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Solutions to Problem Sets 1

Problem Set 1.1, page 6

1 ¢ = ma and d = mb lead to ad = amb = be. With no zeros, ad = bc is the equation
for a 2 X 2 matrix to have rank 1.

2 The three edges going around the triangle are u = (5,0),v = (—5,12),w = (0, —12).
Their sum is v + v + w = (0,0). Their lengths are ||u|| = 5,||v|| = 13, ||w]|| = 12.
This is a 5 — 12 — 13 right triangle with 52 + 122 = 25 + 144 = 169 = 13%—the best
numbers after the 3 — 4 — 5 right triangle if we don’t count 6 — 8 — 10.

3 The combinations give (a) alinein R® (b) aplanein R® (c) all of R3.

4 v+ w = (2,3)and v — w = (6, —1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

5 This problem gives the diagonals v + w = (5,1) and v — w = (1,5) of the paral-
lelogram and asks for the sides v and w : The opposite of Problem 4. In this example

v = (3,3) and w = (2,—2). Those come from v = % (v + w) + 1(v — w) and

2




10

11

12

13

14
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3v+w = (7,5) and cv + dw = (2¢+ d, ¢ + 2d).
utv =(-2,3,1)andu+v+w = (0,0,0) and 2u+2v+w = ( add first answers) =
(—2,3,1). The vectors u, v, w are in the same plane because a combination v + v + w

gives (0,0,0). Stated another way : w = —v — w is in the plane of v and w.

The components of every cv+dw add to zero because the components of v = (1, —2, 1)
and of w = (0,1, —1) add to zero. ¢ = 3 and d = 9 give 3v 4+ 9w = (3,3, —6). There

is no solution to cv 4+ dw = (3, 3, 6) because 3 + 3 + 6 is not zero.

The nine combinations ¢(2,1) + d(0,1) with ¢ = 0,1,2 and d = 0,1,2 will lie on a
lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.
c=2,d=2
CZO,dZQ C:27d:O
c=0,d=1
C _ 0’ d _ O T T T T T
The question is whether (a, b, ¢) is a combination z1u + zav. Can we solve
1 0 a
1| 1 |+ | 1| =1|b|?
0 1 c

Certainly z; has to be a. Certainly x5 has to be c. So the middle components give the
requirement a + ¢ = b.

The fourth corner can be (4, 4) or (4,0) or (—2, 2). Draw 3 possible parallelograms !

111

Four more corners (1, 1,0),(1,0,1),(0,1,1), The center point is (5, 5 5).

(1,1,1).
Centers of 6 faces: (3, 3,0),(3,5,1)&(0,3,3),(1,3,3)&(5,0,3),(3,1,3).12 edges.
The combinations of ¢ = (1,0, 0) and 2 4+ 5 = (1, 1,0) fill the xy plane in zyz space.
(a) Sum = zero vector. (b) Sum = —2:00 vector = 8:00 vector.

(c) 2:00 is 30° from horizontal = (cos §,sin §) = (v3/2,1/2).
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Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 125 = (0, 12).
First part: u, v, w are all in the same direction.

Second part: Some combination of u, v, w gives the zero vector but those 3 vectors

are not on a line. Then their combinations fill a plane in 3D.

The two equations are ¢ + 3d = 14 and 2¢ + d = 8. The solution is ¢ = 2 and d = 4.

3 1
The point —v + —w is three-fourths of the way to v starting from w. The vector

1 1 1 1
i + i is halfway to u = Pk + W The vector v 4+ w is 2u (the far corner of the

parallelogram).

The combinations cv + dw with 0 < ¢ < 1 and 0 < d < 1 fill the parallelogram with
sides v and w. For example, if v = (1,0) and w = (0, 1) then cv + dw fills the unit
square. In a special case like v = (a,0) and w = (b, 0) these combinations only fill a

segment of a line.

With ¢ > 0 and d > 0 we get the infinite “cone” or “wedge” between v and w.
For example, if v = (1,0) and w = (0, 1), then the cone is the whole first quadrant
x > 0,y > 0. Question: What if w = —v? The cone opens to a half-space. But the

combinations of v = (1,0) and w = (—1,0) only fill a line.

(a) %u + %v + %w is the center of the triangle between u, v and w; %u + %w lies
halfway between v and w (b) To fill the triangle keep ¢ > 0, d > 0, e > 0, and

c+d+e=1.

The sum is (v — u) + (w — v) 4+ (u — w) = zero vector. Those three sides of a triangle

are in the same plane !

The vector 3 (u + v + w) is outside the pyramid because c+d +e =1 + 1 + 3 > 1.

23 All vectors in 3D are combinations of u, v, w as drawn (not in the same plane). Start by

seeing that cu + dv fills a plane, then adding all the vectors ew fills all of R®. Different

answer when u, v, w are in the same plane.
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A four-dimensional cube has 2* = 16 corners and 2 - 4 = 8 three-dimensional faces

and 24 two-dimensional faces and 32 edges.

Fact: For any three vectors u, v, w in the plane, some combination cu + dv + ew is
the zero vector (beyond the obvious ¢ = d = e = 0). So if there is one combination
Cu+ Dv+ Fw that produces b, there will be many more—just add ¢, d, e or 2¢, 2d, 2e

to the particular solution C, D, E.

The example has 3u — 2v + w = 3(1,3) — 2(2,7) + 1(1,5) = (0,0). It also has
—2u+ 1lv + 0w = b = (0,1). Adding gives u — v + w = (0, 1). In this case ¢, d, e
equal 3,—2,1and C,D, F = —2,1,0.

Could another example have u, v, w that could NOT combine to produce b ? Yes. The

vectors (1, 1), (2,2), (3,3) are on a line and no combination produces b. We can easily

solve cu + dv + ew = O but not Cu + Dv + Fw = b.

The combinations of v and w fill the plane unless v and w lie on the same line through
(0,0). Four vectors whose combinations fill 4-dimensional space: one example is the

“standard basis” (1,0, 0, 0), (0, 1,0, 0), (0,0, 1,0), and (0,0, 0, 1).

The equations cu + dv + ew = b are
2¢ —d =1 Sod=2e c=3/4
—c+2d —e=0 then ¢ = 3e d=2/4

—d+2e=0 then 4e =1 e=1/4
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Problem Set 1.2, page 15

1lu-v=-24424=0uv-w=—-6+16=1lLu-(v+w)=u-v+u-w=
O+1l,w-v=44+6=10=v - w.

2 The lengths are ||u|| = 1 and ||v|| = 5 and ||w|| = v/5. Then |u - v| = 0 < (1)(5) and
|v - w| = 10 < 5/5, confirming the Schwarz inequality.

8 Unit vectors v/||v|| = (3, 2) = (0.8,0.6) and w/||w|| = (1/+/5,2/+/5). The vectors

w, (2,—1), and —w make 0°,90°,180° angles with w. The cosine of § is ””—” .
oy = 10/5V5 = 2/v/5.
4 For unit vectors u,v,w: (a) v - (—v) = —1 b)) vtw)-(v—w)=v-v+

wv—vw—w-w=1+( )—( )—1=0s060=90° (noticev - w = w - v)
© (v—2w) - (v+2w)=v-v—4dw-w=1—4=—-3.

5 u; = v/|v|] = (1,3)/v10 and uy = w/|w| = (2,1,2)/3. U; = (3,-1)/V/10 is
perpendicular to u; (and so is (—3,1)/4/10). U could be (1, —2,0)/+/5: There is a
whole plane of vectors perpendicular to ug, and a whole circle of unit vectors in that

plane.

6 All vectors w = (¢, 2¢) are perpendicular to v = (2,—1). They lie on a line. All
vectors (z,y, z) with z + y + z = 0 lie on a plane. All vectors perpendicular to both

(1,1,1) and (1, 2, 3) lie on a line in 3-dimensional space.

7 (a) cosf = v - w/||v||||lw]| = 1/(2)(1) so § = 60° or w/3 radians  (b) cosf =
0 so# = 90° or m/2 radians (c) cosf = 2/(2)(2) = 1/2s0 6 = 60° or 7/3
(d) cosf = —5//10v/5 = —1/+/2 50 6 = 135° or 37 /4 radians.

8 (a) False: v and w are any vectors in the plane perpendicular to w  (b) True:
u-(v+2w)=u-v+2u-w=0 (c) True, [|[u—v|? = (u—v)-(u—)

splitsintou-u+v-v=2whenu-v=v-u=0.

9 If vowy/v1w1 = —1 then vowy = —v1w; Or V1w +v2we = v-w = 0: perpendicular !

The vectors (1,4) and (1, —1) are perpendicular because 1 — 1 = 0.
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Slopes 2/1 and —1/2 multiply to give —1. Then v - w = 0 and the two vectors
(the arrow directions) are perpendicular.

v - w < 0 means angle > 90°; these w’s fill half of 3-dimensional space. Draw a
picture to show v and the w’s.

(1,1) is perpendicular to (1,5) — ¢(1,1) if (1,1) - (1,5) — ¢(1,1) - (1,1) =6 —2¢ =0
(thenec=3). v-(w—cv) =0ifc = v - w/v - v. Subtracting cv is the key to
constructing a perpendicular vector w — cv.

One possibility among many: v = (1,—1,0,0),v = (0,0,1,—1),w = (1,1,-1,-1)
and (1,1,1,1) are perpendicular to each other. “We can rotate those u, v, w in their

3D hyperplane and they will stay perpendicular.”

Lo +y)=(2+8)/2=5and5 > 4; cosd = 21/16/1/10v/10 = 8/10.
[v][?=1+14---+1=9s0|v|]=3;u=v/3=(3,...,3) isaunit vector in 9D;
w = (1,-1,0,...,0)/v/2 is a unit vector in the 8D hyperplane perpendicular to v.
cosa = 1/v/2, cosf = 0, cosy = —1/4/2. For any vector v = (vy,vs,v3) the
cosines with the 3 axes are cos? a + cos? 8 + cos® y= (v} + v3 +v3)/||v|*= 1.
|[v]|? = 42 + 22 = 20 and ||w]||? = (—1)? 4 2% = 5. Pythagoras is ||(3,4)? = 25 =
20 + 5 for the length of the hypotenuse v + w = (3, 4).

lv +w|? = (v+w) - (v+w) =v-(v+w)+w- (v+ w). This expands to
vov+2v-w+w-w = ||v]]?+ 2||[v]| |[|w]| cosd + ||w]|?.
We know that (v —w) + (v —w) = v-v — 2v - w+ w - w. The Law of Cosines writes

lv||||w]| cos @ for v - w. Here 6 is the angle between v and w. When § < 90° this

v - w is positive, so in this case v - v + w - w is larger than ||v — w]|%.

Pythagoras changes from equality a®+b2 = ¢ to inequality when @ < 90° or 6 > 90 °.
2v-w < 2||v||||w] leads to |[v +wl|]? = v-v+2v-w+w-w < ||v]|*+2||v|||w| +
|lw|?. Thisis (||v|| + ||w]|)?. Taking square roots gives ||v + w|| < ||v]|| + ||w]|.
viw? + 201w vawe + vws < viw? + viw3 + viw? + v3w3 is true (cancel 4 terms)

because the difference is viw3 + v3w? — 2v1 w1 vowe Which is (viws — vawy)? > 0.
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22 Example 6 gives |u1[|Ur| < §(uf + U?) and |uz||Us| < §(u} + U3). The whole line
)

becomes .96 < (.6)(.8) + (.8)(.6) < £(.6% +.8%) + £(.8% +.6%) = 1. True: .96 < 1.

23 The cosine of f is z/1/22 + y2, near side over hypotenuse. Then | cos 0|2 is not greater
than 1: 22/(2% +9?) < 1.

24 These two lines add to 2||v||? + 2||w]|?:
lv+w|?=@w+w) v+w)=v-v+v-wtw -v+w- w

v —w||?=@v-w) - v-—w)=v-v—v-w-—w-v+w- w

25 The length ||v — w|| is between 2 and 8 (triangle inequality when ||v|| = 5 and ||w]|| =

3). The dot product v - w is between —15 and 15 by the Schwarz inequality.

26 Three vectors in the plane could make angles greater than 90° with each other: for
example (1,0), (—1,4),(—1,—4). Four vectors could not do this (360° total angle).
How many can can be perpendicular to each other in R? or R"? Ben Harris and Greg
Marks showed me that the answer is n 4+ 1. The vectors from the center of a regular
simplex in R™ to its n+ 1 vertices all have negative dot products. If n+2 vectors in R"
had negative dot products, project them onto the plane orthogonal to the last one. Now
you have n + 1 vectors in R"~! with negative dot products. Keep going to 4 vectors in

R?: no way!

27 The columns of the 4 by 4 “Hadamard matrix” (times %) are perpendicular unit

vectors:
1 1 1 1 The columns have
L, 11 -1 1-1 i+i+i+i=L'
211 1 -1 -1 Their dot products
1 -1 -1 1 are all zero.

28 The commands V = randn (3, 30); D = sqrt (diag (V' *V)); U = V\D; will give
30 random unit vectors in the columns of U. Then v’ * U is a row matrix of 30 dot

products whose average absolute value should be close to 2/7.
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29 The four vectors vy, v2, V3, v4 must add to zero. Then the four corners of the quadri-
lateral could be 0 and v, and v; + v2 and vy + v2 + v3. We are allowing the side

vectors v to cross each other—can you answer if that is not allowed ?
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Problem Set 1.3, page 24

1 The column space C(A;) is a plane in R?: the two columns of A; are independent
The column space C(A) is all of R®

The column space C(As3) is a line in R®

2 The combination Ax = column 1 — 2 (column 2) + column 3 is zero for both matrices.

This leaves 2 independent columns. So C(A) is a (2-dimensional) plane in R®.

3 B has 2 independent columns so its column space is a plane. The matrix C' has the

same 2 independent columns and the same column space as B.

14 4 zZ1
Typical dot product is
2(1)4+1(2)+2(5) =14
18 z3
2] 1] 2 14
5Az=1|4 |+2| 2 |+5|4 | =] 28
i 0 | i 1 | 0 2
1] o] 0 4
By=4|1|+4|1|+10|0 | = 8
i 1 | i 1 | 1 18
1 0 0 Z1
Iz=z |0 | +2z|1|+2z]0|=] 2
0 0 1 23

6 A has 2 independent columns, B has 3, and A + B has 3. These are the ranks of A and
B and A + B. The rule is that rank(A + B) < rank(A) + rank(B).

(1 3] 31 4 4]

7 (a) A= B = A+ B= =rank 1
2 4 4 2 6 6
1 3 -1 -3 0 0

(b) A= B= A+ B= =rank 0
2 4 -2 -4 0 0



10

10

11

12

13

Solutions to Problem Sets

1 0 0 0 0 0 0O
01 0 O 0 0 0O
(c) A= B= A+ B =1 =rank 4
00 0 O 0 01 0
0 0 0 O 0 0 0 1

The column space of A is all of R®. The column space of B is a line in R®>. The
column space of C'is a 2-dimensional plane in R®. If C' had an additional row of zeros,

its column space would be a 2-dimensional plane in R*.

1 1 2 Seven ones is the maximum for
A=11 1 1 rank 3. With eight ones, two
1 21 columns will be equal
4 3 9 has rank 1: 1 independent column,
5 15 1 independent row
B 1 2 -5 has 1 independent column in R2,
4 8 =20 1 independent row in R?
(a) If B has an extra zero column, A and B have the same column space. Different row

spaces because of different row lengths !
(b) If column 3 = column 2 — column 1, A and B have the same column spaces.

(c) If the new column 3 in B is (1,1, 1), then the column space is not changed or

changed depending whether (1,1, 1) was already in C(A).

If b is in the column space of A, then b is a combination of the columns of A and
the numbers in that combination give a solution  to Az = b. The examples are solved

by (z1,22) = (1,1) and (1,—1) and (-1, 3).

1 0 1 0 2 0
A= -1 1 B = 0 2 A+ B=| -1 3 | has the
0 -1 -1 -2 -1 -3

same column space as A and B (other examples could have a smaller column space :

for example if B = — A in which case A + B = zero matrix).
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1 0 2
14 A=| 3 1 9 | has column 3 = 2 (column 1) + 3 (column 2)

5 0 10

A= |2 5 8 | hascolumn3 = —1 (column 1) + 2 (column 2)

3 6 9
1 1 2

A= 2 2 4 | has2independent columns if g # O
0 0 q

15 If Ax = b then the extra column b in [ A b} is a combination of the first columns,

so the column space and the rank are not changed by including the b column.
16 (a) False: B could be — A, then A + B has rank zero.

(b) True : If the n columns of A are independent, they could not be in a space R™ with

m < n. Therefore m > n.

(c) True: If the entries are random and the matrix has m = n (or m > n), then the

columns are almost surely independent.

1 0 0 0 1 0 1 0
17 rank 2 : + rank 1 : +
0 0 0 1 0 0 0 0
1 0 1 0
rank O : —
0 0 0 0
1 0 0 3
183 1 | +4| 1 |+5l0|= 7| =Sx=0>
1 1 1 12
1 0 0

S=1]1 1 0 | and the 3 dot products in Sx are 3,7, 12
1 1 1
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19 Suppose a = mec and b = md (all nonzero). Then amd = bme. Then a/b = ¢/d.

If those ratios are M, then (a,c) = M (b, d).

1 0 0 Y1 c1 C1
20 Sy = 1 1 0 Yo = co | is solved by y = ¢o —c; |- Thisis
1 1 1 Y3 c3 Cc3 — C2
1 0 0 c1
y=S"le=| -1 1 0 co |- S 1s square with independent columns. So S

1 -1 1 c3

has an inverse with SS—! = §=15 =T
21 To solve Ax = 0 we can simplify the 3 equations (this is the subject of Chapter 2).
$1+2ZC2—|—3ZC3:O I1+2I2+3I3:O
Row 2 — 3(row 1)
Start from Ax =0 3z + 5xo+6x3=10 —x9—3x3=0
row 3 — 4(row 1)

41+ Txo+923=0 —x9—3x3=0

If x3 = 1 then 29 = —3 and 21 = 3. Any answer & = (3¢, —3c, ¢) is correct.
2 1
1 1 0 0 c=-1 0 0 O have
4 2
22 | 3 2 1 1 0 2 1 5 = 3 dependent
-2 1
7 4 ¢c=3 0 1 1 3 3 6 columns
4 -2
23 The equation Az = 0 says that x is perpendicular to each row of A (three dot products

are zero). So x is perpendicular to all combinations of those rows. In other words, x is

perpendicular to the row space (here a plane).

An important fact for linear algebra: Every x in the nullspace of A (meaning Az = 0)

is perpendicular to every vector in the row space.
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Problem Set 1.4, page 35

13

1 Here are the 4 ways to multiply AB and the operation counts. A is m by n, B is n by p.

Row 7 times column &
Matrix A times column &
Row 7 times matrix B

Column j of A times row j of B

mp dot products, n multiplications each
p columns, mn multiplications each
m rows, np multiplications each

n (columns) (rows), mp multiplications each

2A:[a a a}factorsintoC’Rz[aHl 1 1}

1 00 1 0 0 1 00
3|1 10 -1 1 0|=|010
1 1 1 1 -1 1 1 0 1
[123]4 4[123} 4 8 12
5:[32} 5 =|5 10 15
6 6 6 12 18
4(&1)[11}1[111}
=2[111} =[222}
1
[11}1[111] 11 1
1 :[11}111:[222}
1 11 1
1 2 1 3 1 4 15 1 4 19
(b) = =
0 1 0 1 0 1 0 1 0 1 0 1
1 2 1 3 1 4 1 2 17 19
0 1 0 1 0 1 0 1 0 1 0 1

5 A has 7 columns and 4 rows. Those columns are vectors in 4-dimensional space. We

cannot have 5 independent column vectors because we cannot have 5 independent vec-

tors in 4-dimensional space. (This is really just a restatement of the problem. The proof



14

Solutions to Problem Sets

comes in Section 3.2: Every m by n matrix C, with m < n has a nonzero solution to

Cz = 0. Here m = 4 and n = 5 and 5 columns of C' cannot be independent.)

8 A=

B =

2

—_

-2 1 6
0 2
0 6
0
0
1
2_
4 | =
6_
2_
4 | =
6

0

0
0
1

o o

2 1 0
C=1100
3 0 1
-1 0 2 0
0 1 2 0 | =AinProblem6.
0 0 0 1
2 2 1 A=C
4 4 1 =Al and
0 6 1 R=1
2 1 1 0
4 0 01|=CR
6

9 Arandom 4 by 4 matrix has independent columns (C'= A and R = I) with probability 1.

(We could be choosing the 16 entries of A between 0 and 1 with uniform probability

by A = rand(4,4). We could be choosing those 16 entries of A from a “bell-shaped”

normal distribution by A = rand(4,4). If we were choosing those 16 entries from

a finite list of numbers, then there is a nonzero probability that the columns of A are

dependent. In fact a nonzero probability that all 16 numbers are the same.)

10 If A is a random 4 by 5 matrix, then (using rand or randn as above) with probability 1

the first 4 columns are independent and go into C. With probability zero (this does not

mean it can’t happen!) the first 4 columns will be dependent and C' will be different

(C will have r columns with r < 4).

11 A=

o o o =

0
1

o o

o o o =

0
1
0
0

1 0 a ¢

0 1

b d

= C'R. Many other possibilities !
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_1 2 1 01 _1 2__0 1 0 -1

12 4, = Ay =
1 3 0 1 1 1 3 0 0 1 2
_2 [1 0.5 1.5] _1 O__l 0 0 4

Az = Ay =
6 0 2 0 1 1 0

13 C = ! andR:[Q 4}haveCR:

3 6 12

14
and CRC = and RCR = { 2% 56 }
42

Here is an interesting fact when A is m by n and B is n by m. The m numbers on

the main diagonal of AB have the same total as the n numbers on the main diagonal of

BA. Example:
0 3 12 15 18
1 2 3 8 26
A= B=|1 4 AB = BA=| 17 22 27
4 5 6 17 62
2 5 22 29 36
84+62=12+ 22+ 36
3 6 6 -7 2 0 3 4
14
5 10 7T 6 3 6 -2 -3
rank one orthogonal columns rank 2 A2 =1

15 1. Column j of A equals the matrix C' times column j of R.

This is a combination of the columns of C'.

2. Row i of A is row 7 of C' times the matrix R.

This is a combination of the rows of R.

3. (row ¢ of C) - (column j of R) gives A;;
That dot product requires the number of columns of C' to equal the number of

rows of R.
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4. C has r columns so R has r rows (to multiply C'R). Those columns of C' are
independent (by construction). Those rows of R are independent (because R

contains the r by r identity matrix).

(a) The vector ABx is the matrix A times the vector Bx. So it is a combination of the

columns of A. Therefore C(AB) C C(A).

1 0 0 0
(b) A= B= give AB = zero matrix and C(AB) = zero vectors.
0 0 0 1

(a) If A and B have rank 1, then AB has rank 1 or 0. A = uv™ and B = zy™ give

AB = u(vTz)yT so AB = zero matrix if the dot product vz happens to be zero.

(b) If A and B are 3 by 3 matrices of rank 3, then it is true that AB has rank 3.
One approach: If ABx = 0 then Bx = 0 because A has 3 independent columns.

But Bx = 0 only when = 0, because B has 3 independent columns.

1 0
(c) Suppose AB = BA for all 2 by 2 matrices B. Choose B = so that
0 0
c d 1 0 1 0 c d c 0 c d
AB= = . This tells us that =
e f 0 0 0 0 e f e 0 0 0
0 1 0 1
and therefore d = e = 0. Now choose B = sothat AB =
0 0 0o f 0 0
0 1 c 0 0 c 0 f
= . This tells us that = andc= fand A = cl.
0 0 0 f 0 0 0 0

3 4
(a) AB = and BC =

(b) (AB)C = column exchange of AB =

4 3
A(BC) = row exchange of BC = = same result ABC.



Solutions to Problem Sets

1 00 111 1[111}0[011}
19 AB=|1 1 0 01 1|=1|1 + 1|1 +
11 1 0 0 1 1 1
0[001}
0
1
111 00 0 00 0 11 1
=11 1|+|011]|+|l00O0|=]|12 2
111 01 1 0 0 1 1 2 3
1[100}1[110}1[111} 3 21
BA= 1|0 +1 1 +1 1 =12 21
0 0 1 111

20 AB = (4 x 3) (3 x 2) needs mnp = (4) (3) (2) = 24 multiples.
Then (AB)C = (4 x 2) (2 x 1) needs (4) (2) (1) = 8 more : TOTAL 32.
BC = (3 x 2) (2 x 1) needs mnp = (3) (2) (1) = 6 multiplies.

Then A(BC) = (4 x 3) (3 x 1) needs (4) (3) (1) = 12 more: TOTAL 18.

Best to start with C' = vector. Multiply by B to get the vector BC, and then the vector

A(BC). Vectors need less computing time than matrices !



18 Solutions to Problem Sets

Problem Set 2.1, page 46

1 Multiply equation 1 by ¢5; = 12—0 = 5 and subtract from equation 2 to find 2x 4+ 3y = 1
(unchanged) and —6y = 6. The pivots to circle are 2 and —6. Back substitution in

—6y = 6 givesy = —1. Then 2z 4+ 3y = 1 gives z = 2.

2 The row picture and column picture and coefficient matrix are changed. The solution

has not changed.

3 Subtract —% (or add %) times equation 1. The new second equation is 3y =3. Then

y=1and z=05. If the right sides change sign, so does the solution: (x,y)= (-5, —1).

4 Subtract ¢ = £ times equation 1 from equation 2. The new second pivot multiplying y
isd— (cb/a) or (ad —bc)/a. Theny = (ag — cf)/(ad — be). Notice the “determinant

of A” = ad — be. It must be nonzero for this division.

5 6x + 4y is 2 times 3x + 2y. There is no solution unless the right side is 2 - 10 = 20.
Then all the points on the line 3z + 2y = 10 are solutions, including (0,5) and (4, —1).

The two lines in the row picture are the same line, containing all solutions.

6 Singular system if b = 4, because 4z + 8y is 2 times 2z + 4y. Then g = 32 makes the
lines 2z + 4y = 16 and 4x 4 8y = 32 become the same: infinitely many solutions like
(8,0) and (0,4).

7 If a = 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. With a = 0, elimination will stop for a row exchange. Then 3y = —3

gives y = —1 and 4x + 6y = 6 gives x = 3.

8 If k = 3 elimination must fail: no solution. If & = —3, elimination gives 0 = 0 in

equation 2: infinitely many solutions. If £ = 0 a row exchange is needed: one solution.

9 On the left side, 62 — 4y is 2 times (3x — 2y). Therefore we need ba = 2b; on the right
side. Then there will be infinitely many solutions (two parallel lines become one single

line in the row picture). The column picture has both columns along the same line.
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10

11

12

13

14

15

16

17

The equation y = 1 comes from elimination (subtract z + y = 5 from x + 2y = 6).

Thenz =4 and b — 4y =20 — 4 = c = 16.

(a) Another solution is %(x +X,y+Y,24+2Z). (b) If 25 planes meet at two points,

they meet along the whole line through those two points.
Elimination leads to an upper triangular system; then comes back substitution.
2c+3y+ z2=28 T =2

y+3z=4 gives y=1 TIfazerois at the start of row 2 or row 3,

8z =38 z =1 that avoids a row operation.

2z — 3y =3 20 —3y=3 20 -3y =3 =3
dr —by+ z=T7 gives y+ z=1 and y+ z=1 and y=1

20— y—32=5 2y 4+ 32 =2 —52=0 2=0

Subtract 2 times row 1 from row 2 to reach (d — 10)y — z = 2 along withy — 2z = 3.

If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular.

The second pivot position will contain —2 — b. If b = —2 we exchange with row 3.
If b = —1 (singular case) the second equation is —y — z = 0. But equation (3) is the
same so there is a line of solutions (x,y,z) = (1,1,—1) when b = —1.

Oz +0y+22=4 Exchange O +3y +4z=4

Example of
T+2y+22=5 but then T+2y+22=5

(@) 2 exchanges (b)

Oz +3y+42=6 breakdown Oz + 3y +4z2=26

(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row

3. The new row 3 has no pivot. If column 2 = column 1, then column 2 has no pivot.

Example v + 2y + 3z = 0, 4o + 8y + 122 = 0, 5z + 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions to Az = 0 but

almost surely no solution to Az = b for a random b.
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Solutions to Problem Sets

Row 2 becomes 3y — 4z = 5, then row 3 becomes (¢ + 4)z =t — 5. If ¢ = —4 the
system is singular—no third pivot. Then if ¢ = 5 the third equation is 0 = 0 which
allows infinitely many solutions. Choosing z = 1 the equation 3y —4z = 5 givesy = 3
and equation 1 gives x = —9.

a 2
Elimination fails on if a = 2 or a = 0. (You could notice that the determinant
a a

a® — 2ais zero fora = 2 and a = 0.)

a = 2 gives equal columns, a = 4 gives equal rows, a = 0 gives a zero column.

Solvable for s = 10 (add the two pairs of equations to get a + b+ c+ d on the left sides,
12 and 2+ s on the right sides). So 12 must agree with 2 + s, which makes s = 10. The

3 0 4
four equations for a, b, ¢, d are singular! Two solutions are and ,
1 7 2 6
1 1.0 0 4 1 1 0 0
1 01 0 2 0 -1 1 0
A= and b= and U =
0 0 1 1 8 0 0 1 1
01 01 S 0O 0 0O
A(2,:) = A(2,:) — 3% A(1,:) subtracts 3 times all of row 1 from all of row 2.

The average pivots for rand(3) without row exchanges were % ,5,101n one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite | With
row exchanges in MATLAB’s lu code, the averages .75 and .50 and .365 are much more
stable (and should be predictable, also for randn with normal instead of uniform prob-

ability distribution for the numbers in A).
If A(5,5) is 7 not 11, then the last pivot will be 0 not 4.

Row j of U is a combination of rows 1, ..., j of A (when there are no row exchanges).
If Az = 0 then Uz = 0 (not true if b replaces 0). U just keeps the diagonal of A when

A is lower triangular, all entries below that diagonal go to zero.

The question deals with 100 equations Az = 0 when A is singular.
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(a) Some linear combination of the 100 columns is the column of zeros.

(b) A very singular matrix has all ones: A = ones (100). A better example has 99
random rows (or the numbers 1%, ..., 100? in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination of those rows with no

Zeros).

(c) The row picture has 100 planes meeting along a common line through 0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.
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Problem Set 2.2, page 53

0 If columns 1 and 2 of A are exchanged then rows 1 and 2 of A~! are exchanged.

To keep A~' A = I, we have to keep

(row i of A=1)+(column i of A)=1 (row i of A™1)-(column j of A)=0if i # j

100 100 100 010 010
1E3=|-510|,FE2=]010(,P=]|001||100|=]001
001 071 010 001 100

2 FE39F5b = (1,—5,—35) but Fa; E32b = (1,—5,0). When Ej32 comes first, row 3

feels no effect from row 1.

1 0 0 1 0 0 1 0 0 — E21, FE31E39 1 0 0
3 —4 1 0,0 1 0f,][0 1 0 E= E32E31E21 = |—4 1 0
0 0 1 2 01 0 -2 1 10 -2 1

Those E’s are in the right order to give FA = U.

1 00
E'=E'E;'Ex'=L=| 4 1 0
-2 2 1

1 1 1 1

4 Elimination on column 4: b = |( E—2>1 4 E—3>1 4 E—3>2 —4|. The

0 0 2 10
original Az = b = (1,0,0) has become Uz = ¢ = (1, —4, 10). Then back substitu-
tion gives z = —5,y = =, x = % This solves Az = (1,0,0).

2

5 Changing as3 from 7 to 11 will change the third pivot from 5 to 9. Changing ass from

7 to 2 will change the pivot from 5 to no pivot.
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2 3 7 1 4
6 Example: (2 3 7 3| = | 4. If all columns are multiples of column 1, there
2 3 7 -1 4

is no second pivot.

7 To reverse F31, add 7 times row 1 to row 3. The inverse of the elimination matrix

1 0 0 1 0 0
E= 0 1 0|isE~*= 1|0 1 0. Multiplication confirms EE~! = I.
-7 0 1 7 0 1
a b a b
8 M = and M* = . det M* = a(d — £b) — b(c — La)
c d c—fta d—1tb

reduces to ad — bc ! Subtracting row 1 from row 2 doesn’t change det M.

100

for both parts (a) and (b).
9 M=| 001

After the exchange, we need E3; (not Es;) to act on the new row 3.
-1 10

1 0 1 2 01
10 Atthesametime [0 1 0| ;Es31E13=]0 1 0] . Teston the identity matrix!

1 01 1 0 1
1 2 2
11 An example with two negative pivotsis A = |1 1 2. The diagonal entries can
1 21

change sign during elimination.

12 For the first, a simple row exchange has P?2 = I so P! = P. For the second,
0 0 1

P 1=11 0 0]|.Always P! =“transpose” of P, coming in Section 2.4.

01 0
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x D t —.2 1 5 -2 ) )
= and = so A7 = — . This question
y -2 z 1 101 o 1

solved AA~! = T column by column, the main idea of Gauss-Jordan elimination.
1 a

An upper triangular U with U? = [ is U = for any a. And also —U.
0 -1

(a) Multiply AB = AC by A~ to find B = C (since A is invertible) (b) As long as

B — C has the form v 4 , we have AB = AC for A =
- -y 1 1

(a) If Az = (0,0,1) then equation 1 + equation 2 — equation 3 is 0 = 1
(b) Right sides must satisfy b; + b = b

(c) In elimination, Row 3 becomes a row of zeros—no third pivot.

(a) The vector x = (1,1,—1) solves Az = 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

Yes, B is invertible (A was just multiplied by a permutation matrix P). If you exchange
rows 1 and 2 of A to reach B, you exchange columns 1 and 2 of A~! to reach B~!. In
matrix notation, B = PAhas B~! = A=1P~1 = A=1P for this P.

(a) If B = —A then A, B can be invertible but A + B = zero matrix is not invertible.

10 0 0
(b) A= and B = are both singular but A + B = I is invertible.
0 0 0 1

Multiply C' = AB on the left by A~ and on the right by C~!. Then A~ = BC 1.
M~! = C~'B7'A~! so multiply on the left by C and the right by A : B~! =
CM~1A.

1 0 1 0

B l=4"1 =A1 . subtract column 2 of A~ from column 1.
1 1 -1 1

If A has a column of zeros, so does BA. Then BA = I is impossible. There is no A~1.

a b d —b ad — be 0 The inverse of each matrix is

c d| |[-c a 0 ad — be ' the other divided by ad — bc
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1 1 1 1
25 EsE31 b2 = 1 1 -1 1 =]-1 1 =E.
-1 1| |-1 1 1 0 -1 1
1
Reverse the order and change —1 to 41 to getinverses Ey," F5' Bt = |11 =
1 11

L = E—!. The off-diagonal 1’s are unchanged by multiplying inverses in this order.

26 A?B = I can also be written as A(AB) = I. Therefore A~ is AB.

T T
27 Axones(4,1) = | 4 4 4 4} —[4 4 4 4} :[0 0 0 o}soA
cannot be invertible.

28 Six of the sixteen 0 — 1 matrices are invertible: I and P and all four with three 1°s.

13 1 0] 1 3 1 0 1 0 7 -3
29 — — =[I A7
2 7 0 1 0 1 -2 1 0 1 -2 1
141 0 1 4 10 1 0 -3 43
— — :[IAil]
390 0 1 0 -3 -3 1 0 1 1 -1/3

30 A can be invertible with diagonal zeros (example to find). B is singular because each

row adds to zero. The all-ones vector x = (1,1,1,1) has Bx = 0.

2 1 1 o 3 -1 -1 1 2 -1 -1 1 0
31 |1 21 :i—l 3 —-1|; B|1|=|-1 2 —1||1[=]0
1 1 2 -1 -1 3 1 -1 -1 2 1 0
so B~! does not exist.
1 a b1 00 1 a 01 0 —b
32 [U I} =0 1 ¢ 01 0|—]0 1 0 0 1 —c
0 01 0 0 1 001 00 1

1 0 01 —a ac—25b
=10 1 0 O 1 —c Z{I U_l}-
0 01 0 O 1
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(a) True (If A has a row of zeros, then so does every AB, and AB = I is impossible).
(b) False (the matrix of all ones is singular even with diagonal 1’s).

(c) True (the inverse of A~! is A and the inverse of A2 is (A~1)2).

a 0-b
Elimination produces the pivots a and a —b and a — b. A"l = ﬁ —a a 0]-
0—a a
The matrix C' is not invertible if c =0 orc =7 or ¢ = 2.
1 100 1 2
A7l = orro andx = A~} _ |7 . When the triangular A alternates
0 0 1 1 1 2
0 0 01 1 1

1 and —1 on its diagonals, A~! has 1’s on the main diagonal and next diagonal.

x=(1,1,...,1) has®x = Px = Qx so (P — Q)x = 0. Permutations do not change
this all-ones vector. Then P — () is not invertible.
I 0 A1 0 -D 1
The block inverses are and and .
-C I -D-cA=t D! I 0
A is invertible when elimination (with row exchanges allowed) produces 3 nonzero

pivots.
(I — uvT) (I—|— uvT (I — T )_1)
=7 —uvT —|—uvT(I — T )_1 — (vTu)u'vT(I — T )_1

=T —uvT +uvT =1
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Problem Set 2.3, page 61
1
1 /31 = 1 multiplied row 1 and subtracted from row 2; in reverse L = times
1 1
1 0] |z 5 ) 1 1 T 5
Ur = = = cis Ae = b = = .
11 Y 2 1 2] |y 7
In letters, L multiplies Uz = c to give Ax = b.
. 1 0 C1 5 5 L. .
2 Lc=bis = , solved by ¢ = as elimination goes forward.
1 1 co 7 2
1 1 T 5 3
Uz =cis = , solved by x = in back substitution.
0 1 Y 2 2
1 2 1 0 2 1 0
3 EA=] 0 1 0 4 2/=1]0 4 2|=U
-3 0 1 6 3 5 0 0 5
1 2 10 2 1 0
With Elas L,A=LU = |0 1 0 4 2|/=10 4 2
301 0 0 5 6 3 5
1 1 1 1 1 1 0 O
4 |0 1 -2 1 A= 10 2 3| =U. ThenA = |2 1 0| Uis
0-2 1 0 01 0 0-6 0 2 1
the same as E;ll E3—21U = LU. The multipliers ¢2; = 32 = 2 fall into place in L.
1 1 1 (1 0 1]
5 F3oF31F0 A = 1 1 -2 1 2 2 2. Thisis
-2 1 -3 1 113 4 5
10 1 1 0 0]
0 2 0| =U.Putthose multipliers 2,3,2into L.ThenA= |2 1 0| U= LU.
0 0 2 13 2 1)




28 Solutions to Problem Sets

2 4 1 0 2 4 1 0 2 0 1 2 T

4 11 2 1 0 3 2 1 0 3 0 1
1 (1 4 0 1 1 1 4 0
4 1 0 -4 4|=1]4 1 —4 0 1 —1|=LDL".
0 -1 1 0 0 4 0 —1 1 4 0 O 1
_aaaa _1 a a a a a # 0 All of the
abbb 11 b—a b—a b—a b # a multipliers

7 = . Need

abcec 111 c—b c—b c#barel;; =1
labecd 1111 d—c d # c for this A

8 Correction: Problem 8 has the same L as Problem 7.

a r r T 1 a r r r a#0
a b s s 11 b—r s—r s—r b#r
= . Need
a b c t 1 1 1 c—s t—s c#s
la b ¢ d 11 1 1 d—t d#t
1 0 20 2 2 4 20 )
9 c= gives ¢ = . Then T = gives © = .
4 1 11 3 0 1 3 3
2 4 2 2 4 2
Ax =b is LUx = T = . Eliminate to xr = =c.
8 17 11 0 1 3
1 0 0 4 4 1 1 1 4 3
10 |1 1 0|c=|5]|givese= |1]|.Then |0 1 1|x=|1]| givesz= |0].
1 1 1 6 1 0 0 1 1 1
1 1 1 4
Those are forward elimination and back substitutionfor |1 2 2| x = |5
1 2 3 6

11 (a)L goestoI (b)I goesto L= (c)LU goes to U. Elimination multiplies by L 1.
12 (a) Multiply LDU = L; DU, by inverses to get LflLD = DU UL, The left side
is lower triangular, the right side is upper triangular = both sides are diagonal.

(b) L,U, Ly, U; have diagonal 1’s so D = D;. Then LflL and U1 U1 are both 1.
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14

15

16

17

1 1 1 0 a a 0 a
11 1 1| =LIU; |a a+b b | =1L b U.
0 1 1 1 0 b b+c c

A tridiagonal matrix A has bidiagonal factors L and U.

For the first matrix A, L keeps the 3 zeros at the start of rows. But U may not have the
upper zero where A4 = 0. For the second matrix B, L keeps the bottom left zero at
the start of row 4. U keeps the upper right zero at the start of column 4. One zero in A

and two zeros in B are filled in.

The 2 by 2 upper submatrix Ao has the first two pivots 5, 9. Reason: Elimination on A

starts in the upper left corner with elimination on As.

1 20 00 0 00 0 1 20
1 20+]031|+]000|=4=]1 51
00 0 0 6 2 00 2 0 6 4
111|100 3.2 1 1 00(|1 10
LL=l0o 1 1|1 1 0|=|2 2 1|andLLT=1 1 0|0 1 1
0 1|1 11 111 11 1(l0 o0 1
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Problem Set 2.4, page 71
1 0 19 1 0
1A= has AT = JATE = J(ATHT = (AT =
9 3 0 3 -3 1/3
1 -3 1 ¢ 0 c
; A= has AT = Aand A~! = iz =(A"HT.
0 1/3 c 0 “le -1
12 _ o 702
2 (AB)T = = BTAT. This answer is different from ATBT =
37 3 1
1 0 2 1 1 2 5 2
(exceptwhen AB = BA). AAT = = and ATA =
2 1 0 1 2 5 2 1

3@ (AB)™HT = (B 1A H)T = (A"HT(B~H)T. This is also (AT)~1(BT)~L.
(b) If U is upper triangular, so is U~ ': then (U~1)7T is lower triangular.

0 1
4 A= has A% = 0. But the diagonal of AT A has dot products of columns of A
0 0

with themselves. If AT A = 0, zero dot products = zero columns = A = zero matrix.

0
1 2 3
5 (a) :L-TAyz[o 1] Ll =5
5
0

0
(b) This answer 5 is the row T A= [4 5 6} timesy |1

0
2
(c) This is also the row T = {0 1} times Ay = [
5
AT OT
6 MT = :MT = M needs AT = A and BT = C and DT = D.

BT DV
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10

11

12

13

0 A
(a) False: is symmetric only if A = AT,

(b) False: The transpose of AB is BT AT = BA. So (AB)T = AB needs BA = AB.

(c) True: Invertible symmetric matrices have symmetric inverses ! Easiest proof is to

transpose AA~! = I. So unsymmetric A has unsymmetric A~*.
(d) True: (ABC)T is CT BT AT (= C'BA for symmetric matrices A, B, and C).

The 1 in row 1 has n choices; then the 1 in row 2 has n — 1 choices ... (n! overall).

01 0 1 0 0 0 0 1 01 0
PP, = (00 11|00 0 1| = |0 1 0| but P, = |1 0 0f-
1 0 0 01 0 1 0 0 0 0 1

If P; and P, exchange different pairs of rows, then P3Py = P, P; = both exchanges.
(3,1,2,4) and (2,3, 1,4) keep 4 in place; 6 more even P’s keep 1 or 2 or 3 in place;
(2,1,4,3) and (3,4, 1,2) and (4, 3,2, 1) exchange 2 pairs. (1, 2, 3,4) makes 12 evens.
The “reverse identity” P takes (1,...,n) into (n,...,1). When rows and also columns
are reversed, the 1,1 and n, n entries of A change places in PAP. So do the 1,n and
n, 1 entries. In general (PAP);;is (A)p —i+1,n—j+1-

(Pz)T (Py)=2T PTPy=a"ysince P P=1. In general Px-y=x-PTy # x- Py:

01 0 1 1 1 01 0 1
Non-equality where P # PT: |0 0 1| |2 11 #2010 0o 1] |1
1 0 0 3 2 3 1 0 0 2
0 1 of|0 O 6 1 2 3
PA= 1|0 0 1 1 2 3| =10 4 5| is upper triangular. Multiplying A
1 0 0|0 4 5 0 0 6

on the right by a permutation matrix P, exchanges the columns of A. To make this A
lower triangular, we also need P; to exchange rows 2 and 3:
1 1 6 0 0
PLAP, = 1A 1 =15 4 0f.
1 1 3 21
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0 1 0
14 Acyclic P = |0 0 1| orits transpose will have P3 =T :(1,2,3) — (2,3,1) —
1 0 0
1 0
0 P

Simple row exchanges have P? = [ and P® = P.

3,1,2) — (1,2,3). The ermutation P = for the same P has P4 = P +# 1.
p

E 0
15 (a) If P sends row 1 to row 4, then PT sendsrow 4torow 1 (b) P = =
0 FE
1
PT with E = moves all rows: 1 and 2 are exchanged, 3 and 4 are exchanged.

10

16 A% — B? and also ABA are symmetric if A and B are symmetric. But (A+ B)(A— B)
and ABAB are generally not symmetric. Transposes (A — B) (A + B) and BABA.

17 (a) 5+4+ 3+ 2+ 1 = 15 independent entries if S = ST (b) L has 10 and D has 5;
total 15in LDLT (c) Zero diagonal if AT = — A, leaving 4 +3+ 2+ 1 = 10 choices.

(d) The diagonal of AT A contains ||row 1||2, ||[row 2||?, ... = never negative.
e |13 1 ol|1 oflf|1 3 1 b 1 ol]1 o 1 b
3 2 3 1o =7| 1o 1] |b e b 1] 0 c—v2| |0 1
2 -1 0 1 2 1 -3 0
_ 1 3 2 _ T
-1 2 -1 =|-5 1 o3 1 —3| =LDL".
2 4
0 -1 2] 0 -2 1 : 1
1] 10 1] |1 111 o 1]
19 |1 A=10 1 1|=1]0 1 1 1
1 2 3 4 2 3 1 1
] 1 2 o] [1 111 2 o
11A=11 1 1|=1]1 1 -1 1
1] 2 4 1] |20 1]] 1]
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0 0 01

10 0 O Elimination on this A = P exchanges
A= =PandL=U =1

01 00 rows 1-2 then rows 2-3 then rows 3-4.

0 01 0
One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange

always switches that count! Then 3 or 5 exchanges will leave that count odd.

01 2 3
1 2 30 .
A= = A" has 0,1, 2,3 in every row. I don’t know any rules for a
2 3 01
3 01 2

symmetric construction like this “Hankel matrix™ with constant antidiagonals.

Reordering the rows and/or the columns of [‘g '(ﬂ will move the entry a. So the result

cannot be the transpose (which doesn’t move a).

10 1} |ysc yBC + YBS
(a) Total currents are ATy = -1 1 0 yos = —yBe + Yos
0 -1 —-1] |yBs —Ycs — YBsS

(b) Either way (Az)"y = " (A%y) = 2pysc + xBYBS — TeYBC + Teycs —

TsYcs — TsyYps- SixX terms.

0 1 0
P=1]0 0 1| and P?® = I so three rotations for 360°; P rotates every v around
1 0 0

the (1,1, 1) line by 120°.

L(UT)~!is lower triangular times lower triangular, so lower triangular. The transpose
of UTDU is UTDTUT T = UT DU again, so UT DU is symmetric. The factorization

multiplies lower triangular by symmetric to get L DU which is A.

These are groups: Lower triangular with diagonal 1’s, diagonal invertible D, permuta-

tions P, orthogonal matrices with QT = Q1.
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28 There are n! permutation matrices of order n. Eventually two powers of P must be

the same permutation. And if P" = P? then P" ~— % = [. Certainly r — s < n!

0 1 0
Py 0 1
P= is 5by 5 with P, = andPs= |0 0 1| and P® =1.
Ps 1 0
1 0 0

29 To split the matrix M into (symmetric S) + (anti-symmetric A), the only choice is
S=3(M+MT)and A= (M - MT).

ai 10
30 Start from QTQ = I, as in 4 @ | =
qs 0 1

(a) The diagonal entries give g7 q, = 1 and g1 q, = 1: unit vectors
(b) The off-diagonal entry is g7 g, = 0 (and in general qiqu =0)

) ) ) | cosf —sinf
(c) The leading example for () is the rotation matrix

sin 0 cos
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Problem Set 2.5, page 81

1

Ay=y(z+h) —y(x) = (z+h)®-2°
=3 + 32%h + 3xh? + h3 — 23
First order term = 3xh? matches h dy/dx.
Second order term = 3xh? matches $h2d?y/da? = Fh?(6x).
y = e* hasdy/dx = e* = 1 at the point z = 0. The tangentlineatz = 0isy = 1+ .
y = e has d?y/dx®> = e® = 1 at x = 0. The tangent parabola at x = 0 is

y=1+ax+ 22 Atz = h this parabolais 1 + h + 3 h* = e" to second order.

y = e® has all d"y/dax™ = e = e° = 1 at z = 0. So the Taylor series is y(h) = e" =

L+h+ih?+- -+ LA+
sinh = h — £h3 + Zh® — -+ so the error in sin & — h is order h®.
Separate the real and imaginary parts of ¢ (even and odd powers of 7). Those two parts

are exactly the Taylor series for cos z and sin z. So comparing Taylor series produces

e =cosx +tsinx.

1/10)3 — (=1/10)3 1 d
Centered (1/10) 2/1(0 /10) =100 is approximating ﬁ =322 =0atz =0.
(1/10)2 -0 1 0—(—1/10)3 1
Forward /-~ 2 — —_ Backward -~ /) — ~_
oA T 10 100 OV 100

By chance all three give the same answer.

Substitute y(h) and also y(—h) in the 3 options of Problem 7,:
2h dy/dx(0)
2h

d 1, d?

Forward gives ﬁ(O) + §hﬁ(0) = error of order h.
d 1 d?

Backward gives %(0) - §hﬁ(0) = error of order h.

Centered gives = exact through the h? term.

—e! —1 1-—e¢!
Compare < 28 and < 1 and 18 as approximations to dy/dz(0) = e = 1.

Taking e ~ 2.8 and e~ ! a .35, the first (centered) difference wins easily.




36

10

11

12

13

14

15

16

Solutions to Problem Sets

(e —2+e!) ~ (2.78 — 2 + 0.36) = 1.14. The correct second derivative of e at
x = 01s 1.00: 14% error.

The 3rd difference uses numbers 1, —3, 3, —1.
Testony =2 33—3(2%)+3(13) - (0%) =27—24+3 = 0 = correctat z = 0.
Testony = z*  3*—3(2%) +3(1*) — (0*) =81 —-48+3 #0atx = 0.

Z figiy1 = Z fi—1 gi (just shifting ¢ by 1 in infinite series).

Z figi—1 = Z fir1 gi (same idea).

gljommation byipO;rts is true : Subtract second line from first line.

Test u = z2 — 448 — 8 4+ 4 = 0 = correct derivative ;l_z =2zatx =0.

Test u = z* — 244814 - 8(—1)* + (—2)* = 0 = also correct j—z =423 =0
atz = 0.

The pattern of determinants indicates det K5 = 6 (correct!). The inverse is

(5 4 3 2 1] (5 4 3 2 1] (5 4 3 2 1]
4 2 48 6 4 2 48 6 4 2
1 1 1

K*:g?, 3 =513 6 6 3[=5]360963
2 4 2 4 6 8 4 2 4 6 8 4
12 3 4 5 | 12 3 4 5 | 12 3 4 5 |

Remove column 1 of Ay to produce A; with T = AT A;. Remove columns 1 and 4

to produce A, with K = AT A,. Check:

1 -1 0 1 0 2 -1
AT =10 1 -1 -1 1= -1 2
0 -1

-1 2 -1
D4DT = =('y = periodic circulant matrix (not invertible)
0 -1 2 -1

-1 0 -1 2
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2

d 1)’
17 The solution to _d_u = cosdmz is u(z) = (4—) cosdrx + A + Bzx.
7I

2

The boundary conditions u = 0 at z = 0 and = = 1 give

2 2
1 1
u@0=(—) +A=0andu(l)=(—) +A+B=0.
47 4
1)’ 1\
Then A= —(— | and B=0andu(z) = [ — | (cosdmz —1).
47 47
0 1 0
18 Az = | —1 0 1 | has column 3 = — column 1 : not invertible.
0 -1 0

0
Ay = has 4 independent columns : invertible.

37
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Problem Set 3.1, page 79

Note An interesting “max-plus” vector space comes from the real numbers R combined
with —oo. Change addition to give  + y = max(x, y) and change multiplication to

zy=usual x+y. Which y is the zero vector that gives = + 0=max(xz, 0) =z for every x?

1e+y#y+zxzande+ (y+2) # (x+y)+zand (¢1 + c2)x # 1z + .

2 When c(x1,22) = (cx1,0), the only broken rule is 1 times @ equals . Rules (1)-(4)

for addition & + y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no —x
(b) c(x + y) is the usual (zy)¢, while cx + cy is the usual (z¢)(y°). Those are equal.
With ¢ = 3,2 =2,y = 1 thisis 3(2 + 1) = 8. The zero vector is the number 1.

. . . 0 1 -1 -2 2
4 The zero vector in matrix space M is ; %A = and —A = .
0 0 1 -1 -2 2
The smallest subspace of M containing the matrix A consists of all matrices cA.

5 (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the

subspace must contain A — B = I (c) Matrices whose main diagonal is all zero.

6 When f(z) = 22 and g(z) = b5z, the combination 3f — 4g in function space is
h(z) = 3f(x) — 4g(x) = 32% — 20x.

7 Rule 8 is broken: If cf(x) is defined to be the usual f(cz) then (¢; + c2)f =
f((c1 + c2)x) is not generally the same as ¢1 f + cof = f(c12) + f(c22).

8 (a) The vectors with integer components allow addition, but not multiplication by %

(b) Remove the x axis from the zy plane (but leave the origin). Multiplication by any

¢ is allowed but not all vector additions: (1,1) + (—1,1) = (0, 2) is removed.

9 The only subspaces are (a) the plane with by = b (d) the linear combinations of v

and w (e) the plane with by + by + b3 = 0.

a b a a
10 (a) All matrices (b) All matrices (c) All diagonal matrices.
0 0 0 0
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For the plane 2 +y — 2z = 4, the sum of (4,0, 0) and (0, 4, 0) is not on the plane. (The
key is that this plane does not go through (0, 0,0).)

The parallel plane P has the equation z + y — 2z = 0. Pick two points, for example
(2,0,1) and (0,2,1), and their sum (2,2,2) is in Py.
The smallest subspace containing a plane P and a line L is either P (when the line L

is in the plane P) or R? (when L is not in P).

(a) The invertible matrices do not include the zero matrix, so they are not a subspace
) . 10 0 0], .
(b) The sum of singular matrices + is not singular: not a subspace.
0 0 0 1

(a) True: The symmetric matrices do form a subspace (b) True: The matrices with
AT = — A do form a subspace  (c) True: Any set of vectors from a vector space will

span a subspace of that space.

The column space of A is the z-axis = all vectors (z,0,0) : a line. The column space
of B is the xy plane = all vectors (z, y, 0). The column space of C'is the line of vectors
(z,2,0).

(a) Elimination leads to 0 = by — 2b; and 0 = b; + b3 in equations 2 and 3:

Solution only if by = 2b; and bs = —b; (b) Elimination leads to 0 = by + b3

in equation 3: Solution only if b3 = —b;.

A combination of the columns of C is also a combination of the columns of A. Then

C = and A = have the same column space. B = has a
2 6 2 4 3 6

different column space. The key word is “space”.
(a) Solution for every b (b) Solvable only if b3 =0 (c) Solvable only if b3 = bs.

The extra column b enlarges the column space unless b is already in the column space.
(A b] 1 0 1| (larger column space) 1 0 1| (bisin column space)
0 0 1| (nosolutionto Az =b) [0 1 1| (Ax = b has a solution)

The column space of AB is contained in (possibly equal to) the column space of A.
The example B = zero matrix and A # 0 is a case when AB = zero matrix has a

smaller column space (it is just the zero space Z) than A.
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The solutionto Az =b+b"isz=x +y. Ifband b* are in C(A) sois b+ b".
The column space of any invertible 5 by 5 matrix is R°. The equation Ax = b is
always solvable (by £ = A~'b) so every b is in the column space of that invertible

matrix.
(a) False: Vectors that are not in a column space don’t form a subspace.
(b) True: Only the zero matrix has C(A) = {0}. (c) True: C(A) = C(24).

10
(d) False: C(A—1I)#C(A)whenA=TorA= (or other examples).
0 0

1 1 0 1 1 2 1 1 2 0
A=11 0 o|and |1 0 1| donothave [1|inC(A). A= |2 4 0] has

010 011 1 3 6 0
C(A) = linein R®.
When Az = b is solvable for all b, every b is in the column space of A. So that space
is C(A) = R.
(a) If w and v are bothin S + T, thenu = 81 +t; and v = s5 +t3. Sou +v =
(81 +82)+ (t1 +t2)isalsoin S+ T. And sois cu = ¢s1 +cty : S+ T = subspace.

(b) If S and T are different lines, then S U T is just the two lines (not a subspace) but

S + T is the whole plane that they span.
If S = C(A) and T = C(B) then S + T is the column space of M = [A B].

The columns of AB are combinations of the columns of A. So all columnsof [A AB]

0 1 0 0
are already in C(A). But A = has a larger column space than A% =

0 0 0 0
For square matrices, the column space is R"™ exactly when A is invertible.

y —e % and y = e are independent solutions to d?y/dz? = y. Also y = cosz and
y = sin z are independent solutions to d?y/dx? = —y. The solution space contains all
combinations A cos x + Bsinx.

If  and y are in the vector space V N W, then they are in both V and W. So all

combinations cx + dy are in both V and W. So all combinations are in V. N 'W.
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Problem Set 3.2, page 100

1 If Ax = 0 then EAz = 0. If EAx = 0, multiply by E~! to find Az = 0.

2 (a) If ¢ = 4 then A has rank 1 and column 1 is its pivot column and (—2,1,0) and
(—1,0,1) are special solutions to Az = 0. If ¢ # 4 then A has rank 2 and columns 1
and 3 are pivot columns and (—2, 1, 0) is a special solution. If ¢ = 0 then B = zero
matrix with rank 0 and (1,0) and (0, 1) are special solutions to Bx = 0. If ¢ # 0 then

B has rank 1 and column 1 is its pivot column and (—1, 1) is the special solution to

Bx =0.
1 3 0 2
3 R= . All matrices A = C'R with C' = 2 by 2 invertible matrix have
0 01 6
the same nullspace as R.
1 2 0 0 O0f Free variables xo, x4, x5 1 0 —1|Freexs
4 (a) R= (b) R=
0 0 1 2 3| Pivotvariables x1,z3 0 1 1 | Pivot z1, x2

5 Free variables xo, x4, x5 and solutions (—2, 1,0, 0,0), (0,0,—2,1,0), (0,0,—-3,0,1).
6 (a) False: Any singular square matrix would have free variables (b) True: An in-
vertible square matrix has no free variables. (c) True (only n columns to hold pivots)

(d) True (only m rows to hold pivots)

7 A= { C } { I I } (notice that F' = I). The r special solutions to Az = 0 are the

—I
r columns of
I
11 0 1 1 10 0 01 10 0 1 1 1
0O 01 11 10 O 00 01 0 111
8 R= s
O 00 0O 0 O0 1 O0 00 00 1 111

0 00 00 O0O0 1 00 000 O0O0O

Notice the identity matrix in the pivot columns of these reduced row echelon forms R.

9 If column 4 of a 3 by 5 matrix is all zero then x4 is a free variable. Its special solution

isx =(0,0,0,1,0), because 1 will multiply that zero column to give Az = 0.
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If column 1 = column 5 then x5 is a free variable. Its special solution is (—1,0,0,0,1).

The nullspace contains only & = 0 when A has 5 pivots. Also the column space is R®,

because we can always solve Ax = b and every b is in the column space.

If a matrix has n columns and r pivots, there are n — r special solutions. The nullspace

contains only * = 0 when » = n. The column space is all of R” when r = m. All

those statements are important!

Fill in 12 then 3 then 1 to get the complete solution in R’ toz — 3y —z = 12
x 12 3 1

y| =10 |+y|1]|+2]|0]| = oneparticular solution + all nullspace solutions.

z 0 0 1

Column 5 is sure to have no pivot since it is a combination of earlier columns. With
4 pivots in the other columns, the special solution is s = (1,0, 1,0, 1). The nullspace

contains all multiples of this vector s (this nullspace is a line in R?).

To produce special solutions (2,2,1,0) and (3,1,0,1) with free variables x3,x4:
10 -2 =3 o o .
R = and A can be any invertible 2 by 2 matrix times this R.
01 -2 -1
4
1 0 0 —4
The rank is 3 3
Thenullspaceof A= |0 1 0 -3 .
is the line through the special solution | 2
0 01 -2
1
1 0-1/2 1 0 1
A=|1 3 —2|has|1|and |3]| inC(A)and |1 | in N(A). Which other A’s?
5 1 -3 5 1 2
10 -1
A=11 1 -1
01 0
0 1 1 0
A= has N(A) = C(A). Notice that rref(AT) = isnot AT,
0 0 0 0
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20 If nullspace = column space (with r pivots) thenn —r = r. If n = 3 then 3 = 2r is
impossible. Only possible when n is even.

21 If A times every column of B is zero, the column space of B is contained in the nullspace

11 1 1
of A. An example is A = and B = . Here C(B) equals N(A).

11 -1 -1
For B = 0, C(B) is smaller than N(A).
22 For A = random 3 by 3 matrix, R is almost sure to be I. For 4 by 3, R is most likely

to be I with a fourth row of zeros. What is R for a random 3 by 4 matrix?

23 If N(A) = line through x = (2,1,0, 1), A has three pivots (4 columns and 1 special

1 0 0 -2
solution). Its reduced echelon formcanbe R= [0 1 (0 —1 | (add any zerorows).
0 0 1 0
1 0 0
24 R=[1 -2 -3], R= , R = I. Any zero rows come after those rows.
01 0
1 0 1 0 1 1 0 1 0 0
25 (a) ) s , R (b) All 8 matrices are R’s !
0 1 0 0 0 0 0 0 0 0
26 The nullspace of B = [ A A] contains all vectors = Y for y in R*.
-y

One reason that R is the same for A and —A: They have the same nullspace. (They
also have the same row space. They also have the same column space, but that is not

required for two matrices to share the same 2. R tells us the nullspace and row space.)

27 If Cx = 0 then Az = 0 and Bx = 0. So N(C) = N(A) N N(B) = intersection.

(1 2 30 0
1 2 3 0O 0 0 1 2
28 Ahas Ry = and R = [1 2 3}. Band C have Ry =
0O 0 O 0O 0 0 0 O
00 0 00

1 2 3 0 0 O
And R =

00012 3|

o o w o
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1
0 1 0
R= and N = |0
0 0 1
0
A and AT have the same rank » = number of pivots. But the pivot column is column 2

010

for this matrix A and column 1 for AT: A= {0 0 0

0 0 O
a b c 3 9 —-45
The new entries keeprank 1: A = | 4 % % ifa#0, B=|1 3 —-1.5]|,
g 2 « 2 6 -3
a b
¢ be/a
With rank 1, the second row of R does not exist !
Invertible r by r submatrices 1 3 1 0
S = and S =[1]and S =
Use pivot rows and columns 1 4 0 1

(a) A and B will both have the same nullspace and row space as the R they share.

(b) A equals an invertible matrix times B, when they share the same R. A key fact!

CORRECTED: ATy = 0 :y1 —ys+ys = —y1 + 42+ 45 = —Y2 + y3 + Y6 =
—Ys —Ys —ye = 0.

These equations add to 0 = 0. Free variables ys, ys, yg: watch for flows around loops.
The solutions to ATy = 0 are combinations of (—1,0,0,1, —1,0)and (0,0, —1,—1,0,1)

and (0,—1,0,0,1, —1). Those are flows around the 3 small loops.

1 3
1 2
C=12 6| C7Thas pivot columns . The invertible S inside C' is
3 7 2 7
2 7

The column space of AB contains all vectors (AB)x. Those vectors are the same as

A(Bx) so they are also in the column space of A.
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By matrix multiplication, each column of AB is A times the corresponding column of
B. So if column j of B is a combination of earlier columns of B, then column j of AB
is the same combination of earlier columns of AB. Then rank (AB) < rank (B). No

new pivot columns !

We are given AB = I which has rank n. Then rank(AB) < rank(A) forces rank(A) =
n. This means that A is invertible. The right-inverse B is also a left-inverse: BA = I

and B = A~1.

Certainly A and B have at most rank 2. Then their product AB has at most rank 2.

1 0 0
Since BA is 3 by 3, it cannot be [ even if AB = I. Example A = s
01 0
1 0 1 0 0
B=1|0 1|.,BA=1|0 1 0.
0 0 0 0 O
r I I I
A=|T I}hasN: ;B = hasthesameN;C:[I T I}has
- -1 0 0
-1 I
N = I 0
0 I

The m by n matrix Z has r ones to start its main diagonal. Otherwise Z is all zeros.

I F rbyr rbyn—r I
Ro=| " |= L (0) B = ©C =11 0
00 m—rbyr m—rbyn—r 0

I0
rref(RY) = s rref( RY Ro) =same Ry
00



46 Solutions to Problem Sets

1 20 1 2 0
44 Ry = bz has RfRop= |2 4 0| and this matrixrow reducesto [0 0 1
vt 0 0 1 0 00

Ry

. Always R{ Ry has the same nullspace as Ry, so its row reduced form
ZETO TOW

must be Ry with n — m extra zero rows. Ry is determined by its nullspace and shape !
-1

1 4 7 1 41|11 0 -1 1 4 1 4 1 4
45 A=|12 5 8|=25]||l0 1 2|=]|2 5 2 5 2 5
3 6 9 3 6 3 6

Notice 2 rows of A are in the matrix B.

46 Multiply block row 1 by JW 1! to produce row 2.

o«
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Problem Set 3.3, page 111

2 4 6 4 by 2 4 6 4 b 2 4 6 4 by 4
112 5 7 6 by|—=|0 1 1 2 ba—by|—=|0 1 1 2 by—Dby -1

2 3 5 2 bg 0—-1—-1-2 bs—by 0 00 0 bg+by—2by| 0
Ax = b has a solution when b3 + bs — 2b; = 0; the column space contains all combi-

nations of (2,2, 2) and (4, 5, 3). This is the plane b3 + b2 — 2b; = 0 (!). The nullspace
contains all combinations of s; = (—1,—1,1,0) and s2 = (2,—-2,0,1); Zcomplete =

T, + c181 + C289;
1 01 -2 4

[RO d} ={0 1 1 2 —1| givesthe particular solution z, = (4,—1,0,0).
0 0 0 0 0

2 1 3 by 2 1 3 by 1 1/2 3/2 5
216 3 9 byl]—=|0 0 0 by—38by| Then[Ry d]=1{0 0 0 0
4 2 6 by 0 0 0 bsy—2b; 00 0 O

Ax = b has a solution when by — 3b; = 0 and b3 — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planes bo — 3b; = 0 and b — 2b; = 0;
the nullspace contains all combinations of s; = (—1/2,1,0) and s, = (—3/2,0,1);

particular solution ¢, = d = (5,0, 0) and complete solution x,, + ¢181 + c282.

3@ z+3y=17 x+3y="7 7 -3
T, = T, =cS=c for any c.
2x + 6y =14 0=0 0 1
-2 -3
7 =31
(b) wcomplete o 0 T 1 ’ wcomplete = 0] Fep 1
1 0

1

= Tp +x, = (%507 550) + CCQ(—3, 17050) + CC4(0,0, _25 1)

x
complete
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1 2 -2 b 1 2 -2 b
512 5 —4 b|—]0 1 0 by—2b solvable if b — 2b; — by = 0.
4 9 -8 b3 0 0 0 bg—2b1—0b2
Back-substitution gives the particular solution to Az = b and the special solution to
5b1 — 2by 2 2 0 2 b 1 0 1 b1/2
Az =0:x = | by —2by |+z3 |0] - 4 4 0 by| = |0 1 —1 by/d—01/2
0 1 8 8 0 b3 0 0 0 b3—2b
b1/2 -1
is solvable if b3 = 2by. Then x = bo/d—b1/2| tx3 | 1
0 1
6 (a) Solvable if by — 26, and 3b; — 3bs + by — 0. Then @ — Phu=20s | x,
bz — 2by
5b1 — 2b3 -1

(b) Solvableif bp = 2b; and 3b1 —3b3 +bs =0. ¢ = | b3 —2b; | + 23 [—1
0 1
1 3 1 by 1 3 1 be One more step gives [0 0 0 0] =
7 13 8 2 by|—|0 —1 —1 by—3b| row3—2(row?2)+ 4row 1)
2 4 0 b3 0 —2 —2 bs—2b;| provided bg—2bz+4b;=0.
8 (a) Every bisin C(A): independent rows, only the zero combination gives 0.

(b) We need bz = 2bs, because (row 3) — 2(row 2) = 0.

x 4 -1 -1 T 4 -1
9@ |y|l=|0|+y]| 1|+2z]| o] b |y|=1|0]|+z| 0. Thesecond
z 0 0 1 z 0 1

equation in part (b) removed one special solution from the nullspace.

1 0 -1 2
10 T = has @, = (2,4,0) and ;] = (c, ¢, c). Many possible A!

01 -1 4

11 A 1 by 3 system has at least two free variables. But ) in Problem 10 only has one.

12 (a) If Azy = band Axy = bthenx = x; — x> and also £ = 0 solve Ax =0

(b) A(2.’1}1 — 2$2) = 0,A(2$1 - .’132) =b
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(a) The particular solution %, is always multiplied by 1. 2z, would solve Az = 2b

(b) Any solution can be x,,. If A has rank = m, the only x,, is 0.

3 3 x 6 1] 2
(c) = . Then is shorter (length \/5) than (length 2)
0

3 3| |y 6 1

(d) The only “homogeneous” solution in the nullspace is «,, = 0 when A is invertible.

If column 5 has no pivot, x5 is a free variable. The zero vector is not the only solution

to Az = 0. If this system Ax = b has a solution, it has infinitely many solutions.

If row 3 of U has no pivot, that is a zero row. Ux = c is only solvable provided
cs = 0. Ax = b might not be solvable, because U may have other zero rows needing

more ¢; = 0.

The largest rank is 3. Then there is a pivot in every row. The solution always exists.

The column space is R®. An exampleis A = [I F'] for any 3 by 2 matrix F.

The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The

columns are independent. The solution is unique (if there is a solution). The nullspace
I (4by4)
0 (2by4)

contains only the zero vector. Then Rg = rref(A) =

Rank = 2; rank = 3 unless ¢ = 2 (then rank = 2). Transpose has the same rank!

If Az; = b and also Axs = b then A(x; — 3) = 0 and we can add 1 — @ to any
solution of Az = B: the solution x is not unique. But there will be no solution to

Ax = B if B is not in the column space.

For A, g = 3 gives rank 1, every other ¢ gives rank 2. For B, g = 6 gives rank 1, every

other ¢ gives rank 2. These matrices cannot have rank 3.

1 b1 |: 1 1} X
(a) [z] = has 0 or 1 solutions, depending on b (b) =
1 ba €2

[b] has infinitely many solutions for every b  (c) There are 0 or oo solutions when A
has rank 7 < m and r < n: the simplest example is a zero matrix.  (d) one solution

for all b when A is square and invertible (like A = I).

(@ r<m,alwaysr<n (b)) r=m,r<n ()r<m,r=n (@) r=m=n.
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2 4 4 1 0 -2 2 4 4
23 |0 3 6| >Ro=10 1 2land |0 3 6| - Ro=1=Rand

0 0 O 0 0 0 0 0 5
0 0 4 0 1 0

— Ry = =R.
01 0 0 01

24 R, = I when A is square and invertible—so for a triangular matrix, all diagonal entries

must be nonzero.

-2
1230 1200 1235 120 -1
— s Tp = | 1]; —
0040 0010 0048 001 2
0
Free x5 = 0 gives ¢, = (—1, 0, 2) because the pivot columns contain I. Note: Ry =R.
1 0 00 0 10 0 -1
26 [Rod] = |0 0 1 0| leadsto x, = [1|; [Rod] = |0 0 1 2
0 00 O 0 0 00 5
leads to no solution because of the 3rd equation 0 = 5.
—4 -2
1023 2 102 32 1020 —4
3 0
27 11320 5[—=(030-33|—=>|0100 3]s ;T = T3
0 1
2049 10 000 36 0001 2
0
11 1
0

28 For A= |0 2]|,theonlysolutionto Az = | 2| isx =
1

0 3 3

B cannot exist since 2 equations in 3 unknowns cannot have a unique solution.
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30

31

32

33

1 3 1 1 1 3 1
1 2 3 1 1 0 -1 2
A= factors into LU = and the rank is
2 4 6 2 2 1 0 0 0
1 1 5 1 2 0 1 0 0 0

r = 2. The special solution to Az = 0 and Uz = 0is s = (—7,2,1). Since
b = (1,3,6,5) is also the last column of A, a particular solution to Az = b is
(0,0,1) and the complete solution is = (0,0, 1) + ¢s. (Another particular solution is

x, = (7,—2,0) with free variable x5 = 0.)

For b = (1,0,0,0) elimination leads to Uz = (1,—1,0, 1) and the fourth equa-

tion is 0 = 1. No solution for this b.

1 0
If the complete solution to Ax = s = + then A =
3 0 c 3 0
(a) If s = (2,3,1,0) is the only special solution to Az = 0, the complete solution is

x = cs (aline of solutions). The rank of A mustbe 4 — 1 = 3.
1 0 -2 0
(b) The fourth variable x4 is not free in s, and Rp mustbe |0 1 -3 0

00 01

(¢) Ax = b can be solved for all b, because A and R have full row rank r = 3.

If Az = band Cx = b have the same solutions, A and C have the same shape and
the same nullspace (take b = 0). If b = column 1 of 4, x = (1,0,...,0) solves

Ax=bsoitsolves Cx=>b. Then A and C share column 1. Other columns too: A=C'

The column space of Ry (m by n with rank r) is spanned by its r pivot columns (the
first 7 columns of an m by m identity matrix). The column space of R (after m — r

zero rows are removed from Ry) is r-dimensional space R".
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Problem Set 3.4, page 124

1 1 1 c1
=0 gives c3 = co = ¢1 = 0. So those 3 column vectors are

independent: no other combination gives O

0 0 1 c3
r 1
1 1 1 2 0
1
0 1 1 3|e=|0] issolvedbyc= . Then vy + v2 — 4v3 + v4 =0 (dependent).
—4
0 01 4 0
- 1

2 v, v9,v3 are independent (the —1’s are in different positions). All six vectors in R?
are on the plane (1,1,1,1) - v = 0 so no four of these six vectors can be independent.
3 If a = 0 then column 1 = 0; if d = 0 then b(column 1) — a(column 2) = 0; if f =0

then all columns end in zero (they are all in the xy plane, they must be dependent).

a b c T 0
4Ux =10 d e y| = |0]| gives z = O theny = 0 then x = 0 (by back
0 0 f| = 0

substitution). A square triangular matrix has independent columns (invertible matrix)

when its diagonal has no zeros.

1 2 3 1 2 3 1 2 3
: invertible = independent
5@ |3 1 2|—|0 -5 —=7|—|0 -5 -7
columns.
2 3 1 0 -1 -5 0 0 —18/5
1 2 -3 1 2 -3 1 2 -3 1 0
columns
® -3 1 2|—=l0 7 —7|—=1|0 7 —7|;A|1|=
add to 0.
2 -3 1 0 -7 7 0 0 0 1

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) for A. This is because EA = U for the
matrix F that subtracts 2 times row 1 from row 4. So A and U have the same nullspace

(same dependencies of columns).
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15

The sum v; — v2 +v3 = 0 because (wa — w3) — (w1 —ws) + (w1 —wsy) = 0. So the
0 1 1
differences are dependent and the difference matrix is singular: A = 1 0 -1
-1 -1 0

If C1 ('11)2 —|—’LU3) +CQ ('11)1 +'Ll)3) +Cg ('11)1 +'Ll)2) =0 then (02 +Cg)’UJ1 —+ (Cl +Cg)’UJ2 —+
(c1 + c2)ws = 0. Since the w’s are independent, c3 + ¢3 = ¢1 +¢3 = ¢1 +¢c2 = 0.

The only solution is ¢; = c¢3 = ¢3 = 0. Only this combination of v, v2, v3 gives 0.
(changing —1’s to 1’s for the matrix A in solution 7 above makes A invertible.)

(a) The four vectors in R? are the columns of a 3 by 4 matrix A. There is a nonzero
solution to Ax = 0 because there is at least one free variable (b) Two vectors are
dependent if [v; w2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” but not “vs is a multiple of v;” —since v; might be 0.)

(¢) A nontrivial combination of v; and 0 gives 0: Ov; + 3(0,0,0) = (0,0,0).

The plane is the nullspace of A = [1 2 —3 —1]. Three free variables give three
independent solutions (z,y,z,t) = (—2,1,0,0) and (3,0,1,0) and (1,0,0,1).

Combinations of those special solutions give more solutions (all solutions).
(a) Line in R® (b) PlaneinR®  (c) Allof R®  (d) All of R®.

b is in the column space when Ax = b has a solution; ¢ is in the row space when

ATy = chas a solution. False because the zero vector is always in the row space.

The column space and row space of A and U all have the same dimension = 2.
The row spaces of A and U are the same, because the rows of U are combinations of

the rows of A (and vice versa!).

v=3(v+w)+ i(v—w)andw = (v +w) — 3(v — w). The two pairs span the

same space. They are a basis for the same space when v and w are independent.

The n independent vectors span a space of dimension n. They are a basis for that space.

If they are the columns of A then m is not less than n (m > n). Invertible if m = n.
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These bases are not unique! (a) (1,1,1,1) for the space of all constant vectors
(¢,c ¢, c) (b) (1,-1,0,0),(1,0,—-1,0),(1,0,0, —1) for the space of vectors with
sum of components = 0 (© (1,-1,-1,0),(1,-1,0,—1) for the space perpendic-
ular to (1,1,0,0) and (1,0,1,1) (d) The columns of I are a basis for its column

space, the empty set is a basis (by convention) for N(I) = Z = {zero vector}.

1 01 0 1
The column space of U = is R? so take any bases for R?;

01 0 10
(row 1 and row 2) or (row 1 and row 1+ row 2) or (row 1 and — row 2) are bases

for the row space of U.

(a) The 6 vectors might not span R? (b) The 6 vectors are not independent

(c) Any four might be a basis.

n independent columns = rank n. Columns span R™ = rank m. Columns are basis

for R™ = rank = m = n. The rank counts the number of independent columns.

One basis is (2,1,0), (—=3,0,1). A basis for the intersection with the zy plane is

(2,1,0). The normal vector (1, —2, 3) is a basis for the line perpendicular to the plane.

(a) The only solution to Ax = 0 is * = 0 because the columns are independent
(b) Ax = bis solvable because the columns span R . Their combinations give every b.

Key point: A basis gives exactly one solution for every b.
(a) True (b) False because the basis vectors for R® might not be in S.

Columns 1 and 2 are bases for the (different) column spaces of A and U; rows 1 and
2 are bases for the (equal) row spaces of A and U; (1, —1, 1) is a basis for the (equal)

nullspaces. Row spaces and nullspaces stay fixed in elimination.

(a) False A =1 1] has dependent columns, independent row (b) False Column

space # row space for A = (¢) True: Both dimensions = 2 if A is
0 0

invertible, dimensions = 0 if A = 0, otherwise dimensions = 1 (d) False, columns

may be dependent, in that case not a basis for C(A).
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25 (a) Make vy, ... vy the columns of A. Then find the first n independent columns (we

are told they span R™).

(b) Make v1,...v; the rows of A and then include the n rows of the identity matrix.
Row elimination will keep the first j independent rows and find n — j more rows to

form a basis for R".

c d
26 Ahasrank2ifc=0andd = 2; B = has rank 2 except when ¢ = d or
d ¢

0 0 O 0 0 O
27 (a) Basis for all diagonal matrices : , |0 1 0, |0 O O
0
1

o O =

0 0
0 0
0 0 0 0 0 0 0 1
010 0 0 1] |0
(b) Add {1 0 0], [0 O O],]0
0 0 0 100 01 0

o O

= basis for symmetric matrices.

01 0 0 0 1 0 0 O
© -1 0 0|0 0 O0],|0 0 1
0 0 0 -1 0 0 0 -1 0

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric
matrices (c) skew-symmetric matrices. The dimensions are 3, 6, 3.
1 00 1 00 1 00 1 10 1 0 1 1 00
2810 1 0/,/0 1 0|-{0 2 Of-|0 1 Of,|0 1 Of,{0 1 1};

0 0 1 0 0 2 0 0 1 0 0 1 0 0 1 0 0 1
Echelon matrices do not form a subspace; they span the upper triangular matrices (not
every U is an echelon matrix).

1 00 ’ 0 1 0 ’ 0 0 1 : 1 -1 0 nd 1 0 -1 '

-1 0 0 0 -1 0 0 0 -1 -1 1 0 -1 0 1

30 (a) The invertible matrices span the space of all 3 by 3 matrices (b) The rank one

29

matrices also span the space of all 3 by 3 matrices (c) I by itself spans the space of

all multiples cI.
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-1 2 0 -1 0 2 0 0 O 0 0 0
) ) , . Dimension = 4.
0 0 O 0 0 O -1 2 0 -1 0 2
(a) y(x)= constant C  (b) y(z)=3z. (¢) y(x)=3z+ C=y,+ y, solvesy’ = 3.
y(0) = O requires A + B + C' = 0. One basis is cos x — cos 2z and cos z — cos 3z.
(@) y(z) = €2 is a basis for all solutions to ' = 2y (b) y = = is a basis for all

solutions to dy/dx = y/x (First-order linear equation = 1 basis function in solution
space).

y1(z),y2(x), y3(x) can be x, 27, 3z (dim 1) or x, 27, 22 (dim 2) or z, 22, 23 (dim 3).
Basis 1, z, 22, 23, for cubic polynomials; basis z — 1, 2 — 1, 3 — 1 for the subspace
with p(1) = 0. (4-dimensional space and 3-dimensional subspace).

Basis for S: (1,0, —1,0), (0, 1,0,0), (1,0,0, —1); basis for T: (1,—1,0,0) and (0, 0,2, 1);
S NT= multiples of (3, —3,2,1) = nullspace for 3 equations in R* has dimension 1.

If the 5 by 5 matrix [ A b] is invertible, b is not a combination of the columns of A:

no solution to Ax = b. If [A b] is singular, and the 4 columns of A are independent

(rank 4), b is a combination of those columns. In this case Az = b has a solution.

One basis for y” = yis y = ¢* and y = e~*. One basis for y”/ = —y is y = cosx and
y =sinz.
1 1 1 1 1
The six P’s
I=11 - 1|+ 1 [+ 1l — 1 .
are dependent
1 1 1 1 1

Those five are independent: The 4th has P;; = 1 and cannot be a combination of the
others. Then the 3rd cannot be (from P»y = 1) and also 1st (P33 = 1). Continuing,
a nonzero combination of all five could not be zero. Further challenge: How many

independent 4 by 4 permutation matrices?

The dimension of S spanned by all rearrangements of « is  (a) zero when x = 0
(b) one when x = (1,1,1,1) (c) three when & = (1,1, —1, —1) because all rear-

rangements of this « are perpendicular to (1,1,1,1) (d) four when the x’s are not

3 ) 3
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43

44

equal and don’t add to zero. No x gives dim S = 2. I owe this nice problem to Mike

Artin—the answers are the same in higher dimensions: 0 or 1 or n — 1 or n.

The problem is to show that the u’s, v’s, w’s together are independent. We know the
w’s and v’s together are a basis for V, and the w’s and w’s together are a basis for W.

Suppose a combination of u’s, v’s, w’s gives 0. To be proved: All coefficients = zero.

Key idea: In that combination giving 0, the part « from the u’s and v’s is in V. So the
part from the w’s is —z. This partis now in V' and also in W. Butif —zisin VNW
it is a combination of u’s only. Now the combination giving 0 uses only u’s and v’s
(independent in V'!) so all coefficients of «’s and v’s must be zero. Then = 0 and

the coefficients of the w’s are also zero.

If the left side of dim(V) + dim(W) = dim(V N'W) + dim(V + W) is greater than

n, then dim(V N 'W) must be greater than zero. So V.N'W contains nonzero vectors.

Here is a more basic approach: Put a basis for V and then a basis for W in the columns
of a matrix A. Then A has more columns than rows and there is a nonzero solution
to Az = 0. That x gives a combination of the V columns = a combination of the

W columns.

If A? = zero matrix, this says that each column of A is in the nullspace of A. If the
column space has dimension r, the nullspace has dimension 10 — r by the Counting

Theorem. So we must have » < 10 — r and this leads to r < 5.



58 Solutions to Problem Sets

Problem Set 3.5, page 137

1 (a) Row and column space dimensions 9—5 = 5, nullspace dimension = 4, dim(N(A™T))
=9-7=2 sum5+5+4+2=16=m+n
(b) Column space is R?; left nullspace contains only O (dimension zero).

2 A: Row space basis = row 1 = (1,2, 4); nullspace (—2,1,0) and (—4, 0, 1); column
space basis = column 1 = (1,2); left nullspace (—2,1). B: Row space basis =
both rows = (1,2,4) and (2, 5, 8); column space basis = two columns = (1,2) and
(2,5); nullspace (—4,0,1); left nullspace basis is empty because the space contains

only y = 0: the rows of B are independent.

3 Row space basis = first two rows of R; column space basis = pivot columns (of A not R)
= (1,1,0) and (3,4, 1); nullspace basis (1,0,0,0,0), (0,2,—1,0,0), (0,2,0,—2,1);
left nullspace (1, —1, 1) = last row of the elimination matrix £~ = L.

1 0
4 ( (1 0 (b) Impossible: 7+(n—r) mustbe3  (¢) [1 1] (d)

3 -1
0 1

(e) Impossible Row space = column space requires m = n. Thenm —r = n — r;

nullspaces have the same dimension. Section 4.1 will prove N(A) and N(AT)

orthogonal to the row and column spaces respectively—here those are the same space.
11 1

5 A= has those rows spanning its row space. B = {1 -2 1} has the
2 1 0

same vectors spanning its nullspace and AB™ = zero matrix (not AB).

6 A: dim 2,2,2,1: Rows (0,3,3,3) and (0,1,0,1); columns (3,0,1) and (3,0,0);
nullspace (1,0,0,0) and (0, —1,0,1); N(AT) (0,1,0). B: dim 1,1, 0,2 Row space
(1), column space (1,4,5), nullspace: empty basis, N(AT) (—=4,1,0) and (5,0, 1).
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Invertible 3 by 3 matrix A: row space basis = column space basis = (1, 0,0), (0, 1, 0),
(0,0, 1); nullspace basis and left nullspace basis are empty. Matrix B = {A A} I TOW
space basis (1,0,0,1,0,0), (0,1,0,0,1,0) and (0,0,1,0,0,1); column space basis
(1,0,0), (0,1,0), (0,0, 1); nullspace basis (—1,0,0,1,0,0) and (0,—1,0,0,1,0) and
(0,0,—1,0,0, 1); left nullspace basis is empty.

[I 0] and [I I; 0T OT} and [0} = 3 by 2 have row space dimensions = 3,3,0 =
column space dimensions; nullspace dimensions 2, 3, 2; left nullspace dimensions 0, 2, 3.

(a) Same row space and nullspace. So rank (dimension of row space) is the same

(b) Same column space and left nullspace. Same rank (dimension of column space).

For rand(3), almost surely rank= 3, nullspace and left nullspace contain only (0, 0, 0).

For rand(3, 5) the rank is almost surely 3 and the dimension of the nullspace is 2.

(a) No solution means that » < m. Always » < n. Can’t compare m and n here.

(b) Since m — r > 0, the left nullspace must contain a nonzero vector.

1 1 2 21
1 0 1
A neat choiceis |0 2 =12 4 0|; r+(n—7r)=mn=3does
1 2 0
1 0 1 0 1

not match 2 + 2 = 4. Only v = 0 is in both N(A4) and C(AT).
(a) False: Usually row space # column space.
(b) True: A and — A have the same four subspaces

(¢) False (choose A and B same size and invertible: then they have the same four
subspaces)

Row space basis can be the nonzero rows of U: (1,2,3,4), (0,1,2,3), (0,0,1,2);
nullspace basis (0,1, —2, 1) as for U; column space basis (1,0,0), (0,1,0), (0,0,1)
(happen to have C(A4) = C(U) = R?); left nullspace has empty basis.

After a row exchange, the row space and nullspace stay the same; (2,1, 3,4) is in the

new left nullspace after the row exchange.

If Av = 0 and v is arow of A then v - v = 0. So v is perpendicualrto v: v = 0.
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Row space of A = yz plane; column space of A = xy plane; nullspace = x axis; left
nullspace = z axis. For I + A: Row space = column space = R?3, both nullspaces
contain only the zero vector.

air = l,a12 = 0,a13 = 1,a22 = 0,a32 = 1,a31 = 0,a23 = 1,a33 = 0,a21 = 1.
(Need to specify the five moves).

Row 3—2 row 2+ row 1 = zero row so the vectors ¢(1, —2, 1) are in the left nullspace.

The same vectors happen to be in the nullspace (an accident for this matrix).

The steps from A to Ry are described on page 96 (Section 3.2). I don’t think I can
do better—but you could put those ideas into different words. By all means give an

example that needs row exchanges.

(a) wand w (b) vand z (c) rank < 2if w and w are dependent or if v and z

are dependent (d) The rank of uv™ + wzT is 2.

1 2 3 2
vT 1 0 u, w span column space;
A=lu w =12 2 =14 2
2T 1 1 v, Z span row space
4 1 5 1

As in Problem 22: Row space basis (3,0, 3),(1,1,2); column space basis (1,4, 2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either

factor, so rank < 2 and the 3 by 3 product is not invertible.

ATy = d puts d in the row space of A; unique solution if the left nullspace (nullspace

of AT) contains only y = 0.

(a) True (A and AT have the same rank) (b) False A=[1 0]and AT have very
different left nullspaces (c) False (A can be invertible and unsymmetric even if
C(A) =C(AY)) (d) True (The subspaces for A and —A are always the same. If
AT = Aor AT = — A they are also the same for AT)

Choose d = bc/a to make |2 %] arank-1 matrix. Then the row space has basis (a, b)

and the nullspace has basis (—b, a). Those two vectors are perpendicular !
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27 B and C (checkers and chess) both have rank 2 if p # 0. Row 1 and 2 are a basis for the
row space of C, BTy = 0 has 6 special solutions with —1 and 1 separated by a zero;
N(CT) has (—1,0,0,0,0,0,0,1) and (0,—1,0,0,0,0,1,0) and columns 3,4,5,6 of
I; N(C) is a challenge : one vector in N(C) is (1,0,...,0,—1).

T J_).

28 The subspaces for A = uwvT are pairs of orthogonal lines (v and v+, u and u

If B has those same four subspaces then B = cA with ¢ # 0.

29 (a) AX = 0 if each column of X is a multiple of (1,1,1); dim(nullspace) = 3.
(b) If AX = B then all columns of B add to zero; dimension of the B’s = 6
(¢) 3+ 6 =dim(M?>*3) = 9 entries in a 3 by 3 matrix.

30 The key is equal row spaces. First row of A = combination of the rows of B: the

only possible combination (notice I) is 1 (row 1 of B). Same for each row so F' = G.

-1 1 0 0

-1 0 1 0 1 -1
0 -1 1 0 1
31 A= N(A) Row space C(AT)
0 —1 0 1 1 0
0 0 -1 1 1 0

0] e
0 -1
0 o1
C(4) N(4™)
1 0
1 0
L 1 - L O -

32 (a) N(BA) contains N(A).
(b) C(AB) is contained in C(A).
33 (a) N(A) and N(B) contain N(T').

(b) Row spaces of A and B are contained in the row space of 7.
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34 Fundamental subspaces for A (m X n).
Row space C(AT) perpendicular to Nullspace N(A) : Dimensions 7 and n — r.
Column space C(A) perpendicular to N(AT) : Dimensions r and m — 7.
Subspaces for W = [ A A } — same rank 7.

Row space of W contains all { v v } vin C(AT) (Dimension r).

Nullspace of W contains all Y withy + z in N(W) (Dimension 2n — r).
z

Column space of W = Column space of A (Dimension 7).
Nullspace of WT = Nullspace of A (Dimension m — r).

35 Please send a proof or counterexample. Thank you.
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Problem Set 4.1, page 148

1 Both nullspace vectors will be orthogonal to the row space vector in R3. The column

space of A and the nullspace of AT are perpendicular lines in R? because rank = 1.

2 The nullspace of a 3 by 2 matrix with rank 2 is Z (only the zero vector because the 2
columns are independent). So x,, = 0, and row space = R?. Column space = plane

perpendicular to left nullspace = line in R3 (because the rank is 2).

1 2 -3
3 (a) One way is to use these two columns directly A= | 2 -3 1
and make col 3 = — col 1— col 2. -3 5 =2

1

Impossible because N(A) and C(AT) )
b) —3 | is not orthogonal to | 1

are orthogonal subspaces :
5 1

1 1
(¢) |1 and |0 | in C(A) and N(A™) is impossible: not perpendicular
1 0
(d) Rows orthogonal to columns makes A times A = zero matrix. An example is A =
[1 23]
(e) (1,1,1) in the nullspace (columns add to the zero vector) and also (1,1,1) is in

the row space: no such matrix.

4 If AB = 0, the columns of B are in the nullspace of A and the rows of A are in the left
nullspace of B. If rank = 2, all those four subspaces have dimension at least 2 which

is impossible for 3 by 3.

5 (a) If Az = b has a solution and ATy = 0, then y is perpendicular to b. bly =
(Az)Ty = xT(ATy) = 0. This says again that C(A) is orthogonal to N(A™).
(b) If ATy = (1,1,1) has a solution, (1,1,1) is a combination of the rows of A.

It is in the row space and is orthogonal to every z in the nullspace.
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Multiply the equations by y1,¥y2,y3 = 1,1, —1. Now the equations add to 0 = 1 so
there is no solution. In subspace language, y = (1,1, —1) is in the left nullspace.
Az = bwouldneed 0 = (yTA)x = yTb but here yTb = 1.

Multiply the 3 equationsby y = (1,1, —1). Then &1 — 2o = 1 plus &9 — x5 = 1 minus
x1 — 23 = 1is 0 = 1. Key point: This y in N(A7T) is not orthogonal to b = (1,1,1)
so0 b is not in the column space and Az = b has no solution.

Figure 4.1 has ¢ = x, + x,, where x, is in the row space and x,, is in the nullspace.
Then Azx,, = 0 and Ax = Az, + Az, = Ax,. The example has ¢ = (1, 0) and row
space = line through (1, 1) so the splitting is * = =, + x,, = (%, %) + (%, —%) All
Ax are in C(A).

Ax is always in the column space of A. If AT Az = 0 then Az is also in the nullspace
of AT, Those subspaces are perpendicular. So Az is perpendicular to itself. Conclu-
sion: Az = 0if ATAz = 0.

(a) With AT = A, the column space and row space are the same. The nullspace is
always perpendicular to the row space. (b) z is in the nullspace and z is in the

column space = row space: so these “eigenvectors” « and z have 7z = 0.

For A: The nullspace is spanned by (—2, 1), the row space is spanned by (1,2). The
column space is the line through (1,3) and N(AT) is the perpendicular line through
(3, —1). For B: The nullspace of B is spanned by (0, 1), the row space is spanned by

(1,0). The column space and left nullspace are the same as for A.
x = (2,0) splits into &, + &, = (1, —1) + (1,1).
VTW = zero matrix makes each column of V orthogonal to each column of 1. This

means : each basis vector for V is orthogonal to each basis vector for W. Then every

v in V (combinations of the basis vectors) is orthogonal to every w in W.
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Az = BZ means that [A B] = 0. Three homogeneous equations (zero right
-z

hand sides) in four unknowns always have a nonzero solution. Here = (3, 1) and

Z = (1,0) and Az = Bz = (5,6,5) is in both column spaces. Two planes in R?® must
share a line.
A p-dimensional and a g-dimensional subspace of R"” share atleastalineif p + g > n.

(The p + g basis vectors of V and W cannot be independent, so some combination of

the basis vectors of V is also a combination of the basis vectors of W.)

ATy =0leads to (Ax)Ty = 2T ATy = 0. Theny | Az and N(AT) L C(A4).

If S is the subspace of R? containing only the zero vector, then St is all of R3.
If S is spanned by (1, 1,1), then S* is the plane spanned by (1, —1,0) and (1,0, —1).
If S is spanned by (1,1,1) and (1,1, —1), then S* is the line spanned by (1, —1,0).

S~ contains all vectors perpendicular to those two given vectors. So S+ is the nullspace

of A= . Therefore S* is a subspace even if S is not.
2 2 2

L" is the 2-dimensional subspace (a plane) in R? perpendicular to L. Then (L)L is

a 1-dimensional subspace (a line) perpendicular to L™ In fact (L)+ is L.

If V is the whole space R, then V* contains only the zero vector. Then (V1) =
all vectors perpendicular to the zero vector = R* = V.

1 2 2 3

1 3 3 2

For example (—5,0,1,1) and (0,1, —1,0) span S+ =nullspace of A=

(1,1,1,1) is a basis for the line Pt orthogonal to the hyperplane P.
A= {1 1 1 1} has P as its nullspace and P as its row space.

x in V* is perpendicular to every vector in V. Since V contains all the vectors in S,

 is perpendicular to every vector in S. So every « in V= is also in St

AA~! = I: Column 1 of A~! is orthogonal to rows 2, 3, ..., n of A and therefore it is

orthogonal to the space spanned by those rows.
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If the columns of A are unit vectors, all mutually perpendicular, then AT A = I. Simple
but important ! We write () for such a matrix.

2 2 —1/| Thisexample shows a matrix with perpendicular columns.

A=|-1 2 2|, ATA=09Iisdiagonal: (AT A);; = (column i of A) - (column j of A).

2 —1 2| When the columns are unit vectors, then ATA = I.

The lines 3z + y = by and 6x + 2y = by are parallel. They are the same line if
by = 2b;. In that case (by, b2) is perpendicular to (—2, 1). The nullspace of the 2 by 2

matrix is the line 3z + y = 0. One particular vector in the nullspace is (—1, 3).

(a) (1,—1,0) is in both planes. Normal vectors are perpendicular to each other,
but planes can still intersect ! Two planes in R? can’t be orthogonal.
(b) Need three orthogonal vectors to span the whole orthogonal complement in R®.
(c) Lines in R? can meet at the zero vector without being orthogonal.

1 2 3 1 1 —1| Ahaswv=(1,2,3)inrow and column spaces
A=12 1 0|, B=|2 —1 0]; Bhasv inits column space and nullspace.

3 01 3 0 —1| v cannotbe in the nullspace and row space,
or in the left nullspace and column space. These spaces are orthogonal and vTv # 0.
When AB = 0, every column of B is multiplied by A to give zero. So the column
space of B is contained in the nullspace of A. Therefore the dimension of C(B) <

dimension of N(A). This means rank(B) < 4 — rank(A).

null(N') produces a basis for the row space of A (perpendicular to N(A)).

We need 7T'n = 0 and ¢T£ = 0. All possible examples have the form A = acr™ with
a # 0.

Both 7’s must be orthogonal to both n’s, both ¢’s must be orthogonal to both £’s, each

pair (7’s, m’s, ¢’s, and £’s) must be independent. Fact: All A’s with these subspaces

have the form [c; co] M [ry )T for a 2 by 2 invertible M.
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Problem Set 4.2, page 159

0 (a) P2 = Pis true but PT # P. This question is about nonsymmetric projections (the

error e is no longer perpendicular to the projection p). Same for I — P.

1 1
(byv= isin C(P) and w= isin C(/ — P). But v is not perpendicular to w.
1 0

(c)If P2 = P and PT = P, then the column spaces of P and I — P are perpendicular:
(Pv)™(I — P)w = v"P(I — P)w = 0 since P — P? = 0.
1 (a) atb/aTa = 5/3; projection p = 5a/3 = (5/3,5/3,5/3); e = (—2,1,1)/3
(b) aTb/aa=—1; projection p=—a; e=0.
2 (a) The projection of b = (cosf,sinf) onto a = (1,0) is p = (cosb,0)
(b) The projectionof b= (1,1) ontoa = (1,—1)is p = (0,0) since a*h = 0.
The picture for part (a) has the vector b at an angle 6 with the horizontal a. The picture

for part (b) has vectors @ and b at a 90° angle.

1 11 ) 1 3 1 1
1 1 1
3 plzg 11 1 andPlb:g 5 .PQ:H 3 9 3|and b= |3
1 11 ) 1 3 1 1
P projects onto (1,0), P, projects onto (1, —1)
1 0 aat 1| 1 —
4 P = Pr= == . PiP; # 0 and P + P» is not a projection matrix.
0 0 a-a 2 _ 1
(P + P)? is different from P; + Ps.
1 -2 -2 4 4 -2
1 1
5P1=§ -2 4 4 and P2=§ 4 4 -2
-2 4 4 -2 =2 1
Py and P, are the projection matrices onto the lines through a; = (—1,2,2) and

as = (2,2, —1). P, Py = zero matrix because a1 L as.

6 plz(%a_%a_%) andpQZ(%a %7_%) andp3 = (%7_%5 %) Sopl +p2 +p3 =b.
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1 -2 -2 4 4 -2 4 -2 4
1 1 1
P1+P2+P3=§ -2 4 4 +§ 4 4 -2 +§ -2 1 —2| =1
-2 4 4 -2 =2 1 4 -2 4

We can add projections onto orthogonal vectors to get the projection matrix onto the

larger space. This is important.

The projections of (1, 1) onto (1,0) and (1,2) are p; = (1,0) and p, = £(1,2). Then
p; + py # b. The sum of projections is not a projection onto the space spanned by

(1,0) and (1, 2) because those vectors are not orthogonal.

Since A is invertible, P = A(ATA)~1 AT separates into AA~Y(AT)"1AT = I. And

I is the projection matrix onto all of R

T 0.2 04 0.2 T 1
Py = a?FGQ = s Pray = b= alTal = s PiPay =
a; az 04 0.8 0.4 a; a1 0 0

0.2| Thisisnota; = (1,0)
0 . NO, P1P2 75 (Plpg)z.

Here P is the usual projection (P? = P = PT) of the whole space R™ onto its

subspace S.
S is the row space and column space of P.
S+ is the nullspace of P and PT.
(@) p=A(ATA)"1ATb=(2,3,0),e=(0,0,4), ATe=0

(b) p=(4,4,6) and e=0 because b is in the column space of A.

1 00
Pr= |0 1 0] = projection matrix onto the column space of A (the xy plane)
0 0 0
05 05 0
Projection matrix A(AT A)~1 AT onto the second column space.
Pr=105 05 0=
Certainly (P2)? = P». A true projection matrix.
0 0 1
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1 0 0 1 0 0 O 1 1

01 0 ) 01 0 0 2 2
A= , P = square matrix = ,p=P = .

0 0 1 0 01 0 3 3

0 0 O 0 0 0O 4 0

The projection of this b onto the column space of A is b itself because b is in that

column space. But P is not necessarily I. Here b = 2(column 1 of A):

0 1 5 8 —4 0
1
A=|1 2|givesP=2| 8 17 2|andb=Pb=p= 2.
2 0 4 2 20 4

2 A has the same column space as A. Then P is the same for A and 2A4, but Z for 24
is half of z for A.

1(1,2,-1)+ 2(1,0,1) = (2,1,1). So bis in the plane. Projection shows Pb = b.
IfP2=Pthen (I — P)2=([—P)I—P)=1—PI—IP+P?=1— P. When
P projects onto the column space, I — P projects onto the left nullspace.

(a) I — P is the projection matrix onto (1, —1) in the perpendicular direction to (1,1)
(b) I — P projects onto the plane x + y + z = 0 perpendicular to (1,1, 1).

5/6 1/6 1/3
For any basis vectors in the plane z — y — 2z = 0,

1/6  5/6 —1/3|.
say (1,1,0) and (2,0, 1), the matrix P = A(ATA)"1AT is
1/3 ~1/3  1/3
1 1/6 —1/6 —1/3 5/6  1/6  1/3
e=|-1]. Q=% = -1/6 1/6 1/3|.1-Q=[1/6 5/6 —1/3].
) “1/3 1/3  2/3 1/3 —1/3  1/3
(A(ATA)"1AT)? = A(ATA)~1(ATA)(ATA) AT = A(ATA) AT, So P? = P,

Pb is in the column space (where P projects). Then its projection P(Pb) is also Pb.
PT = (A(ATA)1ATT = A(ATA)"HTAT = A(ATA) AT = P. (ATA is sym-
metric!)

If A is invertible then its column space is all of R™. So P = I and e = 0.
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25 The nullspace of AT is orthogonal to the column space C(A). So if ATb = 0, the pro-
jection of bonto C(A) shouldbe p = 0. Check Pb = A(ATA)~tATb = A(ATA)~10.
26 The column space of P is the space that P projects onto. The column space of A

always contains all outputs Az and here the outputs P fill the subspace S. Then rank

of P = dimension of S = n.
27 A1 exists since the rank is 7 = m. Multiply A> = Aby A~ ! toget A = I.

28 If ATAx = 0 then Az is in the nullspace of AT. But Az is always in the column
space of A. To be in both of those perpendicular spaces, Az must be zero. So A and

AT A have the same nullspace: AT Az = 0 exactly when Az = 0.

29 Start from P> = P. The (2,2) entry of P2 is the dot product (row 2 of P) - (column 2 of P).

Since P is symmetric this is |[row 2 of P||?.

111 1 ) 1 1/2
P:§ has P :Pandngziandcolumn2:

1
has ||column 2||? = =
11 1/2 2

30 If BBTx = 0then 0 = zTBBTx = ||BTz||%. But then BTz = 0. Since B has

independent rows, this only happens if z = 0. So BB is invertible.
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Problem Set 4.3, page 161

(1 0] 0]
11 8| 4 8 36
1A= and b = give ATA = and ATb = )
1 3 8 8 26 112
_1 4_ _20_

N . 1 N 5
ATAZ = ATb gives T = and p = Az = ande=b—p =
4 13 -5

1 0 0 1
1 1 C 8| This Az = bisunsolvable | 5
2 = . ; When p replaces b,
1 3| |D 8| Projectbtop = Pb= 13
1 4 20 |17
T= exactly solves AZ = p.
4

3 InProblem 2, p = A(ATA)~1ATb = (1,5,13,17)ande = b — p = (—1,3, -5, 3).

This e is perpendicular to both columns of A. This shortest distance | e]| is v/44.

4 FE=(C+0D)?+ (C+1D —8)?+ (C + 3D — 8)* + (C + 4D — 20)%. Then
OEJC = 2C +2(C + D — 8) +2(C + 3D — 8) + 2(C + 4D — 20) = 0 and
OE/OD = 1-2(C+D —8)+3-2(C+3D —8)+4-2(C + 4D —20) = 0.

4 8| |C 36

These two normal equations are again = .
8 26| |D 112

5 E=(C-0)2+(C—-8)2+(C—-8)*+(C—-20)%. AT=[1 1 1 1]and ATA = [4].
ATb = [36] and (ATA)"!ATb = 9 = best height C for the horizontal line.
Errorse = b —p = (—9,—1,—1, 11) still add to zero.
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a = (1,1,1,1) and b = (0,8,8,20) give 7 = a'b/a™a = 9 and the projection is

Za=p=(9,9,99). TheneTa = (-9, -1, —1,11)T(
distance from b to the line through a is ||e|| = v/204.

1,1,1,1) = 0 and the shortest

Now the 4 by 1 matrix in Az = bis A =[0 1 3 4]". Then ATA = [26] and
ATbh =[112]. Best D = 112/26 = 56/13.

Z = a"b/aTa = 56/13 and p = (56/13)(0,1,3,4). (C,D) = (9,56/13) don’t

match (C, D) = (1,4) from Problems 1-4. Columns of A were not perpendicular so

we can’t project separately to find C' and D.

1 0 O
Parabola

1 1 1
Project b

1 3 9
4D to 3D

1 4 16

0

8
= AT Az =

8
20

4
8
26

8 26| |C
26 92| |D|=|112].
92 338| | E 400

Figure 4.9 (a) is fitting 4 points and 4.9 (b) is a projection in R*: same problem !

10 0 o0f|C
11 1 1

D
13 9 27| |E
1 4 16 64) | F]

0
8
8
20

C

D
. Then =

E
F

W =

0
47

—28

5

Exact cubicsop = b, e =
This Vandermonde matrix
gives exact interpolation

by acubicat0,1,3,4

(a) The best line x = 1 + 4t gives the center point b = 9 at center time, £ = 2.

(b) The first equation Cm + D > t; = > b; divided by m gives C' + Dt = b. This

shows : The best line goes through b at time 7.

@ a=(1,...,1) hasaTa = m, a™b = by + --- + b,,. Therefore 7 = a*b/m is

the mean of the b’s (their average value)

(b) e = b — Za and | e|?

(denoted by o2).

(C) b= (37 31 3) and e = (_27

(b — mean )% + - -

+ (b, — mean )? = variance

111

1
—1,3) pTe = 0. Projection matrix P = 3 111

111
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(ATA)~1AT(b — Ax) = T — . This tells us: When the components of Az — b add
to zero, so do the components of Z — « : Unbiased.

The matrix (Z — z)(Z — )T is (ATA)"1AT(b — Azx)(b — Ax)TA(ATA)~1. When
the average of (b — Ax)(b— Ax)T is 021, the average of (Z — x)(Z — )T will be the
output covariance matrix (AT A) 71 ATo2 A(AT A)~1 which simplifies to o2(AT A) 1.
That gives the average of the squared output errors & — .

When A has 1 column of 4 ones, Problem 14 gives the expected error (7 — x)? as

02(AT A)~! =0? /4. By taking m measurements, the variance drops from o2 to o2 /m.
1 9 1

Eblo + 0% = E(bl + -+ 4 b1g). Knowing Zy avoids adding all ten b’s.
1 -1 7
C A 9 3 2||C 35
1 1 = | 7. The solution x = comes from =
D 4 2 6D 42
1 2 21
p = Az = (5,13,17) gives the heights of the closest line. The vertical errors are

b—p=(2,—6,4). This error e has Pe = Pb— Pp=p—p =0.
If b = error e then b is perpendicular to the column space of A. Projection p = 0.
The matrix A has columns 1,1,1and —1,1,2. Ifb = Az = (5,13,17) thenZ = (9,4)
and e = 0 since b = 9 (column 1) + 4 (column 2) is in the column space of A.
eisin N(AT); pisin C(A); Zisin C(AT); N(A) = {0} = zero vector only.

5 0f |C

The least squares equation is = . Solution: C' =1, D = —1.
0 10| |D —10

The best line is b = 1 — ¢. Symmetric t’s = diagonal AT A = easy solution.

e is orthogonal to p in R™; then ||e||2 = ¢T(b—p) = eTb=b"b—b"p.

The derivatives of || Az — b2 = T AT Az — 2b™ Az + b" b (this last term is constant)
are zero when 2AT Az = 2ATb, or & = (AT A)~1 ATb.

3 points on a line will give equal slopes (by — b1)/(t2 — t1) = (bg — ba)/(t3 — t2).
Linear algebra: Orthogonal to the columns (1,1, 1) and (¢1, 2, t3) isy = (t2 —t3,t3 —
t1,t1 — t2) in the left nullspace of A. b is in the column space ! Then yTb = 0 is the

same equal slopes condition written as (bo — b1)(t3 — t2) = (bs — ba2)(ta — 1).
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26 The unsolvable equations for C + Dx + Ey = (0,1, 3, 4) at the 4 corners are

1 1 0 0

C 4 0 0 8| |C 2
1 0 1 N - .

D| = CATA=10 2 0|;Ab=|-2|;|D|=| -1
1 -1 0 3

E 0 0 2 -3 |E| |-3/2
1 0 -1 4

At z,y = 0,0 the best plane 2 — x — %y has height C' = 2 = average of 0, 1, 3, 4.

27 The shortest link connecting two lines in space is perpendicular to those lines.

28 If A has dependent columns, then AT A is not invertable and the usual formula P =
A(ATA)~1 AT will fail. Replace A in that formula by the matrix B that keeps only the
pivot columns of A.

29 Only 1 plane contains 0, a1, a2 unless a1, ay are dependent. Same testfora, ..., an_1.
If they are dependent, there is a vector v perpendicular to all the a’s. Then they all
(including 0) lie on the plane vTx = 0 going through = (0,0,...,0).

30 When A has orthogonal columns (1,...,1) and (73,...,T},), the matrix ATA is

diagonal with entries m and T7 + - - - + T2, Also ATb has entries by + - - - + b,, and

Tiby +- - -+ Tybyy,. The solution with that diagonal AT A is just the given & = (C, D).
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Problem Set 4.4, page 186

1 (a) Independent (b) Independent and orthogonal (¢) Independent and orthonormal.
For orthonormal vectors, (a) becomes (1,0), (0,1) and (b) is (.6, .8), (.8, —.6).
5/9 2/9 —4/9
Divide by length 3 to get T 1 0 T
2 QQ= butQQ = | 2/9 8/9 2/9].
_(22 _1 _(_1 22
q:=(5.5,-3) 02=(-3,5.3) 01
—-4/9 2/9 5/9
3 (a) ATA will be 167 (b) AT A will be diagonal with entries 12, 22,32 = 1,4, 9.

1 0 1 0 0
4@ Q=10 1/.QQT =10 1 0| #1. Any Q withn < m has QQT # I.
0 0 0 0 O

(b) (1,0) and (0, 0) are orthogonal, not independent. Nonzero orthogonal vectors are
independent. (c) From q;, = (1,1,1)/v/3 my favorite is g, = (1,—1,0)/+/2 and
q; = (1,1,-2)/V6.

5 Orthogonal vectors are (1,—1,0) and (1,1, —1). Orthonormal after dividing by their
lengths : (\/Li’ —%,0) and (\/Lg, %, —%)

6 Q1Q- is orthogonal because (Q1Q2)TQ1Q2 = QTQTQ1Q2 = QT Q2 = I. Another
approach is to see that (Q1Q1) ™' = Q;'Q7' = Q3 QT = (Q1Q2)".

7 When Gram-Schmidt gives ) with orthonormal columns, QTQZ = QTb becomes

Z = QTb. No cost to solve the normal equations !
8 If q, and g, are orthonormal vectors in R® then p = (q] b)q, +(qa b)q, is closest to b.
The error e = b — p is orthogonal to g; and g,.

8 —.6 1 0 0
9@ Q= |6 8|hasP=0QQ" = |0 1 0| = projection on the xy plane.

0 0 0 0 O

() (QQM)(QQ") =QQTR)Q" =QQ™.
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(a) If g4, q5, g5 are orthonormal then the dot product of g; with ¢1q; +cags+c3qs =
0 gives c; = 0. Similarly co = c3 = 0. This proves: Independent q’s

(b) Qx = 0 leads to QT Qx = 0 which says x = 0.

(a) Two orthonormal vectors are q; = 55(1,3,4,5,7) and g, = 15(—7,3,4,-5,1)
(b) Closest vector = projection QQT(1,0,0,0,0) = (0.5, —0.18,—-0.24,0.4,0).

Multiply b = z1a1 + x2a2 + x3a3 by (m:;r :

arlfb = xla?al + xga?ag + xga?ag =040+ :zrlarlfal
Divide by a? a; (not necessarily equal to 1) to find 71 = aTb/ala;.

4 1 2

The multiple to subtract is gTTg. Then B = b— gTTga = -2 =
0 1 -2

14 lql qQ] lall  qfb V2 V2| |V2 2v2

10 0 |B] 1/V2 —1/V2 0 2v2

(a) Gram-Schmidt chooses ¢; = a/||al| = %(1,2,—2) and g, = %(2,1,2). Then
qs = %(27 _27 _1)
(b) The nullspace of AT contains q;

() &= (ATA)1AT(1,2,7) = (1,2).

16 p = (a™b/aTa)a = 14a/49 = 2a/7 is the projection of b onto a. q; = a/||al =

a/7is (4,5,2,2)/7. B=b—p=(—1,4,—4,—4)/7Thas | B|| = 1 s0 g, = B.

17 p = (a'b/aTa)a = (3,3,3) and e = (—2,0,2). Then Gram-Schmidt will choose

18

g, =(1,1,1)/v3and g, = (—1,0,1)/v/2.

Gram-Schmidt would go on to normalize ¢, = A/||Al|, q, = B/||B|l,q5 = C/||C]||-
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If A= QRthen ATA = RTQTQR = RT R = lower triangular times upper triangular

(this Cholesky factorization of AT A uses the same R as Gram-Schmidt!). The example

-1 1 -1 2
1 3 3 .
has A = 2 1| = 3 2 -1 = @R and the same R appears in
0 3
2 4 2 2
9 9 3 0 3 3
AT A = = = RTR.

9 18 3 3 0 3

(a) True From QT = Q! we find (QT)~! = (Q~1)~!. And always (QT)~"! =
@H*.
(b) True So the transpose of Q! = inverse of Q. We are given orthonormal
columns: QTQ = I. Then ||Qz||? = 2T QTQx = zTz = ||z||*.
Notice : ) might be rectangular (and then not an orthogonal matrix).
The orthonormal vectors are q; = (1,1,1,1)/2 and g, = (=5, —1,1,5)//52. Then
b = (—4,-3,3,0) projects to p = (q1b)q, + (g3b)q, = (—7,—3,—1,3)/2. And
b—p=(-1,-3,7,—3)/2is orthogonal to both g, and g,.
A= (1,1,2), B = (1,-1,0), C = (—1,—1,1). These are not yet unit vectors.
Gram-Schmidt will divide by ||A|| = v/6 and ||B|| = v/2 and ||C|| = /3.

1 0 0 1 0 0|1 2 4
Youcanseewhyq, = [0]|,g> = |0]|,g35=|1|-A=]|0 0 1| |0 3 6| =

0 1 0 0 1 0|0 0 5
QR. This (@ is just a permutation matrix—certainly orthogonal.

(a) 1 equation, 4 unknowns, 3 independent solutions.

We could choose the solutions (1,0,0,1),(0,1,0,1), and (0,0,1,1).
(b) Those vectors are orthogonal to S+ = line through (1,1,1 — 1).
(¢) The componentof b= (1,1,1,1) in St s

(1,1,1,1)7(1,1,1,-1)
(1,1,1,—1)T(1,1,1, - 1)

3 ) 3

2 1
by = (L1 -1)=2(111-1)= 5(1,1,1,-1)

1 1
Thenby = b—by = (1,1,1,1)~5(1,1,1,~1) = 5(1,1,1,3). Check 1+1+1-3 = 0.
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2 -1 5 3
2 1 1 2 0 1
RERE V5
1 -1 2 2
1 1 1 1 1 1
- = 7 7 and Ro> has become zero. A = -

had dependent columns.

T
q:C*)q, = B _c B because q, = B and the extra g¢; in C* is orthogonal to g5.
2@ )%= BT 2= T8l : o

When a and b are not orthogonal, the projections onto these lines do not add to the pro-
jection onto the plane of @ and b. We must use the orthogonal A and B (or orthonormal

g, and g,) to be allowed to add projections on those lines.

2

There are $m?*n multiplications to find the numbers r; and the same for v;;.

q; = %(27 27 _1)’ gy, = %(27 _13 2)9 g3 = %(17 _25 _2)
W has orthonormal columns so WTW = Tand WT = W1,

Choose ¢ = % to give orthonormal columns. The projection of b = (1,1, 1, 1) onto the

first column ¢, = (1, -1, -1, 1) is (g7 b)q, = —q;.

2
The projection of b on gz is (g4 b)gy = —qs.
Since g, is orthogonal to g,, we add to find the projection —g; — g5 onto the plane of

q; and g,.

Q = I — 2uuT is a reflection matrix (Q? = I) if u is a unit vector |ju|| = 1.

0 1 0 0
0] 1 0 ,
u= gives ) = u = \/5/2 gives ) = | 0 0 -1
1 0 -1
V2/2 0 -1 0

Orthogonal and lower triangular = +1 on the main diagonal and zeros elsewhere.

@ Qu = (I — 2uuT)u = u — 2uuTu. This is —u, provided that uTu equals 1

(1) Qv = (I —2uuT)v = v — 2uuTv = v, provided that uTv = 0.
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35 Starting from A = (1,—1,0,0), the orthogonal (not orthonormal) vectors B =
(1,1,-2,0)andC=(1,1,1,—3)and D= (1,1, 1, 1) are in the directions of q,, q5, .
The 4 by 4 and 5 by 5 matrices with integer orthogonal columns (not orthogonal rows,

since not orthonormal Q!) are

1 1 11
-1 1 1 11
-1 1 1 1
A B C D|= and | 0 -2 1 1 1
0 -2 1 1
0 0 -3 1 1
0O 0 -3 1

0 0 0 -4 1

36 [Q, R| = qr(A) produces from A (m by n of rank n) a “full-size” square Q=[ Q1 Q2]

and . The columns of ), are the orthonormal basis from Gram-Schmidt of the
0

column space of A. The m — n columns of ()2 are an orthonormal basis for the left
nullspace of A. Together the columns of Q = [Q1 Q2] are an orthonormal basis

for R™.

37 This question describes the next g, ,; in Gram-Schmidt using the matrix () with
the columns q,, ..., g,, (instead of using those g’s separately). Start from a, subtract
its projection p = QQ" a onto the earlier q’s, divide by the length of e = a — QQ"a

to get the next q,, ; = e/||e||.
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Problem Set 4.5, page 196

11 ][ 1]
1A = = = CRso A = RT(CTART)™1CT from
11 1
equation (7), page 195.
/ 1/2 0
111 1(1 1 /2 0 O
AF = 1[1 1}21 Af = A= 0 154
1 11 0 1/4 0
0 0
rcter™ rrT cct .
2 A+A = W = m and AA+ = E are symmetrlc
The first two Penrose conditions are also easy to check :
T T T
AAT A = ™I T_ 4 d A+AA+:1 L:A‘*‘
(er )’I“T’l“ r an rTr (rTr)(cTe)

A
3 Problem: Check that B = has B+ = [ A+ 0 }
0

Solution : Start from Bt B = A1 A. Then the Penrose conditions are satisfied by BT,

4 The column space of A is R?. The row space is the z-y plane in R®. Then AT = AT,

0 1
00 1/2
5At=| o0 o| and (AT)t = /
10 0
1/2 0

It is always true that (AT)7 is the transpose of A1 The straightforward proof quickly
checks the Penrose conditions. We are simply reversing the left side and right side of

the “Big Picture” of 4 subspaces.

6 Given that PT = P = P2, the pseudoinverse P is the same as P. The first two
Penrose conditions become P? = P (true). The last two conditions become (P?)T =

PT = P (true).
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7 We are asked to verify (AAT)2 = AAT. Watch CT AR™ cancel its inverse !
(AAT)2=[ART(CTAR)'CT[ART (CTART) ' CT]=AR" (CTART)tCT=AAT

8 A+ A = [RT(CTART)"'CT|CR = R*(CTC RRT)"1CTCR = RT(RRT) ' Ris
symmetric.

9 Delete edges d and e. The graph becomes a triangle with 3 by 3 incidence matrix.

—1 1 0 —1 1 1 0 -1
A= -1 0 1|=CR=] -1 0 01 -1
0 -1 1 0 -1
-1 1 0 1 0
-1 -1 0
Then CTART = -1 0 1 0 1| =3I
1 0 -1
0 -1 1 -1 -1
-1 -1 0
+ (v _Ll,r_ 1
From formula (7): AT = R 3 cH = §A =3 1 0 -1
0 1 1

1 10
10 A = [ 1 0 } and B = give AB = [ 1 } and BA = . Certainly
1 10

1 1

z 1

(AB)+ = { 1 } isnot BT At = [ 2 9 } , so pesudoinverses don’t copy
0

true inverses (Where (AB)_1 =B _1A_1). But they do copy inverses when ranks are

right—as they are for
1
(BA)T = = = = ATBT.
11 The four Penrose conditions for (A1) are all satisfied by A. (Also (A1)T takes the

column space of A7 to its row space. This means (A1) takes the row space of A to

its column space—just like A !)
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Problem Set 5.1, page 203

10

det(24) = 2*det A = 8; det(—A) = (—1)*det A = 1; det(A?) = 1; det(A™1)=2.
det(34) = (3)3det A = —% and det(—A) = (=1)*det A = 1; det(A4?) = 1
det(A™1) = —1. If det A = 0 then det A/2 = det(—A) = det A2 = 0;no AL

(a) False: det(I + I)isnot 1+ 1 (except whenn = 1)

(b) False: det(4A) is 4™ det A

0 0 0 1 0 —1
(¢) False: A = ,B= ,AB — BA = is invertible.
0 1 1 0 1 0
Exchange rows 1 and 3 to show det J3 = —1. Exchange rows 1 and 4, then rows 2 and

3 to show det J; = 1. Two exchanges = even permutation.

|J5| = 1 by exchanging row 1 with 5 and row 2 with 4. |Jg| = =1, |J7| = —1.

Determinants 1,1, —1, —1 repeat in cycles of length 4 so the determinant of J;¢; is +1.
det A=4,det B=0,detC = 0.

The 6 terms become a(g+b)z — b(p+a)z + - - - (4 more). The approach in the display
(using linearity to split up row 2) is better. Result: det does not change if row 2 is
added to row 1.

a p

aqz +cpy + brx
det AT =1 q y | = ¢ Py = same six terms as det A

—ary —bpz — cqr
c r oz
Key point: det PT = det P for every permutation, because the number of row

exchanges is the same (just done in reverse order). Then P is even when PT is even.

det A = 1 from two row exchanges. det B = 2 (subtract rows 1 and 2 from row 3,

then columns 1 and 2 from column 3). det C' = 0 and det D = 0 (equal rows).

If the entries in every row add to zero, then (1,1,...,1) is in the nullspace: singular
A has det = 0. (The columns add to the zero column so they are linearly dependent.)

If every row adds to one, then rows of A — I add to zero (not necessarily det A = 1).
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11

12

13

14

15

16

17

18

19

20

If P, needs n exchanges to reach I and P, needs N exchanges then P; P, reaches I after
those n+ N exchanges. Sodet(Py P5) = (—1)"tN = (=1)"(=1)" = (det Py) (det P»).
We can pair off even permutations with odd permutations: odd = even followed by
exchanging 1 and 2. Number of even permutations= %n! =number of odd permutations.

A singular rank one matrix has determinant = 0. The skew-symmetric A also has
det A = 0. A skew-symmetric matrix A of odd order 3: Changing every sign will
multiply det A by (—1)2 but also keep the same det A = det A™. So det A = 0.

When the i, j entry is 4 times j, row 2 = 2 times row 1 so det A = 0.

When the j entry is ¢ + j, row 3 — row 2 = row2 —row 1 so A is singular: det A = 0.

Fill a row (or column) by 4 zeros to guarantee det = 0. Leave only the main diagonal

(12 zeros) to allow det A # 0.

The cofactor formula det A = a11C11 + - -+ + a1,C1p, gives det = 0 if all cofactors

are zero. The 2 by 2 matrix of 1’s has det = 0 even though no cofactors are zero.

Two equal rows imply det = 0. Proof for 3 x 3 if row 1=row 2. Thena = p,b = q,
¢ = r. Then agz+bra+cpy—ary—bpz—cqr = abz+bcx+cay—acy—baz—cbx = 0.
If A has two equal rows then AT has two equal columns (say columns j and k). Then
the columns are not independent. So det AT = 0 and det A = 0. Other proofs also
reach this conclusion.

Start from AC™ = (det A)I. Take determinants of both sides :

(det A) (det C) = (det A)™ and det C = (det A)"*

Note : If det A = 0 (singular matrix) then A is the limit of invertible matrices A1, Ao, . ..
Apply det C; = (det A;)"~! and take the limit as i — oo. (How would you define C'

for a 1 by 1 matrix ?7)

If you know C' and if det A=1 then you know A~'=C" /1. Then invert A~! to find A.
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Problem Set 5.2, page 209

10

If det A = 2 then det A~! = I, det A™ = 2", and det AT = 2.

det A = —2, independent columns; det B = 0, dependent columns; det C' = —1,
independent columns but det D = 0 because its submatrix B has dependent rows (and

dependent columns).

The problem suggests 3 ways to see that det A = 0: All cofactors of row 1 are zero.
A has rank < 2. Each of the 6 terms in det A is zero. Notice also that column 2 has no
pivot.

[ 0.9 —09
(a) A= has det A = 1.62 and det A™ = (1.62)" — .

09 09

2 2
(b) A= has det A = 0 and det A™ = O evenif A;; = 2.
2 2

2 5 1 5 2 1
@ [A] = =3, |Bi] = = —6, |By| = = 3 so
1 4 2 4 1 2
$1:—6/3:—2anda:2:3/3:1 (b) |A|:4a|Bl|:3a|BQ|:_2a|B3|:1

Therefore 1 = 3/4and x5 = —1/2 and 23 = 1/4.
(@) y= ?(1)‘/ ?Z = —c¢/(ad — bc) (b) y = det By/det A = (fg —id)/D.
That is because By with (1,0,0) in column 2 has det B, = fg — id.

(a) 1 =3/0 and xo = —2/0: no solution (b) x1 = x2 = 0/0: undetermined.
The determinant is linear in its first column so |z a1 + z2 a2 + z3a3asas|
splits into 21 |a; a2 as| + x2|as az as|+ x3]as as as|. The last two determinants are
zero because of repeated columns, leaving x1|a; a2 ag| which is 1 det A.

If the first column in A is also the right side b then det A = det B;. Both Bs and Bj are
singular since a column is repeated. Therefore 21 = |B1|/|A| = 1 and 22 = 23 = 0.
The pattern det = 1,0, —1,—1,0, 1 repeats as in E,,1¢ = E,. So E199 = E, after 16
repeats of length 6. And By = —1.
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9 3 5
11 If the entries are 1 to 9, the maximum determinant may be 412 =1| 4 § 1
2 6 7

12 True. We know thatdet AB = (det A) (det B). And we know det(ABC) = (det AB) (det C).
Put these together to prove det(ABC) = (det A) (det B) (det C).

13 The combinations of ¢ = (1,0,0) and 2 4+ 5 = (1, 1,0) fill the xy plane in zyz space.
14 (a) Sum = zero vector. (b) Sum = —2:00 vector = 8:00 vector.
(c) 2:00 is 30° from horizontal = (cos §,sin §) = (v3/2,1/2).

15 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 125 = (0,12).

16 (a) det P = 1 because columns 2, 1,4, 3 have two exchanges from 1, 2, 3, 4.
(b) det P = —1 because columns 3, 2, 1, 4 have only one exchange (of 3 and 1).
(c) det P = —1 because columns 1,2, 4, 3 have one exchange (3 and 4).

17 The sumis (v —u) + (w—v) + (u — w) = zero vector. Those three sides of a triangle

are in the same plane !

18 All vectors in 3D are combinations of u, v, w as drawn (not in the same plane). Start by
seeing that cu + dv fills a plane, then adding all the vectors ew fills all of R?. Different

answer when u, v, w are in the same plane.

19 The only 4 x 4 column orders that start with 3,2 are 3,2,1,4 and 3, 2,4, 1 (so 2 terms
in det A).
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Problem Set 5.3, page 214

1 Edge matrix £ = identity matrix / for a unit cube. With edges e, ez, e3 out from

(0,0,0), the other 7 corners are e1, ez, e3,e1 + €2, €1 + e3,ex + e3,e; + es + es.

2 Perpendicular e’s give an ordinary box with side lengths ||eq ||, ||ez||, ||es]||-

3 The largest box with edge lengths 1, 2, 3 is the ordinary 90-degree box with volume 6.
This is Hadamard’s inequality (see Problem 4).

4 |det E| < (|lex]]) (Ilez2l]) --- (|len]]) is “Hadamard’s inequality”. One proof starts
with £ = [ er ... e, ] = @R from Section 4.4 (Gram-Schmidt producing
orthogonal g’s from independent e’s). Each e; is a combination of orthogonal g; with
llg;|l =1:

a; :Zrijqi ||aj||2:ZTi2j||qz‘||2 27“]2‘3‘
|det E| = |detQ||det R| = (111) - - - (rnn) < |l€1]] - . ||€n]]-

Wikipedia proves Hadamard’s inequality from “geometric mean” < “arithmetic mean”.

5 (a) The parallelogram area with edges (3, 2) and (1, 4) is the determinant of

1 4
113 2
12 -2 =10. (b) Triangle area = %(parallelogram area) =3 =5.
4 6
113 2
(c) The triangle area is % (parallelograrn area) =3 =5.
1 4
6T v+w = (4,6) 6T
| Il w= (1,4
4 w=(1,4) aT -
1 7 1 w—v=(-2,2)
2+ v=(3,2) 2+ v=(3,2)
f f f f i (b) f f —t i (C)
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6 (a) Two sides are (3,4) — (2,1) = (1,3) and (0,5) — (2,1) = (—2,4). The triangle
1 1 3
area is half the parallelogram area = — =
21 2 4

113 1
(b) has an additional triangle (dashed lines) of area 3 =7
15
7 The hypercube in 4-dimensions has perpendicular sides of length /1 4+ 1+ 1+ 1 = 2.

So its volume is 2* = 16. This must be | det H|.
8 An n-dimensional cube has 2" corners. This is the case m = 0 in Wikipedia’s formula:

) : _ n! : ) )
n-di u — m- i ides, ,
An n-dimensional cube has 2™~ I I dimensional sides, edges, corners
ml(n —m)!

For edges (m = 1) this rule gives 2"~ ! times n. 12 edges for a 3D cube (n = 3).
For faces of dimension m = n — 1 this rule gives 2n. Six faces for a 3D cube.
The cube in R whose edges come from 27 has volume det(27) = 2™.
9 The 3-dimensional “unit pyramid” in R? has volume % = % Ibelieve the 4-dimensional
1

1
“unit id” h 1 — =
unit pyramid” has volume - = -
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Problem Set 6.1, page 226

(o]

The eigenvalues of A are A = 1 and 0.5 (or 3).
The eigenvalues of A™ are A = 1 and (%)n

The eigenvalues of A are A = 1 and 0.

(a) A row exchange leaves this A with A = 1 and —0.5 (or — %)

(b) Every A has n — r zero eigenvalues (r = rank): not changed by elimination.
Ahas \y = —1 and )y = 5 with eigenvectors z; = (—2,1) and 22 = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.
That zero eigenvalue correctly indicates that A + [ is singular.

Ahas Ay = 2 and Ay = —1 (check trace and determinant) with «; = (1,1) and
@2 = (2,—1). A~! has the same eigenvectors, with eigenvalues 1/A = § and —1.
det(A—AI)=X2+X—6= (A+3)(A—2). Then Ahas \; = —3 and Ay = 2 (check
trace = —1 and determinant = —6) with z; = (3, —2) and 3 = (1,1). A? has the
same eigenvectors as A, with eigenvalues \? = 9 and \3 = 4.

A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A + B
has A2 + 8\ + 15 = 0 and A\; = 3, Ao = 5. Eigenvalues of A + B are not equal to
eigenvalues of A plus eigenvalues of B.

Aand Bhave A\; = 1 and A = 1. AB and BA have A\?> —4\+1 = 0 and the quadratic
formula gives A\ = 2+ 1/3. Eigenvalues of AB are not equal to eigenvalues of A times
eigenvalues of B. Eigenvalues of AB and B A are equal (this is proved at the end of

Section 6.2).

The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its

diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.

(a) Multiply Az to see Az which reveals A (b) Solve (A — AI)x = 0 to find .
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9

10

11

12

13

14

15

16

(a) Multiply Az = \x by A: A(Azx) = A(\x) = Az gives A%z = A’z

(b) Multiplyby A= : &z = A7 1Az = A" \x = ANA" 'z gives A~ ' = %:v

) AddIz=x: (A+Dx= A+ 1)x.

det(A —A) =X — 1.4\ + 0.4 s0 Ahas \; = 1 and Ay = 0.4 with z; = (1,2) and
2 = (1,—1). A% has \; = 1 and Ay = 0 (same eigenvectors as A). A% has \; = 1
and A\ = (0.4)1°° which is near zero. So A% is very near A*°: same eigenvectors

and close eigenvalues.

Proof 1. A — A\l is singular so its two columns are in the same direction.
Also (A — MI)x2 = (A2 — A1)x2. So x5 is in the column space and both columns
must be multiples of x5. Here is also a second proof: Columns of A — A\ [ are in the
nullspace of A — A2T because M = (A — X\oI)(A — A1) is the zero matrix [this is
the Cayley-Hamilton Theorem in Problem 6.2.30]. Notice that M has zero eigenval-
ues (A1 — A2)(AM — A1) = 0and (A2 — A2)(A2 — A1) = 0. So those columns solve

(A — X2I) x = 0, they are eigenvectors.

The projection matrix P has A = 1, 0, 1 with eigenvectors (1, 2,0), (2,—1,0), (0,0, 1).
Add the first and last vectors: (1,2,1) also has A = 1. The whole column space of P

contains eigenvectors with A = 1! Note P? = P leadsto A> = Aso A = 0 or 1.

Tu=wutimes 1. So \ = 1.

(@) Pu=(uu)u = u times u
(b) Pv=(uul)v=u(uTv)=0.

(c) ¢1 =(-1,1,0,0), 2 = (—3,0,1,0), 3 = (—5,0,0, 1) all have Px = 0x = 0.

det(Q — M) = A2 —2X\cosf+1 = 0when A\ = cosf +isind = e and e~*°. Check
Mg = cos? 0 + sin?# = 1 and A1 + A2 = 2cos . Two eigenvectors of this rotation

matrix are 1 = (1,4) and &3 = (1, —i) (or c; and dxo with cd # 0).

The other two eigenvalues are A = %(—1 + i1/3). Those three eigenvalues add to

0 = trace of P. The three eigenvalues of the second P are 1,1, —1.

Set A=0indet(A — M) = (A —A)...(Ap = A) tofinddet A = (A1)(A2) -+ - (An).
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17

18

19

20

21

22

23

24

Solutions to Problem Sets

Comparing A\? — (a+d) A+ (ad—bc) with (A= A1) (A= A2) = A2 — (A1 +A2) A+ A1 A2

shows :
a+d= M\ + Ay = trace ad — bc = A1 A2 = determinant

If A\, = 3and A\, = 4 then det(A — A) = A2 — 7TA + 12.

4 0 10 —1 4 6
Trace = 9. Three possibilities are A = , ,
0 5 30 —1 0 5
(a) rank = 2 (b) det(BTB) =0  (d) eigenvalues of (B? +I)~"are 1,3, +.
1
A= has trace 11 and determinant 28, so A = 4 and 7. Moving to a 3 by

—28 11
3 companion matrix, for eigenvalues 1,2, 3 we want det(C' — A\I) = (1 — X\)(2 — A)

(3 — X). Multiply out to get —A3 + 6A2 — 11\ + 6. To get those numbers 6, —11,6
from a companion matrix you just put them into the last row :
0 1 0
C=10 0 1| Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).
6 —11 6
(A — M) has the same determinant as (A — AI)T because every square matrix has

det M = det MT. Pick M = A — \I.

1 0 1 1 1 1
and have different eigenvectors and
1 0 0 0 1 0
1 0 0
We can choose M = 2 4 0 |. Its eigenvalues A = .1, .4, 1.0 are on the
7 6 1

T
diagonal. Clearly M has rows adding to 1 so M times the column v = { 1 1 1 }

equals v. Challenge : A 3 by 3 singular Markov matrix with trace % hasA =0, 1, — %

0 0 0 1 —1 1| Always A? is the zero matrix if A = 0 and 0,
1 0ol [0 0| |-1 1| by the Cayley-Hamilton Theorem in Problem 6.2.30.
\ = 0,0, 6 (notice rank 1 and trace 6). Two eigenvectors of uv™ are perpendicular to

v and the third eigenvectoris u: x; =(0,—2,1), 3 =(1,-2,0), z3=(1,2,1).



Solutions to Problem Sets 91

25

26

27

28

29

30

31

When A and B have the same n A’s and x’s, look at any combination v = c1x1 +
<+ + cpx,. Multiply by A and B: Av = ¢t \ixy + -+ + cp n@y, equals Bv =

ca\x1 + -+ cp Anxy, for all vectors v. So A = B.

A has eigenvalues 1 and 2 from block B (with eigenvectors ending in 0,0). A also
has eigenvalues 5 and 7 from block D because A" has eigenvalues 5, 7 from block DT

(and transposing doesn’t change eigenvalues).

A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank
2 (ensuring two zero eigenvalues) and (1, 1,1, 1) is an eigenvector with A = 2. With

3 ) 3

trace 4, the other eigenvalue is also A = 2, and its eigenvectoris (1, —1,1, —1).

The 4 by 4 matrix A of I’shas A =0,0,0,4. Then B=A—Thas A= -1,-1,-1,3.

AndC =1—-AhasA=1,1,1,-3.

Ais triangular: AM(A) = 1,4,6; A\(B) = 2, V3, —/3; C has rank one : A(C) =0,0,6.
a b

1
=(a+0) whena+b=c+d. Thus \y = a +b.
c d 1 1

Then Ay =trace —\; = (a+d) — (a+b) =d —b.
If PA exchanges rows 1 and 2 of A, then APT exchanges columns 1 and 2. In fact

01 0
P=|10 0|=P'=P ' and B=PAPT = PAP!.

0 0 1
Then B is similar to A and they have the same eigenvalues. In this rank 1 and trace 11
-10 2 1
example, the eigenvalues of A and B are 0,0, 11. From A—111 = 3 -5 3
4 8 =7

1

the eigenvector for A = 111is | 3

4
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32

33

34

35

36
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(a) w is a basis for the nullspace (we know Au = OQu); v and w give a basis for the
column space (we know Av and Aw are in the column space).

(b) A(v/3+w/5) = 3v/3+5w/5 =v+w. Sox = v/3+ w/5is a particular
solution to Az = v + w. Add any cu from the nullspace to find all solutions.
(¢) If Az = wu had a solution, w would be in the column space : wrong dimension 3.

T

Always (uvT)u = u(vTu) so u is an eigenvector of uv™ with A = vTu. (Watch

T

numbers v1u, vectors u, matrices uv T !!) If vTu = 0 then A% = u(vTu)v? is the

zero matrix and A2 = 0,0 and A = 0,0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uv™ :

U1 ULV ULV2
A= v Vg | = has trace uqvy + ugvy = v
ug U201  U2V2

Tu=0

The vector (1,1, 1,1) is not changed by P. It is the eigenvector for A = 1. The other 3

) 3 )

eigenvectors (discussed in detail in Section 6.4) are

1 1 1

) -1 —1
T2, T3, Ly =

i? 1 (—i)?

i3 -1 (—i)3

The six 3 by 3 permutation matrices include P = I and three single row exchange
matrices P2, P13, P>3 and two double exchange matrices like P2 P3. Since PTPp=1
gives (det P)? = 1, the determinant of P is 1 or —1. The pivots are always 1 (but there
may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

27i/3

or O (for double exchange). The possible eigenvalues are 1 and —1 and e and

o—2mi/3
AB — BA = I can happen only for infinite matrices. If AT = A and BT = —B then
x'x = 2" (AB — BA)x = 2" (A"B + BT A) x < ||Az||||Bz|| + || Bz|| || Az||.

Therefore || Az|| || B|| > 5||2||* and ([A=||/[|x[|) (||Bz]l/ll=l]) > 5.
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37

38

A = €2™/3 and Ny = e 2™/3 give det A\ Ay = 1 and trace \; + Ao = —1.
cosf —siné ) o )

A= with @ = =~ has this trace and det. So does every M ~*AM!
sin 0 cos 3

(a) Since the columns of A add to 1, one eigenvalue is A = 1 and the other is ¢ — 0.6

(to give the correct trace ¢ + 0.4).

(b) If ¢ = 1.6 then both eigenvalues are 1, and all solutions to (A — I) x = 0 are

multiples of & = (1, —1). In this case A has rank 1.

(c) If ¢ = 0.8, the eigenvectors for A = 1 are multiples of (1, 3). Since all powers A™

1
also have column sums = 1, A™ will approach 1 = rank-1 matrix A*° with
3

eigenvalues 1, 0 and correct eigenvectors. (1,3) and (1,—1).
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Problem Set 6.2, page 242

1 Eigenvectors in X and eigenvalues 1 and 3 in A. Then A = XAX 'is

1 2 1 1 1 0] |1 -1 )
= . The second matrix has A = 0 (rank 1) and
0 3 0 1|10 3(]|0 1
11 1 1|]o o] |2 —3
A =4 (trace =4). Then A = XAX 1is =
3 3 -1 3] (0 4| |L 1
1 1
A3 =XA3Xland A~' = XA~1X L
Put the eigenvectors in X 1 1112 0 1 -1 2 3
A=XAX"1= = .
and eigenvalues 2, 5 in A. 0 1[0 5(]0 1 0 5

3 If A = XAX ! then the eigenvalue matrix for A + 27 is A + 2I and the eigenvector
matrix is still X. So A +2/ = X(A+2)X ' = XAX 1+ X(2)) X1 = A+2I

4 (a) False: We are not given the \’s (b) True (c) True since X has independent columns.
(d) False: For this we would need the eigenvectors of X.

5 With X = I, A = XAX ! = Ais a diagonal matrix. If X is triangular, then X ~! is
triangular, so X AX 1 is also triangular.

6 The columns of X are nonzero multiples of (2,1) and (0,1): either order. The same

eigenvector matrices diagonalize A and A~1.

1 1
7 Every matrix that has eigenvectors and has the form
1 -1
A:XAX_lz 1 1 A1 /2:l A+ A AL — Ao
1 -1 Ao 20 M= At

You could check trace = Ay + Az and det = 1 4A; Ay = A Aa.

8 A— XAX-1— 1 - 1 A Ao A1 0 1 =X
1ol M=2l1 1]]l0o N]||-1 N
XAkX_l _ 1 A Ao /\11C 0 1 =X 1
A=Al 1o Ml =1 Mo
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The second component is Fy, = (A\¥ — \§) /(A1 — Ao).

G G 55
9 (a) The equations are R A M with A = . This matrix
Gr+1 G 10
has Ay = 1, Ao = —1 with @y = (1,1), 2 = (1,-2)
112 1 2 1
111 o0 2 3 3 3
(b) A" = XA"X ! = S R
_ _ 5" 1 1 2 1
12| |0 (=5)"] |1 -1 2 L

10 The rule Fy42 = Fy11 + F} produces the pattern: even, odd, odd, even, odd, odd, . ..

11 (a) True (no zero eigenvalues) (b) False (repeated A = 2 may have only one line of

eigenvectors) (c) False (repeated A may have a full set of eigenvectors)

12 (a) False: don’t know if A = 0 or not.
(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

8 3 9 4 10 5 only eigenvectors
13 A= (or other), A = A= ;

ki i

-3 2 -4 1 -5 0| arex = (c,—c).
14 The rank of A — 3] is r = 1. Changing any entry except a1 = 1 makes A

diagonalizable (the new A will have two different eigenvalues)

15 A* = X AF X! approaches zero if and only if every |\| < 1; A; is a Markov matrix
$0 Amax = 1 and A¥ — A3°, Ay has A = .6 + .3 s0 A5 — 0.

6 .9 ) 1 0 1 1 1 0
16 = XAX'with A = and X = AR
4 1 0 .2 1 -1 0 0
11
Then A¥ = XAFX ! — ? ? : steady state.
2 2]
_ _ 9 0 -3 3 3
17 Ay is XAX 1 with A = and X = ; AL0 = (.9)10
0 .3 1 1 1 1
3 3 6 3 3
A0 = (.3)10 . Then A° = (.9)%° + (.3)10 because
—1 —1 0 1 —1
6| 3 3
Uy = is the sum of +

0 1 -1
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19

20

21

22

23

24

25

Solutions to Problem Sets
2 -1 111 -1 10 11
= XAXil = — and
-1 2 201 1o 3| |-1 1
1 -1 1 0 11
Ak = XAFX -1 = =
211 1) fo 3¢ |-1 1
. . 1]1+3% 1-3*
Multiply those last three matrices to get A¥ = —
211-3F 143
g E £k K
1115 0 1 1 5% H¥ —4
BF = XAPX ! = =
0 -1 |0 4| |0 -1 0 4+
det A = (det X)(det A)(det X 1) = det A = A; - -+ \p. This proof (det = product

of \’s) works when A is diagonalizable. The formula is always true.

trace XY = (agq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = traceY X.
Diagonalizable case: the trace of X AX ~1 = trace of (AX 1) X = trace of A = ¥\,;.
AB — BA = I is impossible since the left side has trace = 0.

A 0 X 0 A O X! 0

If A= XAX !then B = = . So
0 24 0 X 0 2A 0 X!

B has the original \’s from A and the additional eigenvalues 2)q, ..., 2\, from 2A.

The A’s form a subspace since cA and A; + As all have the same X. When X = [
the A’s with those eigenvectors give the subspace of diagonal matrices. The dimension

of that matrix space is 4 since the matrices are 4 by 4.

If A has columns 1, . . ., T,, then column by column, A2 = A means every Ax; = x;.
All vectors in the column space (combinations of those columns x;) are eigenvectors
with A = 1. Always the nullspace has A = 0 (A might have dependent columns,
so there could be less than n eigenvectors with A = 1). Dimensions of those spaces

C(A) and N(A) add to n by the Fundamental Theorem, so A is diagonalizable

(n independent eigenvectors altogether).

Two problems: The nullspace and column space can overlap, so x could be in both.

There may not be r independent eigenvectors in the column space.



Solutions to Problem Sets 97

26

27
28

29

30

1 1|3 11 2 1
R=XVAX~'= /2 = has R? = A.
1 -1 1|1 -1 1 2

\/E needs \ = \/§ and /—1, the trace (their sum) is not real so \/E cannot be real.

— 0
Note that the square root of has fwo imaginary eigenvalues v/—1 = ¢ and
0 -1
0 1
—i, real trace 0, real square root R = .
-1 0

The factorizations of A and B into X AX ~! are the same. So A = B.

A= XA X'and B = XA, X '. Diagonal matrices always give AjAy = AxA;.
Then AB = BA from

XA X' XX = XA1A0X 1 = XAgA1 X1 = XA X ' XA X! = BA.

a b b a—d b
(@) A= has A\ = aand A = d: (A—al)(A—dI) =
0 d 0 d—a 0 0

0 0 11 2 1 .
= . (b)) A= has A% = and A2 — A — I = 0is true,
0 0 1 0 1 1

matching det(A — AI) = A2 — X\ — 1 = 0 as the Cayley-Hamilton Theorem predicts.
When A = XAX ! is diagonalizable, the matrix A — \;I = X (A — N\ 1) X ! will
have 0 in the j, j diagonal entry of A — ;1. The product p(A) becomes

p(A) = (A= D) (A= D)= X(A =M I)--- (A= N, )X L
That product is the zero matrix because the factors produce a zero in each
diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices
approaching A.)
Comment 1 have also seen the following Cayley-Hamilton proof but I am not con-

vinced :

Apply the formula ACT = (det A)I from Section 5.1 to A — \I with variable \. Its

cofactor matrix C' will be a polynomial in A, since cofactors are determinants:
(A= XNCT(N) = det(A — AT = p(M)I.
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31

32

33

34

Solutions to Problem Sets

“For fixed A, this is an identity between two matrix polynomials.” Set A = A to find
the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

I am not certain about the key step of substituting a matrix A for A. If other matrices
B are substituted for A, does the identity remain true ? If AB # BA, even the order

of multiplication seems unclear . . .

If AB = BA, then B has the same eigenvectors (1,0) and (0,1) as A. So B is also
diagonal b = ¢ = 0. The nullspace for the following equation is 2-dimensional :

1 0 a b a b 1 0 0 —-b 00
0 2 c d c d 0 2 c 0 00

Those 4 equations 0 = 0, —b = 0,c¢ = 0,0 = 0 have a 4 by 4 coefficient matrix with
rank =4 — 2 = 2.

Bhas A =iand —i,so B*has A* = 1 and 1. Then B* = [ and B!0%4 = J,

C has A\ = (1 £ /3i)/2. This X is exp(#7i/3) so A3 = —1 and —1. Then C® = —T
which leads to C19%4 = (—1)34C = —C.

. cos —sind , .
The eigenvalues of A = are A = e and e~ (trace 2 cos@ and

sinf  cosf
determinant A\; Ay = 1). Their eigenvectors are (1, —i) and (1,4):

1 1 eine /|
A" = XAnX L = , /2
—i i e—inb 7 1
(eme + efm(f)/Q - cosnfl —sinnf
(ef — e=inf) /2 ... sinné cosnf

Geometrically, n rotations by € give one rotation by n6.

Columns of X times rows of AX ~! gives a sum of r rank-1 matrices (r = rank of A).

Those matrices are Alcclyrlr to )\Twry;r.
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35 Multiply ones(n) * ones(n) = n * ones(n). Then
AA~' = (eye(n) + ones(n)) * (eye(n) + C * ones(n))

=eye(n)+ (1 + C 4+ Cn) xones(n) = eye(n) for C = —1/(n + 1).

36 B = Afl leads to A;A; = B(A;A2)B~1. Then A A; is similar to A; A, : they have

the same eigenvectors (not zero because A; and A, are invertible).

37 Choose B = Al_1 to show that As A; is similar to A1 A,. Assuming invertibility (no

zero eigenvalues) this shows that A3 A; and A; A have the same eigenvalues.

38 This matrix has column 1 = 2 (column 2) so z; = (1,—2,0) is an eigenvector with
A1 = 0. Also A(1,1,1) = (1,1,1) and Ay = 1. Trace = zero so A3 = —1. Then
12920 = 1 and (—1)2°2° = 1 and (0)2°2° = 0. So A2°!” has the same eigenvalues and

eigenvectors as A: A?2%1? = A and 42020 = A2, TO COMPLETE FOR 2023
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Problem Set 6.3, page 238

1 (a) ASB stays symmetric like S when B = AT
(b) ASB is similar to S when B = A~!

To have both (a) and (b) we need B = AT = A~! to be an orthogonal matrix Q.
Then QSQ" is similar to S and also symmetric like S.

2 \ = 0,4, —2; unit vectors (0,1, —1)/v/2 and +(2,1,1)/v/6 and £(1, —1,—1)/+/3.
Those are for S. The eigenvalues of 7" are A = 0, \/5, —\/5 in A (trace = 0).
The eigenvectors of T are £(2,2, —1) and (1++/5,1—+/5,2) and (1 —v/5,14++/5,4).

9 12
385 = has A = 0 and 25 so the columns of () are the two eigenvectors:
12 16
8 6 .
Q= or we can exchange columns or reverse the signs of any column.
-6 .8

1 2
4 (a) has A = —1and 3 (b) The pivots 1, 1 — b2 have the same signs as the \’s
2 1

(c) The traceis A\; + A2 = 2, so S can’t have two negative eigenvalues.
5 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the
triple product ATC A is 3 by 3.

10 0 1
6 A=10and —5in A = , T = and have to be normalized to
0 -5 2 -1
. . 1 (1 2
unit vectors in Q = — . Then S = QAQT.
V5o 1

0 1
If A3 =0thenall \> =0soall A\ =0asin A = . If Ais symmetric then
0 0

A3 = QA3QT = 0 requires A = 0. The only symmetric Ais Q0Q" = zero matrix.

31 3 —3 3 3 9 12 64 —.48 36 .48
7 —2 +4 ; =0 +25
13 -1 1 Lol 12 16 —48 .36 48 .64
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8

10

11

12

13

14

l T T2 1 is an orthogonal matrix so P, + P, = &1} + x2Ta =
x|
T1 T2 =QQT =TI;also PP, = x1(x]x2)x] = zero matrix.
T3

Second proof: Py P, = P;(I — P;) = P — P, = 0 since Pf = P.

A 0 0 A
A= has A = ¢b and —ib. The block matrices and are
-b 0 0 A A 0
also skew-symmetric with \ = ¢b (twice) and A = —ib (twice).

M is skew-symmetric and orthogonal; every ) is imaginary with |A\| = 1. So A’s must

be 7, 7, —i, —1 to have trace zero.
7

A = has A = 0,0 and only one independent eigenvector x = (i, 1).
1 —i

The good property for complex matrices is not AT = A (symmetric) but At =4

(Hermitian with real eigenvalues and orthogonal eigenvectors).

1 1 0 1 0 1 Perpendicular in )
Shas@= |1 -1 0|;BhasX =10 1 0. Notperpendicularin X
0 01 0 0 2d| since ST = Sbut BT #£B
1 3+4i| o .
S = is a Hermitian matrix (S = S). Its eigenvalues 6 and —4 are
3—4 1

real. Here is the proof that )\ is always real when S =5
Sx = Az leads to ST = A\x. Transpose to T1 S = T L\ using S' =5

Then Z' Sz = T Az and also Z' Sz = T™ Ax. So A = )\ is real.

1 2| (b) Truefrom AT = QAQT = A
(a) False. A = (d) False!

0 1| (c) TruefromS—!=QA QT
(e) True. If x is a column of the identity matrix, then the energy =¥ Sz is a diagonal
entry of S. Since S is positive definite in this problem, each diagonal entry is a positive

number T Sz.
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0 1
A and AT have the same \’s but the order of the «’s can change. A =

-1 0
has A\; = i and Ay = —i with z; = (1,14) first for A but z; = (1, —i) is first for AT.

A is invertible, orthogonal, permutation, diagonalizable; B is projection, diagonaliz-

able. A allows QR, XAX 1, QAQT; B allows XAX ! and QAQ™.

Symmetry gives QAQT if b = 1; repeated A and no X if b = —1; singular if b = 0.
Orthogonal and symmetric requires |A\| = 1 and A real, so A = 1. Then S = +7 or

cosf —sinf| [1 0 cosf sinf cos 20 sin 26
+5 =QAQT = =

sin 6 cosf| |0 —1| [—sinf cosb sin20 —cos26
Eigenvectors (1,0) and (1, 1) give a 45° angle even with AT very close to A.

T

ail is [q11 ce q1n:| [)\1611 e )\nﬁln] S )\max (|(]11|2 +-- 4+ |q1n|2) = Amax-
(@) 27 (Az) = (Az)Tz = 2TATe = —xTAx so xTAx = 0. (b) ZT Az is pure

imaginary, its real part is T Az + yTAy = 04+0 (c) detA = A\;... N\, >0 :
because pairs of \’s = ib, —ib multiply to give +b>.

Since S is diagonalizable with eigenvalue matrix A = 21, the matrix S itself has to be
XAX~! = X(2I)X~! = 2I. The unsymmetric matrix [2 1 ; 0 2] also has A = 2,2
but this matrix can’t be diagonalized.

(@) ST=Sand STS =Tleadto S%? =1.

(b) The only possible eigenvalues of S are 1 and —1.

I 0 T
(c) A= soS= @
0 —I Q3

Suppose a > 0 and ac > b? so that also ¢ > b%/a > 0.

= Q1QT — Q2Q7 with QT Q2=0.

Q1 Qz] A

(1) The eigenvalues have the same sign because A\ A2 = det = ac — b% > 0.

(i1) That sign is positive because A\; + Ay > 0 (it equals the trace a + ¢ > 0).

10
Only Sy = has two positive eigenvalues since 101 > 102,
10 101
xS x = 522 + 122129 + 722 is negative for example when z; = 4 and x5 = —3:

A is not positive definite as its determinant confirms; S5 has trace cg; S3 has det = 0.
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27

28 S

29

30

31

32

33

34

35

Positive definite [ 1 0 17 1 b [ 1 0 17 1 0 1 0

= =LDLT
for—3<b<3 b 1|0 9—-10b2 b 11|10 9—-v2||0 1
Positive definite 1 0] |2 4 1 0]1(2 0 1 2

= =LDLT.
forc > 8 2 1|10 ¢c-—8 2 1]]0 ¢c—8(]|0 1
Positive definite 1 0 c 0

L = D= S =LDL".

for ¢ > |b| —b/c 1 0 c—b*ec

22 +4xy+3y? = (v+2y)? —y? = difference of squares is negativeat v = 2,y = —1,

where the first square is zero.

0 1 0 1 T
= produces f(z,y) = {x y} = 2xy. Shas A = 1 and
1 0 1 0] |y
A = —1. Then S is an indefinite matrix and f(z,y) = 2xy has a saddle point.
2 3 3
1 2 6 5 o ) )
ATA = and ATA = are positive definite; ATA= |3 5 4| is
2 13 5 6
3 4 5

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; third AT A is singular.

2 -1 0 2 -1 -1 1 0

has pivots o
S=1-1 2 1 5 4 T=1-1 2 —1|issingular; T |1| = |0
0 -1 2| ¥¥ 1 -1 2 1 0

Corner determinants |S1| = 2, |S2| = 6, |S3| = 30. The pivots are 2/1,6/2,30/6.

S is positive definite for ¢ > 1; determinants ¢,c¢* — 1, and (¢ — 1)?(c + 2) > 0.
T is never positive definite (determinants d — 4 and —4d + 12 are never both positive).

1 5
S = is an example with a 4 ¢ > 2b but ac < b2, so not positive definite.
5 10
The eigenvalues of S~ are positive because they are 1/A(S). Also the energy is

TS 1z = (S7'z)TS(S~1x) > 0 forall = # 0.

xT Sz is zero when (1, 29, 73) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally =T Sx goes negative for x = (1, —10,0) because the second pivot is negative.
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36 If aj; were smaller than all \’s, S — a;;1 would have all eigenvalues > 0 (positive
definite). But S — ;I has a zero in the (7, j) position; impossible by Problem 35.

37 (a) The determinant is positive; all A > 0  (b) All projection matrices except [
are singular  (c) The diagonal entries of D are its eigenvalues
(d) S = —1 has det = +1 when n is even, but this S is negative definite.

38 S is positive definite when s > 8; T is positive definite when ¢ > 5 by determinants.

1 -1 1(+9 1 1
39 A4 |1 1 VIl o1 _ 2 l;A:Q 4 0 QT = 3 1
V2 V2 1 2 0 2 1 3
. 112 1 3
40 The ellipse 2> + xy + y?> = 1 comes from S = with A = — and —.
1/2 1 2 2
The axes have half-lengths \/5 and /2/3.
S=CTC 9 3 4 8 1 0 4 0 1 2 2 4
41 = ; = and C =
S not A 3 5 8 25 2 1 0 9 0 1 0 3
3 0 0 1 1 1
T
42 The Cholesky factors C' = (L\/E) =10 1 2|/andC = |0 1 1 | have
00 2 00 V5

square roots of the pivots from D. Note again C'C' = LDLT = S.

43 (a) det S = (1)(10)(1) = 10; (b) A\ = 2 and 5; (¢) 1 = (cosfsinf) and
x2 = (—sind, cos 0); (d) The \’s are positive, so S is positive definite.

44 az? + 2bxy + cy? has a saddle point if ac < b2. The matrix is indefinite (A < 0 and
A > 0) because the determinant ac — b? is negative.

45 If ¢ > 9 the graph of z is a bowl, if ¢ < 9 the graph has a saddle point. When ¢ = 9 the
graph of z = (2 + 3y)? is a “trough” staying at zero along the line 22 + 3y = 0.

46 A product ST of symmetric positive definite matrices comes into many applications.
The “generalized” eigenvalue problem K@ = AMx has ST = M~ K. (Often we use
eig( K, M) without actually inverting M.) All eigenvalues A of ST are positive :

STx = M\ gives (Tx) " STx = (Tx)"Az. Then A = T TTSTx/x"Tx > 0.
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47

48

49

Put parentheses in zT ATC Az = (Ax)TC(Ax). Since C is assumed positive definite,
this energy can drop to zero only when Az = 0. Sine A is assumed to have independent
columns, Az = 0 only happens when = 0. Thus ATC A has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-
plied Mathematics start with many examples of ATC A in a wide range of applications.

I believe positive definiteness of ATC A is a unifying concept from linear algebra.

(a) The eigenvalues of \yI — S are A\; — A1, A1 — Ao, ..., A1 — A,. Those are > 0;

A1l — S is semidefinite.
(b) Semidefinite matrices have energy zT (MI—S)x2 > 0. Then A, zTx > 2T Sz.

(c) Part (b) says T Sx/xTx < \; for all . Equality at the eigenvector with Sz =

A1z. So the maximum value of zT Sz /zTx is \;.
Energy ' St = a (v1+x2+13)? +c(va—x3)? > 0ifa > 0 and ¢ > 0: semidefinite.

S has rank < 2 and determinant = 0; cannot be positive definite for any a and c.
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Problem Set 6.4, page 269

1 1+ 1
1zzl—z’leadstOEZ1+iandr:\/§and;:W—Ef+i):5(14—2’)
™

do=—2=_45°
an 1

1—X 144 ) )
2 det = A2 —3)\+2—2 =0 gives eigenvalues A = 3 and 0.

1—i 2—X
3 If Qr = Az then ||Qx|| = |\ ||z||. Square both sides and use @TQ = [ to find

|A|*> = 1. Therefore |\| = 1 for unitary matrices Q.

1 1 1 1 1 1
4 Fy= |1 3 43 | =11 L(-1+3i) 3(-1-+34)
1 etrl/3 e8ml/3 | 1 L(-1-v3i) 1(-1+V3i)
1 columns
) I B F; 0
5 Fs = 6 by 6 matrix = 0,2,4,1,3,5
I —-B 0 F

3
- of I (6 by 6)

The 3 by 3 matrix B is diagonal with entries 1, e2™%/6_ ¢47i/6,

1 11 1 21 4 4 4
6CD=|1 11 11 2|=14 4 4
1 11 2 11 4 4 4

121

111

121

121

121
convolutionc xd 1 3 4 3 1 reducesto4 4 4 for cyclic convolution ¢ &) d

4 1 1
7 ConvolutionRule F'(c ® d) = (Fe¢) . (Fd). ThisisF' | 4 |=F | 1 | . xF | 2

4 1 1
with the 3 by 3 Fourier matrix F' = F3 : Multiply components for ..
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10

11

12

13

14

15

4l 11 1 4 [ 12

Fl 4| = 1 2mi/3  p4mi/3 4 | = 0

4 1 e47ri/3 eSﬂ'i/3 4 0
1] T3 1 4] 3 4 12
F 1 — 0 F 2 — 271'1/3 and 0 .k e27’l’i/3 0
1 0 1 471'1/3 0 84771'/3 0

1

cosf+ising = (1 - 56’2 +-- ) ( - —+- ) = 1+i0+— (16’) (i9)3+

(€) (e'?) = 2 is (cos @ + isin )2 = cos 26 + i sin 26.

The left side is cos? @ + 2i cos §sin @ + i sin? 4.

Matching the right side gives cos 26 = cos? § — sin? § and sin 26 = 2 cos 6 sin 6
The eigenvalues of a circulant matrix C' are F'c in equation (10).

If C is invertible then all its eigenvalues must be nonzero.

In that case C~! is also a circulant because its entries (from the formula for C~1) are

also constant down each (cyclic) diagonal. There are other proofs too.
This problem is looking for a solution !

An n by n circulant matrix has UT = (' (Hermitian) if its diagonal entries have cg real,
¢1 = Cp_1,C2 = Cp_2,... The circulant has aTC = I (unitary) if |co + c1z + -+ +
Cpo1x" 2 =1

Columns 0 and 2 of the Fourier matrix Fy in equation (7) add to (2,0, 2,0). Columns
1 and 3 add to (2,0,—2,0).

z = w? = €2™/32 would be a 32nd root of 1: 232 = 1.

2 = /w = €2™/128 would be a 128th root of 1.

The 4 eigenvalues 0, 2, 4, 2 of C' come from the eigenvalues 1,4, —1, —i of Pj.

A=2-1-1=0 A=2-i—3=2 AX=2—(=1)—(-1)* =4 A=2+i+i®=2.
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Problem Set 6.5, page 280

1
1 Eigenvalues 4 and 1 with eigenvectors (1,0) and (1, —1) give solutions u; = e*!
0
1 5 1 1
and uy = e . If w(0) = =3 +2 , then use those
-1 -2 0 -1
_ 1 1
coefficients 3 and 2: u(t) = 3e* + 2¢t
0 -1

2 z(t) = 2¢! solves dz/dt = z with 2(0) = 2. Then dy/dt = 4y — 6e! with y(0) = 5

gives y(t) = 3e** + 2¢t as in Problem 1.

3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and A = 0 is an eigenvalue.

-2 3
(b) The eigenvalues of A = are Ay = 0 with eigenvector z; = (3,2) and
2 -3
A2 = =5 (to give trace = —5)-with @2 = (1, —1). Then the usual 3 steps:
4 3 1
1. Write u(0) = as + = x1 + x2 = combination of eigenvectors
1 2 -1

0

2. The solutions follow those eigenvectors: €%z, and e 5!z

3. The solution u(t) = @1 + e~ >'x5 has steady state ©; = (3, 2) since e — 0.

4 dlv + w)/dt = (w—v) + (v —w) = 0, so the total v + w is constant.
-1 A =0 1 1
A= has with ; = , Loy =
1 -1 Aoy = —2 1 -1
v(0) 30 1 1 v(1) =20+ 10e72  wv(oo) =20
= =20 +10 leads to
w(0) 10 1 -1 w(l) =20 —10e72?  w(oo) =20
d |v -
55 = has A = 0and A = +2: v(t) = 20 + 10e?* — —oo as
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a 1
6 A= has real eigenvalues a+1 and a — 1. These are both negativeifa < —1.
1 a

In this case the solutions of du /dt = Aw approach zero.

b —1
B = has complex eigenvalues b+ 7 and b — . These have negative real parts
1 b

if b < 0. In this case all solutions of dv /dt = Bwv approach zero.

7 A projection matrix has eigenvalues A = 1 and A = 0. Eigenvectors Pz = z fill the

subspace that P projects onto: here = (¢, c¢). Eigenvectors with Px = 0 fill the

perpendicular subspace: here = (¢, —c). For the solution to du/dt = — Pu,
3 2 1 .12 or | 1 1
u(0) = = + u(t) =e” +e approaches
1 2 -1 2 -1 -1
6 — 2 1 _
8 has\; =5, 1 = LA =2, 2o = ; rabbits 7(t) = 20e5t +10e?,
2 1 1 2

w(t) = 10e% + 20e?!. The ratio of rabbits to wolves approaches 20/10; (somewhat

against nature) e dominates.

4 1 1 1 , 1 4cost
9 (a) —2| |42 . (b) Thenu(t) = 2¢* |~ |+2¢~i -
0 ) —1 ) —1 4sint
d |1 ' 0 1] | . ,
T Il L I L Y| This correctly givesy’ =y’ and y” = 4y+5y’.
dt y/_ _y// 4 5 Y/
0 1
A= has det(A — M) = A2 — 5\ — 4 = 0. Directly substituting y = e** into
4 5

y’' =5y + Zly also gives A2 = 5\ + 4 and the same two values of \. Those values are
1
2

(5 & +/41) by the quadratic formula.
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11

12

13

14

15

16

17

18

19

Solutions to Problem Sets

0 1 1 t
The series for et is et = I + ¢ + zeros = . Then
0 0 0 1

y(t) = Lot (v = y(0) +4/(0)t . This y(¢) = y(0) + y’(0)¢ solves

y'(t) 0 1] 14'(0) y'(0)
the equation—the factor ¢ tells us that A had only one eigenvector : not diagonalizable.

0
A= has trace 6, det 9, A = 3 and 3 with one independent eigenvector

-9 6

(1,3). Substitute y = te3! to show that this gives the needed second solution (y = €%

is the first solution).

(a) y(t) = cos 3t and sin 3¢ solve y”" = —9y. Itis 3 cos 3t that starts with y(0) = 3 and

0 1
y'(0) = 0. (b) A= has det = 9: A\ = 3¢ and —3i with eigenvectors
-9 0

1 , 1 , 1 3 cos 3t
T = and . Thenu(t) = 363” +%e‘3” = .
31 —3i 3% -3 —9sin 3t

When A is skew-symmetric, the derivative of ||u(t)||? is zero. Then [|[u(t)|| = ||eA*u(0)]|

A

stays at ||u(0)||. So the matrix el is orthogonal when A is skew-symmetric (AT =—A4).

u, = 4and u(t) = ce’+4. For the matrix equation, the particular solution u, = A~'b
|4 1 0 4
is and u(t) = cet + coet +
2 t 1 2
Aty _ 244 14302 1 1 443 _ 1 a242 4 1 4343
d/di(e?) = A4+ A%t + S AB2 + A 4o = AT+ At + 5 A2 + G A3 ),

This is exactly Ae?, the derivative we expect from e“?.

1 —4t 0 —4
eBt = I + Bt (short series with B?> = ) = . Derivative = =
0 1 0 0

BePB! = B in this example.

The solution at time  + T is eA(*+7)44(0). Thus e times 47 equals eA(¢+7),

A? = Agivese =T+ At + A2 + A3 + - =T+ (¢! — 1)A.
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21

22

23

24

25

26

111

e 4(e—1 1 -
et = from 21 and e® = from 19. By direct multiplication
0 1 0 1
A,B B,A 4 ,A+B 0
e“e” £eet £e =
0 1
2 _
) 1 3
The matrix has A2 = = = A. Then all A" = A. So et =
00 00
et 3(et —1) .
T+ @t+t2/20+-- )A=T+ (et —1)A= as in Problem 19.
0 0

At (b) If Az = A then eM*x = e*Ma and e # 0.

(a) The inverse of e’ is e~

To see e, write (I + At + 2A%2 + )z = (1 + M+ 2N} + -z = eMa.

1 0 1 0 1 At 1 At
Invert toproduceU,,+1 = U, = U,.
At 1 —-At 1[0 1 —At 11— (At)?
1 ) .
At At = 1, has A = €'"/3 and e~*"/3. Both eigenvalues have \® = 1 so
-1 0

A® = I. Therefore Ug = ASU, comes exactly back to Uy.

First A has A\ = +i and A* = T. 1-2n —2n

Linear growth.
2n+1

2n

Second Ahas A = —1,—1 and A™ = (—1)"

1 1—a? 2a

With a = At/2 the trapezoidal step is U, 11 = T

U,.

2

—2a 1l-—a

That matrix has orthonormal columns = orthogonal matrix = ||U 41| = ||[U ||
For proof 2, square the start of the series to see (I + A+ A% + $A%)2 =T+ 24+
3(24)? + & (24)® 4 - - - The diagonalizing proof is easiest when it works (but it needs

a diagonalizable A).
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Problem Set 7.1, page 295

0 0 O 1 00
1ATA =101 o0 AAT = | 0 64 0 | giveoy = 8and oy = 1.
0 0 64 0 0 0
vy = (0,0,1), w3 =(0,1,0), w3 = (0,1,0), wus = (1,0,4). After removing
1
row 3 of A and column 3 of AT, still has 0 = 64 and 03 = 1.
0 64
2 det(B— M) = —X*+ 1= = 0gives A\ = 1 times 1 and /% and e*™'/3.

The singular values are ¢ = 8 and 1 and 1/1000. So A changed by 1/5 and o only
changed by 1/1000.

3 AT has the same singular values as A, and the singular vectors change from Av = ocu

to Au = owv.
0 A (7% A’Uk Uk 0 A — Uk A’Uk — UL
4 = =0k and = =—0F
AT 0 (3 AT’UJC (3 AT 0 (3 —AT’UJC (3

So this one symmetric matrix S reveals the w’s and v’s and ¢’s in the SVD of A.

5 AT A is symmetric with \; = 25 and Ay = 0 so A has 0; = 5. The eigenvectors of

AT Aare vy = (2,1) and vy = (—1,2): orthogonal. They are the v’sin A = UXVT,

1 0 1 1 1 1
6 A AT = = produces A> — 3\ +1 = 0 and
1 1 0 1 1 2
1 ) 1
A= 3 (3 + \/5) The singular values are the square roots o = 3 (\/5 + 1).
11
1 0 1 0 0 1 2 2
Ay AT = = has A2 — 6\ + 4 = 0 and
1 1 1 1 1 1 2 4
0 1

1 2
A= 5 (6 +v/20) = 34-/5. The singular values are the square roots ¢ = % (\/5 +1).
For the singular vectors I recommend the SVD commands in MATLAB or Julia or

Mathematica.
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7 There are 20 singular values because a random 20 by 40 matrix almost surely has rank 20.

8 (a) The singular values of A + I are square roots of eigenvalues of (A + I)T(A + I).
They are not eigenvalues of ATA + I.

(b) This formula VX~1UT is the best way to compute the pseudoinverse AT,
We could check the four Penrose conditions on A1 from Section 4.5. For example
AATA = (E oiuiv;r) (E 'vju;-r/oj) (E okukvg) = Y ouv) .
Notice also that AAT = Y w; vl viu; = Y ufu; = UTU = projection.
9 The singular values of () are the positive square roots of eigenvalues of Q™ (Q—and all

those eigenvalues are 1 because QTQ = I when Q is orthogonal.

10 If the \’s are in descending order, the maximum of R(x) = (A1¢? +- -+ \,c2) /(2 +
-+ 4 c2)is A\ (when & = v;). Then ¢y, ca,..., ¢y is 1,0,...,0. The minimum is
R(x) = A\, when x = v,, and ¢ = (0,0,...,0,1).

11 2Tv; = 0 means that the coefficientis ¢; = 0 in & = ¢;v; + - -+ + ¢,v,,. Then
Aocd + -+ A2
X > ) = Az.
02 _|_ - + Cn

5 3
12 The first matrix has ATA = with A = 8 and A = 2. The eigenvectors of
3 5

AT A = right singular vectors vy, vs of A are (1,1)/y/2 and (1, —1)/+/2. The left
singular vectors are u = Av/o = (4,0)/v/2v/8 = (1,0) and (0,2)/v2v2 = (0,1).

25 25
The second matrix has ATA = so A = 50 and A = 0. The right singular

25 25
vectors of A are again v; = (1,1)/v/2 with oy = v/50 and vo = (1, —1)/+/2 with no
o2 (or you could say o2 = 0 but our convention is no o3). Then u; = Av;/ V50 =
(3,4)/5.
110
13 This matrix has ATA= | 1 2 1 | witheigenvalues A = 3,1,0and o; = v/3 and

0 1 1
o0 = 1 and no o3. The eigenvectors of ATA are v; = (1,2,1)//6 and
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vy = (1,0,-1)/v2 and v3 = (1,-1,1)/v/3. Then Av = cu gives u = (1,1)/v2
and ug = (1,—1)/v/2.
A Lo 11 1 V3 0|1 2 1| /V6
01 1| V2|1 —1{|lo 1||t 0 —1]| /32
14 This small question is a key to everything. It is based on the associative law (AAT)A =
A(AT A). Here we are applying both sides to an eigenvector v of AT A :
(AAT)Av = A(ATA)v = A\v = M.
So Aw is an eigenvector of AAT with the same eigenvalue A\ = o2.

1 3] |v50 o] |1 2

T
01
— T _ -3 -1 0 0] (2 -1
15 A=UXV" = uy Uy v, vy| =
0 V10 V5
: L2, : o
This A = is a 2 by 2 matrix of rank 1. Its row space has basis vy, its nullspace
3 6

has basis wvq, its column space has basis u1, its left nullspace has basis us :

R Lt Null L 2
ow space —= ullspace —=
\/g ) \/5 1
1|1 1 3
Column space —— ., NUAT) —
P V10 |3 4% V10 | ¢
16 (a) The main diagonal of AT A contains the squared lengths ||[row 1|, - - | |[row m]|?.

So the trace of AT A is the sum of all a;.

(b) If A has rank 1, then ATA has rank 1. So the only singular value of A is
o1 = (trace ATA)Y/2,

17 The number oy (A" )omax(A) is the same as omax(A)/Tmin(A). This is > 1.
It equals 1 if all o’s are equal, and A = UXVT is a multiple of an orthogonal matrix.

The ratio oyax/Omin i the important condition number of A.

18 The smallest change in A is to set its smallest singular value o5 to zero.
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Problem Set 7.2, page 301

1 (a) Suppose the identity matrix / is N by N, and an N by N approximating matrix A
has rank 7 < N. Then I — A will have N — r eigenvalues equal to 1, meaning that
the error norm ||I — A|| is at least 1, and I is impossible to compress by a lower

rank matrix.

(b) A matrix with a horizontal-vertical cross looks like A :

Z€ros ones Zzeros Zeros ones Zeros ZEros Zeros Zeros
ones ones ones = Z€ros ones Zzeros + ones zZeros ones
ZE€rosS ones Zeros ZE€ros ones Zzeros Z€ros Zeros Zeros

Those are both rank one matrices (all nonzero rows equal) so A has rank 2.

1 2 1 1 0O 0 0 O 1[1211}0{0—200}
2A=|2 4 2 2 |+|0 -2 0 0| =2 +1 1
1 2 1 1 0 0 0 O 1 0
and the rank is 2.
1 2 2 1 [ 1 2 2 } 0 [ 0 1 1 }
B = = + also has rank 2.
1 3 3 1 1
_ 1 1 _
1 2 2 9 13
3 BBT = 2 3| = trace = 28 and det = 2.
1 3 3 13 19
L 2 3 -
1 1 - 2 5 5
1 2 2
BTB=1| 9 3 =5 13 13 trace = 28 and det = 0.
1 3 3
2 3 - 5 13 13

The 2 nonzero eigenvalues must be the same for both matrices. They are 01, 02 =

14 £ /142 — 2. T would call B compressible when o5 is so much smaller than o7y .
4 (computer question svd(A)).

5 The Japanese flag has a circle filled by 1’s, with diameter = 2N 1’s. Outside the circle

are zeros. The rank is approximately C/N. What is the number C'? Alex Townsend
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contributed this key idea: The circle contains a big square matrix filled by 1’s. The
rank of that all-ones matrix is only 1.

So we only have to count the rows above and below that square ! Multiply by 2 to

include the columns to the left and right of the square.

2
N The picture shows (1 — %) N rows of 1’s above the
1 0
Q N square—and repeated below the square. It also shows
2 1|1 V2
1 — — | N columns of 1’s to the right of the square—and
0

repeated to the left.
Combined, those (2 — v/2) N rows and columns (plus 1 for the big square) tell us the
rank of this 2V by 2N Japanese flag containing the red circle.

6 The N by N matrix A is filled by the values A;; = F'(i/N, j/N) of the two-variable
function F'(x,y), by taking the points (x,y) = (¢/N, j/N) on a uniform square grid

(z and y go from O to 1). Three choices of that function F':

1) F = xy produces a symmetric rank-1 matrix. Its ¢, j entry is a multiple of the

product 7 times j. All rows of F' contain a multiple of the vector (1,2,...,N).

2) F» = x + y gives a sum of 2 rank-one matrices (the rank is 2). One matrix has

constants along each row. The other has constants down each column.

3) F5 = (x,y) = 2 + y? will also produce a sum of constant rows (from z?) and

constant columns (from y2). Again rank = 2.
7 Symmetric matrix S if F'(z,y) = F(y,z). Example F = z + y.
Antisymmetric matrix A if F'(z,y) = —F(y, z). Example F = z — y.
Matrix of rank 2 if F'(z,y) = F(z) + F(y) (and other possibilities too ?)

Singular matrix M from a sum of less than n rank-one matrices (please expand this

part of the answer).
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Problem Set 7.3, page 307

1 The row averages of Ay are 3 and 0. Therefore
210 -1 -2 AAT 1|10 O
A= and S = =
110 1 -1 4 4104

10
The eigenvalues of S are \; = T and Ay = 1= 1. The top eigenvector of S is

. I think this means that a horizontal line (the = axis) is closer to the five points
0

(2,-1),...,(—2,—1) in the columns of A than any other line through the origin (0, 0).

2 Now the row averages of A are % and 2. Therefore

0
4

1
-5 AAT 1
2
d S = = —
an = :

o Nlw

Again the rows of A are accidentally orthogonal (because of the special patterns of

0
those rows). This time the top eigenvector of S’ is . So a horizontal line is closer

1

to the six points (3,—1),...,(—%,—1) from the columns of A than any other line
through the center point (0, 0).

1 2 3 -1 0 1

34 = has row averages 2 and 3 so A =

5 2 2 2 -1 -1

1 1| 2 =3
Then S = ~AAT = = .

2 21 _3 6

Then trace (S) = 3 (8) and det(S) = (%)2 (3). The eigenvalues A(S) are £ times the
roots of A2 — 8\ + 3 = 0. Those roots are 4 + /16 — 3. Then the ¢’s are /\; and
Vg
2 0 0
4 This matrix A with orthogonal rows has S = - = % 0 8 0.

0 0 4
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With X’s in descending order A1 > Ay > A3, the eigenvectors are (0, 1,0) and (0,0, 1)
and (1,0,0). The first eigenvector shows the w; direction = y axis. Combined with

the second eigenvector us in the z direction, the best plane is the yz plane.

These problems are examples where the sample correlation matrix (rescaling .S so all
its diagonal entries are 1) would be the identity matrix. If we think the original scaling
is not meaningful and the rows should have the same length, then there is no reason to

choose u; = (0,1, 0) from the 8 in row 2.

5 Recall that least squares measures vertical errors (squared distances up or down from
data points to the closest line) while PCA measures perpendicular distances to the line.
They are different problems. Ordinary least squares is different from PCA = perpen-

dicular least squares.

~ 3 0. |0 ~ 0 . 5
ATAZ=ATbis = leads to = . Best line is y = —t.
0 14 5 5/14 14

PCA finds the line through (0, 0) whose perpendicular distances to the points (—3, —1),

(1,0),(2,1) is smallest. The computation finds the top eigenvector of AT A, where A

is now the 2 by 3 matrix of data points:

-3 -1
-3 1 2 14 5
AAT = 1 0ol = has A2 — 16\ + 3 = 0.
-1 0 1 5 2
2 1

Then A\ = 8 4 v/61 and the top eigenvector of AAT is in the direction of (5,/61 — 6)

1.8
~ (5,1.8). That is the (approximate) direction of the line y = ?t.
6 See eigenfaces on Wikipedia.

7 The closest matrix A3 of rank 3 has the 3 top singular values 5, 4, 3. Then A — A3 has
singular values 2 and 1.

8 If Ahas oy = 9 and B has 01 = 4, then A+ B has 01 < 13 because ||A + B|| <
[|A]] + || B]|. Also o1 > 5 for A + B because ||A + B|| + || — B|| > ||A]|.



Solutions to Problem Sets 119

Problem Set 8.1, page 315

1

10

11

12

13

14

With w = 0 linearity gives T'(v + 0) = T'(v) + T(0). Thus 7(0) = 0. Withc = —1
linearity gives T(—0) = —T°(0). But —0 = 0. This is a second proof that 7'(0) = 0.

Combining T'(cv) = ¢T'(v) and T'(dw) = dT (w) with addition gives T'(cv + dw) =
¢T'(v) + dT (w). Then one more addition gives ¢T'(v) 4+ dT (w) + eT(u).

(d) T(v) = (0,1) = constant and (f) T'(v) = v1v9 are not linear.

(@ S(T(w)=wv (b) S(T(v1) +T(v2)) = S(T(v1)) + S(T(v2)) : linear.
Choose v = (1,1) and w = (—1,0). Then T'(v) + T(w) = (v + w) = (0,1) but
T (v +w) = T(2,1) was defined as (0, 0).

(a) T'(v) = v/||v| does not satisfy T(v + w) = T(v) + T(w) or T(cv) = ¢T'(v)
(b) and (c) are linear (d) satisfies T'(cv) = ¢T'(v) only for ¢ > 0

() T(T(v))=v (b) Nonlinearv+(2,2) (¢c) T(T'(v))=—v (d) T(T(v))=T(v).
(a) The range of T'(vy,v2) = (v1 — v2,0) is the line of vectors (¢, 0). The nullspace
is the line of vectors (¢, c). (b) T(v1,ve,v3) = (vi,v2) has range R?, kernel
{(0,0,v3)} (c) T(v) = 0 has range {0}, kernel R? (d) T(vy,v2) = (v1,v1)
has range = multiples of (1, 1), kernel = multiples of (1, —1).

If T'(v1, v, v3) = (va,v3,v1) then T(T(v))=(v3,v1,v2); T3(v)=v; T(v)=T(v).
T(v)=(4,4); (2,2); (2,2); if v =(a,b)=b(1,1) + %52(2, 0) then T'(v)=b(2,2) + (0, 0).
(a) T(1,0)=0 (b) (0,0,1)is not in the range (¢) T(0,1)=0.

For multiplication T'(v) = Av: V = R", W = R™; the outputs fill the column
space; v is in the kernel if Av = 0.

The distributive law (page 69) gives A(My + Mz) = AMy + AMs. The distributive
law over ¢’s gives A(cM) = ¢(AM).

Now T (M) = AM with an invertible A. Multiply AM = 0 and AM = B by A™!
to get M = 0 and M = A~!B. The kernel contains only the zero matrix M = 0.
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2 2 0 0
15 This A is not invertible. AM = I is impossible. A = . The
-1 -1 0 0
range of T contains only matrices AM whose columns are multiples of (1, 3).
0 0 0 1
16 No matrix A gives A = . To professors: Linear transformations on
10 0 0

matrix space come from 4 by 4 matrices. Those in Problems 13—15 were special.
17 For T(M) =M™ (a) T? = I is True (b) True (¢) True (d) False.
b a 0

0
18 T(I) =0but M = = T(M); these Ms fill the range. Every M =
0 0 c d

is in the kernel. Notice that dim (range) + dim (kernel) = 3 + 1 = dim (input space
of 2 by 2 M’s).

19 Linear transformations keep straight lines straight! And two parallel edges of a square
(edges differing by a fixed v) go to two parallel edges (edges differing by T'(v)). So

the output is a parallelogram.

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes
onto a line (c) Vertical lines stay vertical because 7'(1,0) = (a11,0).

2 0 T
21 D = doubles the width of the house. A = projects the house

0 1 3.3
(since A%2 = A from trace = 1 and A\ = 0, 1). The (non-orthogonal) projection is onto

11
the column space of A = line through (.7,.3). U = will shear the house
0 1

horizontally: The point at (x, y) moves over to (z + y, y).

a 0
22 (a) A= with d > 0 leaves the house AH sitting straight up
0 d
cosf —sinf
(b) A= rotates the house.
sin 0 cosf
23 T'(v) = —wv rotates the house by 180° around the origin. Then the affine transformation

T(v) = —v + (1, 0) shifts the rotated house one unit to the right.

24 A code to add a chimney will be gratefully received!
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25 This code needs a correction: add spaces between —10 10 —10 10

1 0 Do
26 compresses vertical distances by 10 to 1. projects onto the 45° line.
0 .1 R}
5 .
rotates by 45° clockwise and contracts by a factor of y/2 (the columns have
-.5

11
length 1/ V?2). has determinant —1 so the house is “flipped and sheared.” One
10

way to see this is to factor the matrix as LDLT:

1 1
= = (shear) (flip left-right) (shear).
1 0 1 1 -1 0 1

27 Linear transformations of R? take circles to ellipses (see figure in Section 6.7).

28 (a) ad —bc = 0 (b) ad —bc > 0 (©) |ad — be| = 1. If vectors to two
corners transform to themselves then by linearity 7' = I. (This is not always true if one

corner is (0,0).)
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Problem Set 8.2, page 324

0 0 2 0
1 For Sv = d?v/dx?
, . 000 6
Basis v1, v, U3, v4 = 1, x, 2%, 23 The matrix for Sis B =
0 0 0 O
S’Ul = S’Ug = O, S’U3 = 2’01, S’U4 = 6’02;
0 0 0 O

2 Sv = d*v/dx® = 0 for linear functions v(z) = a + bz. All (a,b,0,0) are in the

nullspace of the second derivative matrix B.
3 (Matrix A)?> = B when transformation 7'(T (v)) = S(v) and output basis = input basis.

4 The third derivative matrix has 6 in the (1,4) position; since the third derivative of 2
is 6. This matrix also comes from AB. The fourth derivative of a cubic is zero, and B>

is the zero matrix.
5 T(v1 + v + v3) = 2w; + wa + 2ws; A times (1,1,1) gives (2,1, 2).
6 v = c¢(v2 —v3) gives T'(v) = 0; nullspace is (0, ¢, —c); solutions (1,0, 0) + (0, ¢, —c).
7 (1,0,0) is not in the column space of the matrix A, and w; is not in the range of

the linear transformation 7'. Key point: Column space of matrix matches range of

transformation. Nullspace matches normal.

8 We don’t know T'(w) unless the w’s are the same as the v’s. In that case the matrix is
A2,

9 Rank of A = 2 = dimension of the range of T'. The outputs Av (column space) match
the outputs T'(v) (the range of T'). The “output space” W is like R™: it contains all

outputs but may not be filled up by the column space.

1 0 0 1 1
10 The matrix forTis A= |1 1 0. Fortheoutput | 0| chooseinputv = | —1| =
1 1 1 0 0

1

A~ |0 |. This means: For the output w; choose the input v; — vs.

0
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1 0 0
1 A= |_1 1 0] so T_l('wl) = v — 1)27T_1('w2) = vy — 'U3,T_1(’LU3) =
0 -1 1

v3. The columns of A~! describe 7! from W back to V. The only solution to

T(v) =0isv = 0.
12 (¢) T~ YT (w1)) = w; is wrong because w; is not generally in the input space.

13 (a) T(v1) = v2,T(v2) = vy is its own inverse (b) T(v1) = vy, T (v2) = 0 has
T? =T (c) If T? = I for part (a) and T? = T for part (b), then T" must be I.

2 1 3 - 2
14 (a) (b) = inverse of (a) © A must be 2A
5 3 -5 2 6 3
TS 1 0 r S o
15 (a) M = transforms and to and ; this is the “easy”
t u 0 1 t U
a b
direction. (b) N = transforms in the inverse direction, back to the stan-
c d
dard basis vectors. (c) ad = bc will make the forward matrix singular and the inverse
impossible.
—1
1 0|12 1 3 -1
16 MW = = .
1 2 5 3 -7 3

17 Reordering basis vectors is done by a permutation matrix. Changing lengths is done by

a positive diagonal matrix.

18 (a,b) = (cos 6, — sin #). Minus sign from Q! = Q™.

1 1 a 1
19 M = ; = = first column of M ~! = coordinates of in basis
4 5 b —4 0
1 1
because 5 —4 =
4 5 4 5 0

20 wy(z) =1 — 2% ws(z) = 3(2? — 2); y = 4w + 5wy + 6ws.
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21

22

23

24

25

26

27

28

29

30

31

0 1 0 1 11
w’stov’s:| .5 0 —.5]|.v’stow’s: inverse matrix = | 1 0 0f. The key
BHo—1 5 1 -1 1
idea: The matrix multiplies the coordinates in the v basis to give the coordinates in the
w basis.
1 a a? A 4
The 3 equations to match 4,5,6 at x = a,b,care |1 b b2 B| = |5]|. This
1 ¢ ¢ C 6

Vandermonde determinant equals (b — a)(c — a)(c — b). So a, b, c must be distinct to

have det # 0 and one solution A, B, C'.
The matrix M with these nine entries must be invertible.

Start from A = QR. Column 2 is a2 = 712q; + r22q,. This gives as as a combination

of the @’s. So the change of basis matrix is R.

Start from A = LU. Row 2 of A is £a1(row 1 of U) 4 £33 (row 2 of U). The change of

basis matrix is always invertible, because basis goes to basis.

The matrix for T'(v;) = A\;v; is A = diag(A1, A2, A3).

If T is not invertible, T'(v1), . . ., T'(v,,) is not a basis. We couldn’t choose w; = T'(v;).
0 3 1 0

(a) gives T(v1) = 0 and T'(v2) = 3v;. (b) gives T'(v1) = v
0 0 0 0

and T'(vy + v2) = v1 (which combine into T'(vy) = 0 by linearity).

T(z,y) = (z,—y) is reflection across the z-axis. Then reflect across the y-axis to get

S(z,—y) = (—x,—y). Thus ST = —1.
S takes (z,y) to (—z,y). S(T'(v))=(-1,2). S(v)=(-2,1) and T (S(v))=(1, —2).

. . cos2(f —a) —sin2(0 — ) o
Multiply the two reflections to get which is rotation
sin2(6 —a)  cos2(f — «)

by 2(0 — «). In words: (1,0) is reflected to have angle 2, and that is reflected again

to angle 260 — 2.
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1 0 0 O
32 The matrix for T in thisbasisis A= [0 1 0 0

0 0 0O

33 The basis vy, va, V3, v4 for the space of 2 by 2 matrices is meant to be

1 0 0 1 0 0 0 0
v = Vg = V3 = Vg =
0 0 0 0 1 0 0 1

Apologies for the reference to Worked Example 8.2A, which was omitted in final

editing of the book. Question 33 asks for the 4 by 4 matrix A that represents T'(M ) =

a b a b
M in this basis of v’s. As always, multiply each basis matrix by
c d c d
to find T'(v1), ..., T(v4). Write each output as a conbination of the output basis (also

v1 to vy). The coefficients of v; to vy4 tell you each column of A.

o a b| 1 0 a 0 o
Multiplying by gives T'(v1) = A = = avi + cvs. Simi-
c d 0 0 c 0
larly T'(ve) = ava + cvy and T'(v3) = bvy +dvs and T'(v4) = bvy + dvy. The matrix
a 0 b 0
0 a 0 b
for 7" in this basis is
c 0 d 0
0 ¢ 0 d

34 False: We will not know T'(v) for every v unless the n v’s are linearly independent.
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Problem Set 8.3, page 334

1 For this matrix J, the rank of J — 31 is 3 so the dimension of the nullspace is only
1. There is only 1 independent eigenvector even though A = 3 is a double root of

det(J — AI) = 0: arepeated eigenvalue.

2
2
J =
31
- 3 -
0 1
2 J= is similar to all other 2 by 2 matrices A that have 2 zero eigenvalues but
0 0

only 1 independent eigenvector. Then J = B 1A1 Bj is the same as B1J = A1 By :

4 0 0 1 0 4 4 0

ByJ = = =A1B
0 1 0 0 0 0 0 1
4 1 0 1 4 -8 4 1

ByJ = = = A»B;
2 0 0 0 2 —4 2 0

3 Every matrix is similar to its transpose (same eigenvalues, same multiplicity, more than

that the same Jordan form). In this example

1 2 1 0 2 0 0 1
BJ = 1 02 1|=|120 1 =JTB.
1 00 2 01 2 1

4 Here J and K are different Jordan forms (block sizes 2, 2 versus block sizes 3, 1). Even
though J and K have the same \’s (all zero) and same rank, J and K are not similar.

If BK = JB then B is not invertible :
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01 0 0 0 b1 b2 O
0 0 1 0 0 b b 0
BK — B _ 21 boo
0 0 0 O 0 b31 b3 O
0 0 0 O 0 by baz O
01 00 b1 bao baz bas
0 0 0 O 0 0 0 0
JB = B=
0 0 0 1 bar baz bz bas
0 0 0 O 0 0 0 0

Those right hand sides agree only if by = 0,b41 = 0,b24 = 0,044 = 0,b22 = 0,
bso = 0. But then also bj; = bas = 0 and b3; = bgo = 0. So the first column has

b11 = ba1 = b31 = byy = 0 and B is not invertible.

5 If A3 is the zero matrix then every eigenvalue of A is A = 0 (because Ax = \x leads
to @ = A3x = A\3x). The Jordan form J will also have J2 = 0 because J = B~1AB
has J2 = B7'A3B = 0. The blocks of J must become zero blocks in J>. So those

blocks of J can be
01 00
01 0
0 1 0 010 third power
[o} 0 0 1 but not
0 0 0 0 0 1 is not zero
0 0 O
0 0 0 O

2
The rank of J (and A) is largest if every block is 3 by 3 of rank 2. Then rank < gn
If A™ = zero matrix then A is not invertible and rank (A) < n.

6 This question substitutes u; = te and uy = e** to show that u;, us solve the system
u' =Ju:
u{ = Aug + us e+ et = A(tett) + (eM)
ug = Atz AeM = A(er).
Certainly u; = 0 and up = 1 at ¢t = 0, so we have the solution and it involves te™ (the

factor t appears because A is a double eigenvalue of .J).
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7 The equation ugyo — 2Augy1 + A2y, is certainly solved by uy = ¥, But this is a
second order equation and there must be another solution. In analogy with te** for the

differential equation in 8.3.6, that second solution is ug = kM\F. Check :

(k4 2)N 2 —2X(k + DA £ A2 (kAR = [k +2 — 2(k + 1) + k] A" = 0.

8 A3 = 1 has 3 roots A = 1 and €27/ and e*™/3. Those are 1, \, A2 if we take

\ = €2™/3_ The Fourier matrix is

1 1 1 1 1 1
F3 = 1 A 22 — 1 e27ri/3 e47ri/3
1 A2 )\ 1 edmi/3 88771'/3

9 A 3 by 3 circulant matrix has the form on page 425:

Ch C1 C2 1 1

C=1|¢ ¢ ¢ | WithC| 1 |=(cot+ca+ec)]| 1

€1 C2 Co 1 1
1 1 1 1
C A = (Co+01 /\+62/\2) A C| N\ = (Co—f—Cl /\2+Cg)\4) 22
A2 A2 A A

Co

Those 3 eigenvalues of C are exactly the 3 componentsof Fe = F | ¢ |,
C2
10 The Fourier cosine coefficient cj is in formula (7) with integrals from — to 7. Because

f drops to zero at x = L, the integral stops at L :

[ f(x)cos3zdr 1 /L 1] . v=k 2sin3L
= SIS 2 [ (1) (cos 32) do = — | sin3 - .
[ (cos3z)? dx T ,L( )(cos 3z) dx 7S I 3

Note that we should have defined f(z) = 0 for L < |z| < 7 (not 27 !).

as
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Problem Set 9.1, page 345

1 Equations (1) and (2) give the first three terms in the Taylor Series for F'(x) and F'(x) =

one variable x or several variables * = (x1,...,z,). The formulas are exact when

2

F' is a quadratic function (powers 1, x,x“ or in N dimensions 1,z; to z and all

products z;x; from 2% to 12 to 23 to Tz and eventually 2y 12y and z%).

2 f(z)=22+1, f'(z) = 2z, f” = 2. Then Newton’s method computes z,,41 from x,, :

x —:v—f(xn) —x—x%—i—l—l x—i
o fv(xn)_ " 2%y, 2 " Tn .

This iteration stays with real numbers so it can’t converge to the solutions z = @ or

x = —i. Instead the numbers x,, are “chaotic”.

The key insight is that the cotangent function x,, = cot 2™0 gives the correct =, 1

from z,, :

cos29_1(cos€ 51n9) or Cot29:%<cot9—i>-

sin20 2 \sinf cosf cot 6

In the left equation, the common denominator is 2 sin 6 cos @ = sin 20. The numerator

is cos? @ — sin® @ = cos 26. The identity says this about the iteration :

1 1
If g =cotf then 21 = = (wo - —) = cot 26.
2 Zo

Then o = cot 46. Then x,, = cot 2™6. This is the formula.

Example 1 Start with § = 7/4 (cotangent is 2o = 1). The first step gives 6 = 7/2

(cotangent equals 0). The next step is § = 7 (iteration blows up because sin 7 = 0).

Example 2 Start with § = 7/3 (cotangent is o = 1/v/3). The first step gives
6 = 27 /3 (cotangent equals —1/+/3). The next step is @ = 47/3 (which is the original
6 plus 7). The iteration cycles between 1/1/3 and —1/+/3.

Example 3 Start with a small 6 (a large cotangent). After the first step, cot 26 is

approximately cut in half (use calculus). The cotangent decreases until the angle 26

passes 7/3. Then the next step makes it larger.
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The iteration eventually blows up if /7 = integer/2.

The iteration eventually cycles if #/7 = any other fraction p/q.

The iteration is not periodic (or convergent) if # /7 is irrational. Chaos.
We can’t find /—1 by Newton’s method which stays real.

3 The derivative of — logx1; with respect to x11 is —1/z11. The second derivative is

—|—1/:c§1 > 0. So — log « is a convex function—its slope —1/x is increasing.
4 For the function F' = — logdet A = — log(ac — b?) the first derivatives are

or  —c oF +2b oF —a

da  ac— b2 ob  ac— b2 dc  ac— b2
Then all second derivatives involve D = ac — b? =

0*F 2 0 (OF\  +2bc 0 (oF\ -1 4 o
da? D2 ob\da) D2 dc\da) D D2
This already shows that the matrix of second derivatives is complicated and we need a

new idea.

1
5 The gradient of F'(x) = B (wTATAw —2b" Ax + bTb) is VF = ATAz — ATb.
So the minimizing vector Z solves AT AZ = ATb as we know from Chapter 4. That
gives T in one step, where gradient descent takes a sequence of simpler steps of sizes

Sk to approach @ :

LTp+1 = Tk — SkVF(.’Bk) = T — Sk(ATA.’Bk — ATb)
1 1 oF OF
=3 r? + Zy2> has gradient <%, 8_y> = (:c, Q)_ One step from (g, yo) =

F
4
1 1 11
(Z’1> goesto (z1,y1) = (Z’1> —s (Z’ Z)

8 Certainly 22 is minimized at z = 0 and e~ is minimized at y = co. Then Frin =0+
0. At (2o, y0) = (1, 1) the functionis F' = £ +1 and the gradientis VF = (2z, —e ™)
and descent goes to (x1,y1) = (1,1) = =sVF = (1,1) — s(2,—1/e).



Solutions to Problem Sets 131

Problem Set 9.2, page 353

1 The two equations have rows a; = {1 2} and as = [2 3}. The right hand sides

of Az = bare by = 3 and b3 = 5. The classical Kaczmarz method updates x to solve

0
a;x = by and then asx = by (and repeat indefinitely). Starting from xy = here

0

is the first cycle from equation (6) : 1 solves the first equation [1 2} T, =3

0
- [1 2] 0 1 3|1 3/5
5

ml - .’1}0—|— =
12 +2° 2 2 6/5

Note that o solves the first equation [1 2} x1 = 3 but not asxy = 5.

Then 2 modifies ; to solve that equation but now the first equation fails :

3/5
- [a 9] [
3/5 6/5 2 3/5 1/5 | 2 1|3+2/13
R ECIN fes] s [2] Jafsey

6/5 22+ 32 3 6/5| B3| 5|6+3/13

This vector x2 solves the second equation [2 3} T2 = 5 but not the first equation.

1
Repeating the Kaczmarz double step brings us closer to the true solution T, =

1
With a computer you can take more Kaczmarz steps to 2, 3, . . . and compare the con-

vergence rate with “random Kaczmarz’—when the order of the equations and updates

jumps randomly between equations 1 and 2.
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2 The problem (least squares) is to minimize £(z) = (1—F(z))? where F(x) = Fy(F1(x)).

Backpropagation computes % and 6_F

o OF OF, 0F (an

3F = 2(1-F(x)) 95~ OF, 0v (?—Fl) (—sin(sinz))cosz =0 at =0

3 (a) The limits of tanh(z) at x = 0,00, —oco are 0,1, —1.
(b) The graph has an inflection point at z = 0, where the second derivative of tanh(x)
is zero.

(c) The derivative of tanh(z) = (e* — e™%)/(e* 4+ e~*) by the quotient rule is

(ez + efx)Q _ (ez _ 671)2 _ 4
(eLE + e—;ﬂ)Q (eLE + e—LE)

5 > 0 so tanh is increasing

4 Component i of tanh(Az + b) is y = tanh(aj x + b;). The scalar function tanh(z)

has the derivative 4/(e® 4+ e~®)? from Problem 3. Then the chain rule gives

P 4 . .

F F:
5 The partial derivatives of F(z,y) = Fy(z, F1(y)) are (z)— = %(zl,Fl (y)) and
x x

OF  OF; OF,

dy R Oy
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Problem Set 9.3, page 363

1 To minimize with a constraint 3z+4y = 1, introduce a Lagrange multiplierin L(z, y, \) =

|z|P + |y|P — A(Bx + 4y — 1).

OL/0x = pxP~1 -3\ =0 P~ =3)\/p
OL/0y = pyP~1 —4X =0 yP~t =4)\/p
—OL/ON=3z+4y—1=0 3(3\/p)d + 4(4X/p)? = 1

Hereq = 1/(p—1)andg+1 = p/(p—1). The bold equation is (397 +49+1)\7 = pd.
The solution is A\ = p/FE with E = (37+1 4 49t1)1/4, Knowing A we can find x and y.
2 Suppose vy and v are in the unit ball : their norms are < 1. We want to show that any
point w = cvy + (1 — ¢)vy between v and vo (which means 0 < ¢ < 1) is also in the
ball (which means ||w|| < 1). Use the triangle inequality :
[lw|] < [|lev1]] + [|(1 = c)va]| < e|+ |1 —¢| =1 because 0 < c < 1.

1
3 (a) L(X,\) = 5:0% + 223 — A(x1 + 3w — b).

(b) OL/0x; = 1 —A=0

OL/0xq = 4o — 31 =0

OL/ON =x1+3x2—b=0=(A\)+3(3)\/4)—b
Solve the last equation: (4/4 + 9/4)A = bor A\ = 4b/13. Then x; = 4b/13 and
25 = 3b/13.

. 1, .. 1[4b\? 3b\? 5 i
(d) The minimum of F' = %1 + 25 is AT +2 =) = (84 18)b°/13° =
2b2/13. The derivative of that Fj,; is 0F,;,/0b = 4b/13. This is exactly A !

1
4 L= 5(%% +423) — A(221 + 22 — 5).

8L/8I1 = ZC1—2)\:O I1:2/\
6L/6:v2 = 41‘2—)\20 $2=A/4
1
—OL/ON=2x1 + 15 —5=0 <4+Z))\_5 or A\ =20/17

Then 2y = 40/17and x5 = 5/17and F = = (2} + 423) = = (1700) /17* = 50/17.

N =
N =
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5 K has 2 positive pivots and 1 negative pivot. Then it must have 2 positive eigenvalues

and 1 negative eigenvalue.

6 Line 4 of this problem proves the Law of Inertia for the number of positive pivots of .S
(= number of positive eigenvalues, because K is symmetric). Then the problem asks

for a straightforward and basic proof when S is 2 by 2: There are 2 steps.

1 Determinantsof S = LDLT = QAQT are (det D) (det L)? and (det A) (det Q)?.
So det D has the same sign as det A. If those diagonal matrices D and A are 2 by

2, then negative determinants mean 1 positive pivot and 1 positive eigenvalue.

2 If D and A both have positive determinants, then the two pivots have the same
sign and the two eigenvalues have the same sign. Then positive eigenvalues means

positive trace (sum of eigenvalues = sum of diagonal entries).

7 By symmetry the minimum of F = 3 (2342} +23) with 1 + z3 + 3
= 3is % (1+1+1) = 1.5. With the added constraint x; + 2z9 + 3z5 = 12, we

have two multipliers A and o :

Lagrange function L = F' — A(x1 + 22 + 3 — 3) — o(x1 + 2x2 + 3z3 — 12).

OL/0xy = 1 —A—o0c=0 T = —2
OL/0xy = To—A—20=0 o= 1
OL/0x3 = 3 —A—30=0 3= 4
—9L/OX = r1+ax2+23—3=0 — 33X+ 60= 3 — A=-5

—0L/0oc =21 +229+323—12=0 — 6A+140=12 — o= 3

1
The second minimum is ' = 5(4 + 1+ 16) = 10.5 = larger than 1.5 from extra

constraint !

8 The constraints are v1 < 1, —xz1 < 1,25 <1, —x9 < 1. Thisis Az < b for

[ 1 O_ —1_
-1 0 1 1
A: xr = b:
0 1 T 1
| 0 -1 | 1]
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Problem Set 9.4, page 369

1 Yes, z > 0 is needed for this step: If ATy < cthen (ATy)Tz < cTx.
3 <4leadsto 3z < 4z if z > 0. But x = —1 would give a wrong output —3 < —4.
2 The corners (1, 2, x3) with 1 +222+2x3 = 4 are (4,0,0) and (0, 2,0) and (0,0, 2).

When the costis ¢T« = 52 + 3z3 + 8x3, the corner (0,2,0) gives the minimum cost

cTx = 6. The other corners (4,0, 0) and (0,0, 2) cost 20 and 16.

3 The dual problem maximizes yTb = 4y, subject to 1 > 5,2y; > 3,2y; > 8. The
best y; is y1 = 3/2 leading to y*b = 4(3/2) = 6. Notice strong duality : min of y*b

equals max of ¢z in Problem 2 = 6.

4 With 2 constraints on x1 to x4, we can set 4 — 2 = 2 of the x’s to zero and see if the
other 2 z’s are > 0 as required. The problem asks about (z1,z2,0,0) = (4,2,0,0)
which satisfies the constraints. The cost at the corner depends on the cost function ¢z

which the problem statement forgot to include.

5 First payoff matrix : R chooses row 1 every time and C' chooses column 2 every time.

The payoff to C' is 2 every time.

Second matrix : If R chooses rows 1 and 2 with probabilities  and 1 — z, the payoffs
to C are x 4 8(1 — x) for column 1 and 4z 4 2(1 — z) for column 2. Those payoffs are
equal if 8 — 7Tx = 2 4 22 or 6 = 9z or x = 2/3: payoff = 10/3.

If C' chooses columns 1 and 2 with probabilities y and 1 — y, the payoffs to C are
y+4(1 —y) = 4 — 3y when R chooses row 1 and 8y + 2(1 — y) = 2 + 6y when
R chooses row 2. Those are equal when 4 — 3y = 2 4+ 6y or y = 2/9 and the payoff
to C is again 4 — 2/3 = 10/3. Duality holds and the game is worth 10/3 to player C.
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6 If AT = — A (square antisymmetric matrix) then any choice x of the row frequencies
by the row player R can be matched by the same probabilities « for the column player
C (and vice versa). But zT(Az) = (Az)Tx = —xT Az is always zero! So both

players can avoid any loss and the value of this antisymmetric game is zero.

Example: A = B has optimal strategies = (1,0) for row player R
1 0

and y = (1, 0) for column player C' and all payoffs = 0.

7 Player R chooses row 1 with probability ¢,,/(c1 + 04,) and row n with probability
01/ (01 + oy,). Player C chooses column 1 and column n with those same probabilities
and expects the same average payments. (This is effectively a 2 by 2 diagonal matrix
with the same mixed strategy for both players.) The average payment from R to C' will
be 010, /(01 + on).

8 ||(z1, 22, 23)||1 < 2is equivalent to £z + x5 + 23 < 2. Those 3 choices of plus or
minus sign give 8 linear inequalities.

9 We have not explained semidefinite programming well enough to make this a fair

question.

10 If Ax < bandxz > O0and AX < band X > O,then%A(m—l-X) < b and

%(:v + X) > 0. Convexity is a crucial property in the theory of optimization.
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Problem Set 10.1, page 372

10
11
12
13
14
15
16
17
18
19

20
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Problem Set 10.2, page 381

10
11
12
13
14
15
16
17
18
19

20
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Problem Set 10.3, page 386

1 If all sample values are x = 20, then the sample mean is 4 = 20 and the sample
variance is S? = 0. If = 20 or 21 (12 samples each) then y = 20.5 and

1 6
27— 2:—
S = 73 (24) (0.5) 53

2 The sample mean and the expected value both increase by 7. The variance does not

change.

1 1 1 9 3
Fracti f int divisible b both=-+-— — = — = —,
3 Fraction of integers divisible by 3 or 7 or bo 3—|—7 51 71 -

1
Since 21 of the integers are divisible by both 3 and 7, those were double counted in

— and 1 Then i must be subtracted off.
3 7 21

4 The probabilities pg to pg that a random number from 1 to 10 (and 1 to 100 and 1 to

1
1000) endsin 0,1, ,...,9 are 0 for each case. The expected mean of that digit is 4.5.

2
The expected variance is 0% = m (0.5% +1.5% + 2.5% + 3.5% + 4.5%).

1
5 By Problem 4, the last digitis 0, 1, ..., 9 with equal probability p = o The squares
of0to9endin0,1,4,9,6,5,6,9,4, 1. So the probabilities py to pg for those squares to
1 2 2 2 2 1

endin0,1,4,9,6,5 are 10’10’ 10’ 10’ 10’ 10° The mean of those ten ending digits

1 2 1 45
0<10)+( + +9+6)<10>+5<10> 10 5

1
The variance o is == [4.52 +2(3.52 +0.5% + 4.5 + 1.5%) + 0.52] :

is

Crazy question.

6 The first digit of the numbers from 1 to 1000 is 1(112 times). Itis 2to 9 111 times
each. Reason : The first digitis 2 to 9 in 1 + 10 4 100 cases. First digit = 1 in 1 extra
case. Total countis 8(111) + 1(112) = 1000.

1 1
Mean: m = —— (112 + 111(2 = —[1+111(4
ean: m 1000( +111(24+3+---+9)) 1000[ +111(45)]

Variance : 02 = prize for this computation !
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7 The squares of 157,312,696, 602 start with 2,9, 4, 3. The sample mean y (the average)

is 18/4. The sample variance is

2 2 2 2
1 18 18 18 18
2—_ _ — [N — _ — [N —
5_3[(2 4>+(9 4)+(4 4>+(3 4)]
8 0% = Y pi(zi —m)? = Y pir] — 2) pirim + Y pim® = Y pir — 2m? +m? =

Yopiai —m?
9 How long did the experiment take ? On what device?

10 The key formulais E[(x —m)]? = E[z?] — (E[x])? as in Problem 8. The only difference
is that expected values E are given by integrals (not sums). The useful identity E[(x —
m)]? = E[z?] — m? is still true with m = E[z].

11 To integrate over the x-y plane, the problem statement shows the correct change of
variables from dxdy to rdrdf. Then —oco < z, y < oo becomes 0 < roog oo and

0 < 6 < 2. The integral of df gives 27 and /e”z/Q rdr = [— eTZ/Q] =1.
0



