/3


.

21 e =




1

−1
−2


, Q = eeT

eTe =




1/6 −1/6 −1/3
−1/6 1/6 1/3

−1/3 1/3 2/3


, I −Q =




5/6 1/6 1/3

1/6 5/6 −1/3
1/3 −1/3 1/3


.

22
(
A(ATA)−1AT

)2
= A(ATA)−1(ATA)(ATA)−1AT = A(ATA)−1AT. So P 2 = P .

Pb is in the column space (where P projects). Then its projection P (Pb) is also Pb.

23 PT = (A(ATA)−1AT)T =A((ATA)−1)TAT =A(ATA)−1AT = P . (ATA is sym-

metric!)

24 If A is invertible then its column space is all of Rn. So P = I and e = 0.
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25 The nullspace of AT is orthogonal to the column space C(A). So if ATb = 0, the pro-

jection of b ontoC(A) should be p = 0. CheckPb = A(ATA)−1ATb = A(ATA)−10.

26 The column space of P is the space that P projects onto. The column space of A

always contains all outputs Ax and here the outputs Px fill the subspace S. Then rank

of P = dimension of S = n.

27 A−1 exists since the rank is r = m. Multiply A2 = A by A−1 to get A = I .

28 If ATAx = 0 then Ax is in the nullspace of AT. But Ax is always in the column

space of A. To be in both of those perpendicular spaces, Ax must be zero. So A and

ATA have the same nullspace : ATAx = 0 exactly when Ax = 0.

29 Start from P 2 = P . The (2, 2) entry of P 2 is the dot product (row 2 of P ) · (column 2 of P ).

Since P is symmetric this is ||row 2 of P ||2.

P =
1

2


 1 1

1 1


 has P 2 = P and P22 =

1

2
and column 2 =


 1/2

1/2


 has ||column 2||2 =

1

2

30 If BBTx = 0 then 0 = xTBBTx = ||BTx||2. But then BTx = 0. Since B has

independent rows, this only happens if x = 0. So BBT is invertible.



Solutions to Problem Sets 71

Problem Set 4.3, page 161

1 A =




1 0

1 1

1 3

1 4




and b =




0

8

8

20




give ATA =


4 8

8 26


 and ATb =


 36

112


.

ATAx̂ = ATb gives x̂ =


1

4


 and p = Ax̂ =




1

5

13

17




and e = b− p =

E = ‖e‖2 = 44




−1
3

−5
3




2




1 0

1 1

1 3

1 4





C

D


=




0

8

8

20




.
This Ax = b is unsolvable

Project b to p = Pb =




1

5

13

17




; When p replaces b,

x̂=


1

4


 exactly solves Ax̂ = p.

3 In Problem 2, p = A(ATA)−1ATb = (1, 5, 13, 17) and e = b − p = (−1, 3,−5, 3).

This e is perpendicular to both columns of A. This shortest distance ‖e‖ is
√
44.

4 E = (C + 0D)2 + (C + 1D − 8)2 + (C + 3D − 8)2 + (C + 4D − 20)2. Then

∂E/∂C = 2C + 2(C + D − 8) + 2(C + 3D − 8) + 2(C + 4D − 20) = 0 and

∂E/∂D = 1 · 2(C + D − 8) + 3 · 2(C + 3D − 8) + 4 · 2(C + 4D − 20) = 0.

These two normal equations are again


4 8

8 26




C

D


 =


 36

112


.

5 E = (C−0)2+(C−8)2+(C−8)2+(C−20)2. AT = [ 1 1 1 1 ] and ATA = [ 4 ].

ATb = [ 36 ] and (ATA)−1ATb = 9 = best height C for the horizontal line.

Errors e = b− p = (−9,−1,−1, 11) still add to zero.
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6 a = (1, 1, 1, 1) and b = (0, 8, 8, 20) give x̂ = aTb/aTa = 9 and the projection is

x̂a = p = (9, 9, 9, 9). Then eTa = (−9,−1,−1, 11)T(1, 1, 1, 1) = 0 and the shortest

distance from b to the line through a is ‖e‖ =
√
204.

7 Now the 4 by 1 matrix in Ax = b is A = [ 0 1 3 4 ]
T

. Then ATA = [ 26 ] and

ATb = [ 112 ]. Best D = 112/26 = 56/13.

8 x̂ = aTb/aTa = 56/13 and p = (56/13)(0, 1, 3, 4). (C,D) = (9, 56/13) don’t

match (C,D) = (1, 4) from Problems 1-4. Columns of A were not perpendicular so

we can’t project separately to find C and D.

9

Parabola

Project b

4D to 3D




1 0 0

1 1 1

1 3 9

1 4 16







C

D

E


=




0

8

8

20




. ATAx̂=




4 8 26

8 26 92

26 92 338







C

D

E


=




36

112

400


.

Figure 4.9 (a) is fitting 4 points and 4.9 (b) is a projection in R4: same problem !

10




1 0 0 0

1 1 1 1

1 3 9 27

1 4 16 64







C

D

E

F



=




0

8

8

20




. Then




C

D

E

F



=
1

3




0

47

−28
5




.

Exact cubic so p = b, e = 0.

This Vandermonde matrix

gives exact interpolation

by a cubic at 0, 1, 3, 4

11 (a) The best line x = 1 + 4t gives the center point b̂ = 9 at center time, t̂ = 2.

(b) The first equation Cm+D
∑

ti =
∑

bi divided by m gives C +Dt̂ = b̂. This

shows : The best line goes through b̂ at time t̂.

12 (a) a = (1, . . . , 1) has aTa = m, aTb = b1 + · · · + bm. Therefore x̂ = aTb/m is

the mean of the b’s (their average value)

(b) e = b − x̂a and ‖e‖2 = (b1 − mean )2 + · · · + (bm − mean )2 = variance

(denoted by σ2).

(c) p = (3, 3, 3) and e = (−2,−1, 3) pTe = 0. Projection matrix P =
1

3




1 1 1

1 1 1

1 1 1


.
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13 (ATA)−1AT(b − Ax) = x̂− x. This tells us: When the components of Ax − b add

to zero, so do the components of x̂− x : Unbiased.

14 The matrix (x̂− x)(x̂− x)T is (ATA)−1AT(b−Ax)(b −Ax)TA(ATA)−1. When

the average of (b−Ax)(b−Ax)T is σ2I , the average of (x̂−x)(x̂−x)T will be the

output covariance matrix (ATA)−1ATσ2A(ATA)−1 which simplifies to σ2(ATA)−1.

That gives the average of the squared output errors x̂− x.

15 When A has 1 column of 4 ones, Problem 14 gives the expected error (x̂ − x)2 as

σ2(ATA)−1=σ2/4. By taking m measurements, the variance drops from σ2 to σ2/m.

16
1

10
b10 +

9

10
x̂9 =

1

10
(b1 + · · ·+ b10). Knowing x̂9 avoids adding all ten b’s.

17




1 −1

1 1

1 2





C

D


=




7

7

21


. The solution x̂ =


9

4


 comes from


3 2

2 6




C

D


=


35

42


.

18 p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The vertical errors are

b− p = (2,−6, 4). This error e has Pe = Pb− Pp = p− p = 0.

19 If b = error e then b is perpendicular to the column space of A. Projection p = 0.

20 The matrix A has columns 1, 1, 1 and−1, 1, 2. If b = Ax̂ = (5, 13, 17) then x̂ = (9, 4)

and e = 0 since b = 9 (column 1) + 4 (column 2) is in the column space of A.

21 e is in N(AT); p is in C(A); x̂ is in C(AT); N(A) = {0} = zero vector only.

22 The least squares equation is


 5 0

0 10




C

D


=


 5

−10


. Solution: C = 1, D = −1.

The best line is b = 1− t. Symmetric t’s⇒ diagonal ATA⇒ easy solution.

23 e is orthogonal to p in Rm; then ‖e‖2 = eT(b− p) = eTb = bTb− bTp.

24 The derivatives of ‖Ax− b‖2 = xTATAx− 2bTAx+ bTb (this last term is constant)

are zero when 2ATAx = 2ATb, or x = (ATA)−1ATb.

25 3 points on a line will give equal slopes (b2 − b1)/(t2 − t1) = (b3 − b2)/(t3 − t2).

Linear algebra: Orthogonal to the columns (1, 1, 1) and (t1, t2, t3) is y = (t2− t3, t3−

t1, t1 − t2) in the left nullspace of A. b is in the column space ! Then yTb = 0 is the

same equal slopes condition written as (b2 − b1)(t3 − t2) = (b3 − b2)(t2 − t1).
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26 The unsolvable equations for C +Dx+ Ey = (0, 1, 3, 4) at the 4 corners are




1 1 0

1 0 1

1 −1 0

1 0 −1







C

D

E


 =




0

1

3

4



. ATA =




4 0 0

0 2 0

0 0 2


 ;ATb =




8

−2
−3


 ;




C

D

E


=




2

−1
−3/2


 .

At x, y = 0, 0 the best plane 2− x− 3
2y has height C = 2 = average of 0, 1, 3, 4.

27 The shortest link connecting two lines in space is perpendicular to those lines.

28 If A has dependent columns, then ATA is not invertable and the usual formula P =

A(ATA)−1AT will fail. Replace A in that formula by the matrix B that keeps only the

pivot columns of A.

29 Only 1 plane contains 0,a1,a2 unlessa1,a2 are dependent. Same test fora1, . . . ,an−1.

If they are dependent, there is a vector v perpendicular to all the a’s. Then they all

(including 0) lie on the plane vTx = 0 going through x = (0, 0, . . . , 0).

30 When A has orthogonal columns (1, . . . , 1) and (T1, . . . , Tm), the matrix ATA is

diagonal with entries m and T 2
1 + · · ·+ T 2

m. Also ATb has entries b1 + · · ·+ bm and

T1b1+ · · ·+Tmbm. The solution with that diagonal ATA is just the given x̂ = (C,D).
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Problem Set 4.4, page 186

1 (a) Independent (b) Independent and orthogonal (c) Independent and orthonormal.

For orthonormal vectors, (a) becomes (1, 0), (0, 1) and (b) is (.6, .8), (.8,−.6).

2
Divide by length 3 to get

q1 = (23 ,
2
3 ,− 1

3 ). q2 = (− 1
3 ,

2
3 ,

2
3 ).

QTQ =


1 0

0 1


 butQQT =




5/9 2/9 −4/9
2/9 8/9 2/9

−4/9 2/9 5/9


.

3 (a) ATA will be 16I (b) ATA will be diagonal with entries 12, 22, 32 = 1, 4, 9.

4 (a) Q =




1 0

0 1

0 0


, QQT =




1 0 0

0 1 0

0 0 0


 6= I . Any Q with n < m has QQT 6= I .

(b) (1, 0) and (0, 0) are orthogonal, not independent. Nonzero orthogonal vectors are

independent. (c) From q1 = (1, 1, 1)/
√
3 my favorite is q2 = (1,−1, 0)/

√
2 and

q3 = (1, 1,−2)/
√
6.

5 Orthogonal vectors are (1,−1, 0) and (1, 1,−1). Orthonormal after dividing by their

lengths :
(

1√
2
,− 1√

2
, 0
)

and
(

1√
3
, 1√

3
,− 1√

3

)
.

6 Q1Q2 is orthogonal because (Q1Q2)
TQ1Q2 = QT

2 Q
T
1 Q1Q2 = QT

2 Q2 = I . Another

approach is to see that (Q1Q1)
−1 = Q−1

2 Q−1
1 = QT

2 Q
T
1 = (Q1Q2)

T.

7 When Gram-Schmidt gives Q with orthonormal columns, QTQx̂ = QTb becomes

x̂ = QTb. No cost to solve the normal equations !

8 If q1 and q2 are orthonormal vectors in R5 then p = (qT
1 b)q1+(qT

2 b)q2 is closest to b.

The error e = b− p is orthogonal to q1 and q2.

9 (a) Q =




.8 −.6

.6 .8

0 0


 has P = QQT =




1 0 0

0 1 0

0 0 0


 = projection on the xy plane.

(b) (QQT)(QQT) = Q(QTQ)QT = QQT.
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10 (a) If q1, q2, q3 are orthonormal then the dot product of q1 with c1q1+c2q2+c3q3 =

0 gives c1 = 0. Similarly c2 = c3 = 0. This proves : Independent q’s

(b) Qx = 0 leads to QTQx = 0 which says x = 0.

11 (a) Two orthonormal vectors are q1 = 1
10 (1, 3, 4, 5, 7) and q2 = 1

10 (−7, 3, 4,−5, 1)
(b) Closest vector = projection QQT(1, 0, 0, 0, 0) = (0.5,−0.18,−0.24, 0.4, 0).

12 Multiply b = x1a1 + x2a2 + x3a3 by axT
1 :

aT
1 b = x1a

T
1 a1 + x2a

T
1 a2 + x3a

T
1 a3 = 0 + 0 + x1a

T
1 a1

Divide by aT
1 a1 (not necessarily equal to 1) to find x1 = aT

1 b/a
T
1 a1.

13 The multiple to subtract is aTb
aTa . Then B = b− aTb

aTaa =


 4

0


−2


 1

1


=


 2

−2


.

14


1 4

1 0


 =

[
q1 q2

]
‖a‖ qT

1 b

0 ‖B‖


 =


1/
√
2 1/

√
2

1/
√
2 −1/

√
2





√
2 2
√
2

0 2
√
2


 = QR.

15 (a) Gram-Schmidt chooses q1 = a/||a|| = 1

3
(1, 2,−2) and q2 = 1

3 (2, 1, 2). Then

q3 = 1
3 (2,−2,−1).

(b) The nullspace of AT contains q3

(c) x̂ = (ATA)−1AT(1, 2, 7) = (1, 2).

16 p = (aTb/aTa)a = 14a/49 = 2a/7 is the projection of b onto a. q1 = a/‖a‖ =
a/7 is (4, 5, 2, 2)/7. B = b− p = (−1, 4,−4,−4)/7 has ‖B‖ = 1 so q2 = B.

17 p = (aTb/aTa)a = (3, 3, 3) and e = (−2, 0, 2). Then Gram-Schmidt will choose

q1 = (1, 1, 1)/
√
3 and q2 = (−1, 0, 1)/

√
2.

18 A = a = (1,−1, 0, 0);B = b−p = (12 ,
1
2 ,−1, 0);C = c−pA−pB = (13 ,

1
3 ,

1
3 ,−1).

Notice the pattern in those orthogonal A,B,C. In R5, D would be (14 ,
1
4 ,

1
4 ,

1
4 ,−1).

Gram-Schmidt would go on to normalize q1 = A/||A||, q2 = B/||B||, q3 = C/||C||.
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19 If A = QR then ATA = RTQTQR = RTR = lower triangular times upper triangular

(this Cholesky factorization of ATA uses the same R as Gram-Schmidt!). The example

has A =




−1 1

2 1

2 4


 =

1

3




−1 2

2 −1

2 2





3 3

0 3


 = QR and the same R appears in

ATA =


9 9

9 18


 =


3 0

3 3




3 3

0 3


 = RTR.

20 (a) True From QT = Q−1 we find (QT)−1 = (Q−1)−1. And always (QT)−1 =

(Q−1)T.

(b) True So the transpose of Q−1 = inverse of Q−1. We are given orthonormal

columns : QTQ = I . Then ||Qx||2 = xTQTQx = xTx = ||x||2.

Notice : Q might be rectangular (and then not an orthogonal matrix).

21 The orthonormal vectors are q1 = (1, 1, 1, 1)/2 and q2 = (−5,−1, 1, 5)/
√
52. Then

b = (−4,−3, 3, 0) projects to p = (qT
1 b)q1 + (qT

2 b)q2 = (−7,−3,−1, 3)/2. And

b− p = (−1,−3, 7,−3)/2 is orthogonal to both q1 and q2.

22 A = (1, 1, 2), B = (1,−1, 0), C = (−1,−1, 1). These are not yet unit vectors.

Gram-Schmidt will divide by ||A|| =
√
6 and ||B|| =

√
2 and ||C|| =

√
3.

23 You can see why q1 =




1

0

0


, q2 =




0

0

1


, q3 =




0

1

0


. A =




1 0 0

0 0 1

0 1 0







1 2 4

0 3 6

0 0 5


 =

QR. This Q is just a permutation matrix—certainly orthogonal.

24 (a) 1 equation, 4 unknowns, 3 independent solutions.

We could choose the solutions (1, 0, 0, 1), (0, 1, 0, 1), and (0, 0, 1, 1).

(b) Those vectors are orthogonal to S⊥ = line through (1, 1, 1− 1).

(c) The component of b = (1, 1, 1, 1) in S⊥ is

b2 =
(1, 1, 1, 1)T(1, 1, 1,−1)
(1, 1, 1,−1)T(1, 1, 1,−1)(1, 1, 1,−1) =

2

4
(1, 1, 1,−1) = 1

2
(1, 1, 1,−1)

Then b1 = b−b2 = (1, 1, 1, 1)−1

2
(1, 1, 1,−1) = 1

2
(1, 1, 1, 3). Check 1+1+1−3 = 0.
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25


 2 1

1 1


 =


 2 −1

1 2




√
5


 5 3

0 1




√
5


 1 1

1 1


 =


 1 −1

1 1




√
2


 2 2

0 0




√
2

and R22 has become zero. A =


 1 1

1 1




had dependent columns.

26 (qT
2 C

∗)q2 = BTc
BTB

B because q2 = B
‖B‖ and the extra q1 in C∗ is orthogonal to q2.

27 When a and b are not orthogonal, the projections onto these lines do not add to the pro-

jection onto the plane of a and b. We must use the orthogonalA and B (or orthonormal

q1 and q2) to be allowed to add projections on those lines.

28 There are 1
2m

2n multiplications to find the numbers rkj and the same for vij .

29 q1 = 1
3 (2, 2,−1), q2 = 1

3 (2,−1, 2), q3 = 1
3 (1,−2,−2).

30 W has orthonormal columns so WTW = I and WT = W−1.

31 Choose c = 1
2 to give orthonormal columns. The projection of b = (1, 1, 1, 1) onto the

first column q1 = 1
2 (1,−1,−1,−1) is (qT

1 b)q1 = −q1.

The projection of b on q2 is (qT
2 b)q2 = −q2.

Since q1 is orthogonal to q2, we add to find the projection−q1 − q2 onto the plane of

q1 and q2.

32 Q = I − 2uuT is a reflection matrix (Q2 = I) if u is a unit vector ||u|| = 1.

u =


0

1


 gives Q =


1 0

0 −1


 u =




0
√
2/2
√
2/2


 gives Q =




1 0 0

0 0 −1
0 −1 0


.

33 Orthogonal and lower triangular⇒ ±1 on the main diagonal and zeros elsewhere.

34 (a) Qu = (I − 2uuT)u = u − 2uuTu. This is −u, provided that uTu equals 1

(b) Qv = (I − 2uuT)v = v − 2uuTv = v, provided that uTv = 0.
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35 Starting from A = (1,−1, 0, 0), the orthogonal (not orthonormal) vectors B =

(1, 1,−2, 0) andC=(1, 1, 1,−3) andD=(1, 1, 1, 1) are in the directions of q2, q3, q4.

The 4 by 4 and 5 by 5 matrices with integer orthogonal columns (not orthogonal rows,

since not orthonormal Q!) are



A B C D



=




1 1 1 1

−1 1 1 1

0 −2 1 1

0 0 −3 1




and




1 1 1 1 1

−1 1 1 1 1

0 −2 1 1 1

0 0 −3 1 1

0 0 0 −4 1




36 [Q,R] = qr(A) produces fromA (m by n of rank n) a “full-size” squareQ=[Q1 Q2 ]

and


R

0


. The columns of Q1 are the orthonormal basis from Gram-Schmidt of the

column space of A. The m − n columns of Q2 are an orthonormal basis for the left

nullspace of A. Together the columns of Q = [Q1 Q2 ] are an orthonormal basis

for Rm.

37 This question describes the next qn+1 in Gram-Schmidt using the matrix Q with

the columns q1, . . . , qn (instead of using those q’s separately). Start from a, subtract

its projection p = QQTa onto the earlier q’s, divide by the length of e = a −QQTa

to get the next qn+1 = e/‖e‖.
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Problem Set 4.5, page 196

1 A1 =


 1 1

1 1


 =


 1

1



[
1 1

]

= CR so A+
1 = RT(CTART)−1CT from

equation (7), page 195.

A+
1 =


 1

1


 1

4

[
1 1

]
=
1

4


 1 1

1 1


 A+

2 =


 1/2 0 0

0 1/4 0


 A+

3 =




1/2 0

0 1/4

0 0




2 A+A =
rcTcrT

(rTr) (cTc)
=

rrT

rTr
and AA+ =

ccT

cTc
are symmetric

The first two Penrose conditions are also easy to check :

AA+A = (crT)
rrT

rTr
= crT = A and A+AA+ =

rrT

rTr

rcT

(rTr) (cTc)
= A+

3 Problem : Check that B =


 A

0


 has B+ =

[
A+ 0

]
.

Solution : Start from B+B = A+A. Then the Penrose conditions are satisfied by B+.

4 The column space of A is R2. The row space is the x-y plane in R3. Then A+ = AT.

5 A+ =




0 1

0 0

1/2 0


 and (AT)+ =


 0 0 1/2

1 0 0


.

It is always true that (AT)+ is the transpose of A+. The straightforward proof quickly

checks the Penrose conditions. We are simply reversing the left side and right side of

the “Big Picture” of 4 subspaces.

6 Given that PT = P = P 2, the pseudoinverse P+ is the same as P . The first two

Penrose conditions become P 3 = P (true). The last two conditions become (P 2)T =

PT = P (true).
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7 We are asked to verify (AA+)2 = AA+. Watch CTART cancel its inverse !

(AA+)2=[ART(CTART)−1CT][ART(CTART)−1CT]=ART(CTART)−1CT=AA+

8 A+A = [RT(CTART)−1CT]CR = RT(CTC RRT)−1CTCR = RT(RRT)−1R is

symmetric.

9 Delete edges d and e. The graph becomes a triangle with 3 by 3 incidence matrix.

A =




−1 1 0

−1 0 1

0 −1 1


 = CR =




−1 1

−1 0

0 −1





 1 0 −1

0 1 −1



.

Then CTART =


 −1 −1 0

1 0 −1







−1 1 0

−1 0 1

0 −1 1







1 0

0 1

−1 −1


 = 3I

From formula (7) : A+ = RT

(
1

3

)
CT =

1

3
AT =

1

3




−1 −1 0

1 0 −1
0 1 1


.

10 A =
[
1 0

]
and B =


 1

1


 give AB =

[
1
]

and BA =


 1 0

1 0


. Certainly

(AB)+ =
[
1
]

is not B+A+ =

[
1

2

1

2

]
 1

0


, so pesudoinverses don’t copy

true inverses (where (AB)−1 = B−1A−1). But they do copy inverses when ranks are

right—as they are for

(BA)+ =


 1 0

1 0



+

=


 1 1

0 0


 =


 1

0



[
1 1

]

= A+B+.

11 The four Penrose conditions for (A+)+ are all satisfied by A. (Also (A+)+ takes the

column space of A+ to its row space. This means (A+)+ takes the row space of A to

its column space—just like A !)
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Problem Set 5.1, page 203

1 det(2A)= 24 detA = 8; det(−A) = (−1)4 detA = 1
2 ; det(A

2) = 1
4 ; det(A

−1)=2.

2 det(12A) = (12 )
3 detA = − 1

8 and det(−A) = (−1)3 detA = 1; det(A2) = 1;

det(A−1) = −1. If detA = 0 then detA/2 = det(−A) = detA2 = 0; no A−1.

3 (a) False: det(I + I) is not 1 + 1 (except when n = 1)

(b) False: det(4A) is 4n detA

(c) False: A =


0 0

0 1


, B =


0 1

1 0


, AB −BA =


0 −1

1 0


 is invertible.

4 Exchange rows 1 and 3 to show detJ3 = −1. Exchange rows 1 and 4, then rows 2 and

3 to show detJ4 = 1. Two exchanges = even permutation.

5 |J5| = 1 by exchanging row 1 with 5 and row 2 with 4. |J6| = −1, |J7| = −1.

Determinants 1, 1,−1,−1 repeat in cycles of length 4 so the determinant of J101 is +1.

6 detA = 4, detB = 0, detC = 0.

7 The 6 terms become a(q+ b)z− b(p+a)z+ · · · (4 more). The approach in the display

(using linearity to split up row 2) is better. Result : det does not change if row 2 is

added to row 1.

8 detAT =




a p x

b q y

c r z


 =

aqz + cpy + brx

− ary − bpz − cqx
= same six terms as detA

Key point : detPT = detP for every permutation, because the number of row

exchanges is the same (just done in reverse order). Then P is even when PT is even.

9 detA = 1 from two row exchanges . detB = 2 (subtract rows 1 and 2 from row 3,

then columns 1 and 2 from column 3). detC = 0 and detD = 0 (equal rows).

10 If the entries in every row add to zero, then (1, 1, . . . , 1) is in the nullspace: singular

A has det = 0. (The columns add to the zero column so they are linearly dependent.)

If every row adds to one, then rows of A − I add to zero (not necessarily detA = 1).
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11 If P1 needsn exchanges to reach I andP2 needsN exchanges thenP1P2 reaches I after

those n+N exchanges. So det(P1P2) = (−1)n+N = (−1)n(−1)N = (detP1) (detP2).

12 We can pair off even permutations with odd permutations : odd = even followed by

exchanging 1 and 2. Number of even permutations= 1
2n!=number of odd permutations.

13 A singular rank one matrix has determinant = 0. The skew-symmetric A also has

detA = 0. A skew-symmetric matrix A of odd order 3 : Changing every sign will

multiply detA by (−1)3 but also keep the same detA = detAT. So detA = 0.

14 When the i, j entry is i times j, row 2 = 2 times row 1 so detA = 0.

When the ij entry is i+ j, row 3− row 2 = row2− row 1 so A is singular: detA = 0.

15 Fill a row (or column) by 4 zeros to guarantee det = 0. Leave only the main diagonal

(12 zeros) to allow detA 6= 0.

16 The cofactor formula detA = a11C11 + · · · + a1nC1n gives det = 0 if all cofactors

are zero. The 2 by 2 matrix of 1’s has det = 0 even though no cofactors are zero.

17 Two equal rows imply det = 0. Proof for 3× 3 if row 1= row 2. Then a = p, b = q,

c = r. Then aqz+brx+cpy−ary−bpz−cqx = abz+bcx+cay−acy−baz−cbx= 0.

18 If A has two equal rows then AT has two equal columns (say columns j and k). Then

the columns are not independent. So detAT = 0 and detA = 0. Other proofs also

reach this conclusion.

19 Start from ACT = (detA)I . Take determinants of both sides :

(detA) (detC) = (detA)n and detC = (detA)n−1

Note : If detA = 0 (singular matrix) thenA is the limit of invertible matricesA1, A2, . . .

Apply detCi = (detAi)
n−1 and take the limit as i → ∞. (How would you define C

for a 1 by 1 matrix ??)

20 If you know C and if detA=1 then you know A−1=CT/1. Then invert A−1 to find A.
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Problem Set 5.2, page 209

1 If detA = 2 then detA−1 = 1
2 , detA

n = 2n, and detAT = 2.

2 detA = −2, independent columns; detB = 0, dependent columns; detC = −1,

independent columns but detD = 0 because its submatrix B has dependent rows (and

dependent columns).

3 The problem suggests 3 ways to see that detA = 0 : All cofactors of row 1 are zero.

A has rank ≤ 2. Each of the 6 terms in detA is zero. Notice also that column 2 has no

pivot.

4 (a) A =


 0.9 −0.9

0.9 0.9


 has detA = 1.62 and detAn = (1.62)n →∞.

(b) A =


 2 2

2 2


 has detA = 0 and detAn = 0 even if Aij = 2.

5 (a) |A| =

∣∣∣∣∣∣
2 5

1 4

∣∣∣∣∣∣
= 3, |B1| =

∣∣∣∣∣∣
1 5

2 4

∣∣∣∣∣∣
= −6, |B2| =

∣∣∣∣∣∣
2 1

1 2

∣∣∣∣∣∣
= 3 so

x1 = −6/3 = −2 and x2 = 3/3 = 1 (b) |A| = 4, |B1| = 3, |B2| = −2, |B3| = 1.

Therefore x1 = 3/4 and x2 = −1/2 and x3 = 1/4.

6 (a) y =
∣∣∣ a 1

c 0

∣∣∣ /
∣∣∣ a b

c d

∣∣∣ = −c/(ad− bc) (b) y = detB2/ detA = (fg − id)/D.

That is because B2 with (1, 0, 0) in column 2 has detB2 = fg − id.

7 (a) x1 = 3/0 and x2 = −2/0: no solution (b) x1 = x2 = 0/0: undetermined.

8 The determinant is linear in its first column so |x1 a1 + x2 a2 + x3 a3 a2 a3|

splits into x1|a1 a2 a3|+ x2|a2 a2 a3|+ x3|a3 a2 a3|. The last two determinants are

zero because of repeated columns, leaving x1|a1 a2 a3| which is x1 detA.

9 If the first column in A is also the right side b then detA = detB1. Both B2 and B3 are

singular since a column is repeated. Therefore x1 = |B1|/|A| = 1 and x2 = x3 = 0.

10 The pattern det = 1, 0,−1,−1, 0, 1 repeats as in En+6 = En. So E100 = E4 after 16

repeats of length 6. And E4 = −1.
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11 If the entries are 1 to 9, the maximum determinant may be 412 =

∣∣∣∣∣∣∣∣∣

9 3 5

4 8 1

2 6 7

∣∣∣∣∣∣∣∣∣
.

12 True. We know that detAB = (detA) (detB). And we know det(ABC) = (detAB) (detC).

Put these together to prove det(ABC) = (detA) (detB) (detC).

13 The combinations of i = (1, 0, 0) and i+ j = (1, 1, 0) fill the xy plane in xyz space.

14 (a) Sum = zero vector. (b) Sum = −2:00 vector = 8:00 vector.

(c) 2:00 is 30◦ from horizontal = (cos π
6 , sin

π
6 ) = (

√
3/2, 1/2).

15 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 12j = (0, 12).

16 (a) detP = 1 because columns 2, 1, 4, 3 have two exchanges from 1, 2, 3, 4.

(b) detP = −1 because columns 3, 2, 1, 4 have only one exchange (of 3 and 1).

(c) detP = −1 because columns 1, 2, 4, 3 have one exchange (3 and 4).

17 The sum is (v−u)+(w−v)+(u−w) = zero vector. Those three sides of a triangle

are in the same plane !

18 All vectors in 3D are combinations of u,v,w as drawn (not in the same plane). Start by

seeing that cu+dv fills a plane, then adding all the vectors ew fills all of R3. Different

answer when u,v,w are in the same plane.

19 The only 4× 4 column orders that start with 3, 2 are 3, 2, 1, 4 and 3, 2, 4, 1 (so 2 terms

in detA).
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Problem Set 5.3, page 214

1 Edge matrix E = identity matrix I for a unit cube. With edges e1, e2, e3 out from

(0, 0, 0), the other 7 corners are e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3.

2 Perpendicular e’s give an ordinary box with side lengths ||e1||, ||e2||, ||e3||.

3 The largest box with edge lengths 1, 2, 3 is the ordinary 90-degree box with volume 6.

This is Hadamard’s inequality (see Problem 4).

4 | detE| ≤ (||e1||) (||e2||) . . . (||en||) is “Hadamard’s inequality”. One proof starts

with E =
[
e1 . . . en

]
= QR from Section 4.4 (Gram-Schmidt producing

orthogonal q’s from independent e’s). Each ej is a combination of orthogonal qi with

||qi|| = 1 :

aj =
∑

rijqi ||aj ||2 =
∑

r2ij ||qi||2 ≥ r2jj

| detE | = | detQ | | detR | = (r11) . . . (rnn) ≤ ||e1|| . . . ||en||.

Wikipedia proves Hadamard’s inequality from “geometric mean”≤ “arithmetic mean”.

5 (a) The parallelogram area with edges (3, 2) and (1, 4) is the determinant of


 3 2

1 4


 =

12− 2 = 10. (b) Triangle area = 1
2

(
parallelogram area

)
=

1

2

∣∣∣∣∣∣
3 2

4 6

∣∣∣∣∣∣
= 5.

(c) The triangle area is 1
2

(
parallelogram area

)
=

1

2

∣∣∣∣∣∣
3 2

1 4

∣∣∣∣∣∣
= 5.

2

4

6

w = (1, 4)

v+w = (4, 6)

v = (3, 2)

2 4

(b)

2

4

6

w = (1, 4)

w− v = (−2, 2)

v = (3, 2)

2 4

(c)
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6 (a) Two sides are (3, 4) − (2, 1) = (1, 3) and (0, 5) − (2, 1) = (−2, 4). The triangle

area is half the parallelogram area =
1

2

∣∣∣∣∣∣
1 3

−2 4

∣∣∣∣∣∣
= 5.

(0, 5)

(2, 1)

(1
, 3
)

(−
2, 4)

(3, 4)

(−1, 0)

(b) has an additional triangle (dashed lines) of area
1

2

∣∣∣∣∣∣
3 1

1 5

∣∣∣∣∣∣
= 7.

7 The hypercube in 4-dimensions has perpendicular sides of length
√
1 + 1 + 1 + 1 = 2.

So its volume is 24 = 16. This must be | detH |.

8 An n-dimensional cube has 2n corners. This is the case m = 0 in Wikipedia’s formula :

An n-dimensional cube has 2n−m n!

m!(n−m)!
m-dimensional sides, edges, corners,. . .

For edges (m = 1) this rule gives 2n−1 times n. 12 edges for a 3D cube (n = 3).

For faces of dimension m = n− 1 this rule gives 2n. Six faces for a 3D cube.

The cube in Rn whose edges come from 2I has volume det(2I) = 2n.

9 The 3-dimensional “unit pyramid” in R3 has volume
1

3!
=

1

6
. I believe the 4-dimensional

“unit pyramid” has volume
1

4!
=

1

24
.
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Problem Set 6.1, page 226

1 The eigenvalues of A are λ = 1 and 0.5
(
or 1

2

)
.

The eigenvalues of An are λ = 1 and
(
1
2

)n
.

The eigenvalues of A∞ are λ = 1 and 0.

(a) A row exchange leaves this A with λ = 1 and −0.5
(
or − 1

2

)
.

(b) Every A has n− r zero eigenvalues (r = rank) : not changed by elimination.

2 A has λ1 = −1 and λ2 = 5 with eigenvectors x1 = (−2, 1) and x2 = (1, 1). The

matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.

That zero eigenvalue correctly indicates that A+ I is singular.

3 A has λ1 = 2 and λ2 = −1 (check trace and determinant) with x1 = (1, 1) and

x2 = (2,−1). A−1 has the same eigenvectors, with eigenvalues 1/λ = 1
2 and −1.

4 det(A−λI) = λ2 +λ− 6 = (λ+3)(λ− 2). Then A has λ1 = −3 and λ2 = 2 (check

trace = −1 and determinant = −6) with x1 = (3,−2) and x2 = (1, 1). A2 has the

same eigenvectors as A, with eigenvalues λ2
1 = 9 and λ2

2 = 4.

5 A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A+B

has λ2 + 8λ + 15 = 0 and λ1 = 3, λ2 = 5. Eigenvalues of A + B are not equal to

eigenvalues of A plus eigenvalues of B.

6 A and B have λ1 = 1 and λ2 = 1. AB and BA have λ2−4λ+1 = 0 and the quadratic

formula gives λ = 2±
√
3. Eigenvalues of AB are not equal to eigenvalues of A times

eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of

Section 6.2).

7 The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its

diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.

8 (a) Multiply Ax to see λx which reveals λ (b) Solve (A− λI)x = 0 to find x.
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9 (a) Multiply Ax = λx by A : A(Ax) = A(λx) = λAx gives A2x = λ2x

(b) Multiply by A−1 : x = A−1Ax = A−1λx = λA−1x gives A−1x = 1

λ
x

(c) Add Ix = x : (A+ I)x = (λ + 1)x.

10 det(A − λI) = λ2 − 1.4λ+ 0.4 so A has λ1 = 1 and λ2 = 0.4 with x1 = (1, 2) and

x2 = (1,−1). A∞ has λ1 = 1 and λ2 = 0 (same eigenvectors as A). A100 has λ1 = 1

and λ2 = (0.4)100 which is near zero. So A100 is very near A∞: same eigenvectors

and close eigenvalues.

11 Proof 1. A − λ1I is singular so its two columns are in the same direction.

Also (A − λ1I)x2 = (λ2 − λ1)x2. So x2 is in the column space and both columns

must be multiples of x2. Here is also a second proof : Columns of A − λ1I are in the

nullspace of A − λ2I because M = (A − λ2I)(A − λ1I) is the zero matrix [this is

the Cayley-Hamilton Theorem in Problem 6.2.30]. Notice that M has zero eigenval-

ues (λ1 − λ2)(λ1 − λ1) = 0 and (λ2 − λ2)(λ2 − λ1) = 0. So those columns solve

(A− λ2I)x = 0, they are eigenvectors.

12 The projection matrix P has λ = 1, 0, 1 with eigenvectors (1, 2, 0), (2,−1, 0), (0, 0, 1).
Add the first and last vectors: (1, 2, 1) also has λ = 1. The whole column space of P

contains eigenvectors with λ = 1 ! Note P 2 = P leads to λ2 = λ so λ = 0 or 1.

13 (a) Pu=(uuT)u = u times uTu=u times 1. So λ = 1.

(b) Pv=(uuT)v=u(uTv)= 0.

(c) x1 = (−1, 1, 0, 0), x2 = (−3, 0, 1, 0), x3 = (−5, 0, 0, 1) all have Px = 0x = 0.

14 det(Q−λI) = λ2− 2λ cos θ+1 = 0 when λ = cos θ± i sin θ = eiθ and e−iθ . Check

λ1λ2 = cos2 θ + sin2 θ = 1 and λ1 + λ2 = 2 cos θ. Two eigenvectors of this rotation

matrix are x1 = (1, i) and x2 = (1,−i) (or cx1 and dx2 with cd 6= 0).

15 The other two eigenvalues are λ = 1
2 (−1 ± i

√
3). Those three eigenvalues add to

0 = trace of P . The three eigenvalues of the second P are 1, 1,−1.

16 Set λ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to find detA = (λ1)(λ2) · · · (λn).
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17 Comparing λ2−(a+d)λ+(ad−bc) with (λ−λ1) (λ−λ2) = λ2−(λ1+λ2)λ+λ1λ2

shows :
a+ d = λ1 + λ2 = trace ad− bc = λ1λ2 = determinant

If λ1 = 3 and λ2 = 4 then det(A− λI) = λ2 − 7λ+ 12.

18 Trace = 9. Three possibilities are A =


 4 0

0 5


 ,


 10 −1

30 −1


 ,


 4 6

0 5


.

19 (a) rank = 2 (b) det(BTB) = 0 (d) eigenvalues of (B2 + I)−1 are 1, 12 ,
1
5 .

20 A =


 0 1

−28 11


 has trace 11 and determinant 28, so λ = 4 and 7. Moving to a 3 by

3 companion matrix, for eigenvalues 1, 2, 3 we want det(C − λI) = (1 − λ)(2 − λ)

(3 − λ). Multiply out to get −λ3 + 6λ2 − 11λ + 6. To get those numbers 6,−11, 6
from a companion matrix you just put them into the last row :

C =




0 1 0

0 0 1

6 −11 6


 Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).

21 (A − λI) has the same determinant as (A − λI)T because every square matrix has

detM = detMT. Pick M = A− λI .


1 0

1 0


 and


1 1

0 0


 have different eigenvectors


1

1


 and


1

0


 .

22 We can choose M =




.1 0 0

.2 .4 0

.7 .6 1


. Its eigenvalues λ = .1, .4, 1.0 are on the

diagonal. ClearlyMT has rows adding to 1 so MT times the columnv =
[
1 1 1

]T

equals v. Challenge : A 3 by 3 singular Markov matrix with trace 1
2 hasλ = 0, 1, −1

2
.

23


0 0

1 0


,


0 1

0 0


,


−1 1

−1 1


.

Always A2 is the zero matrix if λ = 0 and 0,

by the Cayley-Hamilton Theorem in Problem 6.2.30.

24 λ = 0, 0, 6 (notice rank 1 and trace 6). Two eigenvectors of uvT are perpendicular to

v and the third eigenvector is u : x1=(0,−2, 1), x2=(1,−2, 0), x3=(1, 2, 1).
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25 When A and B have the same n λ’s and x’s, look at any combination v = c1x1 +

· · · + cnxn. Multiply by A and B : Av = c1λ1x1 + · · · + cnλnxn equals Bv =

c1λ1x1 + · · ·+ cnλnxn for all vectors v. So A = B.

26 A has eigenvalues 1 and 2 from block B (with eigenvectors ending in 0, 0). A also

has eigenvalues 5 and 7 from block D because AT has eigenvalues 5, 7 from block DT

(and transposing doesn’t change eigenvalues).

27 A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank

2 (ensuring two zero eigenvalues) and (1, 1, 1, 1) is an eigenvector with λ = 2. With

trace 4, the other eigenvalue is also λ = 2, and its eigenvector is (1,−1, 1,−1).

28 The 4 by 4 matrix A of 1’s has λ = 0, 0, 0, 4. Then B = A− I has λ = −1,−1,−1, 3.

And C = I −A has λ = 1, 1, 1,−3.

29 A is triangular : λ(A) = 1, 4, 6; λ(B) = 2,
√
3,−
√
3; C has rank one : λ(C) = 0, 0, 6.

30


 a b

c d




 1

1


 = (a+ b)


 1

1


 when a+ b = c+ d. Thus λ1 = a+ b.

Then λ2 = trace −λ1 = (a+ d)− (a+ b) = d− b.

31 If PA exchanges rows 1 and 2 of A, then APT exchanges columns 1 and 2. In fact

P =




0 1 0

1 0 0

0 0 1


 = PT = P−1 and B = PAPT = PAP−1.

Then B is similar to A and they have the same eigenvalues. In this rank 1 and trace 11

example, the eigenvalues ofA andB are 0, 0, 11. FromA−11I =




−10 2 1

3 −5 3

4 8 −7




the eigenvector for λ = 11 is




1

3

4


.
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32 (a) u is a basis for the nullspace (we know Au = 0u); v and w give a basis for the

column space (we know Av and Aw are in the column space).

(b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. So x = v/3 + w/5 is a particular

solution to Ax = v + w. Add any cu from the nullspace to find all solutions.

(c) If Ax = u had a solution, u would be in the column space : wrong dimension 3.

33 Always (uvT)u = u(vTu) so u is an eigenvector of uvT with λ = vTu. (Watch

numbers vTu, vectors u, matrices uvT !!) If vTu = 0 then A2 = u(vTu)vT is the

zero matrix and λ2 = 0, 0 and λ = 0, 0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uvT :

A =


u1

u2



[
v1 v2

]
=


u1v1 u1v2

u2v1 u2v2


 has trace u1v1 + u2v2 = vTu = 0

34 The vector (1, 1, 1, 1) is not changed by P . It is the eigenvector for λ = 1. The other 3

eigenvectors (discussed in detail in Section 6.4) are

x2,x3,x4 =




1

i

i2

i3







1

−1
1

−1







1

−i
(−i)2

(−i)3



.

35 The six 3 by 3 permutation matrices include P = I and three single row exchange

matrices P12, P13, P23 and two double exchange matrices like P12P13. Since PTP = I

gives (detP )2 = 1, the determinant of P is 1 or−1. The pivots are always 1 (but there

may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

or 0 (for double exchange). The possible eigenvalues are 1 and −1 and e2πi/3 and

e−2πi/3.

36 AB −BA = I can happen only for infinite matrices. If AT = A and BT = −B then

xTx = xT (AB −BA)x = xT (ATB +BTA)x ≤ ||Ax|| ||Bx||+ ||Bx|| ||Ax||.

Therefore ||Ax|| ||Bx|| ≥ 1
2 ||x||2 and (||Ax||/||x||) (||Bx||/||x||) ≥ 1

2 .
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37 λ1 = e2πi/3 and λ2 = e−2πi/3 give detλ1λ2 = 1 and trace λ1 + λ2 = −1.

A =


cos θ − sin θ

sin θ cos θ


 with θ =

2π

3
has this trace and det. So does every M−1AM !

38 (a) Since the columns of A add to 1, one eigenvalue is λ = 1 and the other is c− 0.6

(to give the correct trace c+ 0.4).

(b) If c = 1.6 then both eigenvalues are 1, and all solutions to (A − I) x = 0 are

multiples of x = (1,−1). In this case A has rank 1.

(c) If c = 0.8, the eigenvectors for λ = 1 are multiples of (1, 3). Since all powers An

also have column sums = 1, An will approach
1

4


1 1

3 3


 = rank-1 matrix A∞ with

eigenvalues 1, 0 and correct eigenvectors. (1, 3) and (1,−1).
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Problem Set 6.2, page 242

1 Eigenvectors in X and eigenvalues 1 and 3 in Λ. Then A = XΛX−1 is

1 2

0 3


 =


1 1

0 1




1 0

0 3




1 −1
0 1


. The second matrix has λ = 0 (rank 1) and

λ = 4 (trace = 4). Then A = XΛX−1 is


1 1

3 3


 =


 1 1

−1 3




0 0

0 4







3
4 − 1

4

1
4

1
4


.

A3 = XΛ3X−1 and A−1 = XΛ−1X−1.

2
Put the eigenvectors in X

and eigenvalues 2, 5 in Λ.
A = XΛX−1 =


1 1

0 1




2 0

0 5




1 −1

0 1


 =


2 3

0 5


.

3 If A = XΛX−1 then the eigenvalue matrix for A + 2I is Λ + 2I and the eigenvector

matrix is still X . So A+ 2I = X(Λ + 2I)X−1 = XΛX−1 +X(2I)X−1 = A+ 2I .

4 (a) False: We are not given the λ’s (b) True (c) True since X has independent columns.

(d) False: For this we would need the eigenvectors of X .

5 With X = I, A = XΛX−1 = Λ is a diagonal matrix. If X is triangular, then X−1 is

triangular, so XΛX−1 is also triangular.

6 The columns of X are nonzero multiples of (2,1) and (0,1): either order. The same

eigenvector matrices diagonalize A and A−1.

7 Every matrix that has eigenvectors


 1

1


 and


 1

−1


 has the form

A = XΛX−1 =


 1 1

1 −1




 λ1

λ2


 /2 =

1

2


 λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2


 .

You could check trace = λ1 + λ2 and det = 1
4 4λ1λ2 = λ1λ2.

8 A = XΛX−1 =


1 1

1 0


 =

1

λ1 − λ2


λ1 λ2

1 1




λ1 0

0 λ2




 1 −λ2

−1 λ1


.

XΛkX−1 =
1

λ1 − λ2


λ1 λ2

1 1




λ

k
1 0

0 λk
2




 1 −λ2

−1 λ1




1

0


.
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The second component is Fk = (λk
1 − λk

2)/(λ1 − λ2).

9 (a) The equations are


 Gk+2

Gk+1


 = A


 Gk+1

Gk


 with A =


 .5 .5

1 0


. This matrix

has λ1 = 1, λ2 = − 1
2 with x1 = (1, 1), x2 = (1,−2)

(b) An = XΛnX−1 =


1 1

1 −2




1

n 0

0 (−.5)n







2
3

1
3

1
3 − 1

3


→ A∞ =




2
3

1
3

2
3

1
3




10 The rule Fk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd, . . .

11 (a) True (no zero eigenvalues) (b) False (repeated λ = 2 may have only one line of

eigenvectors) (c) False (repeated λ may have a full set of eigenvectors)

12 (a) False: don’t know if λ = 0 or not.

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

13 A =


 8 3

−3 2


 (or other), A =


 9 4

−4 1


, A =


 10 5

−5 0


;

only eigenvectors

are x = (c,−c).
14 The rank of A − 3I is r = 1. Changing any entry except a12 = 1 makes A

diagonalizable (the new A will have two different eigenvalues)

15 Ak = XΛkX−1 approaches zero if and only if every |λ| < 1; A1 is a Markov matrix

so λmax = 1 and Ak
1 → A∞

1 , A2 has λ = .6± .3 so Ak
2 → 0.

16


 .6 .9

.4 .1


 = XΛX−1 with Λ =


1 0

0 .2


 and X =


1 1

1 −1


 ; Λk →


1 0

0 0


.

Then Ak
1 = XΛkX−1 →




1
2

1
2

1
2

1
2


: steady state.

17 A2 is XΛX−1 with Λ =


 .9 0

0 .3


 and X =


3 −3
1 1


; A10

2


3

1


 = (.9)10


3

1


.

A10
2


 3

−1


 = (.3)10


 3

−1


. Then A10

2


6

0


 = (.9)10


3

1


 + (.3)10


 3

−1


 because

u0 =


6

0


 is the sum of


3

1


+


 3

−1


.
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18


 2 −1

−1 2


 = XΛX−1 =

1

2


1 −1

1 1




1 0

0 3




 1 1

−1 1


 and

Ak = XΛkX−1 =
1

2


1 −1
1 1




1 0

0 3k




 1 1

−1 1


.

Multiply those last three matrices to get Ak =
1

2


1 + 3k 1− 3k

1− 3k 1 + 3k


.

19 Bk = XΛkX−1 =


1 1

0 −1




5 0

0 4



k 
1 1

0 −1


 =


5

k 5k − 4k

0 4k


.

20 detA = (detX)(detΛ)(detX−1) = det Λ = λ1 · · ·λn. This proof (det = product

of λ’s) works when A is diagonalizable. The formula is always true.

21 traceXY = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = traceY X .

Diagonalizable case: the trace of XΛX−1 = trace of (ΛX−1)X = trace of Λ = Σλi.

AB −BA = I is impossible since the left side has trace = 0.

22 If A = XΛX−1 then B =


A 0

0 2A


 =


X 0

0 X




Λ 0

0 2Λ




X

−1 0

0 X−1


. So

B has the original λ’s from A and the additional eigenvalues 2λ1, . . . , 2λn from 2A.

23 The A’s form a subspace since cA and A1 + A2 all have the same X . When X = I

the A’s with those eigenvectors give the subspace of diagonal matrices. The dimension

of that matrix space is 4 since the matrices are 4 by 4.

24 If A has columns x1, . . . ,xn then column by column, A2 = A means every Axi = xi.

All vectors in the column space (combinations of those columns xi) are eigenvectors

with λ = 1. Always the nullspace has λ = 0 (A might have dependent columns,

so there could be less than n eigenvectors with λ = 1). Dimensions of those spaces

C(A) and N(A) add to n by the Fundamental Theorem, so A is diagonalizable

(n independent eigenvectors altogether).

25 Two problems: The nullspace and column space can overlap, so x could be in both.

There may not be r independent eigenvectors in the column space.
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26 R=X
√
ΛX−1 =


1 1

1 −1




3

1




1 1

1 −1


 /2 =


2 1

1 2


 has R2=A.

√
B needs λ =

√
9 and

√
−1, the trace (their sum) is not real so

√
B cannot be real.

Note that the square root of


−1 0

0 −1


 has two imaginary eigenvalues

√
−1 = i and

−i, real trace 0, real square root R =


 0 1

−1 0


.

27 The factorizations of A and B into XΛX−1 are the same. So A = B.

28 A = XΛ1X
−1 and B = XΛ2X

−1. Diagonal matrices always give Λ1Λ2 = Λ2Λ1.

Then AB = BA from

XΛ1X
−1XΛ2X

−1 = XΛ1Λ2X
−1 = XΛ2Λ1X

−1 = XΛ2X
−1XΛ1X

−1 = BA.

29 (a) A =


a b

0 d


 has λ = a and λ = d: (A−aI)(A−dI) =


0 b

0 d− a




a− d b

0 0




=


0 0

0 0


. (b) A =


1 1

1 0


 has A2 =


2 1

1 1


 and A2 − A − I = 0 is true,

matching det(A− λI) = λ2 − λ− 1 = 0 as the Cayley-Hamilton Theorem predicts.

30 When A = XΛX−1 is diagonalizable, the matrix A − λjI = X(Λ − λjI)X
−1 will

have 0 in the j, j diagonal entry of Λ− λjI . The product p(A) becomes

p(A) = (A− λ1I) · · · (A− λnI) = X(Λ− λ1I) · · · (Λ− λnI)X
−1.

That product is the zero matrix because the factors produce a zero in each

diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.

(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices

approaching A.)

Comment I have also seen the following Cayley-Hamilton proof but I am not con-

vinced :

Apply the formula ACT = (detA)I from Section 5.1 to A − λI with variable λ. Its

cofactor matrix C will be a polynomial in λ, since cofactors are determinants :

(A− λI)CT(λ) = det(A− λI)I = p(λ)I.
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“For fixed A, this is an identity between two matrix polynomials.” Set λ = A to find

the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

I am not certain about the key step of substituting a matrix A for λ. If other matrices

B are substituted for λ, does the identity remain true ? If AB 6= BA, even the order

of multiplication seems unclear . . .

31 If AB = BA, then B has the same eigenvectors (1, 0) and (0, 1) as A. So B is also

diagonal b = c = 0. The nullspace for the following equation is 2-dimensional :

AB − BA =


1 0

0 2




a b

c d


 −


a b

c d




1 0

0 2


 =


0 −b

c 0


 =


0 0

0 0


.

Those 4 equations 0 = 0,−b = 0, c = 0, 0 = 0 have a 4 by 4 coefficient matrix with

rank = 4− 2 = 2.

32 B has λ = i and −i, so B4 has λ4 = 1 and 1. Then B4 = I and B1024 = I .

C has λ = (1 ±
√
3i)/2. This λ is exp(±πi/3) so λ3 = −1 and −1. Then C3 = −I

which leads to C1024 = (−I)341C = −C.

33 The eigenvalues of A =


cos θ − sin θ

sin θ cos θ


 are λ = eiθ and e−iθ (trace 2 cos θ and

determinant λ1λ2 = 1). Their eigenvectors are (1,−i) and (1, i) :

An = XΛnX−1 =


 1 1

−i i




e

inθ

e−inθ




 i −1
i 1


 /2i

=


 (einθ + e−inθ)/2 · · ·

(einθ − e−inθ)/2i · · ·


 =


cosnθ − sinnθ

sinnθ cosnθ


 .

Geometrically, n rotations by θ give one rotation by nθ.

34 Columns of X times rows of ΛX−1 gives a sum of r rank-1 matrices (r = rank of A).

Those matrices are λ1x1y
T
1 to λrxry

T
r .
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35 Multiply ones(n) ∗ ones(n) = n ∗ ones(n). Then

AA−1 = (eye(n) + ones(n)) ∗ (eye(n) + C ∗ ones(n))

= eye(n) + (1 + C + Cn) ∗ ones(n) = eye(n) for C = −1/(n + 1).

36 B = A−1
1 leads to A2A1 = B(A1A2)B

−1. Then A2A1 is similar to A1A2 : they have

the same eigenvectors (not zero because A1 and A2 are invertible).

37 Choose B = A−1
1 to show that A2A1 is similar to A1A2. Assuming invertibility (no

zero eigenvalues) this shows that A2A1 and A1A2 have the same eigenvalues.

38 This matrix has column 1 = 2 (column 2) so x1 = (1,−2, 0) is an eigenvector with

λ1 = 0. Also A(1, 1, 1) = (1, 1, 1) and λ2 = 1. Trace = zero so λ3 = −1. Then

12020 = 1 and (−1)2020 = 1 and (0)2020 = 0. So A2019 has the same eigenvalues and

eigenvectors as A : A2019 = A and A2020 = A2. TO COMPLETE FOR 2023
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Problem Set 6.3, page 238

1 (a) ASB stays symmetric like S when B = AT

(b) ASB is similar to S when B = A−1

To have both (a) and (b) we need B = AT = A−1 to be an orthogonal matrix Q.

Then QSQT is similar to S and also symmetric like S.

2 λ = 0, 4,−2; unit vectors ±(0, 1,−1)/
√
2 and ±(2, 1, 1)/

√
6 and ±(1,−1,−1)/

√
3.

Those are for S. The eigenvalues of T are λ = 0,
√
5,−
√
5 in Λ (trace = 0).

The eigenvectors of T are 1
3 (2, 2,−1) and (1+

√
5, 1−

√
5, 2) and (1−

√
5, 1+

√
5, 4).

3 S =


 9 12

12 16


 has λ = 0 and 25 so the columns of Q are the two eigenvectors:

Q =


 .8 .6

−.6 .8


 or we can exchange columns or reverse the signs of any column.

4 (a)


1 2

2 1


 has λ = −1 and 3 (b) The pivots 1, 1− b2 have the same signs as the λ’s

(c) The trace is λ1 + λ2 = 2, so S can’t have two negative eigenvalues.

5 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the

triple product ATCA is 3 by 3.

6 λ = 10 and −5 in Λ =


10 0

0 −5


, x =


1

2


 and


 2

−1


 have to be normalized to

unit vectors in Q =
1√
5


1 2

2 −1


. Then S = QΛQT.

If A3 = 0 then all λ3 = 0 so all λ = 0 as in A =


0 1

0 0


. If A is symmetric then

A3 = QΛ3QT = 0 requires Λ = 0. The only symmetric A is Q 0QT = zero matrix.

7


3 1

1 3


 = 2




1
2 − 1

2

− 1
2

1
2


+4




1
2

1
2

1
2

1
2


;


 9 12

12 16


 = 0


 .64 −.48

−.48 .36


+25


.36 .48

.48 .64



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8

[
x1 x2

]
is an orthogonal matrix so P1 + P2 = x1x

T
1 + x2x

T
2 =

[
x1 x2

]

xT
1

xT
2


 = QQT = I; also P1P2 = x1(x

T
1 x2)x

T
2 = zero matrix.

Second proof: P1P2 = P1(I − P1) = P1 − P1 = 0 since P 2
1 = P1.

9 A =


 0 b

−b 0


 has λ = ib and −ib. The block matrices


A 0

0 A


 and


 0 A

A 0


 are

also skew-symmetric with λ = ib (twice) and λ = −ib (twice).

10 M is skew-symmetric and orthogonal; every λ is imaginary with |λ| = 1. So λ’s must

be i, i, −i,−i to have trace zero.

11 A =


 i 1

1 −i


 has λ = 0, 0 and only one independent eigenvector x = (i, 1).

The good property for complex matrices is not AT = A (symmetric) but A
T

= A

(Hermitian with real eigenvalues and orthogonal eigenvectors).

12 S has Q =




1 1 0

1 −1 0

0 0 1


; B has X =




1 0 1

0 1 0

0 0 2d


.

Perpendicular in Q

Not perpendicular in X

since ST = S but BT 6= B

13 S =


 1 3 + 4i

3− 4i 1


 is a Hermitian matrix (S

T
= S). Its eigenvalues 6 and −4 are

real. Here is the proof that λ is always real when S
T
= S :

Sx = λx leads to Sx = λx. Transpose to xTS = xTλ using S
T
= S.

Then xTSx = xTλx and also xTSx = xTλx. So λ = λ is real.

14 (a) False. A =


1 2

0 1


 (b) True from AT = QΛQT = A

(c) True from S−1 = QΛ−1QT
(d) False!

(e) True. If x is a column of the identity matrix, then the energy xTSx is a diagonal

entry of S. Since S is positive definite in this problem, each diagonal entry is a positive

number xTSx.
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15 A and AT have the same λ’s but the order of the x’s can change. A =


 0 1

−1 0




has λ1 = i and λ2 = −i with x1 = (1, i) first for A but x1 = (1,−i) is first for AT.

16 A is invertible, orthogonal, permutation, diagonalizable; B is projection, diagonaliz-

able. A allows QR,XΛX−1, QΛQT; B allows XΛX−1 and QΛQT.

17 Symmetry gives QΛQT if b = 1; repeated λ and no X if b = −1; singular if b = 0.

18 Orthogonal and symmetric requires |λ| = 1 and λ real, so λ = ±1. Then S = ±I or

±S = QΛQT =


cos θ − sin θ

sin θ cos θ




1 0

0 −1




 cos θ sin θ

− sin θ cos θ


=


cos 2θ sin 2θ

sin 2θ − cos 2θ


.

19 Eigenvectors (1, 0) and (1,1) give a 45◦ angle even with AT very close to A.

20 a11 is
[
q11 . . . q1n

] [
λ1q11 . . . λnq1n

]T
≤ λmax

(
|q11|2 + · · ·+ |q1n|2

)
= λmax.

21 (a) xT(Ax) = (Ax)Tx = xTATx = −xTAx so xTAx = 0. (b) zTAz is pure

imaginary, its real part is xTAx + yTAy = 0 + 0 (c) detA = λ1 . . . λn ≥ 0 :

because pairs of λ’s = ib,−ib multiply to give +b2.

22 Since S is diagonalizable with eigenvalue matrix Λ = 2I , the matrix S itself has to be

XΛX−1 = X(2I)X−1 = 2I . The unsymmetric matrix [2 1 ; 0 2] also has λ = 2, 2

but this matrix can’t be diagonalized.

23 (a) ST = S and STS = I lead to S2 = I .

(b) The only possible eigenvalues of S are 1 and −1.

(c) Λ=


 I 0

0 −I


 so S=

[
Q1 Q2

]
Λ


QT

1

QT
2


= Q1Q

T

1
− Q2Q

T

2
with QT

1 Q2=0.

24 Suppose a > 0 and ac > b2 so that also c > b2/a > 0.

(i) The eigenvalues have the same sign because λ1λ2 = det = ac− b2 > 0.

(ii) That sign is positive because λ1 + λ2 > 0 (it equals the trace a+ c > 0).

25 Only S4 =


 1 10

10 101


 has two positive eigenvalues since 101 > 102.

xTS1x = 5x2
1 + 12x1x2 + 7x2

2 is negative for example when x1 = 4 and x2 = −3:

A1 is not positive definite as its determinant confirms; S2 has trace c0; S3 has det = 0.
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26
Positive definite

for −3 < b < 3


1 0

b 1




1 b

0 9− b2


=


1 0

b 1




1 0

0 9− b2




1 b

0 1


=LDLT

Positive definite

for c > 8


1 0

2 1




2 4

0 c− 8


 =


1 0

2 1




2 0

0 c− 8




1 2

0 1


=LDLT.

Positive definite

for c > |b|
L =


 1 0

−b/c 1


 D =


 c 0

0 c− b2/c


 S = LDLT.

27 x2+4xy+3y2 = (x+2y)2−y2 = difference of squares is negative at x = 2, y = −1,

where the first square is zero.

28 S =


0 1

1 0


 produces f(x, y) =

[
x y

]

0 1

1 0




x

y


 = 2xy. S has λ = 1 and

λ = −1. Then S is an indefinite matrix and f(x, y) = 2xy has a saddle point.

29 ATA =


1 2

2 13


 and ATA =


6 5

5 6


 are positive definite; ATA =




2 3 3

3 5 4

3 4 5


 is

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; third ATA is singular.

30 S =




2 −1 0

−1 2 −1
0 −1 2




has pivots

2, 3
2
, 4
3

;
T =




2 −1 −1
−1 2 −1
−1 −1 2


 is singular; T




1

1

1


 =




0

0

0


.

31 Corner determinants |S1| = 2, |S2| = 6, |S3| = 30. The pivots are 2/1, 6/2, 30/6.

32 S is positive definite for c > 1; determinants c, c2 − 1, and (c − 1)2(c + 2) > 0.

T is never positive definite (determinants d− 4 and −4d+ 12 are never both positive).

33 S =


1 5

5 10


 is an example with a+ c > 2b but ac < b2, so not positive definite.

34 The eigenvalues of S−1 are positive because they are 1/λ(S). Also the energy is

xTS−1x = (S−1x)TS(S−1x) > 0 for all x 6= 0.

35 xTSx is zero when (x1, x2, x3) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally xTSx goes negative for x = (1,−10, 0) because the second pivot is negative.
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36 If ajj were smaller than all λ’s, S − ajjI would have all eigenvalues > 0 (positive

definite). But S − ajjI has a zero in the (j, j) position; impossible by Problem 35.

37 (a) The determinant is positive; all λ > 0 (b) All projection matrices except I

are singular (c) The diagonal entries of D are its eigenvalues

(d) S = −I has det = +1 when n is even, but this S is negative definite.

38 S is positive definite when s > 8; T is positive definite when t > 5 by determinants.

39 A =











1 −1

1 1











√
2











√
9
√
1





















1 1

−1 1











√
2

=


2 1

1 2


; A = Q


4 0

0 2


QT =


3 1

1 3


.

40 The ellipse x2 + xy + y2 = 1 comes from S =


 1 1/2

1/2 1


 with λ =

1

2
and

3

2
.

The axes have half-lengths
√
2 and

√
2/3.

41
S = CTC

S not A
=


9 3

3 5


;


4 8

8 25


 =


1 0

2 1




4 0

0 9




1 2

0 1


 and C =


2 4

0 3




42 The Cholesky factors C =
(
L
√
D
)T

=




3 0 0

0 1 2

0 0 2


 and C =




1 1 1

0 1 1

0 0
√
5


 have

square roots of the pivots from D. Note again CTC = LDLT = S.

43 (a) detS = (1)(10)(1) = 10; (b) λ = 2 and 5; (c) x1 = (cos θ sin θ) and

x2 = (− sin θ, cos θ); (d) The λ’s are positive, so S is positive definite.

44 ax2 + 2bxy + cy2 has a saddle point if ac < b2. The matrix is indefinite (λ < 0 and

λ > 0) because the determinant ac− b2 is negative.

45 If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the

graph of z = (2x+ 3y)2 is a “trough” staying at zero along the line 2x+ 3y = 0.

46 A product ST of symmetric positive definite matrices comes into many applications.

The “generalized” eigenvalue problem Kx = λMx has ST = M−1K . (Often we use

eig(K,M) without actually inverting M .) All eigenvalues λ of ST are positive :

STx = λx gives (Tx)TSTx = (Tx)Tλx. Then λ = xTTTSTx/xTTx > 0.
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47 Put parentheses in xTATCAx = (Ax)TC(Ax). Since C is assumed positive definite,

this energy can drop to zero only whenAx = 0. Sine A is assumed to have independent

columns, Ax = 0 only happens when x = 0. Thus ATCA has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-

plied Mathematics start with many examples of ATCA in a wide range of applications.

I believe positive definiteness of ATCA is a unifying concept from linear algebra.

48 (a) The eigenvalues of λ1I − S are λ1 − λ1, λ1 − λ2, . . . , λ1 − λn. Those are ≥ 0;

λ1I − S is semidefinite.

(b) Semidefinite matrices have energy xT (λ1I − S)x2 ≥ 0. Then λ1x
Tx ≥ xTSx.

(c) Part (b) says xTSx/xTx ≤ λ1 for all x. Equality at the eigenvector with Sx =

λ1x. So the maximum value of xTSx/xTx is λ1.

49 EnergyxTSx = a (x1+x2+x3)
2+c (x2−x3)

2 ≥ 0 if a ≥ 0 and c ≥ 0 : semidefinite.

S has rank ≤ 2 and determinant = 0; cannot be positive definite for any a and c.
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Problem Set 6.4, page 269

1 z = 1 − i leads to z = 1 + i and r =
√
2 and

1

z
=

1 + i

(1 − i) (1 + i)
=

1

2
(1 + i)

and θ = −π

4
= −45◦.

2 det


 1− λ 1 + i

1− i 2− λ


 = λ2 − 3λ+ 2− 2 = 0 gives eigenvalues λ = 3 and 0.

3 If Qx = λx then ||Qx|| = |λ| ||x||. Square both sides and use Q
T
Q = I to find

|λ|2 = 1. Therefore |λ| = 1 for unitary matrices Q.

4 F3 =




1 1 1

1 e2π1/3 e4π1/3

1 e4π1/3 e8π1/3


 =




1 1 1

1 1
2

(
−1 +

√
3 i
)

1
2

(
−1−

√
3 i
)

1 1
2

(
−1−

√
3 i
)

1
2

(
−1 +

√
3 i
)




5 F6 = 6 by 6 matrix =


 I B

I −B




 F3 0

0 F3







columns

0, 2, 4, 1, 3, 5

of I (6 by 6)




The 3 by 3 matrix B is diagonal with entries 1, e2πi/6, e4πi/6.

6 CD =




1 1 1

1 1 1

1 1 1







1 2 1

1 1 2

2 1 1


 =




4 4 4

4 4 4

4 4 4




1 2 1
1 1 1

1 2 1
1 2 1

1 2 1

convolution c
∗
d 1 3 4 3 1 reduces to 4 4 4 for cyclic convolution c

∗©
d

7 Convolution Rule F (c
∗©

d) = (Fc) .
∗
(Fd). This is F




4

4

4


 = F




1

1

1


 .
∗
F




1

2

1




with the 3 by 3 Fourier matrix F = F3 : Multiply components for .
∗

.
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F




4

4

4


 =




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3







4

4

4


 =




12

0

0




F




1

1

1


 =




3

0

0


 F




1

2

1


 =




4

e2πi/3

e4πi/3


 and




3

0

0


 .
∗



4

e2πi/3

e4πi/3







12

0

0




8 cos θ+i sin θ =

(
1− 1

2
θ2 + · · ·

)
+i

(
θ − θ3

6
+ · · ·

)
= 1+iθ+

1

2
(iθ)2+

1

6
(iθ)3+· · ·

9 (eiθ) (eiθ) = e2iθ is (cos θ + i sin θ)2 = cos 2θ + i sin 2θ.

The left side is cos2 θ + 2i cos θ sin θ + i2 sin2 θ.

Matching the right side gives cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 cos θ sin θ

10 The eigenvalues of a circulant matrix C are Fc in equation (10).

If C is invertible then all its eigenvalues must be nonzero.

In that case C−1 is also a circulant because its entries (from the formula for C−1) are

also constant down each (cyclic) diagonal. There are other proofs too.

11 This problem is looking for a solution !

12 An n by n circulant matrix has C
T
= C (Hermitian) if its diagonal entries have c0 real,

c1 = cn−1, c2 = cn−2, . . . The circulant has C
T
C = I (unitary) if |c0 + c1x + · · · +

cn−1x
n−1|2 = 1.

13 Columns 0 and 2 of the Fourier matrix F4 in equation (7) add to (2, 0, 2, 0). Columns

1 and 3 add to (2, 0,−2, 0).

14 z = w2 = e2πi/32 would be a 32nd root of 1 : z32 = 1.

z =
√
w = e2πi/128 would be a 128th root of 1.

15 The 4 eigenvalues 0, 2, 4, 2 of C come from the eigenvalues 1, i,−1,−i of P4.

λ = 2−1−1 = 0 λ = 2−i−i3 = 2 λ = 2−(−1)−(−1)3 = 4 λ = 2+i+i3 = 2.



108 Solutions to Problem Sets

Problem Set 6.5, page 280

1 Eigenvalues 4 and 1 with eigenvectors (1, 0) and (1,−1) give solutions u1 = e4t


1

0




and u2 = et


 1

−1


. If u(0) =


 5

−2


 = 3


1

0


 + 2


 1

−1


, then use those

coefficients 3 and 2 : u(t) = 3e4t


1

0


+ 2et


 1

−1


.

2 z(t) = 2et solves dz/dt = z with z(0) = 2. Then dy/dt = 4y − 6et with y(0) = 5

gives y(t) = 3e4t + 2et as in Problem 1.

3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and λ = 0 is an eigenvalue.

(b) The eigenvalues of A =


−2 3

2 −3


 are λ1 = 0 with eigenvector x1 = (3, 2) and

λ2 = −5 (to give trace = −5) with x2 = (1,−1). Then the usual 3 steps:

1. Write u(0) =


4

1


 as


3

2


+


 1

−1


 = x1 + x2 = combination of eigenvectors

2. The solutions follow those eigenvectors: e0tx1 and e−5tx2

3. The solution u(t) = x1 + e−5tx2 has steady state x1 = (3, 2) since e−5t → 0.

4 d(v + w)/dt = (w − v) + (v − w) = 0, so the total v + w is constant.

A =


−1 1

1 −1


 has

λ1 = 0

λ2 = −2
with x1 =


1

1


, x2 =


 1

−1


.


 v(0)

w(0)


 =


 30

10


 = 20


 1

1


+10


 1

−1


 leads to

v(1) = 20 + 10e−2

w(1) = 20− 10e−2

v(∞) = 20

w(∞) = 20

5
d

dt


 v

w


 =


 1 −1
−1 1


 has λ = 0 and λ = +2 : v(t) = 20 + 10e2t → −∞ as

t→∞.
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6 A =


a 1

1 a


 has real eigenvalues a+1 and a−1. These are both negative if a < −1.

In this case the solutions of du/dt = Au approach zero.

B =


 b −1
1 b


 has complex eigenvalues b+ i and b− i. These have negative real parts

if b < 0. In this case all solutions of dv/dt = Bv approach zero.

7 A projection matrix has eigenvalues λ = 1 and λ = 0. Eigenvectors Px = x fill the

subspace that P projects onto: here x = (c, c). Eigenvectors with Px = 0 fill the

perpendicular subspace: here x = (c,−c). For the solution to du/dt = −Pu,

u(0) =


3

1


 =


2

2


+


 1

−1


 u(t) = e−t


2

2


+e0t


 1

−1


 approaches


 1

−1


 .

8


6 −2
2 1


 has λ1 = 5, x1 =


2

1


, λ2 = 2, x2 =


1

2


; rabbits r(t) = 20e5t+10e2t,

w(t) = 10e5t + 20e2t. The ratio of rabbits to wolves approaches 20/10; (somewhat

against nature) e5t dominates.

9 (a)


4

0


 = 2


1

i


+2


 1

−i


. (b) Then u(t) = 2eit


1

i


+2e−it


 1

−i


 =


4 cos t

4 sin t


.

10
d

dt


y

y′


 =


y

′

y′′


 =


0 1

4 5




y

y′


. This correctly gives y ′ = y ′ and y ′′ = 4y+5y ′.

A =


0 1

4 5


 has det(A− λI) = λ2 − 5λ− 4 = 0. Directly substituting y = eλt into

y′′ = 5y′ + 4y also gives λ2 = 5λ+ 4 and the same two values of λ. Those values are

1

2
(5±

√
41) by the quadratic formula.
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11 The series for eAt is eAt = I + t


0 1

0 0


+ zeros =


1 t

0 1


. Then


 y(t)

y′(t)


 =


1 t

0 1




 y(0)

y′(0)


 =


y(0) + y′(0)t

y′(0)


. This y(t) = y(0) + y ′(0)t solves

the equation—the factor t tells us that A had only one eigenvector : not diagonalizable.

12 A =


 0 1

−9 6


 has trace 6, det 9, λ = 3 and 3 with one independent eigenvector

(1, 3). Substitute y = te3t to show that this gives the needed second solution (y = e3t

is the first solution).

13 (a) y(t) = cos 3t and sin 3t solve y′′ = −9y. It is 3 cos 3t that starts with y(0) = 3 and

y′(0) = 0. (b) A =


 0 1

−9 0


 has det = 9: λ = 3i and −3i with eigenvectors

x =


 1

3i


 and


 1

−3i


. Thenu(t) = 3

2
e3it


 1

3i


+3

2
e−3it


 1

−3i


 =


 3 cos 3t

−9 sin 3t


.

14 WhenA is skew-symmetric, the derivative of ||u(t)||2 is zero. Then ‖u(t)‖ = ‖eAtu(0)‖

stays at ‖u(0)‖. So the matrix eAt is orthogonal when A is skew-symmetric (AT=−A).

15 up = 4 andu(t) = cet+4. For the matrix equation, the particular solution up = A−1b

is


4

2


 and u(t) = c1e

t


1

t


+ c2e

t


0

1


+


4

2


.

16 d/dt(eAt) = A+A2t+ 1

2
A3t2 + 1

6
A4t3 + · · · = A(I +At+ 1

2
A2t2 + 1

6
A3t3 + · · · ).

This is exactly AeAt, the derivative we expect from eAt.

17 eBt = I + Bt (short series with B2 = 0) =


1 −4t

0 1


. Derivative =


0 −4
0 0


 =

BeBt = B in this example.

18 The solution at time t+ T is eA(t+T )u(0). Thus eAt times eAT equals eA(t+T ).

19 A2 = A gives eAt = I +At+ 1
2At2 + 1

6At3 + · · · = I + (et − 1)A.
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20 eA =


e 4(e− 1)

0 1


 from 21 and eB =


1 −4

0 1


 from 19. By direct multiplication

eAeB 6= eBeA 6= eA+B =


e 0

0 1


.

21 The matrix has A2 =


1 3

0 0



2

=


1 3

0 0


 = A. Then all An = A. So eAt =

I + (t+ t2/2! + · · · )A = I + (et − 1)A =


e

t 3(et − 1)

0 0


 as in Problem 19.

22 (a) The inverse of eAt is e−At (b) If Ax = λx then eAtx = eλtx and eλt 6= 0.

To see eAtx, write (I +At+ 1
2A

2t2 + · · · )x = (1 + λt+ 1
2λ

2t2 + · · · )x = eλtx.

23 Invert


 1 0

∆t 1


 to produceUn+1 =


 1 0

−∆t 1




1 ∆t

0 1


Un =


 1 ∆t

−∆t 1− (∆t)2


Un.

At ∆t = 1,


 1 1

−1 0


 has λ = eiπ/3 and e−iπ/3. Both eigenvalues have λ6 = 1 so

A6 = I . Therefore U6 = A6U0 comes exactly back to U0.

24 iFirst A has λ = ±i and A4 = I .

Second A has λ = −1,−1 and An = (−1)n


1− 2n −2n

2n 2n+ 1


 Linear growth.

25 With a = ∆t/2 the trapezoidal step is Un+1 =
1

1 + a2


1− a2 2a

−2a 1− a2


Un.

That matrix has orthonormal columns⇒ orthogonal matrix⇒ ‖Un+1‖ = ‖Un‖

26 For proof 2, square the start of the series to see (I + A + 1
2A

2 + 1
6A

3)2 = I + 2A+

1
2 (2A)

2+ 1
6 (2A)

3+ · · · . The diagonalizing proof is easiest when it works (but it needs

a diagonalizable A).
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Problem Set 7.1, page 295

1 ATA =




0 0 0

0 1 0

0 0 64


 AAT =




1 0 0

0 64 0

0 0 0


 give σ1 = 8 and σ2 = 1.

v1 = (0, 0, 1), v2 = (0, 1, 0), u1 = (0, 1, 0), u2 = (1, 0, 4). After removing

row 3 of A and column 3 of AT,


 1 0

0 64


 still has σ2

1 = 64 and σ2
2 = 1.

2 det(B − λI) = −λ3 + 1
125 = 0 gives λ = 1

5 times 1 and e2πi/3 and e4πi/3.

The singular values are σ = 8 and 1 and 1/1000. So λ changed by 1/5 and σ only

changed by 1/1000.

3 AT has the same singular values as A, and the singular vectors change from Av = σu

to Au = σv.

4


 0 A

AT 0




uk

vk


=


 Avk

ATuk


=σk


uk

vk


 and


 0 A

AT 0




−uk

vk


=


 Avk

−ATuk


=−σk


−uk

vk




So this one symmetric matrix S reveals the u’s and v’s and σ’s in the SVD of A.

5 ATA is symmetric with λ1 = 25 and λ2 = 0 so A has σ1 = 5. The eigenvectors of

ATA are v1 = (2, 1) and v2 = (−1, 2) : orthogonal. They are the v’s in A = UΣV T.

6 A1A
T
1 =


 1 0

1 1




 1 1

0 1


 =


 1 1

1 2


 produces λ2 − 3λ + 1 = 0 and

λ =
1

2

(
3±
√
5
)
. The singular values are the square roots σ =

1

2

(√
5± 1

)
.

A2A
T
2 =


 1 0 1 0

1 1 1 1







1 1

0 1

1 1

0 1




=


 2 2

2 4


 has λ2 − 6λ + 4 = 0 and

λ =
1

2

(
6±
√
20
)
= 3±

√
5. The singular values are the square roots σ =

√
2

2

(√
5± 1

)
.

For the singular vectors I recommend the SVD commands in MATLAB or Julia or

Mathematica.
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7 There are 20 singular values because a random 20 by 40 matrix almost surely has rank 20.

8 (a) The singular values of A+ I are square roots of eigenvalues of (A+ I)T(A + I).

They are not eigenvalues of ATA+ I .

(b) This formula V Σ−1UT is the best way to compute the pseudoinverse A+.

We could check the four Penrose conditions on A+ from Section 4.5. For example

AA+A =
(
Σσiuiv

T
i

)(
Σvju

T
j /σj

)(
Σσkukv

T
k

)
= Σσiuiv

T
i .

Notice also that AA+ = Σuiv
T
i viui = ΣuT

i ui = UTU = projection.

9 The singular values of Q are the positive square roots of eigenvalues of QTQ—and all

those eigenvalues are 1 because QTQ = I when Q is orthogonal.

10 If the λ’s are in descending order, the maximum of R(x) = (λ1c
2
1+ · · ·+λnc

2
n)/(c

2
1+

· · · + c2n) is λ1 (when x = v1). Then c1, c2, . . . , cn is 1, 0, . . . , 0. The minimum is

R(x) = λn when x = vn and c = (0, 0, . . . , 0, 1).

11 xTv1 = 0 means that the coefficient is c1 = 0 in x = c1v1 + · · · + cnvn. Then

max
λ2c

2
2 + · · ·+ λnc

2
n

c22 + · · ·+ c2n
= λ2.

12 The first matrix has ATA =


 5 3

3 5


 with λ = 8 and λ = 2. The eigenvectors of

ATA = right singular vectors v1,v2 of A are (1, 1)/
√
2 and (1,−1)/

√
2. The left

singular vectors are u = Av/σ = (4, 0)/
√
2
√
8 = (1, 0) and (0, 2)/

√
2
√
2 = (0, 1).

The second matrix has ATA =


 25 25

25 25


 so λ = 50 and λ = 0. The right singular

vectors of A are again v1 = (1, 1)/
√
2 with σ1 =

√
50 and v2 = (1,−1)/

√
2 with no

σ2 (or you could say σ2 = 0 but our convention is no σ2). Then u1 = Av1/
√
50 =

(3, 4)/5.

13 This matrix has ATA =




1 1 0

1 2 1

0 1 1


 with eigenvalues λ = 3, 1, 0 and σ1 =

√
3 and

σ2 = 1 and no σ3. The eigenvectors of ATA are v1 = (1, 2, 1)/
√
6 and
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v2 = (1, 0,−1)/
√
2 and v3 = (1,−1, 1)/

√
3. Then Av = σu gives u = (1, 1)/

√
2

and u2 = (1,−1)/
√
2.

A =


1 1 0

0 1 1


 =

1√
2


1 1

1 −1





√
3 0

0 1




1 2 1

1 0 −1


 /
√
6

/
√
2

14 This small question is a key to everything. It is based on the associative law (AAT)A =

A(ATA). Here we are applying both sides to an eigenvector v of ATA :

(AAT)Av = A(ATA)v = Aλv = λAv.

So Av is an eigenvector of AAT with the same eigenvalue λ = σ2.

15 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5

This A =


1 2

3 6


 is a 2 by 2 matrix of rank 1. Its row space has basis v1, its nullspace

has basis v2, its column space has basis u1, its left nullspace has basis u2 :

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1

3


 , N(AT)

1√
10


 3

−1


 .

16 (a) The main diagonal of ATA contains the squared lengths ||row 1||2, · · · , ||row m||2.

So the trace of ATA is the sum of all a2ij .

(b) If A has rank 1, then ATA has rank 1. So the only singular value of A is

σ1 = (trace ATA)1/2.

17 The number σmax(A
−1)σmax(A) is the same as σmax(A)/σmin(A). This is ≥ 1.

It equals 1 if all σ’s are equal, and A = UΣV T is a multiple of an orthogonal matrix.

The ratio σmax/σmin is the important condition number of A.

18 The smallest change in A is to set its smallest singular value σ2 to zero.
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Problem Set 7.2, page 301

1 (a) Suppose the identity matrix I is N by N , and an N by N approximating matrix A

has rank r < N . Then I − A will have N − r eigenvalues equal to 1, meaning that

the error norm ||I − A|| is at least 1, and I is impossible to compress by a lower

rank matrix.

(b) A matrix with a horizontal-vertical cross looks like A :




zeros ones zeros

ones ones ones

zeros ones zeros


 =




zeros ones zeros

zeros ones zeros

zeros ones zeros


+




zeros zeros zeros

ones zeros ones

zeros zeros zeros




Those are both rank one matrices (all nonzero rows equal) so A has rank 2.

2 A =




1 2 1 1

2 4 2 2

1 2 1 1


+




0 0 0 0

0 −2 0 0

0 0 0 0


 =




1

2

1




[
1 2 1 1

]

+




0

1

0




[
0 −2 0 0

]

and the rank is 2.

B =


 1 2 2

1 3 3


 =


 1

1



[
1 2 2

]

+


 0

1



[
0 1 1

]

also has rank 2.

3 BBT =


 1 2 2

1 3 3







1 1

2 3

2 3


 =


 9 13

13 19


 trace = 28 and det = 2.

BTB =




1 1

2 3

2 3





 1 2 2

1 3 3


 =




2 5 5

5 13 13

5 13 13


 trace = 28 and det = 0.

The 2 nonzero eigenvalues must be the same for both matrices. They are σ1, σ2 =

14±
√
142 − 2. I would call B compressible when σ2 is so much smaller than σ1.

4 (computer question svd(A)).

5 The Japanese flag has a circle filled by 1’s, with diameter = 2N 1’s. Outside the circle

are zeros. The rank is approximately CN . What is the number C ? Alex Townsend
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contributed this key idea : The circle contains a big square matrix filled by 1’s. The

rank of that all-ones matrix is only 1.

So we only have to count the rows above and below that square ! Multiply by 2 to

include the columns to the left and right of the square.

0

√
2

2
N

N
01

1 1

The picture shows

(
1−
√
2

2

)
N rows of 1’s above the

square—and repeated below the square. It also shows(
1−
√
2

2

)
N columns of 1’s to the right of the square—and

repeated to the left.

Combined, those (2 −
√
2)N rows and columns (plus 1 for the big square) tell us the

rank of this 2N by 2N Japanese flag containing the red circle.

6 The N by N matrix A is filled by the values Aij = F (i/N, j/N) of the two-variable

function F (x, y), by taking the points (x, y) = (i/N, j/N) on a uniform square grid

(x and y go from 0 to 1). Three choices of that function F :

1) F = xy produces a symmetric rank-1 matrix. Its i, j entry is a multiple of the

product i times j. All rows of F contain a multiple of the vector (1, 2, . . . , N).

2) F2 = x + y gives a sum of 2 rank-one matrices (the rank is 2). One matrix has

constants along each row. The other has constants down each column.

3) F3 = (x, y) = x2 + y2 will also produce a sum of constant rows (from x2) and

constant columns (from y2). Again rank = 2.

7 Symmetric matrix S if F (x, y) = F (y, x). Example F = x+ y.

Antisymmetric matrix A if F (x, y) = −F (y, x). Example F = x− y.

Matrix of rank 2 if F (x, y) = F (x) + F (y) (and other possibilities too ?)

Singular matrix M from a sum of less than n rank-one matrices (please expand this

part of the answer).
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Problem Set 7.3, page 307

1 The row averages of A0 are 3 and 0. Therefore

A =


 2 1 0 −1 −2
−1 1 0 1 −1


 and S =

AAT

4
=

1

4


10 0

0 4




The eigenvalues of S are λ1 =
10

4
and λ2 =

4

4
= 1. The top eigenvector of S is


1

0


. I think this means that a horizontal line (the x axis) is closer to the five points

(2,−1), . . . , (−2,−1) in the columns of A than any other line through the origin (0, 0).

2 Now the row averages of A0 are 1
2 and 2. Therefore

A =




1
2 − 1

2
1
2 − 1

2
1
2 − 1

2

−1 0 1 1 0 −1


 and S =

AAT

5
=

1

5




3
2 0

0 4


 .

Again the rows of A are accidentally orthogonal (because of the special patterns of

those rows). This time the top eigenvector of S is


0

1


. So a horizontal line is closer

to the six points
(
1
2 ,−1

)
, . . . ,

(
− 1

2 ,−1
)

from the columns of A than any other line

through the center point (0, 0).

3 A0 =


1 2 3

5 2 2


 has row averages 2 and 3 so A =


−1 0 1

2 −1 −1


.

Then S =
1

2
AAT =

1

2


 2 −3

−3 6


.

Then trace (S) = 1
2 (8) and det(S) =

(
1
2

)2
(3). The eigenvalues λ(S) are 1

2 times the

roots of λ2 − 8λ + 3 = 0. Those roots are 4 ±
√
16− 3. Then the σ’s are

√
λ1 and

√
λ2.

4 This matrix A with orthogonal rows has S =
AAT

n− 1
=

1

3




2 0 0

0 8 0

0 0 4


.
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With λ’s in descending order λ1 > λ2 > λ3, the eigenvectors are (0, 1, 0) and (0, 0, 1)

and (1, 0, 0). The first eigenvector shows the u1 direction = y axis. Combined with

the second eigenvector u2 in the z direction, the best plane is the yz plane.

These problems are examples where the sample correlation matrix (rescaling S so all

its diagonal entries are 1) would be the identity matrix. If we think the original scaling

is not meaningful and the rows should have the same length, then there is no reason to

choose u1 = (0, 1, 0) from the 8 in row 2.

5 Recall that least squares measures vertical errors (squared distances up or down from

data points to the closest line) while PCA measures perpendicular distances to the line.

They are different problems. Ordinary least squares is different from PCA = perpen-

dicular least squares.

ATAx̂=ATb is


 3 0

0 14


 x̂=


 0

5


 leads to x̂=


 0

5/14


. Best line is y =

5

14
t.

PCA finds the line through (0, 0) whose perpendicular distances to the points (−3,−1),
(1, 0), (2, 1) is smallest. The computation finds the top eigenvector of ATA, where A

is now the 2 by 3 matrix of data points :

AAT =


 −3 1 2

−1 0 1







−3 −1
1 0

2 1


 =


 14 5

5 2


 has λ2 − 16λ+ 3 = 0.

Then λ = 8±
√
61 and the top eigenvector of AAT is in the direction of (5,

√
61− 6)

≈ (5, 1.8). That is the (approximate) direction of the line y =
1.8

5
t.

6 See eigenfaces on Wikipedia.

7 The closest matrix A3 of rank 3 has the 3 top singular values 5, 4, 3. Then A−A3 has

singular values 2 and 1.

8 If A has σ1 = 9 and B has σ1 = 4, then A + B has σ1 ≤ 13 because ||A + B|| ≤
||A||+ ||B||. Also σ1 ≥ 5 for A+B because ||A+B||+ || −B|| ≥ ||A||.
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Problem Set 8.1, page 315

1 With w = 0 linearity gives T (v + 0) = T (v) + T (0). Thus T (0) = 0. With c = −1

linearity gives T (−0) = −T (0). But −0 = 0. This is a second proof that T (0) = 0.

2 Combining T (cv) = cT (v) and T (dw) = dT (w) with addition gives T (cv + dw) =

cT (v) + dT (w). Then one more addition gives cT (v) + dT (w) + eT (u).

3 (d) T (v) = (0, 1) = constant and (f)T (v) = v1v2 are not linear.

4 (a) S(T (v)) = v (b) S(T (v1) + T (v2)) = S(T (v1)) + S(T (v2)) : linear.

5 Choose v = (1, 1) and w = (−1, 0). Then T (v) + T (w) = (v + w) = (0, 1) but

T (v +w) = T (2, 1) was defined as (0, 0).

6 (a) T (v) = v/‖v‖ does not satisfy T (v + w) = T (v) + T (w) or T (cv) = cT (v)

(b) and (c) are linear (d) satisfies T (cv) = cT (v) only for c ≥ 0

7 (a) T (T (v))=v (b) Nonlinear v+(2, 2) (c) T (T (v))=−v (d) T (T (v))=T (v).

8 (a) The range of T (v1, v2) = (v1 − v2, 0) is the line of vectors (c, 0). The nullspace

is the line of vectors (c, c). (b) T (v1, v2, v3) = (v1, v2) has range R2, kernel

{(0, 0,v3)} (c) T (v) = 0 has range {0}, kernel R2 (d) T (v1, v2) = (v1, v1)

has range = multiples of (1, 1), kernel = multiples of (1,−1).

9 If T (v1, v2, v3)=(v2, v3, v1) then T (T (v))=(v3,v1,v2); T
3(v)=v; T 100(v)=T (v).

10 T (v)=(4, 4); (2, 2); (2, 2); if v=(a, b)= b(1, 1)+ a−b
2 (2, 0) then T (v)=b(2, 2)+(0, 0).

11 (a) T (1, 0)=0 (b) (0, 0, 1) is not in the range (c) T (0, 1)=0.

12 For multiplication T (v) = Av: V = Rn, W = Rm; the outputs fill the column

space; v is in the kernel if Av = 0.

13 The distributive law (page 69) gives A(M1 +M2) = AM1 + AM2. The distributive

law over c’s gives A(cM) = c(AM).

14 Now T (M) = AM with an invertible A. Multiply AM = 0 and AM = B by A−1

to get M = 0 and M = A−1B. The kernel contains only the zero matrix M = 0.
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15 This A is not invertible. AM = I is impossible. A


 2 2

−1 −1


 =


0 0

0 0


. The

range of T contains only matrices AM whose columns are multiples of (1, 3).

16 No matrix A gives A


0 0

1 0


 =


0 1

0 0


. To professors: Linear transformations on

matrix space come from 4 by 4 matrices. Those in Problems 13–15 were special.

17 For T (M) = MT (a) T 2 = I is True (b) True (c) True (d) False.

18 T (I) = 0 but M =


0 b

0 0


 = T (M); these M ’s fill the range. Every M =


a 0

c d




is in the kernel. Notice that dim (range) +dim (kernel) = 3 + 1 = dim (input space

of 2 by 2 M ’s).

19 Linear transformations keep straight lines straight! And two parallel edges of a square

(edges differing by a fixed v) go to two parallel edges (edges differing by T (v)). So

the output is a parallelogram.

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes

onto a line (c) Vertical lines stay vertical because T (1, 0) = (a11, 0).

21 D =


2 0

0 1


 doubles the width of the house. A =


 .7 .7

.3 .3


 projects the house

(since A2 = A from trace = 1 and λ = 0, 1). The (non-orthogonal) projection is onto

the column space of A = line through (.7, .3). U =


1 1

0 1


 will shear the house

horizontally: The point at (x, y) moves over to (x+ y, y).

22 (a) A =


a 0

0 d


 with d > 0 leaves the house AH sitting straight up

(b) A =


cos θ − sin θ

sin θ cos θ


 rotates the house.

23 T (v) = −v rotates the house by 180◦ around the origin. Then the affine transformation

T (v) = −v + (1, 0) shifts the rotated house one unit to the right.

24 A code to add a chimney will be gratefully received!
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25 This code needs a correction: add spaces between −10 10 −10 10

26


1 0

0 .1


 compresses vertical distances by 10 to 1.


 .5 .5

.5 .5


 projects onto the 45◦ line.


 .5 .5

−.5 .5


 rotates by 45◦ clockwise and contracts by a factor of

√
2 (the columns have

length 1/
√
2).


1 1

1 0


 has determinant−1 so the house is “flipped and sheared.” One

way to see this is to factor the matrix as LDLT:


1 1

1 0


 =


1 0

1 1




1

−1




1 1

0 1


 = (shear) (flip left-right) (shear).

27 Linear transformations of R2 take circles to ellipses (see figure in Section 6.7).

28 (a) ad − bc = 0 (b) ad − bc > 0 (c) |ad − bc| = 1. If vectors to two

corners transform to themselves then by linearity T = I . (This is not always true if one

corner is (0, 0).)
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Problem Set 8.2, page 324

1 i For Sv = d2v/dx2

Basis v1, v2, v3, v4 = 1, x, x2, x3

Sv1 = Sv2 = 0, Sv3 = 2v1, Sv4 = 6v2;

The matrix for S is B =




0 0 2 0

0 0 0 6

0 0 0 0

0 0 0 0




.

2 Sv = d2v/dx2 = 0 for linear functions v(x) = a + bx. All (a, b, 0, 0) are in the

nullspace of the second derivative matrix B.

3 (Matrix A)2 = B when transformationT (T (v)) = S(v) and output basis= input basis.

4 The third derivative matrix has 6 in the (1, 4) position; since the third derivative of x3

is 6. This matrix also comes from AB. The fourth derivative of a cubic is zero, and B2

is the zero matrix.

5 T (v1 + v2 + v3) = 2w1 +w2 + 2w3; A times (1, 1, 1) gives (2, 1, 2).

6 v = c(v2−v3) gives T (v) = 0; nullspace is (0, c,−c); solutions (1, 0, 0)+(0, c,−c).

7 (1, 0, 0) is not in the column space of the matrix A, and w1 is not in the range of

the linear transformation T . Key point: Column space of matrix matches range of

transformation. Nullspace matches normal.

8 We don’t know T (w) unless the w’s are the same as the v’s. In that case the matrix is

A2.

9 Rank of A = 2 = dimension of the range of T . The outputs Av (column space) match

the outputs T (v) (the range of T ). The “output space” W is like Rm: it contains all

outputs but may not be filled up by the column space.

10 The matrix for T is A =




1 0 0

1 1 0

1 1 1


. For the output




1

0

0


 choose input v =




1

−1

0


 =

A−1




1

0

0


. This means: For the output w1 choose the input v1 − v2.
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11 A−1 =




1 0 0

−1 1 0

0 −1 1


 so T−1(w1) = v1 − v2, T

−1(w2) = v2 − v3, T
−1(w3) =

v3. The columns of A−1 describe T−1 from W back to V . The only solution to

T (v) = 0 is v = 0.

12 (c) T−1(T (w1)) = w1 is wrong because w1 is not generally in the input space.

13 (a) T (v1) = v2, T (v2) = v1 is its own inverse (b) T (v1) = v1, T (v2) = 0 has

T 2 = T (c) If T 2 = I for part (a) and T 2 = T for part (b), then T must be I .

14 (a)


2 1

5 3


 (b)


 3 −1
−5 2


 = inverse of (a) (c) A


2

6


 must be 2A


1

3


.

15 (a) M =


r s

t u


 transforms


1

0


 and


0

1


 to


r

t


 and


 s

u


; this is the “easy”

direction. (b) N =


a b

c d



−1

transforms in the inverse direction, back to the stan-

dard basis vectors. (c) ad = bc will make the forward matrix singular and the inverse

impossible.

16 MW =


1 0

1 2




2 1

5 3



−1

=


 3 −1
−7 3


.

17 Reordering basis vectors is done by a permutation matrix. Changing lengths is done by

a positive diagonal matrix.

18 (a, b) = (cos θ,− sin θ). Minus sign from Q−1 = QT.

19 M =


1 1

4 5


;


a

b


 =


 5

−4


 = first column of M−1 = coordinates of


1

0


 in basis


1

4




1

5


 because 5


1

4


− 4


1

5


 =


1

0


.

20 w2(x) = 1− x2; w3(x) =
1
2 (x

2 − x); y = 4w1 + 5w2 + 6w3.
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21 w’s to v’s:




0 1 0

.5 0 −.5

.5 −1 .5


 . v’s to w’s: inverse matrix =




1 1 1

1 0 0

1 −1 1


. The key

idea: The matrix multiplies the coordinates in the v basis to give the coordinates in the

w basis.

22 The 3 equations to match 4, 5, 6 at x = a, b, c are




1 a a2

1 b b2

1 c c2







A

B

C




=




4

5

6




. This

Vandermonde determinant equals (b − a)(c − a)(c − b). So a, b, c must be distinct to

have det 6= 0 and one solution A,B,C.

23 The matrix M with these nine entries must be invertible.

24 Start from A = QR. Column 2 is a2 = r12q1+ r22q2. This gives a2 as a combination

of the q’s. So the change of basis matrix is R.

25 Start from A = LU . Row 2 of A is ℓ21(row 1 of U) + ℓ22 (row 2 of U ). The change of

basis matrix is always invertible, because basis goes to basis.

26 The matrix for T (vi) = λivi is Λ = diag(λ1, λ2, λ3).

27 If T is not invertible, T (v1), . . . , T (vn) is not a basis. We couldn’t choosewi = T (vi).

28 (a)


0 3

0 0


 gives T (v1) = 0 and T (v2) = 3v1. (b)


1 0

0 0


 gives T (v1) = v1

and T (v1 + v2) = v1 (which combine into T (v2) = 0 by linearity).

29 T (x, y) = (x,−y) is reflection across the x-axis. Then reflect across the y-axis to get

S(x,−y) = (−x,−y). Thus ST = −I .

30 S takes (x, y) to (−x, y). S(T (v))=(−1,2). S(v)=(−2, 1) and T (S(v))=(1,−2).

31 Multiply the two reflections to get


cos 2(θ − α) − sin 2(θ − α)

sin 2(θ − α) cos 2(θ − α)


 which is rotation

by 2(θ − α). In words: (1, 0) is reflected to have angle 2α, and that is reflected again

to angle 2θ − 2α.
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32 The matrix for T in this basis is A =




1 0 0 0

0 1 0 0

0 0 0 0


.

33 The basis v1,v2,v3,v4 for the space of 2 by 2 matrices is meant to be

v1 =


 1 0

0 0


 v2 =


 0 1

0 0


 v3 =


 0 0

1 0


 v4 =


 0 0

0 1


 .

Apologies for the reference to Worked Example 8.2A, which was omitted in final

editing of the book. Question 33 asks for the 4 by 4 matrix A that represents T (M) =
 a b

c d


M in this basis of v’s. As always, multiply each basis matrix by


 a b

c d




to find T (v1), . . . , T (v4). Write each output as a conbination of the output basis (also

v1 to v4). The coefficients of v1 to v4 tell you each column of A.

Multiplying by


a b

c d


 gives T (v1) = A


1 0

0 0


 =


a 0

c 0


 = av1 + cv3. Simi-

larly T (v2) = av2+cv4 and T (v3) = bv1+dv3 and T (v4) = bv2+dv4. The matrix

for T in this basis is




a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d




34 False: We will not know T (v) for every v unless the n v’s are linearly independent.
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Problem Set 8.3, page 334

1 For this matrix J , the rank of J − 3I is 3 so the dimension of the nullspace is only

1. There is only 1 independent eigenvector even though λ = 3 is a double root of

det(J − λI) = 0 : a repeated eigenvalue.

J =




2

2

3 1

3



.

2 J =


 0 1

0 0


 is similar to all other 2 by 2 matrices A that have 2 zero eigenvalues but

only 1 independent eigenvector. Then J = B−1
1 A1B1 is the same as B1J = A1B1 :

B1J =


 4 0

0 1




 0 1

0 0


 =


 0 4

0 0




 4 0

0 1


 = A1B1

B2J =


 4 1

2 0




 0 1

0 0


 =


 4 −8

2 −4




 4 1

2 0


 = A2B2

3 Every matrix is similar to its transpose (same eigenvalues, same multiplicity, more than

that the same Jordan form). In this example

BJ =




1

1

1







2 1 0

0 2 1

0 0 2


 =




2 0 0

1 2 0

0 1 2







1

1

1


 = JTB.

4 Here J and K are different Jordan forms (block sizes 2, 2 versus block sizes 3, 1). Even

though J and K have the same λ’s (all zero) and same rank, J and K are not similar.

If BK = JB then B is not invertible :
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BK = B




0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0



=




0 b11 b12 0

0 b21 b22 0

0 b31 b32 0

0 b41 b42 0




JB =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0



B =




b21 b22 b23 b24

0 0 0 0

b41 b42 b43 b44

0 0 0 0




Those right hand sides agree only if b21 = 0, b41 = 0, b24 = 0, b44 = 0, b22 = 0,

b42 = 0. But then also b11 = b22 = 0 and b31 = b42 = 0. So the first column has

b11 = b21 = b31 = b41 = 0 and B is not invertible.

5 If A3 is the zero matrix then every eigenvalue of A is λ = 0 (because Ax = λx leads

to θ = A3x = λ3x). The Jordan form J will also have J3 = 0 because J = B−1AB

has J3 = B−1A3B = 0. The blocks of J must become zero blocks in J3. So those

blocks of J can be

[
0
]

 0 1

0 0







0 1 0

0 0 1

0 0 0


 but not




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0





 third power

is not zero




The rank of J (and A) is largest if every block is 3 by 3 of rank 2. Then rank ≤ 2

3
n.

If An = zero matrix then A is not invertible and rank (A) < n.

6 This question substitutes u1 = teλt and u2 = eλt to show that u1, u2 solve the system

u ′ = Ju :

u ′

1 = λu1 + u2 eλt + tλeλt = λ(teλt) + (eλt)

u ′

2 = λu2 λeλt = λ(eλt) .

Certainly u1 = 0 and u2 = 1 at t = 0, so we have the solution and it involves teλt (the

factor t appears because λ is a double eigenvalue of J).
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7 The equation uk+2 − 2λuk+1 + λ2uk is certainly solved by uk = λk. But this is a

second order equation and there must be another solution. In analogy with teλt for the

differential equation in 8.3.6, that second solution is uk = kλk. Check :

(k + 2)λk+2 − 2λ(k + 1)λk+1 + λ2(k)λk =
[
k + 2− 2(k + 1) + k

]
λk+2 = 0.

8 λ3 = 1 has 3 roots λ = 1 and e2πi/3 and e4πi/3. Those are 1,λ,λ2 if we take

λ = e2πi/3. The Fourier matrix is

F3 =




1 1 1

1 λ λ2

1 λ2 λ4


 =




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3


 .

9 A 3 by 3 circulant matrix has the form on page 425 :

C =




c0 c1 c2

c2 c0 c1

c1 c2 c0


 with C




1

1

1


 = (c0 + c1 + c2)




1

1

1




C




1

λ

λ2


 = (c0+c1λ+c2λ

2)




1

λ

λ2


 C




1

λ2

λ4


 = (c0+c1λ

2+c2λ
4)




1

λ2

λ4


 .

Those 3 eigenvalues of C are exactly the 3 components of Fc = F




c0

c1

c2


,

10 The Fourier cosine coefficient c3 is in formula (7) with integrals from−π to π. Because

f drops to zero at x = L, the integral stops at L :

a3 =

∫
f(x) cos 3x dx∫
(cos 3x)2 dx

=
1

π

∫ L

−L

(1)(cos 3x) dx =
1

3π

[
sin 3x

]x=L

x=−L

=
2 sin 3L

3π
.

Note that we should have defined f(x) = 0 for L < |x| < π (not 2π !).
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Problem Set 9.1, page 345

1 Equations (1) and (2) give the first three terms in the Taylor Series forF (x) andF (x) =

one variable x or several variables x = (x1, . . . , xn). The formulas are exact when

F is a quadratic function (powers 1, x, x2 or in N dimensions 1, x1 to xN and all

products xixj from x2
j to x1xN to x2

2 to x2xN and eventually xN−1xN and x2
N ).

2 f(x) = x2+1, f ′(x) = 2x, f ′′ = 2. Then Newton’s method computes xn+1 from xn :

xn+1 = xn −
f(xn)

fv(xn)
= xn −

x2
n + 1

2xn
=

1

2

(
xn −

1

xn

)
.

This iteration stays with real numbers so it can’t converge to the solutions x = i or

x = −i. Instead the numbers xn are “chaotic”.

The key insight is that the cotangent function xn = cot 2nθ gives the correct xn+1

from xn :

cos 2θ

sin 2θ
=

1

2

(
cos θ

sin θ
− sin θ

cos θ

)
or cot 2θ =

1

2

(
cot θ − 1

cot θ

)
.

In the left equation, the common denominator is 2 sin θ cos θ = sin 2θ. The numerator

is cos2 θ − sin2 θ = cos 2θ. The identity says this about the iteration :

If x0 = cot θ then x1 =
1

2

(
x0 −

1

x0

)
= cot 2θ.

Then x2 = cot 4θ. Then xn = cot 2nθ. This is the formula.

Example 1 Start with θ = π/4 (cotangent is x0 = 1). The first step gives θ = π/2

(cotangent equals 0). The next step is θ = π (iteration blows up because sinπ = 0).

Example 2 Start with θ = π/3 (cotangent is x0 = 1/
√
3). The first step gives

θ = 2π/3 (cotangent equals−1/
√
3). The next step is θ = 4π/3 (which is the original

θ plus π). The iteration cycles between 1/
√
3 and −1/

√
3.

Example 3 Start with a small θ (a large cotangent). After the first step, cot 2θ is

approximately cut in half (use calculus). The cotangent decreases until the angle 2nθ

passes π/3. Then the next step makes it larger.
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The iteration eventually blows up if θ/π = integer/2N .

The iteration eventually cycles if θ/π = any other fraction p/q.

The iteration is not periodic (or convergent) if θ/π is irrational. Chaos.

We can’t find
√
−1 by Newton’s method which stays real.

3 The derivative of − logx11 with respect to x11 is −1/x11. The second derivative is

+1/x2

11
> 0. So − log x is a convex function—its slope −1/x is increasing.

4 For the function F = − log detA = − log(ac− b2) the first derivatives are

∂F

∂a
=

−c
ac− b2

∂F

∂b
=

+2b

ac− b2
∂F

∂c
=

−a
ac− b2

Then all second derivatives involve D = ac− b2 =

∂2F

∂a2
=

c2

D2

∂

∂b

(
∂F

∂a

)
=

+2bc

D2

∂

∂c

(
∂F

∂a

)
=
−1
D

+
ac

D2
.

This already shows that the matrix of second derivatives is complicated and we need a

new idea.

5 The gradient of F (x) =
1

2

(
xTATAx− 2bTAx+ bTb

)
is ∇F = ATAx − ATb.

So the minimizing vector x solves ATAx = ATb as we know from Chapter 4. That

gives x in one step, where gradient descent takes a sequence of simpler steps of sizes

sk to approach x :

xk+1 = xk − sk∇F (xk) = xk − sk(A
TAxk −ATb).

6 F =
1

2

(
x2 +

1

4
y2
)

has gradient

(
∂F

∂x
,
∂F

∂y

)
=
(
x,

y

4

)
. One step from (x0, y0) =

(
1

4
, 1

)
goes to (x1, y1) =

(
1

4
, 1

)
− s

(
1

4
,
1

4

)
.

7

8 Certainly x2 is minimized at x = 0 and e−y is minimized at y =∞. Then Fmin = 0+

0. At (x0, y0) = (1, 1) the function is F = 1
2+

1
e and the gradient is∇F = (2x,−e−y)

and descent goes to (x1, y1) = (1, 1) = −s∇F = (1, 1)− s(2,−1/e).
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Problem Set 9.2, page 353

1 The two equations have rows a1 =
[
1 2

]
and a2 =

[
2 3

]
. The right hand sides

of Ax = b are b1 = 3 and b3 = 5. The classical Kaczmarz method updates x to solve

a1x = b1 and then a2x = b2 (and repeat indefinitely). Starting from x0 =


 0

0


 here

is the first cycle from equation (6) : x1 solves the first equation
[
1 2

]
x1 = 3

x1 = x0 +

3−
[
1 2

]

 0

0




12 + 22


 1

2


 =

3

5


 1

2


 =


 3/5

6/5




Note that x1 solves the first equation
[
1 2

]
x1 = 3 but not a2x1 = 5.

Then x2 modifies x1 to solve that equation but now the first equation fails :

x =


 3/5

6/5


+

5−
[
2 3

]

 3/5

6/5




22 + 32


 2

3


 =


 3/5

6/5


+ 1/5

13


 2

3


 =

1

5


 3 + 2/13

6 + 3/13


 .

This vector x2 solves the second equation
[
2 3

]
x2 = 5 but not the first equation.

Repeating the Kaczmarz double step brings us closer to the true solution x∞ =


 1

1


.

With a computer you can take more Kaczmarz steps to x2,x3, . . . and compare the con-

vergence rate with “random Kaczmarz”–when the order of the equations and updates

jumps randomly between equations 1 and 2.
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2 The problem (least squares) is to minimize ℓ(x) = (1−F (x))2 whereF (x) = F2(F1(x)).

Backpropagation computes
∂ℓ

∂F
and

∂F

∂x
:

∂ℓ

∂F
= 2(1−F (x))

∂F

∂x
=

∂F2

∂F1

∂F1

∂x
=

(
∂F2

∂F1

)
(− sin(sinx)) cos x = 0 at x = 0

3 (a) The limits of tanh(x) at x = 0,∞,−∞ are 0, 1,−1.

(b) The graph has an inflection point at x = 0, where the second derivative of tanh(x)

is zero.

(c) The derivative of tanh(x) = (ex − e−x)/(ex + e−x) by the quotient rule is

(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
=

4

(ex + e−x)2
> 0 so tanh is increasing

4 Component i of tanh(Ax + b) is y = tanh(aT
i x + bi). The scalar function tanh(x)

has the derivative 4/(ex + e−x)2 from Problem 3. Then the chain rule gives

∂

∂bi
(tanh(Ax+ b)) =

4

(ex + e−x)2
with x = aT

i x+ bi.

5 The partial derivatives of F (x, y) = F2(x, F1(y)) are
∂F

∂x
=

∂F2

∂x
(x1, F1(y)) and

∂F

∂y
=

∂F2

∂F1

∂F1

∂y
.
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Problem Set 9.3, page 363

1 To minimize with a constraint 3x+4y = 1, introduce a Lagrange multiplier in L(x, y, λ) =

|x|p + |y|p − λ(3x+ 4y − 1).

∂L/∂x = pxp−1 − 3λ = 0 xp−1 = 3λ/p

∂L/∂y = pyp−1 − 4λ = 0 yp−1 = 4λ/p

−∂L/∂λ = 3x+ 4y − 1 = 0 3(3λ/p)q + 4(4λ/p)q = 1

Here q = 1/(p−1) and q+1 = p/(p−1). The bold equation is (3q+1+4q+1)λq = pq.

The solution is λ = p/E with E = (3q+1+4q+1)1/q . Knowing λ we can find x and y.

2 Suppose v1 and v2 are in the unit ball : their norms are ≤ 1. We want to show that any

point w = cv1 + (1− c)v2 between v1 and v2 (which means 0 < c < 1) is also in the

ball (which means ||w|| ≤ 1). Use the triangle inequality :

||w|| ≤ ||cv1||+ ||(1 − c)v2|| ≤ |c|+ |1− c| = 1 because 0 < c < 1.

3 (a) L(X, λ) =
1

2
x2
1 + 2x2

2 − λ(x1 + 3x2 − b).

(b) ∂L/∂x1 = x1 − λ = 0

∂L/∂x2 = 4x2 − 3λ = 0

∂L/∂λ = x1 + 3x2 − b = 0 = (λ) + 3(3λ/4)− b

Solve the last equation : (4/4 + 9/4)λ = b or λ = 4b/13. Then x1 = 4b/13 and

x2 = 3b/13.

(d) The minimum of F =
1

2
x2
1 + 2x2

2 is
1

2

(
4b

13

)2

+ 2

(
3b

13

)2

= (8 + 18)b2/132 =

2b2/13. The derivative of that Fmin is ∂Fmin/∂b = 4b/13. This is exactly λ !

4 L =
1

2
(x2

1 + 4x2
2)− λ(2x1 + x2 − 5).

∂L/∂x1 = x1 − 2λ = 0 x1 = 2λ

∂L/∂x2 = 4x2 − λ = 0 x2 = λ/4

−∂L/∂λ = 2x1 + x2 − 5 = 0

(
4 +

1

4

)
λ = 5 or λ = 20/17

Then x1 = 40/17 and x2 = 5/17 and F =
1

2

(
x2
1 + 4x2

2

)
=

1

2
(1700)/172 = 50/17.
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5 K has 2 positive pivots and 1 negative pivot. Then it must have 2 positive eigenvalues

and 1 negative eigenvalue.

6 Line 4 of this problem proves the Law of Inertia for the number of positive pivots of S

(= number of positive eigenvalues, because K is symmetric). Then the problem asks

for a straightforward and basic proof when S is 2 by 2 : There are 2 steps.

1 Determinants of S = LDLT = QΛQT are (detD) (detL)2 and (detΛ) (detQ)2.

So detD has the same sign as detΛ. If those diagonal matrices D and Λ are 2 by

2, then negative determinants mean 1 positive pivot and 1 positive eigenvalue.

2 If D and Λ both have positive determinants, then the two pivots have the same

sign and the two eigenvalues have the same sign. Then positive eigenvalues means

positive trace (sum of eigenvalues = sum of diagonal entries).

7 By symmetry the minimum of F = 1
2

(
x2
1 + x2

2 + x2
3

)
with x1 + x2 + x3

= 3 is 1
2 (1 + 1 + 1) = 1.5. With the added constraint x1 + 2x2 + 3x3 = 12, we

have two multipliers λ and σ :

Lagrange function L = F − λ(x1 + x2 + x3 − 3)− σ(x1 + 2x2 + 3x3 − 12).

∂L/∂x1 = x1 − λ− σ = 0 x1 = −2

∂L/∂x2 = x2 − λ− 2σ = 0 x2 = 1

∂L/∂x3 = x3 − λ− 3σ = 0 x3 = 4

−∂L/∂λ = x1 + x2 + x3 − 3 = 0 → 3λ+ 6σ = 3 → λ = −5
−∂L/∂σ = x1 + 2x2 + 3x3 − 12 = 0 → 6λ+ 14σ = 12 → σ = 3

The second minimum is F =
1

2
(4 + 1 + 16) = 10.5 = larger than 1.5 from extra

constraint !

8 The constraints are x1 ≤ 1,−x1 ≤ 1, x2 ≤ 1,−x2 ≤ 1. This is Ax ≤ b for

A =




1 0

−1 0

0 1

0 −1




x =


 x1

x2


 b =




1

1

1

1



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Problem Set 9.4, page 369

1 Yes, x ≥ 0 is needed for this step : If ATy ≤ c then (ATy)Tx ≤ cTx.

3 ≤ 4 leads to 3x ≤ 4x if x ≥ 0. But x = −1 would give a wrong output −3 < −4.

2 The corners (x1, x2, x3) with x1+2x2+2x3 = 4 are (4, 0, 0) and (0, 2, 0) and (0, 0, 2).

When the cost is cTx = 5x1 + 3x3 + 8x3, the corner (0, 2, 0) gives the minimum cost

cTx = 6. The other corners (4, 0, 0) and (0, 0, 2) cost 20 and 16.

3 The dual problem maximizes yTb = 4y1 subject to y1 ≥ 5, 2y1 ≥ 3, 2y1 ≥ 8. The

best y1 is y1 = 3/2 leading to yTb = 4(3/2) = 6. Notice strong duality : min of yTb

equals max of cTx in Problem 2 = 6.

4 With 2 constraints on x1 to x4, we can set 4 − 2 = 2 of the x’s to zero and see if the

other 2 x’s are ≥ 0 as required. The problem asks about (x1, x2, 0, 0) = (4, 2, 0, 0)

which satisfies the constraints. The cost at the corner depends on the cost function cTx

which the problem statement forgot to include.

5 First payoff matrix : R chooses row 1 every time and C chooses column 2 every time.

The payoff to C is 2 every time.

Second matrix : If R chooses rows 1 and 2 with probabilities x and 1 − x, the payoffs

to C are x+8(1− x) for column 1 and 4x+2(1− x) for column 2. Those payoffs are

equal if 8− 7x = 2 + 2x or 6 = 9x or x = 2/3 : payoff = 10/3.

If C chooses columns 1 and 2 with probabilities y and 1 − y, the payoffs to C are

y + 4(1 − y) = 4 − 3y when R chooses row 1 and 8y + 2(1 − y) = 2 + 6y when

R chooses row 2. Those are equal when 4 − 3y = 2 + 6y or y = 2/9 and the payoff

to C is again 4− 2/3 = 10/3. Duality holds and the game is worth 10/3 to player C.
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6 If AT = −A (square antisymmetric matrix) then any choice x of the row frequencies

by the row player R can be matched by the same probabilities x for the column player

C (and vice versa). But xT(Ax) = (Ax)Tx = −xTAx is always zero ! So both

players can avoid any loss and the value of this antisymmetric game is zero.

Example : A =


 0 −1

1 0


 has optimal strategies x = (1, 0) for row player R

and y = (1, 0) for column player C and all payoffs = 0.

7 Player R chooses row 1 with probability σn/(σ1 + σn) and row n with probability

σ1/(σ1+σn). Player C chooses column 1 and column n with those same probabilities

and expects the same average payments. (This is effectively a 2 by 2 diagonal matrix

with the same mixed strategy for both players.) The average payment from R to C will

be σ1σn/(σ1 + σn).

8 ||(x1, x2, x3)||1 ≤ 2 is equivalent to ±x1 ± x2 ± x3 ≤ 2. Those 3 choices of plus or

minus sign give 8 linear inequalities.

9 We have not explained semidefinite programming well enough to make this a fair

question.

10 If Ax ≤ b and x ≥ 0 and AX ≤ b and X ≥ 0, then 1
2A(x + X) ≤ b and

1
2 (x +X) ≥ 0. Convexity is a crucial property in the theory of optimization.
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Problem Set 10.1, page 372

1
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3

4

5

6

7

8

9

10

11
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13

14

15
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17
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19

20
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Problem Set 10.2, page 381

1

2

3

4

5

6

7

8

9
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Problem Set 10.3, page 386

1 If all sample values are x = 20, then the sample mean is µ = 20 and the sample

variance is S2 = 0. If x = 20 or 21 (12 samples each) then µ = 20.5 and

S2 =
1

23
(24) (0.5)2 =

6

23
.

2 The sample mean and the expected value both increase by 7. The variance does not

change.

3 Fraction of integers divisible by 3 or 7 or both =
1

3
+

1

7
− 1

21
=

9

21
=

3

7
.

Since
1

21
of the integers are divisible by both 3 and 7, those were double counted in

1

3
and

1

7
. Then

1

21
must be subtracted off.

4 The probabilities p0 to p9 that a random number from 1 to 10 (and 1 to 100 and 1 to

1000) ends in 0, 1, , . . . , 9 are
1

10
for each case. The expected mean of that digit is 4.5.

The expected variance is σ2 =
2

10

(
0.52 + 1.52 + 2.52 + 3.52 + 4.52

)
.

5 By Problem 4, the last digit is 0, 1, . . . , 9 with equal probability p =
1

10
. The squares

of 0 to 9 end in 0, 1, 4, 9, 6, 5, 6, 9, 4, 1. So the probabilities p0 to p9 for those squares to

end in 0, 1, 4, 9, 6, 5 are
1

10
,
2

10
,
2

10
,
2

10
,
2

10
,
1

10
. The mean of those ten ending digits

is

0

(
1

10

)
+ (1 + 4 + 9 + 6)

(
2

10

)
+ 5

(
1

10

)
=

45

10
= 4.5.

The variance σ2 is
1

10

[
4.52 + 2

(
3.52 + 0.52 + 4.52 + 1.52

)
+ 0.52

]
.

Crazy question.

6 The first digit of the numbers from 1 to 1000 is 1(112 times). It is 2 to 9 111 times

each. Reason : The first digit is 2 to 9 in 1 + 10 + 100 cases. First digit = 1 in 1 extra

case. Total count is 8(111) + 1(112) = 1000.

Mean : m =
1

1000
(112 + 111(2 + 3 + · · ·+ 9)) =

1

1000
[1 + 111(45)]

Variance : σ2 = prize for this computation !
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7 The squares of 157, 312, 696, 602 start with 2, 9, 4, 3. The sample mean µ (the average)

is 18/4. The sample variance is

S2 =
1

3

[(
2− 18

4

)2

+

(
9− 18

4

)2

+

(
4− 18

4

)2

+

(
3− 18

4

)2
]
.

8 σ2 =
∑

pi(xi −m)2 =
∑

pix
2
i − 2

∑
pixim+

∑
pim

2 =
∑

pix
2
i − 2m2 +m2 =

∑
pix

2
1 −m2

9 How long did the experiment take ? On what device?̇

10 The key formula is E[(x−m)]2 = E[x2]−(E[x])2 as in Problem 8. The only difference

is that expected values E are given by integrals (not sums). The useful identity E[(x −
m)]2 = E[x2]−m2 is still true with m = E[x].

11 To integrate over the x-y plane, the problem statement shows the correct change of

variables from dxdy to rdrdθ. Then −∞ < x, y < ∞ becomes 0 ≤ r ≤ ∞ and

0 ≤ θ ≤ 2π. The integral of dθ gives 2π and

∫
e−r2/2 rdr =

[
− e−r2/2

]∞

0

= 1.


