							Grading
	our P		ED				
			ED				2
							3
							4
	ase	circle	your recit	ation			5
							6
R01	T 9	2-132	S. Kleiman	2-278	3-4996	kleiman	7
R02	T 10	2-132	S. Kleiman	2-278	3-4996	kleiman	8
R03	T 11	2-132	S. Sam	2-487	3-7826	ssam	9
R04	T 12	2-132	Y. Zhang	2-487	3-7826	yanzhang	
R05	T 1	2-132	V. Vertesi	2-233	3-2689	18.06	
R06	T 2	2-131	V. Vertesi	2-233	3-2689	18.06	

1 (16 pts.)

a. (8 pts) Give bases for each of the four fundamental subspaces of $A=\left[\begin{array}{cccc}1 & 0 & \pi & e \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Clearly the first two columns are independant and generate the column space.
The left null space is the orthogonal of the column space. A basis is given by the vector :

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

A possible basis for the nullspace is:

$$
\left[\begin{array}{c}
\pi \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
e \\
0 \\
0 \\
-1
\end{array}\right]
$$

The row space has dimension 2. The two first rows clearly generate it, therefore they form a basis.
b. (8 pts) Give bases for each of the four fundamental subspaces of

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 2 & \\
& & 3 \\
& & \\
& &
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(Each of the three matrices in the above product has orthogonal columns.)
The matrices on both side are non singular. Therefore the rank of the product is 3 .
To compute the column space, we can restrict to the product of the first two matrices. The third is invertible and will not change the column space. Clearly the column space of the product of the first two matrices is spanned by the first three columns of the leftmost matrix. Since these vectors are independant they form a basis.
To compute the row space we can restrict to the last two matrices of the product for the same reason as above. We find that the row space has as basis the first three rows of the rightmost matrix.

Since the nullspace is the orthogonal of the row space, and we know that the rows of the rightmost matrix are orthogonal, the last row of the right most matrix is a basis for the nullspace.

Similarly, the last column of the leftmost matrix is a basis for the left nullspace.
Remark. Another way to see it is to notice that this is almost the SVD of A (we just need to normalize the columns of the leftmost and rightmost matrix). Our answer is exactly the usual way to find a basis of the four fundamental subspaces when we have found the SVD.

This page intentionally blank.

2 (14 pts.)

Let P_{1} be the projection matrix onto the line through $(1,1,0)$ and P_{2} is the projection onto the line through $(0,1,1)$.
(a) (4 pts) What are the eigenvalues of P_{1} ?

The eigenvalue of a projection matrix are 1 and 0 . The question remain of the multiplicity of each eigenvalue. The multiplicity of 0 is the dimension of the nullspace which is $3-$ the rank. Here P_{1} is a projection on a line, therefore the columnspace is made of vector on that line and has dimension 1 . Therefore 0 has multiplicity 2 and 1 has multiplicity 1.
(a2)(bonus) (This question is from an earlier version of the exam.)
Find an eigenvalue and an eigenvector of $P_{1}+P_{2}$.
The problem asks only for one eigenvalue and one eigenvector, but since you're taking this exam for practice, you may as well find all three.

For simplicity of notation, let $\vec{a}_{1}:=(1,1,0)$ and $\vec{a}_{2}:=(0,1,1)$. Note that the vectors \vec{a}_{1} and \vec{a}_{2} have the same length, $\sqrt{2}$. Since $\vec{a}_{1} \cdot \vec{a}_{2}=1=2 \cos \left(60^{\circ}\right)$, we know that the angle between \vec{a}_{1} and \vec{a}_{2} is 60°. It is possible to see the following facts geometrically:

- First, $\vec{v}_{1}:=\vec{a}_{1} \times \vec{a}_{2}=(1,-1,1)$ is an eigenvector of $P_{1}+P_{2}$, with eigenvalue $\lambda_{1}:=0$. Indeed, since v_{1} is perpendicular to both $(1,1,0)$ and $(0,1,1)$, we know that v_{1} lies in the nullspace of both P_{1} and P_{2}, and hence in the nullspace of $P_{1}+P_{2}$ as well.
- Second, $\vec{v}_{2}:=\vec{a}_{1}+\vec{a}_{2}=(1,2,1)$ is an eigenvector of $P_{1}+P_{2}$, with eigenvalue $\lambda_{2}:=2 \cos ^{2}\left(60^{\circ} / 2\right)=1+\cos \left(60^{\circ}\right)=3 / 2$.
- Third, $\vec{v}_{3}:=\vec{a}_{1}-\vec{a}_{2}=(1,0,-1)$ is an eigenvector of $P_{1}+P_{2}$, with eigenvalue $\lambda_{3}:=2 \sin ^{2}\left(60^{\circ} / 2\right)=1-\cos \left(60^{\circ}\right)=1 / 2$.

The second and third facts can be derived with a bit of trigonometry, but if you don't want to get into that, you can just do the usual linear-algebra calculation. Note that

$$
P_{1}=\frac{1}{1^{2}+1^{2}+0^{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and similarly

$$
P_{2}=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

so that

$$
P_{1}+P_{2}=\frac{1}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

You may solve for the roots $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of $\operatorname{det}\left(P_{1}+P_{2}-\lambda I\right)=0$ and find the nullspaces of $P_{1}+P_{2}-\lambda_{i} I$ (for $i=1,2,3$) as usual, and get the results that we described above.
(b) (10 pts) Compute $P=P_{2} P_{1}$. (Careful, the answer is not 0)

Let's just do it directly:

$$
P=\frac{1}{4}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=\frac{1}{4}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] .
$$

This page intentionally blank.

3 (10 pts.)

The nullspace of the matrix A is exactly the multiples of $(1,1,1,1,1)$.
(a) (2 pts.) How many columns are in A ?

Five columns. Otherwise it doesn't make sense to multiply A with the given vector.
(b) (3 pts.) What is the rank of A ?

We know that the sum of the rank of A and the dimension of the nullspace is the number of columns. Since the nullspace has dimension 1, the rank must be 4.
(c) (5 pts.) Construct a 5×5 matrix A with exactly this nullspace.

We need to construct a matrix whose sum of columns is 0 and with rank 4.
The following works :

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This page intentionally blank.

4 (15 pts.)

Find the solution to

$$
\frac{d u}{d t}=-\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right] u
$$

starting with $u(0)=\left[\begin{array}{l}3 \\ 0\end{array}\right]$.
(Note the minus sign.)
The general formula for the solution to this differential equation is entirely analogous to the formula you learned in 18.01:

$$
\vec{u}(t)=e^{-t}\left[\begin{array}{cc}
1 & 2 \\
1 & 2
\end{array}\right]_{\vec{u}(0)}
$$

Of course, you should actually rewrite this in simplest form.
To facilitate taking the matrix exponential, let's diagonalize

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

The eigenvalues are easily computed to be 0 (because the matrix is obviously singular) and 3 (because the trace is 3), and the corresponding eigenvectors are $(2,-1)$ and $(1,1)$, so

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]^{-1}
$$

It follows that

$$
e^{-t}\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right] e^{-t}\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-0 t} & 0 \\
0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]^{-1} .
$$

Now

$$
\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]^{-1}=\frac{1}{3}\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
\vec{u}(t) & =\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-0 t} & 0 \\
0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right] \vec{u}(0) \\
& =\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
e^{-3 t}
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{-3 t}+2 \\
e^{-3 t}-1
\end{array}\right]
\end{aligned}
$$

This page intentionally blank.

5 (10 pts.)

The 3×3 matrix A satisfies $\operatorname{det}(t I-A)=(t-2)^{3}$.
(a) (2pts) What is the determinant of A ?

If we take $t=0$, we find $\operatorname{det}(-A)=-8$. Since A is 3×3, $\operatorname{det}(-A)=-\operatorname{det}(A)$. Therefore $\operatorname{det}(A)=8$.
(b) (8pts) Describe all possible Jordan normal forms for A.

The eigenvalues of A are 2 with multiplicity 3 . The possible Jordan form of A are :

$$
\left[\begin{array}{ccc}
2 & 1 \text { or } 0 & 0 \\
0 & 2 & 1 \text { or } 0 \\
0 & 0 & 2
\end{array}\right]
$$

There are 4 possibilities.

This page intentionally blank.

6 (7 pts.)

The matrix $A=\left[\begin{array}{cc}1 & 0 \\ C & 1\end{array}\right]$
(a) (2 pts) What are the eigenvalues of A ?

This is a triangular matrix, therefore the eigenvalues are the diagonal entries 1 and 1 .
(b) (5 pts) Suppose σ_{1} and σ_{2} are the two singular values of A. What is $\sigma_{1}^{2}+\sigma_{2}^{2}$?
σ_{1}^{2} and σ_{2}^{2} are the eigenvalues of $A^{T} A$. The question is asking for the trace of $A^{T} A$.

$$
A^{T} A=\left[\begin{array}{cc}
1+C^{2} & ? \\
? & 1
\end{array}\right]
$$

(The question marks are entries that we don't care about)
The trace is $2+C^{2}$.

This page intentionally blank.

7 (8 pts.)

For each transformation below, say whether it is linear or nonlinear, and briefly explain why.
(a) (2 pts) $T(v)=v /\|v\|$

Not linear. For a positive real number $c, T(c v)=T(v)$ and if T was linear we would have $T(c v)=c T(v)$.
(b) (2 pts) $T(v)=v_{1}+v_{2}+v_{3}$

Linear. We have $T(0)=0, T(v+w)=T(v)+T(w)$ and $T(c v)=c T(v)$.
(c) (2 pts) $T(v)=$ smallest component of v

Not linear. Let's say that v is 2-dimensional. Take $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then $T(-v)=-1 \neq$ $-T(v)=0$.
(d) (2 pts) $T(v)=0$

Linear. Clearly satisfies all the requirement.

This page intentionally blank.

8 (10 pts.)

V is the vector space of (at most) quadratic polynomials with basis $v_{1}=1, v_{2}=(x-1), v_{3}=$ $(x-1)^{2}$. W is the same vector space, but we will use the basis $w_{1}, w_{2}, w_{3}=1, x, x^{2}$.
(a) (5 pts) Suppose $T(p(x))=p(x+1)$. What is the 3×3 matrix for T from V to W in the indicated bases?

We have to compute $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ and write them in the basis w_{1}, w_{2}, w_{3}. We have $T\left(v_{1}\right)=1=w_{1}, T\left(v_{2}\right)=(x+1-1)=x=w_{2}$ and $T\left(v_{3}\right)=(x-1+1)^{2}=w_{3}$. Therefore the matrix of T in these basis is the identity matrix :

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note that since the two basis are different, this does not imply that T is the identity.
(b) (5 pts) Suppose $T(p(x))=p(x)$. What is the 3×3 matrix for T from V to W in the indicated bases?

We do the same thing, $T\left(v_{1}\right)=w_{1}, T\left(v_{2}\right)=x-1=w_{2}-w_{1}, T\left(v_{3}\right)=x^{2}-2 x+1=$ $w_{3}-2 w_{2}+w_{1}$. Therefore the matrix of T is :

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

This page intentionally blank.

9 (10 pts.)

In all of the following we are looking for a real 2×2 matrix or a simple and clear reason that one can not exist.

Please remember we are asking for a real 2×2 matrix.
(a) (2 pts) A with determinant -1 and singular values 1 and 1.

Take $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Clearly $|A|=-1$ and $A^{T} A=I$ therefore, the singular values are 1 and 1.
(b) (2 pts) A with eigenvalues 1 and 1 and singular values 1 and 0 .

This is impossible. If the eigenvalues are 1 and 1 , the matrix is non-singular, therefore it has two non-zero singular values (in general the number of non-zero singular values is the rank of the matrix).
(c) (2 pts) A with eigenvalues 0 and 0 and singular values 0 and 1

Take $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
(d) (2 pts) A with rank $r=1$ and determinant 1

Impossible. If the rank is 1 , the matrix is singular and has determinant 0 .
(e) (2 pts) A with complex eigenvalues and determinant 1

The determinant is the product of the eigenvalues, hence we need to find complex numbers whose product is 1 . One possibility is i and $-i$. We need to find a real matrix with i and $-i$ as eigenvalues. The following matrix works :

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Bonus problem (From an earlier version of the exam)
A basis for the nullspace of the matrix A consists of the three vectors :

$$
\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
-2 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
6 \\
5 \\
0 \\
0 \\
1
\end{array}\right]
$$

A basis for the column space of the matrix A consists of the two vectors :

$$
\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]
$$

(a) (2 pts.) How many rows and how many columns are in A ?

If A is an $m \times n$ matrix, then the nullspace $N(A)$ is a subspace of \mathbb{R}^{n}, while the column space $C(A)$ is a subspace of \mathbb{R}^{m}. In our case, this tells us $n=5$ and $m=3$. So A is a 3×5 matrix; A has 3 rows and 5 columns.
(b) (6 pts.) Provide a basis for $N\left(A^{T}\right)$ and $C\left(A^{T}\right)$.

The left-nullspace of A, i.e., $N\left(A^{T}\right)$, is the orthogonal complement of $C(A)$ in \mathbb{R}^{3}. Let's take the cross product of the two vectors in the basis for $C(A)$:

$$
(1,-1,1) \times(2,-1,0)=(1,2,1) .
$$

The vector $(1,2,1)$ is perpendicular to the plane $C(A)$, so it's a basis for the line that is orthogonal to this plane, i.e., the line $N\left(A^{T}\right)$. But suppose you didn't think of using the cross product; what could you have done instead? Well, $N\left(A^{T}\right)$ is the space of solutions $\left(x_{1}, x_{2}, x_{3}\right)$ to the equation

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Let's put the 2×3 matrix in reduced row-echelon form:

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2
\end{array}\right]
$$

Now x_{3} is a free variable; set it to 1 and use back substitution to find x_{1} and x_{2}. You get exactly $\left(x_{1}, x_{2}, x_{3}\right)=(1,2,1)$ as above; this special solution forms a basis for $N\left(A^{T}\right)$.

Similarly, the row space of A, i.e., $C\left(A^{T}\right)$, is the orthogonal complement of $N(A)$, so it consists of solutions $\left(x_{1}, \ldots, x_{5}\right)$ to the equation

$$
\left[\begin{array}{ccccc}
1 & -2 & 1 & 0 & 0 \\
3 & -2 & 0 & 1 & 0 \\
6 & 5 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

One could solve this by Gaussian elimination, but it's probably easiest to observe that, if you reversed the order of the columns, the 3×5 matrix would already be in reduced row-echelon form, so the special solutions can be found by setting (x_{1}, x_{2}) to $(1,0)$ or $(0,1)$, and solving for $\left(x_{3}, x_{4}, x_{5}\right)$. In this way, we get the special solutions $(1,0,-1,-3,-6)$ and $(0,1,2,2,-5)$; these two vectors form a basis for $C\left(A^{T}\right)$.
(c) (6 pts.) Write down an example of such a matrix A.

Thanks to our answer to (b), we know that A has the same column space as

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -2
\end{array}\right]
$$

(you could also just say

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & -1 \\
1 & 0
\end{array}\right]
$$

here, but our method makes the subsequent computations a bit easier). Also from our answer to (b), we know that A has the same row space as

$$
\left[\begin{array}{ccccc}
1 & 0 & -1 & -3 & -6 \\
0 & 1 & 2 & 2 & -5
\end{array}\right] .
$$

So A is any matrix of the form

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -2
\end{array}\right] B\left[\begin{array}{ccccc}
1 & 0 & -1 & -3 & -6 \\
0 & 1 & 2 & 2 & -5
\end{array}\right]
$$

where B is an invertible 2×2 matrix (if you don't see why, please ask). For example, if we take B to be the identity, we get

$$
A=\left[\begin{array}{ccccc}
1 & 0 & -1 & -3 & -6 \\
0 & 1 & 2 & 2 & -5 \\
-1 & -2 & -3 & -1 & 16
\end{array}\right]
$$

1. (12 points) This question is about the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 4 & 1 & 4 \\
3 & 6 & 3 & 9
\end{array}\right]
$$

(a) Find a lower triangular L and an upper triangular U so that $A=L U$.

Answer:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Find the reduced row echelon form $R=\operatorname{rref}(A)$. How many independent columns in A ?

Answer: 2

$$
R=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]=U \text { in this example. }
$$

(c) Find a basis for the nullspace of A.

Answer:

$$
\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{r}
3 \\
-2 \\
0 \\
1
\end{array}\right]
$$

(d) If the vector b is the sum of the four columns of A, write down the complete solution to $A x=b$.

Answer:

$$
x=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
3 \\
-2 \\
0 \\
1
\end{array}\right]
$$

2. (11 points) This problem finds the curve $y=C+D 2^{t}$ which gives the best least squares fit to the points $(t, y)=(0,6),(1,4),(2,0)$.
(a) Write down the 3 equations that would be satisfied if the curve went through all 3 points.

Answer:

$$
\begin{aligned}
& \mathrm{C}+1 \mathrm{D}=6 \\
& \mathrm{C}+2 \mathrm{D}=4 \\
& \mathrm{C}+4 \mathrm{D}=0
\end{aligned}
$$

(b) Find the coefficients C and D of the best curve $y=C+D 2^{t}$.

Answer:

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
3 & 7 \\
7 & 21
\end{array}\right] \\
A^{T} b=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
6 \\
4 \\
0
\end{array}\right]=\left[\begin{array}{l}
10 \\
14
\end{array}\right]
\end{gathered}
$$

Solve $A^{T} A \hat{x}=A^{T} b$:

$$
\left[\begin{array}{cc}
3 & 7 \\
7 & 21
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
10 \\
14
\end{array}\right] \text { gives }\left[\begin{array}{l}
C \\
D
\end{array}\right]=\frac{1}{14}\left[\begin{array}{rr}
21 & -7 \\
-7 & 3
\end{array}\right]\left[\begin{array}{l}
10 \\
14
\end{array}\right]=\left[\begin{array}{r}
8 \\
-2
\end{array}\right] .
$$

(c) What values should y have at times $t=0,1,2$ so that the best curve is $y=0$?

Answer:

The projection is $p=(0,0,0)$ if $A^{T} b=0$. In this case, $b=$ values of $y=c(2,-3,1)$.
3. (11 points) Suppose $A v_{i}=b_{i}$ for the vectors v_{1}, \ldots, v_{n} and b_{1}, \ldots, b_{n} in R^{n}. Put the v 's into the columns of V and put the b 's into the columns of B.
(a) Write those equations $A v_{i}=b_{i}$ in matrix form. What condition on which vectors allows A to be determined uniquely? Assuming this condition, find A from V and B.

Answer:
$A\left[v_{1} \cdots v_{n}\right]=\left[b_{1} \cdots b_{n}\right]$ or $A V=B$. Then $A=B V^{-1}$ if the $v^{\prime} s$ are independent.
(b) Describe the column space of that matrix A in terms of the given vectors.

Answer:

The column space of A consists of all linear combinations of b_{1}, \cdots, b_{n}.
(c) What additional condition on which vectors makes A an invertible matrix? Assuming this, find A^{-1} from V and B.

Answer:
If the $b^{\prime} s$ are independent, then B is invertible and $A^{-1}=V B^{-1}$.

4. (11 points)

(a) Suppose x_{k} is the fraction of MIT students who prefer calculus to linear algebra at year k. The remaining fraction $y_{k}=1-x_{k}$ prefers linear algebra.

At year $k+1,1 / 5$ of those who prefer calculus change their mind (possibly after taking 18.03). Also at year $k+1,1 / 10$ of those who prefer linear algebra change their mind (possibly because of this exam).
Create the matrix A to give $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=A\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$ and find the limit of $A^{k}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as $k \rightarrow \infty$.
Answer:
$A=\left[\begin{array}{ll}.8 & .1 \\ .2 & .9\end{array}\right]$.
The eigenvector with $\lambda=1$ is $\left[\begin{array}{l}1 / 3 \\ 2 / 3\end{array}\right]$.
This is the steady state starting from $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. $\frac{2}{3}$ of all students prefer linear algebra! I agree.
(b) Solve these differential equations, starting from $x(0)=1, \quad y(0)=0$:

$$
\frac{d x}{d t}=3 x-4 y \quad \frac{d y}{d t}=2 x-3 y
$$

Answer:

$A=\left[\begin{array}{ll}3 & -4 \\ 2 & -3\end{array}\right]$.
has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-1$ with eigenvectors $x_{1}=(2,1)$ and $x_{2}=(1,1)$.
The initial vector $(x(0), y(0))=(1,0)$ is $x_{1}-x_{2}$.
So the solution is $(x(t), y(t))=e^{t}(2,1)+e^{-t}(1,1)$.
(c) For what initial conditions $\left[\begin{array}{l}x(0) \\ y(0)\end{array}\right]$ does the solution $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ to this differential equation lie on a single straight line in R^{2} for all t ?

Answer:

If the initial conditions are a multiple of either eigenvector $(2,1)$ or $(1,1)$, the solution is at all times a multiple of that eigenvector.

5. (11 points)

(a) Consider a 120° rotation around the axis $x=y=z$. Show that the vector $i=(1,0,0)$ is rotated to the vector $j=(0,1,0)$. (Similarly j is rotated to $k=(0,0,1)$ and k is rotated to i.) How is $j-i$ related to the vector $(1,1,1)$ along the axis?

Answer:

$j-i=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$
is orthogonal to the axis vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
So are $k-j$ and $i-k$. By symmetry the rotation takes i to j, j to k, k to i.
(b) Find the matrix A that produces this rotation (so $A v$ is the rotation of v). Explain why $A^{3}=I$. What are the eigenvalues of A ?

Answer:

$A^{3}=I$ because this is three 120° rotations (so 360°). The eigenvalues satisfy $\lambda^{3}=1$ so $\lambda=1, e^{2 \pi i / 3}, e^{-2 \pi i / 3}=e^{4 \pi i / 3}$.
(c) If a 3 by 3 matrix P projects every vector onto the plane $x+2 y+z=0$, find three eigenvalues and three independent eigenvectors of P. No need to compute P.

Answer: The plane is perpendicular to the vector $(1,2,1)$. This is an eigenvector of P with $\lambda=0$. The vectors $(-2,1,0)$ and $(1,-1,1)$ are eigenvectors with $\lambda=0$.
6. (11 points) This problem is about the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right]
$$

(a) Find the eigenvalues of $A^{T} A$ and also of $A A^{T}$. For both matrices find a complete set of orthonormal eigenvectors.

Answer:

$$
A^{T} A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right]=\left[\begin{array}{ll}
14 & 28 \\
28 & 56
\end{array}\right]
$$

has $\lambda_{1}=70$ and $\lambda_{2}=0$ with eigenvectors $x_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $x_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.
$\mathrm{AA}^{T}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4 \\ 3 & 6\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]=\left[\begin{array}{rrr}5 & 10 & 15 \\ 10 & 20 & 30 \\ 15 & 30 & 45\end{array}\right]$ has $\lambda_{1}=70, \lambda_{2}=0, \lambda_{3}=0$ with
$\mathrm{x}_{1}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad$ and $x_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right] \quad$ and $x_{3}=\frac{1}{\sqrt{70}}\left[\begin{array}{r}3 \\ 6 \\ -5\end{array}\right]$.
(b) If you apply the Gram-Schmidt process (orthonormalization) to the columns of this matrix A, what is the resulting output?

Answer:

Gram-Schmidt will find the unit vector

$$
q_{1}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

But the construction of q_{2} fails because column $2=2($ column 1$)$.
(c) If A is any m by n matrix with $m>n$, tell me why $A A^{T}$ cannot be positive definite. Is $A^{T} A$ always positive definite? (If not, what is the test on A ?)

Answer

$A A^{T}$ is m by m but its rank is not greater than n (all columns of $A A^{T}$ are combinations of columns of A). Since $n<m, A A^{T}$ is singular.
$A^{T} A$ is positive definite if A has full colum rank n. (Not always true, A can even be a zero matrix.)
7. (11 points) This problem is to find the determinants of

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{llll}
x & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

(a) Find $\operatorname{det} A$ and give a reason.

Answer:

$\operatorname{det} A=0$ because two rows are equal.
(b) Find the cofactor C_{11} and then find $\operatorname{det} B$. This is the volume of what region in R^{4} ?

Answer:

The cofactor $C_{11}=-1$. Then $\operatorname{det} B=\operatorname{det} A-C_{11}=1$. This is the volume of a box in R^{4} with edges $=$ rows of B.
(c) Find $\operatorname{det} C$ for any value of x. You could use linearity in row 1 .

Answer:
$\operatorname{det} C=x C_{11}+\operatorname{det} B=-x+1$. Check this answer (zero), for $x=1$ when $C=A$.

8. (11 points)

(a) When A is similar to $B=M^{-1} A M$, prove this statement:

If $A^{k} \rightarrow 0$ when $k \rightarrow \infty$, then also $B^{k} \rightarrow 0$.

Answer:

A and B have the same eigenvalues. If $A^{k} \rightarrow 0$ then all $|\lambda|<1$. Therefore $B^{k} \rightarrow 0$.
(b) Suppose S is a fixed invertible 3 by 3 matrix.

This question is about all the matrices A that are diagonalized by S, so that
$S^{-1} A S$ is diagonal. Show that these matrices A form a subspace of 3 by 3 matrix space. (Test the requirements for a subspace.)

Answer:

If A_{1} and A_{2} are in the space, they are diagonalized by S. Then $S^{-1}\left(c A_{1}+d A_{2}\right) S$ is diagonal + diagonal $=$ diagonal.
(c) Give a basis for the space of 3 by 3 diagonal matrices. Find a basis for the space in part (b) - all the matrices A that are diagonalized by S.

Answer:
A basis for the diagonal matrices is

$$
D_{1}=\left[\begin{array}{lll}
1 & & \\
& 0 & \\
& & 0
\end{array}\right] D_{2}=\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & 0
\end{array}\right] D_{3}=\left[\begin{array}{lll}
0 & & \\
& 0 & \\
& & 1
\end{array}\right]
$$

Then $S D_{1} S^{-1}, S D_{2} S^{-1}, S D_{3} S^{-1}$ are all diagonalized by S : a basis for the subspace.
9. (11 points) This square network has 4 nodes and 6 edges. On each edge, the direction of positive current $w_{i}>0$ is from lower node number to higher node number. The voltages at the nodes are ($v_{1}, v_{2}, v_{3}, v_{4}$.)

Answer:

(a) Write down the incidence matrix A for this network (so that $A v$ gives the 6 voltage differences like $v_{2}-v_{1}$ across the 6 edges). What is the rank of A ? What is the dimension of the nullspace of A^{T} ?

Answer:

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

has rank $r=3$. The nullspace of A^{T} has dimension $6-3=3$.
(b) Compute the matrix $A^{T} A$. What is its rank? What is its nullspace?

Answer:

$$
A^{T} A=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

has rank 3 like A. The nullspace is the line through ($1,1,1,1$).
(c) Suppose $v_{1}=1$ and $v_{4}=0$. If each edge contains a unit resistor, the currents $\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right)$ on the 6 edges will be $w=-A v$ by Ohm's Law. Then Kirchhoff's Current Law (flow in $=$ flow out at every node) gives $A^{T} w=0$ which means $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{v}=\mathbf{0}$. Solve $A^{T} A v=0$ for the unknown voltages v_{2} and v_{3}. Find all 6 currents w_{1} to w_{6}. How much current enters node 4 ?

Answer:

Note: As stated there is no solution (my apologies!). All solutions to $A^{T} A v=0$ are multiples of $(1,1,1,1)$ which rules out $v_{1}=1$ and $v_{4}=0$.
Intended problem: I meant to solve the reduced equations using $K C L$ only at nodes 2 and 3. In fact symmetry gives $v_{2}=v_{3}=\frac{1}{2}$. Then the currents are $w_{1}=w_{2}=w_{5}=$ $w_{6}=\frac{1}{2}$ around the sides and $w_{3}=1$ and $w_{4}=0$ (symmetry). So $w_{3}+w_{5}+w_{6}=\frac{1}{2}$ is the total current into node 4.

18.06 Professor Edelman Final Exam December 22, 2011

Grading

1

2
3
Your PRINTED name is:___ 4
5

6

7

Please circle your recitation:

1	T 9	$2-132$	Kestutis Cesnavicius	$2-089$	$2-1195$	kestutis
2	T 10	$2-132$	Niels Moeller	$2-588$	$3-4110$	moller
3	T 10	$2-146$	Kestutis Cesnavicius	$2-089$	$2-1195$	kestutis
4	T 11	$2-132$	Niels Moeller	$2-588$	$3-4110$	moller
5	T 12	$2-132$	Yan Zhang	$2-487$	$3-4083$	yanzhang
6	T 1	$2-132$	Taedong Yun	$2-342$	$3-7578$	tedyun

1 (13 pts.)

Suppose the matrix A is the product

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 1 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 5 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(a) (3 pts.) What is the rank of A ?
A has rank 2. (Since the first matrix is non-singular, it does not affect the rank.)
(b) (5 pts.) Give a basis for the nullspace of A.
$\left[\begin{array}{r}0 \\ -4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-5 \\ 0 \\ 0 \\ 1\end{array}\right]$ Columns 1 and 2 are pivot columns. The other two
are free. We assign 1,0 and 0,1 to the free variables.
(c) (5 pts.) For what values of t (if any) are there solutions to $A x=\left(\begin{array}{l}1 \\ 1 \\ t\end{array}\right)$?
$t=2$. Elimination on $\left(\begin{array}{rrr}1 & 0 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & t\end{array}\right)$ yields $\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & t-2\end{array}\right)$.

2 (12 pts.)

Let $A=\left(\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right)$.
(a) (3 pts.) Find a basis for the column space of A.
$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}4 \\ 5 \\ 6\end{array}\right]$. This matrix is familar from class. The first two
columns are pivot columns, the third is free.
(b) (3 pts.) Find a basis for the column space of Σ where $A=U \Sigma V^{T}$ is the svd of A.
Σ is diagonal with first two diagonal elements positive. Hence a basis
for the column space is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
(c) (3 pts .) Find a basis for the column space of the matrix exponential e^{A}

The matrix exponential has full rank, so the three columns of the identity or any linearly independent set of three vectors will do.
(d) (3 pts.) Find a non-zero constant solution (meaning no dependence on t) to $\frac{d}{d t} u(t)=$ $A u(t)$.
$\frac{d}{d t} u(t)=0=A u \Longrightarrow u(t)=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$, the eigenvector corresonding
to 0.

3 (12 pts.)

(a) (3 pts.) Give an example of a nondiagonalizable matrix A which satisfies $\operatorname{det}(t I-A)=$ $(4-t)^{4}$

$$
\left(\begin{array}{cccc}
4 & 1 & & \\
& 4 & 1 & \\
& & 4 & 1 \\
& & & 4
\end{array}\right)
$$

is a Jordan block hence is non-diagonalizable.
(b) (3 pts.) Give an example of two different matrices that are similar and both satisfy $\operatorname{det}(t I-A)=(1-t)(2-t)(3-t)(4-t)$.
$\left(\begin{array}{llll}1 & & & \\ & 2 & & \\ & & 3 & \\ & & & 4\end{array}\right)$ and $\left(\begin{array}{llll}4 & & & \\ & 3 & & \\ & & 2 & \\ & & & 1\end{array}\right)$
(c) (3 pts.) Give an example if possible of two matrices that are not similar and both satisfy $\operatorname{det}(t I-A)=(1-t)(2-t)(3-t)(4-t)$.

All matrices with distinct eigenvalues $1,2,3,4$ are similar, so this is impossible.
(d) (3 pts) Give an example of two different 4 x 4 matrices that have singular values $1,2,3,4$.
$\left(\begin{array}{llll}1 & & & \\ & 2 & & \\ & & 3 & \\ & & & 4\end{array}\right)$ and $\left(\begin{array}{cccc}-1 & & \\ & -2 & & \\ & & -3 & \\ & & & -4\end{array}\right)$

4 (16 pts.)

The matrix $G=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i\end{array}\right)$.
(a) (3 pts.) This matrix has two eigenvalues $\lambda=2$, and one eigenvalue $\lambda=-2$. Given that, find the fourth eigenvalue.

The trace is $2-2 i=2+2-2+$? so the fourth eigenvalue is $-2 i$.
(b) (3 pts.) Find a real eigenvector and show that it is indeed an eigenvector.

(Problem 4 continued.) The matrix $G=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i\end{array}\right)$.
(c) (4 pts.) Is G a Hermitian matrix? Why or why not. (Remember Hermitian means that $H_{j k}=\bar{H}_{k j}$ where the bar indicates complex conjugate.)
No, the diagonals are not real.
(d) (4 pts.) Give an example of a real non-diagonal matrix X for which $G^{H} X G$ is Hermitian.

5 (16 pts.)

The following operators apply to differentiable functions $f(x)$ transforming them to another function $g(x)$. For each one state clearly whether it is linear or not, (expalnations not needed). (2 pts each problem)
(a) $g(x)=\frac{d}{d x} f(x)$ linear (for all linear cases check $c f(x)$ goes to $c g(x)$ and $f_{1}(x)+f_{2}(x)$ goes to $g_{1}(x)+g_{2}(x)$
(b) $g(x)=\frac{d}{d x} f(x)+2$ not linear (zero does not go to 0)
(c) $g(x)=\frac{d}{d x} f(2 x)$ linear
(d) $g(x)=f(x+2)$ linear
(e) $g(x)=f(x)^{2}$ not linear (the function $c f(x)$ should go to $c g(x)$ but it goes to $c^{2} g(x)$.)
(f) $g(x)=f\left(x^{2}\right)$ linear
(g) $g(x)=0$ linear
(h) $g(x)=f(x)+f(2)$ linear (don't be fooled, this one is indeed linear)

6 (20 pts.)

Let $A=I_{3}-c E_{3}=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & 1\end{array}\right)-c\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(a) (4 pts.) There are two values of c that make A a projection matrix. Find them by guessing, calculating, or understanding projection matrices. Check that A is a projection matrix for these two c.
$A=A^{2}=I-2 c E+3 c^{2} E \longrightarrow 3 c^{2}=c$ so $c=0$ or $c=1 / 3$. Thus
$A=I$ or $A=\frac{1}{3}\left(\begin{array}{rrr}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)$ which upon squaring is itself.
(b) (4 pts.) There are two values of c that make A an orthogonal matrix. Find them and check that A is orthogonal for these two c.
$I=A^{T} A=A^{2}=I-2 c+3 c^{2} E \Longrightarrow 3 c^{2}=2 c$ so $c=0$ or $c=2 / 3$.
Thus $A=I$ or $A=\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1\end{array}\right)$ which upon squaring is the
identity.
(c) (4 pts.) For which values of c is A diagonalizable?

The matrix is symmetric, so all values of c make A diagonalizable.
(Problem 6 Continued) Let $A=I_{3}-c E_{3}=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & 1\end{array}\right)-c\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(d) (4 pts.) Find the eigenvalues of A^{-1} (if it exists) in terms of c. (Hint: find the eigenvalues of E_{3} first.)
E_{3} is rank 1 and trace 3 so the eigenvalues are $3,0,0$. Then A has eigenvalues 1-3c, 1,1. Finally A^{-1} has eigenvalues $\frac{1}{1-3 c}, 1,1$.
(e) (4 pts.) For which values of c is A positive definite?
$\frac{1}{1-3 c}>0$ so $c<1 / 3$.

7 (11 pts.)

The general equation of a circle in the plane has the form $x^{2}+y^{2}+C x+D y+E=0$. Suppose you are trying to fit $n \geq 3$ distinct points $\left(x_{i}, y_{i}\right), i=1, \ldots, n$ to obtain a "best" least squares circle, it is reasonable to write a generally unsolvable equation $A x=b$.
(a) (7 pts.) Describe A and b clearly, indicating the number of rows and columns of A and the number of elements in b.
$\left(\begin{array}{ccc}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \vdots & \vdots \\ x_{n} & y_{n} & 1\end{array}\right)\left(\begin{array}{c}C \\ D \\ E\end{array}\right)=\left(\begin{array}{c}-x_{1}^{2}-y_{1}^{2} \\ -x_{2}^{2}-y_{2}^{2} \\ \vdots \\ -x_{n}^{2}-y_{n^{2}}\end{array}\right)$. The matrix A has n
rows and 3 columns, while b has n elements.
(b) (4 pts.) When $n=3$ it is possible to describe when the equation is and is not solvable. You can use your geometric intuition, or a determinant area formula to describe when A is singular. Give a simple geometrical description. (We are looking for a specific word - so only a short answer will be accepted.)

A circle is determined by three points as long as they are not colinear. The matrix A is the area matrix for a triangle, when $\mathrm{n}=3$, so the interpretation is that we can solve the equation, when the area of the triangle is not-zero, i.e. the triangle does not collapse to a line.

Your PRINTED name is 1.

Your Recitation Instructor (and time) is \qquad 2.

Instructors: (Hezari)(Pires)(Sheridan)(Yoo)
3.
4.
5.
6.
7.
8.
9.

Please show enough work so we can see your method and give due credit.

1. (a) For this matrix A, find the usual P (permutation) and L and U so that $P A=L U$.

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 1 \\
2 & 2 & 4 & 2 \\
3 & 4 & 7 & 3
\end{array}\right]
$$

(b) Find a basis for the nullspace of A.
(c) The vector $\left(b_{1}, b_{2}, b_{3}\right)$ is in the column space of A provided it is orthogonal to (give a numerical answer).
2. (a) Compute the 4 by 4 matrix P that projects every vector in R^{4} onto the column space of A :

$$
A=\left[\begin{array}{rr}
1 & -1 \\
1 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right]
$$

(b) What are the four eigenvalues of P ? Explain your reasoning.
(c) Find a unit vector u (length 1) that is as far away as possible from the column space of A.
3. Suppose A is an m by n matrix and its pivot columns (not free columns) are $c_{1}, c_{2}, \ldots, c_{r}$. Put these columns into a matrix C.
(a) Every column of A is a \qquad of the columns of C. How would you produce from this a matrix R so that $A=C R$? Explain how to construct R.
(b) Using C from part (a) factor the following matrix A into $C R$, where C has independent columns and R has independent rows.

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 5
\end{array}\right]
$$

4. (a) Find the cofactor matrix C for this matrix A. (The i, j entry of C is the cofactor including \pm sign of the i, j position in A.)

$$
A=\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

(b) If a square matrix B is invertible, how do you know that its cofactor matrix is invertible?
(c) True or false with a reason, if B is invertible with cofactor matrix C :

$$
\text { determinant of } \quad B^{-1}=\frac{\text { determinant of } C}{\text { determinant of } B}
$$

5. (a) Find the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and a full set of independent eigenvectors x_{1}, x_{2}, x_{3} (if possible) for

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

(b) Suppose $u_{0}=3 x_{1}+7 x_{2}+5 x_{3}$ is a combination of your eigenvectors of A :

Find $A^{k} u_{0}$. If $\|v\|$ is the length of v, find the limit of $\frac{\left\|A^{k+1} u_{0}\right\|}{\left\|A^{k} u_{0}\right\|}$ as $k \rightarrow \infty$.
6. (a) For this directed graph, write down the 5 by 4 incidence matrix A. Describe the nullspace of A.

(b) Find the matrix $G=A^{T} A$. Is this matrix G positive definite? (Explain why or why not.) The first entry is $G_{11}=3$ because the graph has \qquad .
(c) What is the sum of the squares of the singular values of A ? Hint: Remember that those numbers σ^{2} are \qquad .
7. Suppose A is a positive definite symmetric matrix with n different eigenvalues: $A x_{i}=\lambda_{i} x_{i}$. (a) What are the properties of those λ 's and x 's? How would you find an orthogonal matrix Q so that $A=Q \Lambda Q^{T}$ with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$?
(b) I am looking for a symmetric positive definite matrix B with $B^{2}=A$ (a square root of A). What will be the eigenvectors and eigenvalues of B ? Can you find a formula for B using Q and Λ from part (a)?
(c) What are the eigenvalues and eigenvectors of the matrix e^{-A} ? Is this matrix also positive definite and why?
8. Suppose the 2 by 3 matrix A has $A v_{1}=3 u_{1}$ and $A v_{2}=5 u_{2}$ with orthonormal v_{1}, v_{2} in R^{3} and orthonormal u_{1}, u_{2} in R^{2}.
(a) Describe the nullspace of A.
(b) Find the eigenvalues of $A^{T} A$.
(c) Find the eigenvalues and eigenvectors of $A A^{T}$.
9. (a) The index of a matrix A is the dimension of its nullspace minus the dimension of the nullspace of A^{T}. If A is a 9 by 7 matrix of rank r, what is its index?
(b) Suppose M is the vector space consisting of all 2 by 2 matrices. (So those matrices are the "vectors" in M.) Write down a basis for this vector space M : linearly independent and spanning the space M.
(c) $S=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ is a specific matrix in M. For every 2 by 2 matrix A, the transformation T produces $T(A)=S^{-1} A S$. Is this a linear transformation? What tests do you have to check?

| 18.06 | Professor Edelman | Final Exam | December 20, 2012 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Grading | | | |

1 (10 pts.)

What condition on b makes the equation below solvable? Find the complete solution to \mathbf{x} in the case it is solvable.

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
2 & 6 & 4 & 8 \\
0 & 0 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
b
\end{array}\right) .
$$

Solution:
Let's use Gaussian elimination. Starting from

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
2 & 6 & 4 & 8 \\
0 & 0 & 2 & 4
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
1 \\
3 \\
b
\end{array}\right)
$$

multiply both sides by the elementary matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ on the left, which has the effect of subtracting twice the first row from the second:

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 2 & 4
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
1 \\
1 \\
b
\end{array}\right)
$$

Then multiply both sides by the elementary matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)$ on the left, which has the effect of subtracting the second row from the third:

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
1 \\
1 \\
b-1
\end{array}\right)
$$

Comparing the third row on both sides, we find that $0=b-1$. The first and second rows of the matrix on the left-hand side both have pivots, so there are no other restrictions. The equation is solvable precisely when $b=1$. Let us solve it in this case.

The free variables are x_{2} and x_{4}. To find a particular solution to the equation at hand, set both free variables to zero, and solve for the pivot variables; we get $\mathbf{x}=\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)$. To find the complete solution, we must solve the homogeneous equation

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) \mathbf{x}=\mathbf{0}
$$

The two special solutions to this homogeneous equation are found by setting one of the free variables to 1 , the other to 0 : we get $(-3,1,0,0)$ and $(0,0,-2,1)$. Therefore, the complete solution to the original equation when $b=1$ is

$$
\mathbf{x}=\left(\begin{array}{c}
\frac{1}{2}-3 x_{2} \\
x_{2} \\
\frac{1}{2}-2 x_{4} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
0 \\
0 \\
-2 \\
1
\end{array}\right) .
$$

2 (6 pts.)

Let C be the cofactor matrix of an $n \times n$ matrix A. Recall that C satisfies $A C^{T}=(\operatorname{det} A) I_{n}$. Write a formula for $\operatorname{det} C$ in terms of $\operatorname{det} A$ and n.

Solution:
Since $A C^{T}=(\operatorname{det} A) I_{n}$, we get $\operatorname{det}\left(A C^{T}\right)=\operatorname{det}\left((\operatorname{det} A) I_{n}\right)$. The left hand side simplifies to $\operatorname{det} A \operatorname{det} C$ and the right hand side is equal $(\operatorname{det} A)^{n}$. This gives $\operatorname{det} C=(\operatorname{det} A)^{n-1}$.

The conscientious may object that we have divided both sides of the equation $\operatorname{det} A \operatorname{det} C=$ $(\operatorname{det} A)^{n}$ by $\operatorname{det} A$, which is invalid if $\operatorname{det} A=0$. So we still have to prove that, if $\operatorname{det} A=0$, then C must also be singular. Well, assume for the sake of contradiction that $\operatorname{det} A=0$ but C is invertible. Then C^{T} is also invertible, and we may multiply the original equation $A C^{T}=(\operatorname{det} A) I_{n}$ by $\left(C^{T}\right)^{-1}$:

$$
A=(\operatorname{det} A)\left(C^{T}\right)^{-1}=0\left(C^{T}\right)^{-1}=0
$$

So A is the zero matrix, but in this case obviously so is its cofactor matrix C. This contradiction shows that indeed $\operatorname{det} C=(\operatorname{det} A)^{n-1}$ in all cases.

3 (25 pts.)

The matrix $A=\left(\begin{array}{rrr}5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5\end{array}\right)$ satisfies $A^{2}=6 A$.
(a) (4 pts.) The eigenvalues of A are $\lambda_{1}=$ \qquad , $\lambda_{2}=$ \qquad , and $\lambda_{3}=$
(b) (5 pts) Find a basis for the nullspace of A and the column space of A.
(c) (16 pts.) Circle all that apply. The matrix $M=\frac{1}{6} A$ is

1.orthogonal
3. a projection
5. singular
7. a Fourier matrix

2. symmetric
3. a permutation
4. Markov
5. positive definite

4 (12 pts.)

The matrix $G=\left(\begin{array}{rrrr}-1 & 1 & 1 & 1 \\ 1 & -2-i & -1 & i \\ 1 & -1 & -1 & -1 \\ 1 & i & -1 & -2-i\end{array}\right)$, where $i=\sqrt{-1}$.
(a) (6 pts) Use elimination or otherwise to find the rank of G.
(b) (6 pts) Find a real nonzero solution to $\frac{d}{d t} x(t)=G x(t)$.

5 (12 pts.)

Given a vector x in \mathbb{R}^{n}, we can obtain a new vector $y=\operatorname{cumsum}(x)$, the cumulative sum, by the following recipe:

$$
\begin{gathered}
y_{1}=x_{1} \\
y_{j}=y_{j-1}+x_{j}, \text { for } j=2, \ldots, n .
\end{gathered}
$$

(a) (7 pts) What is the Jordan form of the matrix of this linear transformation?

Solution:
Let's first find the matrix A representing the linear transformation cumsum, and then worry about finding the Jordan form of A. Note that cumsum maps $(1,0, \ldots, 0)$ to $(1,1, \ldots, 1)$, so the first column of A should be $(1,1, \ldots, 1)$. The other columns of A can be found in a similar way, and

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & \cdots & 0 & 0 \\
1 & 1 & 1 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & 0 & 0 \\
1 & 1 & 1 & \cdots & 1 & 0 \\
1 & 1 & 1 & \cdots & 1 & 1
\end{array}\right]
$$

If $n=1$, then A is already in Jordan form. So, for the rest of this solution, let's assume $n \geqslant 2$.

To find the Jordan form of A, let's first find its eigenvalues. We see that A is a lower triangular matrix, so its eigenvalues are just its diagonal entries, which are all equal to 1 . Thus, 1 is the only eigenvalue of A, and it occurs with arithmetic multiplicity n. This fact alone is not enough to determine the Jordan form of A, however. In fact, there are $p(n)$ non-similar $n \times n$ matrices whose only eigenvalue is 1 , where $p(n)$ denotes the number of partitions of n - the number of distinct ways of writing n as a sum of positive integers, if order is irrelevant. Of the $p(n)$ possible distinct Jordan forms of such matrices, which one is actually the Jordan form of A ?

One possibility that we can immediately eliminate is the identity matrix I_{n}. The only matrix similar to I_{n} is I_{n} itself: $M I_{n} M^{-1}=I_{n}$ for any invertible matrix M. Since A isn't the identity matrix, it isn't similar to I_{n} either, and its Jordan form is not I_{n}.

The key is to consider $A-I_{n}$: this matrix has rank $n-1$, because (for example) its transpose is in row-echelon form with $n-1$ pivots. Thus, $A-I_{n}$ has a 1-dimensional kernel, which is to say A has a 1-dimensional eigenspace for the eigenvalue 1 . This means that the Jordan form of A consists of a single Jordan block, which must therefore be

$$
\left[\begin{array}{llllll}
1 & 1 & & & & \\
& 1 & 1 & & & \\
& & 1 & \ddots & & \\
& & & \ddots & 1 & \\
& & & & 1 & 1 \\
& & & & & 1
\end{array}\right]
$$

(the empty entries are zeroes).
(b) (5 pts) For every n,find an eigenvector of cumsum.

Solution:
An eigenvector for A is the same thing as a vector in the nullspace of

$$
A-I_{n}=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & 0 & 0 \\
1 & 1 & \cdots & 1 & 1 & 0
\end{array}\right]
$$

Row operations or mere inspection quickly leads to the conclusion that only the nth column is free, while all other columns have pivots. So all eigenvectors for A are scalar multiples of $(0, \ldots, 0,1)$. It is easy to check that $(0, \ldots, 0,1)$ is unchanged by the transformation cumsum, so this makes sense.

6 (20 pts.)

This problem concerns matrices whose entries are taken from the values +1 and -1 . In other words, the general form of this matrix is $\left(\begin{array}{cccc} \pm 1 & \pm 1 & \ldots & \pm 1 \\ \pm 1 & \pm 1 & \ldots & \pm 1 \\ \vdots & \vdots & \ddots & \\ \pm 1 & \pm 1 & \ldots & \pm 1\end{array}\right)$. We will call these matrices ± 1 matrices.
One $3 x 3$ example of such a matrix is $\left(\begin{array}{rrr}1 & -1 & 1 \\ -1 & -1 & -1 \\ -1 & 1 & 1\end{array}\right)$.
a) (5 pts .) Find a two by two example of a ± 1 matrix with eigenvalues $\lambda_{1}=0$ and $\lambda_{2}=0$ or prove it is impossible.
b) (5 pts .) Suppose A is a 10×10 example of a ± 1 matrix. Compute $\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{10}^{2}$
c) (5 pts.) The big determinant formula for a $5 \times 5 A$ has exactly \qquad terms. A computer package for matrices computes that the determinant of a ± 1 matrix that is 5×5 is an odd integer. If this is possible exhibit such a ± 1 matrix, if not argue clearly why the package must not be giving the right answer for this 5×5 matrix.
d) (5 pts.) For every n, construct a ± 1 matrix A_{n} with ($n-1$) eigenvalues exactly equal to 2. (Hint: Think about $A_{n}-2 I$.)

7 (15 pts.)

Let V be the six dimensional vector space of functions $f(x, y)$ of the form $a x^{2}+b x y+$ $c y^{2}+d x+e y+f$. Let W be the three dimensional vector space of (at most) second degree quadratics in x.
a) (6 pts.) Write down a basis for V and a basis for W.

Solution:
A basis for V is $1, x, y, x y, x^{2}, y^{2}$. A basis for W is $1, x, x^{2}$.
b (9 pts.) In your chosen basis, what is the matrix of the linear transformation from V to W that takes $f(x, y)$ to $g(x)=f(x, x)$?

Recall that the i th column of the matrix simply describes the image of the i th basis vector of V as a linear combination of the basis vectors of W. Therefore, the transformation is represented by

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Fall $2012 \quad 18.06$ firal solutions
(questions $\geqslant 31$, excluding 5, 7)
3. al If $A_{v}=\lambda v$ then $\lambda^{2}=6 \lambda$, so $\lambda=0$ or 6 .

Sum evals=trace $A=12$, so evals must be $6,6,0$.
b) Basis for nullspace (dim 11; so just find a nullepace vector):

$$
\left\{\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)\right\}
$$

- Colum space of a symmetric matrix is orthogonal to its nullspace, so a basis is egg.

$$
\left\{\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\} .
$$

c) $M=\frac{1}{6} A$ is symmetric, a projection, singular, Markov and none of the others.
4. a) Elimination:

$$
G \Rightarrow\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
0 & -1-i & 0 & 1+i \\
0 & 0 & 0 & 0 \\
0 & 1+i & 0 & -1-i
\end{array}\right)
$$

and row $=-4$ th row, so pow clear that rack $G=2$.
b) Note that $\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right) \in$ null G, so the constant $x(t)=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ works, since $\frac{d}{d t} x(t)=G x(t)=0$.
5. Already presort in pdf.
6.
a) $\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$ has $\lambda_{1}=\lambda_{2}=0$.
b) $\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{10}^{2}=\operatorname{sum}$ of entries of matrix. All 100 entries square to 1 , so sum of squares $=$ 100.
c) The big determinant formula has $5!=120$ terms. It is not possible for the determinant of a 5×5 matrix with entries ± 1 to be odd, because the every term in the big formula is ± 1, and so odd. But the sum of an even number of odd numbers is always even.

Your PRINTED name is:

Pleasecircle your recitation: $\quad 7$

r01	T 11	$4-159$	Ailsa Keating	ailsa
r02	T 11	$36-153$	Rune Haugseng	haugseng
r03	T 12	$4-159$	Jennifer Park	jmypark
r04	T 12	$36-153$	Rune Haugseng	haugseng
r05	T 1	$4-153$	Dimiter Ostrev	ostrev
r06	T 1	$4-159$	Uhi Rinn Suh	ursuh
r07	T 1	$66-144$	Ailsa Keating	ailsa
r08	T 2	$66-144$	Niels Martin Moller	moller
r09	T 2	$4-153$	Dimiter Ostrev	ostrev
r10	ESG		Gabrielle Stoy	gstoy

1 (12 pts.)
(a) - Find the eigenvalues and eigenvectors of A.

$$
A=\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 1 & 5 \\
0 & 1 & 5
\end{array}\right]
$$

Solution. The eigenvalues are:

$$
\lambda=0,3,6
$$

The corresponding eigenvectors are:
$\lambda=0: \quad \mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -15 \\ 3\end{array}\right]$

$$
\lambda=3: \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$\lambda=6: \quad \mathbf{v}_{3}=\left[\begin{array}{l}5 \\ 3 \\ 3\end{array}\right]$
(b) - Write the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as a linear combination of eigenvectors of A.

- Find the vector $A^{10} \mathbf{v}$.

Solution. We have that, forming $T=\left[v_{1}\left|v_{2}\right| v_{3}\right]$ (with columns $=$ the three vectors),

$$
\mathbf{y}=T^{-1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3
\end{array}\right]
$$

Or in other words:

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=0\left[\begin{array}{c}
1 \\
-15 \\
3
\end{array}\right]-\frac{2}{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
5 \\
3 \\
3
\end{array}\right]
$$

Therefore, we also see:

$$
A^{10} \mathbf{v}=-3^{10} \frac{2}{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+6^{10} \frac{1}{3}\left[\begin{array}{l}
5 \\
3 \\
3
\end{array}\right] \stackrel{(*)}{=}\left[\begin{array}{c}
100737594 \\
60466176 \\
60466176
\end{array}\right]
$$

(*) Required for mental arithmetics wizards only.
(c) If you solve $\frac{d \mathbf{u}}{d t}=-A \mathbf{u}$ (notice the minus sign), with $\mathbf{u}(0)$ a given vector, then as $t \rightarrow \infty$ the solution $\mathbf{u}(t)$ will always approach a multiple of a certain vector \mathbf{w}.

- Find this steady-state vector w.

Solution. Since the eigenvalues of $-A$ are $0,-3,-6$, we see that this steady state is:

$$
\mathbf{w}=v_{1}=\left[\begin{array}{c}
1 \\
-15 \\
3
\end{array}\right]
$$

2 (12 pts.)

Suppose A has rank 1, and B has rank 2 (A and B are both 3×3 matrices).
(a) - What are the possible ranks of $A+B$?

Solution. Of course, $0 \leq \operatorname{rank}(A+B) \leq 3$. But the only ranks that are possible are:

$$
\operatorname{rank}(A+B)=1,2,3
$$

The reason 0 is not an option is: It implies $A+B=0$, i.e. that $A=-B$. But $\operatorname{rank}(-B)=\operatorname{rank}(B)$, so for that to happen A and B should have had the same rank.
(b) - Give an example of each possibility you had in (a).

Solution. Here are some simple examples:
Example w/ $\operatorname{rank}(A+B)=1$: Take e.g.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$\underline{\text { Example w } / \operatorname{rank}(A+B)=2 \text { : Take e.g. }}$

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example w/ $\operatorname{rank}(A+B)=3$: Take e.g.

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(c) - What are the possible ranks of $A B$?

- Give an example of each possibility.

Solution. As a general rule, recall $0 \leq \operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))=1$. In this case, both possibilities do happen:

$$
\operatorname{rank}(A B)=0,1
$$

Diagonal examples suffice:
$\underline{\text { Example } \mathrm{w} / \operatorname{rank}(A B)=0: ~ T a k e ~ e . g . ~}$

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example w/ $\operatorname{rank}(A B)=1$: Take e.g.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

3 (12 pts.)

(a) - Find the three pivots and the determinant of A.

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

Solution. We see that

$$
A \sim\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right]
$$

Thus,

$$
\text { The pivots are } 1,1,-2
$$

Since we reduced A without any row switches (permutation P 's), or row scalings, we have:

$$
\operatorname{det} A=1 \cdot 1 \cdot(-2)=-2
$$

(b) - The rank of $A-I$ is \qquad , so that $\lambda=$ \qquad is an eigenvalue.

- The remaining two eigenvalues of A are $\lambda=$ \qquad .
- These eigenvalues are all \qquad , because $A^{T}=A$.

Solution. We see that

$$
\operatorname{rank}(A-I)=2
$$

So $\operatorname{dim} N(A-I)=1$. Thus,

$$
\lambda=1
$$

is an eigenvalue of algebraic and geometric multiplicity one.
The other two eigenvalues of A are:

$$
\lambda=-1,2
$$

$$
\text { The eigenvalues are all real values, because } A \text { is symmetric. }
$$

(c) The unit eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ will be orthonormal.

- Prove that:

$$
A=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{T}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{T}+\lambda_{3} \mathbf{x}_{3} \mathbf{x}_{3}^{T} .
$$

You may compute the \mathbf{x}_{i} 's and use numbers. Or, without numbers, you may show that the right side has the correct eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

Solution. As suggested, we check that A does the correct thing on the basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{2}\right\}$.

$$
\left(\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{T}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{T}+\lambda_{3} \mathbf{x}_{3} \mathbf{x}_{3}^{T}\right) \mathbf{x}_{\mathbf{i}}=\lambda_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}=A \mathbf{x}_{i}
$$

Having checked this, then by linearity of matrix multiplication, the two expressions agree always (and hence the matrices are identical).

For the record, the three vectors are:

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \mathbf{x}_{\mathbf{2}}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right] \\
& \mathbf{x}_{\mathbf{3}}=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

4 (12 pts.)

This problem is about $x+2 y+2 z=0$, which is the equation of a plane through $\mathbf{0}$ in \mathbb{R}^{3}.
(a) - That plane is the nullspace of what matrix A ?
$A=$

- Find an orthonormal basis for that nullspace (that plane).

Solution.

$$
A=\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]
$$

We could identify a basis of $N(A)$ as usual, then apply Gram-Schmidt to make it an orthonormal basis.

But if we can find two orthonormal vectors in $N(A)$, we are done. Here, one can first easily guess one vector in $N(A)$:

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] \in N(A)
$$

Then anything of the form $\left[\begin{array}{lll}a & 1 & 1\end{array}\right]$ will be orthogonal to \mathbf{v}_{1}, and we pick the one that is in the null space:

$$
\mathbf{v}_{2}=\left[\begin{array}{r}
-4 \\
1 \\
1
\end{array}\right] \in N(A)
$$

Then an orthonormal basis is:

$$
\mathbf{q}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right], \quad \mathbf{q}_{2}=\frac{1}{3 \sqrt{2}}\left[\begin{array}{r}
-4 \\
1 \\
1
\end{array}\right]
$$

(b) That plane is the column space of many matrices B.

- Give two examples of B.

Solution. We can use the basis vectors from above as columns, and (independent) linear combinations of them. Or filling in a zero column:

$$
\begin{gathered}
\begin{array}{|c}
B_{1}=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right] \\
\hline B_{2}=\left[\begin{array}{ll}
\mathbf{v}_{1} & 2 \mathbf{v}_{1}+\mathbf{v}_{2}
\end{array}\right] \\
B_{3}=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{0}
\end{array}\right]
\end{array} . \begin{array}{c}
\\
\hline
\end{array} \\
\hline
\end{gathered}
$$

Then $c\left(B_{i}\right)=N(A)$.
(c) - How would you compute the projection matrix P onto that plane? (A formula is enough)

- What is the rank of P ?

Solution. It can be computed using a matrix B from above (if it has independent columns: So B_{1}, B_{2} but not B_{3} here), via the usual formula:

$$
P=B\left(B^{T} B\right)^{-1} B^{T}
$$

For a projection, $c(P)$ is always the subpace it projects on, in this case it is the two-dimensional plane:

$$
\operatorname{rank}(P)=\operatorname{dim} c(P)=2
$$

5 (12 pts.)

Suppose \mathbf{v} is any unit vector in \mathbb{R}^{3}. This question is about the matrix H.

$$
H=I-2 \mathbf{v} \mathbf{v}^{T}
$$

(a) - Multiply H times H to show that $H^{2}=I$.

Solution.

$$
H^{2}=\left(I-2 \mathbf{v} \mathbf{v}^{T}\right)^{2}=I^{2}+4\left(\mathbf{v v}^{T}\right)^{2}-4 \mathbf{v} \mathbf{v}^{T}=I+4 \mathbf{v} \mathbf{v}^{T}-4 \mathbf{v} \mathbf{v}^{T}=I
$$

(b) - Show that H passes the tests for being a symmetric matrix and an orthogonal matrix.

Solution. Transpose is linear, $I^{T}=I$, and anything of the form $A A^{T}$ is symmetric:

$$
\left(I-2 \mathbf{v} \mathbf{v}^{T}\right)^{T}=I-2\left(\mathbf{v}^{T}\right)^{T} \mathbf{v}^{T}=I-2 \mathbf{v} \mathbf{v}^{T}
$$

For orthogonality, we use (a) and symmetry:

$$
H H^{T}=H^{2}=I
$$

(c) - What are the eigenvalues of H ?

You have enough information to answer for any unit vector \mathbf{v}, but you can choose one \mathbf{v} and compute the λ 's.

Solution. Note first that (since $\|\mathbf{v}\|=1$):

$$
H \mathbf{v}=\mathbf{v}-2\left(\mathbf{v}^{T} \mathbf{v}\right) \mathbf{v}=-\mathbf{v}
$$

so that

$$
\lambda=-1
$$

is an eigenvalue (with a one-dimensional eigenspace spanned by \mathbf{v}).
Let on the other hand $\mathbf{u} \in(\operatorname{span}\{\mathbf{v}\})^{\perp}$ be any vector orthogonal to \mathbf{v}. Then we have:

$$
H \mathbf{u}=\mathbf{u}-2\left(\mathbf{v}^{T} \mathbf{u}\right) \mathbf{v}=\mathbf{u}
$$

so that

$$
\lambda=1
$$

is also an eigenvalue.
Since $(\operatorname{span}\{\mathbf{v}\})^{\perp}$ is two-dimensional, we have found all eigenvalues.

6 (12 pts.)

(a) - Find the closest straight line $y=C t+D$ to the 5 points:

$$
(t, y)=(-2,0), \quad(-1,0), \quad(0,1), \quad(1,1), \quad(2,1)
$$

Solution. We insert all points into the equation:

$$
\begin{array}{r}
-2 C+D=0 \\
-C+D=0 \\
0+D=1 \\
1+D=1 \\
2 C+D=1
\end{array}
$$

Written as a matrix system:

$$
A \mathbf{x}=\left[\begin{array}{cc}
-2 & 1 \\
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]=\mathbf{b}
$$

We consider instead $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. We compute:

$$
A^{T} A=\left[\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right], \quad A^{T} \mathbf{b}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

and

$$
\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}
1 / 10 & 0 \\
0 & 1 / 5
\end{array}\right]
$$

Thus finally:

$$
\left[\begin{array}{l}
C \\
D
\end{array}\right]=\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=\left[\begin{array}{c}
3 / 10 \\
3 / 5
\end{array}\right]_{\text {Page } 11 \text { of } 14}
$$

So, the closest line to the five points is:

$$
y=\frac{3}{10} t+\frac{3}{5} .
$$

(b) - The word "closest" means that you minimized which quantity to find your line?

Solution. It means that the sum of squares deviation $\|A \mathbf{x}-\mathbf{b}\|^{2}$ was minimized.
(c) If $A^{T} A$ is invertible, what do you know about its eigenvalues and eigenvectors? (Technical point: Assume that the eigenvalues are distinct - no eigenvalues are repeated). Since $A^{T} A$ is symmetric and $\mathbf{x} \cdot\left(A^{T} A \mathbf{x}\right)=\|A \mathbf{x}\|^{2} \geq 0$ always, it is positive semi-definite. Since $N\left(A^{T} A\right)=\{0\}$, zero is not eigenvalue. Hence:

The eigenvalues of $A^{T} A$ are positive, if A^{T} is invertible
By symmetry:
Eigenvectors belonging to different eigenvalues are orthogonal

7 (12 pts.)

This symmetric Hadamard matrix has orthogonal columns:

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right], \quad \text { and } \quad H^{2}=4 I
$$

(a) What is the determinant of H ?

Solution. By row reduction, we get the pivots $1,-2,-2,4$, so:

$$
\operatorname{det} H=16
$$

(b) What are the eigenvalues of H ? (Use $H^{2}=4 I$ and the trace of H).

Solution. By $H^{2}=4 I$, the eigenvalues are all either ± 2. They sum up to $\operatorname{tr} H=0$. Hence:

$$
\text { Two eigenvalues must be }+2 \text {, and two eigenvalues be }-2
$$

Note also that this shows $\operatorname{det} H=16$ as in (a)
(c) What are the singular values of H ?

The singular values of H are $2,2,2,2$

8 (16 pts.)

In this TRUE/FALSE problem, you should circle your answer to each question.
(a) Suppose you have 101 vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{101} \in \mathbb{R}^{100}$.

- Each v_{i} is a combination of the other 100 vectors:

TRUE - FALSE

- Three of the v_{i} 's are in the same 2-dimensional plane:

TRUE - FALSE
(b) Suppose a matrix A has repeated eigenvalues $7,7,7$, so $\operatorname{det}(A-\lambda I)=(7-\lambda)^{3}$.

- Then A certainly cannot be diagonalized $\left(A=S \Lambda S^{-1}\right)$:

TRUE - FALSE

- The Jordan form of A must be $\mathcal{J}=\left[\begin{array}{lll}7 & 1 & 0 \\ 0 & 7 & 1 \\ 0 & 0 & 7\end{array}\right]$:
(c) Suppose A and B are 3×5.
- Then $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$:

TRUE - FALSE
(d) Suppose A and B are 4×4.

- Then $\operatorname{det}(A+B) \leq \operatorname{det}(A)+\operatorname{det}(B)$:

TRUE - FALSE
(e) Suppose \mathbf{u} and \mathbf{v} are orthonormal, and call the vector $\mathbf{b}=3 \mathbf{u}+\mathbf{v}$. Take V to be the line of all multiples of $\mathbf{u}+\mathbf{v}$.

- The orthogonal projection of \mathbf{b} onto V is $2 \mathbf{u}+2 \mathbf{v}$:
(f) Consider the transformation $T(x)=\int_{-x}^{x} f(t) d t$, for a fixed function f. The input is x, the output is $T(x)$.
- Then T is always a linear transformation:

1 T 9
2 T 10
Dan Harris
E17-401G
3-7775
dmh
Dan Harris E17-401G 3-7775
dmh
3 T 10 Tanya Khovanova
E18-420
4-1459
4-1459
tanya
5 T 12 Saul Glasman
E18-301H
3-4091
sglasman
6 T 1 Alex Dubbs 32-G580 3-6770 dubbs
7 T 2 Alex Dubbs 32-G580 3-6770 dubbs

This page intentionally blank.

1 (6 pts.)

Project b onto the column space of A :
(a) (3 pts.) $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ and $b=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$.
(b) (3 pts.) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1\end{array}\right)$ and $b=\left(\begin{array}{l}4 \\ 4 \\ 6\end{array}\right)$.

2 (20 pts.)

The matrix $A=\left(\begin{array}{ccc}z & z & z \\ z & z+c & z-c \\ z & z-c & z+c\end{array}\right)$.
a) (4 pts) Under what conditions on z and c would A be positive semidefinite?
b) (4 pts) Under what conditions on z and c would A be Markov?
c) (4 pts) Under what conditions on z and c would the first column of A be a free column?
d) (4 pts) Under what conditions on z and c does A have rank $r=2$.
e) (4 pts) Assuming A has rank 2, for which b in R^{3} does the equation $A x=b$ have a solution?

3 (22 pts.)

a) (5 pts.) What are the two eigenvalues of $A=\left(\begin{array}{ll}3 & 2 \\ 2 & 0\end{array}\right)$?
b) (5 pts.) What is κ, the ratio of the maximum and minimum values of $\|A x\|$ over the unit circle $\|x\|=1$?
c) (6 pts.) What are the maximum and minimum value of $v^{T} x$, for x over the unit circle $\|x\|=1$, when $v=\left[\begin{array}{l}2 \\ 0\end{array}\right]$? Same question when $v=\left[\begin{array}{l}3 \\ 2\end{array}\right]$? (Hint: the minimum is negative)
d) (6 pts.) When every point on the unit circle is multiplied by A, the result is an ellipse. Find the dimensions of the tightest rectangle with sides parallel to the coordinate axes that encloses the ellipse. (Hint: the previous maximum and minimum question is meant to be a warm-up. Another hint: singular values are not so useful here.)

4 (23 pts.)

The 8×8 matrix

$$
A=\left(\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1
\end{array}\right)
$$

is symmetric and satisfies $A^{2}=8 I$. The diagonal elements add to 0 .
a) (3 pts.) What are the eigenvalues of A and the determinant of A ?
b) (2 pts.) What is the condition number $\kappa(A)=\sigma_{1}(A) / \sigma_{8}(A)$? (Hint $\kappa \geq 1$ always.)
c) (3 pts.) Can A have any Jordan blocks of size greater than 1? Explain briefly.
d) (2 pts.) What is the rank of the matrix consisting of the first four columns of A ?
e) (3 pts.) The subspace of R^{8} spanned by the first four columns of A is the \qquad of the last four columns of A. Fill in the blank with the best two words and explain briefly.
f) (5 pts.) Let P project onto the first column of A. P is an 8×8 matrix all of whose 64 entries are the same number. This number is \qquad
g) (5 pts.) Projection onto the last seven columns of A (we are dropping only the first column) gives an 8×8 projection matrix whose 8 diagonal entries are the same number. This number is \qquad

5 (15 pts.)

Consider the vector space of symmetric 2×2 matrices of the form
$S=\left(\begin{array}{ll}x & z \\ z & y\end{array}\right)$.
a) (6 pts.) Write down a basis for this vector space.
b) (6 pts.) If D is the diagonal matrix $D=\left(\begin{array}{ll}d & 0 \\ 0 & e\end{array}\right)$, is $T(S)=D S D$ a linear transformation from this space to itself? If so, write down the matrix of this transformation in your chosen basis.
c) (3 pts.) If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we want to know if $T(S)=A S A$ os necessarily a linear transformation from symmetric 2×2 matrices to symmetric 2×2 matrices? If yes, explain why. If not, explain why not.

6 (14 pts.)

Choose the best choice from "must", "might", "can't" (and explain briefly.)
a) (2 pts.) A $3 x 3$ matrix M with rank $r=2$ have a non-zero solution to $M x=0$.
b) (2 pts.) A $3 x 3$ matrix M with rank $r=3$ \qquad have a non-zero solution to $M x=0$ with $x_{1}=0$.
c) (2 pts.) A $3 x 4$ matrix M with rank $r=3$ \qquad have a non-zero solution to $M x=0$ with $x_{1}=1$.
d) (2 pts.) A permutation matrix \qquad be singular.
e) (2 pts.) A projection matrix ___ be singular.
f) (2 pts.) $M-\lambda I$ be singular, if λ is an eigenvalue of M.
g) (2 pts.) We recall the number of columns of an incidence matrix for a graph is the number of nodes and every row has one entry +1 , one entry -1 , and the remaining entries 0 . Such an incidence matrix __ have full column rank.

Thank you for taking linear algebra. We hope you enjoyed it. Linear algebra will serve you well in the future. Have a happy holiday!
18.06 F13 final: solutions

Q1. al $\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)=3\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)-\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is in the column space of A, and

$$
b-\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
4
\end{array}\right)
$$

is orthogonal to the colure space of A, so $\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$ is the projection.
b)
$b=6\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)-2\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ is already in the column space of A, so the projection is just b itself.

Q2 a) By elimination,
A becomes $\left(\begin{array}{ccc}z & z & z \\ 0 & c & -c \\ 0 & -c & c\end{array}\right)$
then $\quad\left(\begin{array}{ccc}z & z & z \\ 0 & c & -c \\ 0 & 0 & 0\end{array}\right)$
Its pivots are z, c. Se A is tue semidefirite

$$
\Leftrightarrow \quad z \geqslant 0, \quad c \geqslant 0 .
$$

b) We need $3_{z}=1 \quad \therefore z=\frac{1}{3}$.

We the have all columns summing to 1, but need all entries nor-negative

$$
\text { ie. } \quad z+c=\frac{1}{3}+c \geqslant 0, \frac{1}{3}-c \geqslant 0
$$

So $-\frac{1}{3} \leqslant c \leqslant \frac{1}{3}$.

Q2. cont
c) A column is free if it is a linear combination of the columns loefore_it. This is only tine for the first column if it is $0 \Leftrightarrow z=0$.
d) As we saw in port al, the rank is always ≤ 2. For conk $=2$, we must have $z \neq 0, c \neq 0$. (If either is 0 , the matrix is rank 1, but if both ave $\neq 0$, then

$$
(z z z) \text { and }\left(\begin{array}{lll}
0 & c & -c) \text { ore LI.) }
\end{array}\left(\begin{array}{l}
\text { ar }
\end{array}\right)\right.
$$

e) Suppose

$$
\begin{aligned}
& \text { ore } A x=b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. Than } \\
& \left(\begin{array}{ccc}
z & z & z \\
0 & c & -c \\
0 & -c & c
\end{array}\right) x^{\prime}=\left(\begin{array}{c}
b_{1} \\
b_{2}-b_{1} \\
b_{3}-b_{1}
\end{array}\right) \quad \text { some } x^{\prime}
\end{aligned}
$$

and $\left(\begin{array}{ccc}z & z & z \\ 0 & c & -c \\ 0 & 0 & 0\end{array}\right) x^{\prime \prime}=\left(\begin{array}{c}b_{1} \\ b_{2}-b_{1} \\ b_{2}+b_{3}-2 b_{1}\end{array}\right)$ some $x^{\prime \prime}$
So there is a solution if and only if

$$
b_{2}+b_{3}-2 b_{1}=0
$$

Q3 a) They are the solutions to the eqn

$$
\begin{aligned}
& 0=-\lambda(3-\lambda)-4=\lambda^{2}-3 \lambda-4 \\
&=(\lambda+1)(\lambda-4) \\
& \lambda=-1 \text { or } 4 .
\end{aligned}
$$

b) Since A is symmetric, singular values re |eigenvalues|. Smallest $S V=$ mia value of $\|A x\|$ or unit circle $=1$
Largest $S V=$ max value of $\|A x\|$ on unit circe

$$
=4
$$

$$
\therefore x=4 / 1=4 .
$$

c) Greatest when x is m same direction as v, o. least when in opposite direction, so $v=\binom{2}{0} \quad \max : x=\binom{1}{0} \quad v^{\top} x=2$

Min: $x=\binom{-1}{0} \quad v^{\top} x=-2$
$v=\binom{3}{2} \quad \max : \quad x=\frac{1}{\sqrt{13}}\binom{3}{2} \quad v^{\top} x=\sqrt{13}$
$\min : \quad x=-\frac{1}{\sqrt{13}}(\xi) \quad v^{\top} x=-\sqrt{13}$

Q3 cont.
d) Maxpoin $v^{\top} x$ when $v=\binom{3}{2}=$
$\max / \mathrm{min} x$-coordinate of ellipse
Max/min $v^{\top} x$ when $v=\binom{2}{0}=$
max/min y-coordinate of ellipse
So: tightest rectangle has corners

$$
(\pm \sqrt{13}, \pm 2)
$$

Dimensions: $\quad 2 \sqrt{13} \times 4$.

Qu
a) Since $A^{2}=8 I$, any eigenvalue λ of A must Satisfy $\lambda^{2}=8$

$$
\Leftrightarrow \lambda= \pm \sqrt{8} .
$$

Le Trace $A=0$, so eigenvalues sum to 0 \therefore must have 4 eigenvalues of $\sqrt{8}$ and 4 eigenvalues of -58 .
Let $A=$ product of eigenvalues

$$
\begin{aligned}
& =(\sqrt{8})^{4}(-\sqrt{8})^{4} \\
& =8^{4} .
\end{aligned}
$$

b) All singular values are $\sqrt{8}$ /since A is symmetric, so singular values $=\mid$ eigenvalues \mid

So $K(A)=\sqrt{8} / \sqrt{8}=1$.
c) No. No symmetric matrix car have Jordanblocks of size greater than 1 .
d) Since $\operatorname{det} A \neq 0$, all columns of A are $L I$ \Rightarrow first 4 columns are LI \Rightarrow matrix of list 4 colors has rack 4 .

Q4 cont
e) Orthogonal complement, since all columns of A are orthogonal to ore mother.
f) If this number is c, then

$$
\left(\begin{array}{l}
1 \tag{array}\\
0 \\
0 \\
0 \\
\dot{d} \\
e
\end{array}\right)-\left(\begin{array}{l}
c \\
c \\
c \\
c \\
c \\
c
\end{array}\right) \begin{aligned}
& \text { must be } \\
& \text { orthogoral to }
\end{aligned}
$$

$$
\text { So } \quad 1-8 c=0 \quad \Rightarrow \quad c=\frac{1}{8} \text {. }
$$

g) If P is projection onto the first column, then I-P is projection onto last 7 columns. So diagonal entries are $1-\frac{1}{8}=\frac{7}{8}$.

Q5
a)

$$
\left.e_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

b) Yes, it's liren: if S is symmedric, then

$$
(D S D)^{\top}=D^{\top} S^{\top} D^{\top}=D S D
$$

$$
\begin{aligned}
& D(S+\tau) D=D S D+D T D \quad \text { so lirear. } \\
& D(\lambda S) D=\lambda D S D
\end{aligned}
$$ So DSD

Symmetric

$$
D e_{1} D=\left(\begin{array}{ll}
d^{2} & 0 \\
0 & 0
\end{array}\right)
$$

$$
D e_{2} D=\left(\begin{array}{cc}
0 & d e \\
d e & 0
\end{array}\right)
$$

So matrix of T
relative to $\left\{e_{1}, e_{2}, e_{3}\right\}$

$$
D e_{3} D=\left(\begin{array}{ccc}
d d & 0 \\
0 & 0 \\
0 & e^{2}
\end{array}\right) \quad \text { is }\left(\begin{array}{ccc}
d^{2} & 0 & 0 \\
0 & d e & 0 \\
0 & e & e^{2}
\end{array}\right) \text {. }
$$

C) No, sirce $A S A$ need fot be symmetric. e.g. $\quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad T(I)=A^{2}=\left(\begin{array}{lll}1 & 2 \\ 0 & 1\end{array}\right) \quad \begin{gathered}\text { Not } \\ \text { Symuretic }\end{gathered}$

Q6 a) Must. M has nullspace of dim 1, and any nonzero nullspace vector x has $M x=0$.
b) Can't. M has full rank, so there are no nonzero solutions to $M x=0$.
c) Might. M has dim I nullspace, but this may or may rot contain vectors with $x_{1}=1$.
d) Can't. Jet (permutation matrix) = (sign of permutation) $\neq 0$
(there is exactly one nonzero term in the big formula, and it is ± 1)
e) Might try vector orthogonal to cat. spa e.g. $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ sirgular

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) \text { not singular }
$$

f) Must. This is the defirition of eigenvalue.

$$
(M-\lambda I) x=0 \quad \Leftrightarrow M x=\lambda x \text {. }
$$

g)

1.
2.
3.
4.
5.
6.
7.
8.
9.
(1) $(7+7 \mathbf{p t s})$
(a) Suppose the nullspace of a square matrix A is spanned by the vector $v=(4,2,2,0)$.

Find the reduced echelon form $R=\operatorname{rref}(A)$.
(b) Suppose S and T are subspaces of \mathbf{R}^{5} and Y and Z are subspaces of \mathbf{R}^{3}. When can they be the four fundamental subspaces of a 3 by 5 matrix B ? Find any required conditions to have $S=C\left(B^{T}\right), T=N(B), Y=C(B)$, and $Z=N\left(B^{T}\right)$.
(2) $(6+6$ pts. $)$
(a) Find bases for all four fundamental subspaces of this R.

$$
R=\left[\begin{array}{llll}
1 & 2 & 0 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Find U, Σ, V in the Singular Value Decomposition $A=U \Sigma V^{T}$:

$$
A=\left[\begin{array}{rr}
2 & 2 \\
-1 & 2 \\
2 & -1
\end{array}\right]
$$

(3) (5+5 pts.)

Suppose $q_{1}, \ldots q_{5}$ are orthonormal vectors in \mathbf{R}^{5}.
The 5 by 3 matrix A has columns q_{1}, q_{2}, q_{3}.
(a) If $b=q_{1}+2 q_{2}+3 q_{3}+4 q_{4}+5 q_{5}$, find the best least squares solution \widehat{x} to $A x=b$.
(b) If terms of q_{1}, q_{2}, q_{3} find the projection matrix P onto the column space of A.
(4) $(3+4+3$ pts.)

The matrix A is symmetric and also orthogonal.
(a) How is A^{-1} related to A ?
(b) What number(s) can be eigenvalues of A and why?
(c) Here is an example of A. What are the eigenvalues of this matrix? I don't recommend computing with $\operatorname{det}(A-\lambda I)$! Find a way to use part (b).

$$
A=\left[\begin{array}{rrrr}
.5 & -.5 & -.1 & -.7 \\
-.5 & .5 & -.1 & -.7 \\
-.1 & -.1 & .98 & -.14 \\
-.7 & -.7 & -.14 & .02
\end{array}\right]
$$

(5) $(4+5+3 \mathrm{pts}$.

Suppose the real column vectors q_{1} and q_{2} and q_{3} are orthonormal.
(a) Show that the matrix $A=q_{1} q_{1}^{T}+2 q_{2} q_{2}^{T}+5 q_{3} q_{3}^{T}$ has the eigenvalues $\lambda=1,2,5$.
(b) Solve the differential equation $d u / d t=A u$ starting at any vector $u(0)$. Your answer can involve the matrix Q with columns q_{1}, q_{2}, q_{3}.
(c) Solve the differential equation $d u / d t=A u$ starting from $u(0)=q_{1}-q_{3}$.
(6) $(4+3+3$ pts.)

This graph has $m=12$ edges and $n=9$ nodes. Its 12 by 9 incidence matrix A has a single -1 and +1 in every row, to show the start and end nodes of the corresponding edge in the graph.
(a) Write down the 4 by 4 submatrix S of A that comes from the 4 -node graph (a loop) in the corner. Find a vector x in the nullspace $N(S)$ and a vector y in $N\left(S^{T}\right)$.

(b) For the whole matrix A, find a vector Y in $N\left(A^{T}\right)$. You won't need to write A or to know more edge numbers.
(c) The all-ones vector $(1,1, \ldots, 1)$ spans $N(A)$. Find the dimension of the left nullspace $N\left(A^{T}\right)$ (give a number).
(7) $(3+3+3+3$ pts.)

The equation $y_{n+2}+B y_{n+1}+C y_{n}=0$ has the solution $y_{n}=\lambda^{n}$ if $\lambda^{2}+B \lambda+C=0$. In most cases this will give two roots λ_{1}, λ_{2} and the complete solution is $y_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}$. Now solve the same problem the matrix way (slower). Create this vector unknown and vector equation $u_{n+1}=A u_{n}$.

$$
u_{n}=\left[\begin{array}{l}
y_{n} \\
y_{n+1}
\end{array}\right] \quad \text { and }\left[\begin{array}{l}
y_{n+1} \\
y_{n+2}
\end{array}\right]=\left[\begin{array}{l}
y_{n} \\
y_{n+1}
\end{array}\right]
$$

(a) What is the matrix A in that equation?
(b) What equation gives the eigenvalues λ_{1} and λ_{2} of A ?
(c) If λ_{1} is an eigenvalue, show directly that

$$
A\left[\begin{array}{c}
1 \\
\lambda_{1}
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
1 \\
\lambda_{1}
\end{array}\right] \text { so we have the eigenvector. }
$$

(d) If $\lambda_{1} \neq \lambda_{2}$, what is now the complete solution u_{n} (including constants c_{1} and c_{2}) to our equation $u_{n+1}=A u_{n}$? $\left(\left(\right.\right.$ Then y_{n} is the first component of $\left.\left.u_{n}.\right)\right)$
(8) $(5+5$ pts. $)$
(a) Find the determinant of this matrix A, using the cofactors of row 1.

$$
A=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
b & 1 & b & 0 \\
0 & b & 1 & b \\
0 & 0 & b & 1
\end{array}\right]
$$

(b) Find the determinant of A by the BIG formula with 24 terms. This means to find all the nonzero terms in that formula with their correct signs.
(9) $(6+4$ pts. $)$
(a) Suppose $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ is a column vector, so $A=\mathbf{v v}^{T}$ is a symmetric matrix. Show that A is positive semidefinite, using one of these tests:

1. The eigenvalue test
2. The determinant test
3. The energy test on $x^{T} A x$.
(b) Suppose A is m by n of rank r. What conditions on m and n and r guarantee that $A^{T} A$ is positive definite? If those conditions fail, prove that $A^{T} A$ will not be positive definite.

Spring '13
18.06 Final

Solutions
I. a)

$$
\left(\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- dim null space $=1$
\Rightarrow button row OS
- last entry of mullspace vector is Q, so last columnar should be a pivot column
b) We must have
S is orthogonal to T and $\operatorname{dim} S+\operatorname{dim} T=5$
Y is orthogonal to Z and $\operatorname{dim} Y+\operatorname{dim} Z=3$
Also, $\operatorname{dim} Y=\operatorname{dim} S$

$$
\therefore \operatorname{dim} T=\operatorname{dim} Z+2
$$

2. a) Column space: $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$

Right null space: $\left.\left\{\begin{array}{l} \\ 2\end{array}\right]\left(\begin{array}{c}1 \\ -\frac{1}{2} \\ -\frac{1}{4}\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -\frac{1}{3} \\ -\frac{1}{3}\end{array}\right)\right\}$
Row space: $\left.\left\{\begin{array}{llll}1 & 2 & 0 & 4\end{array}\right),\left(\begin{array}{llll}0 & 0 & 1 & 3\end{array}\right)\right\}$
Left null space: $\left\{\begin{array}{lll} & 0 & 1\end{array}\right)$
2. cont
b) We have

$$
A^{\top} A=V \Sigma^{\top} \Sigma V^{\top}=\left(\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right)
$$

So we may take $V=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\Sigma=\left(\begin{array}{ll}3 & 0 \\ 0 & 3 \\ 0 & 0\end{array}\right)$.
Then $3 u_{1}=A\binom{1}{0}=\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right) \quad u_{1}=\left(\begin{array}{c}\frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3}\end{array}\right)$

$$
3 u_{2}=A\binom{0}{1}=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \quad u_{2}=\left(\begin{array}{c}
\frac{2}{3} \\
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right)
$$

u_{3} ortho to u_{1} and $u_{2} \Rightarrow$ can take $u_{3}=\left(\begin{array}{c}-\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right)$

$$
U=\left(\begin{array}{ccc}
\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

3
a) Projection of b on to column space of A

$$
=q_{1}+2 q_{2}+3 q_{3}
$$

(0.) If $x=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ then $A x=q_{1}+2 q_{2}+3 q_{3}$
$\therefore \hat{x}=\binom{\frac{1}{2}}{3}$ best least squares approx
b) $p=q_{1} q_{1}^{\top}+q_{2} q_{2}^{\top}+q_{3} q_{3}^{\top}$
4. a) $\quad A^{-1}=A^{T}=A$ (symmetric)
b) Only ± 1 car be eigenvalues of A, since it has real eigenvalues (since symmetric) with absolute value 1 (since orthogonal).
c) Trace $A=$ sum of eigenvalues $=2$
\therefore eigenvalues must be $(1,1,1,-1)$
5. a)

$$
A q_{1}=q_{1}, \quad A q_{2}=2 q_{2}, \quad A q_{3}=5 q_{3}
$$

b) Write $u(0)=a_{1} q_{1}+a_{2} q_{2}+a_{3} q_{3}$

Then $u(t)=e^{t} a_{1} q_{1}+e^{2 t} a_{2} q_{2}+e^{5 t} a_{3} q_{3}$
c) Thus if $u(0)=q_{1}-q_{3}$,

$$
u(t)=e^{t} q_{1}-e^{5 t} q_{3}
$$

6. a)

$$
S=\begin{aligned}
& (1) \\
& (2) \\
& -1 \\
& -1 \\
& \hline
\end{aligned} 0
$$

$\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is a vector in $N(S)$
$\left(\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right)$ is a vector in $N\left(S^{\top}\right)$.
6. cont
b) $\left(\begin{array}{c}1 \\ -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$
is a vector in $N\left(A^{\top}\right)$.
c) $\operatorname{Rank} A=9-\operatorname{dim}(\operatorname{aull} A)=8$
$\operatorname{Dim} \operatorname{null}\left(A^{\top}\right)=12-\operatorname{rank} A=4$.
7. a)

$$
A=\left(\begin{array}{ll}
0 & 1 \\
C & B
\end{array}\right)
$$

b) $\operatorname{det}(A-\lambda I)=0$
that is

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
C & B-\lambda
\end{array}\right) & =-\lambda(B-\lambda)-C \\
& =\lambda^{2}-B \lambda-C=0
\end{aligned}
$$

c) $A\binom{1}{\lambda_{1}}=\left(\begin{array}{ll}0 & 1 \\ C & B\end{array}\right)\binom{1}{\lambda_{1}}=\binom{\lambda_{1}}{C+B \lambda_{1}}=\binom{\lambda_{1}}{\lambda_{1}^{2}}$ by the equation in b)

$$
\text { so } A\binom{1}{\lambda_{1}}=\lambda_{1}\binom{1}{\lambda_{1}} \text {. }
$$

7. cont
d) $\lambda_{1} \neq \lambda_{2} \Rightarrow$ can write $u_{0}=C_{1}\binom{1}{\lambda_{1}}+C_{2}\binom{1}{\lambda_{2}}$

So $u_{n}=C_{1} \lambda_{1}^{n}\binom{1}{\lambda_{1}}+C_{2} \lambda_{2}^{n}\binom{1}{\lambda_{2}}$
and $y_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}$.
8.

$$
\begin{aligned}
\text { a) } \operatorname{det} A & =\operatorname{det}\left(\begin{array}{lll}
1 & b & 0 \\
b & 1 & b \\
0 & b & 1
\end{array}\right)-b \operatorname{det}\left(\begin{array}{lll}
b & b & 0 \\
0 & 1 & b \\
0 & b & 1
\end{array}\right) \\
& =\left(1-b^{2}-b^{2}\right)-b\left(b-b^{3}\right) \\
& =1-3 b^{2}+b^{4}
\end{aligned}
$$

b) $\operatorname{det} A=$

$$
\begin{aligned}
& 1 \cdot 1 \cdot 1 \cdot 1-1 \cdot 1 \cdot b \cdot b-1 \cdot b \cdot b \cdot 1-b \cdot b \cdot 1 \cdot 1 \\
& (>)(1,1)(1)
\end{aligned}
$$

$+b \cdot b \cdot b \cdot b \quad$ all other terms 0

$$
\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right)
$$

$$
=1-3 b^{2}+6^{4}
$$

9. a)

$$
\begin{aligned}
x^{\top} A x & =x^{\top} v v^{\top} x \\
& =\left(v^{\top} x\right)^{\top}\left(v^{\top} x\right) \\
& =\left|v^{\top} x\right|^{2} \geqslant 0 .
\end{aligned}
$$

b) We must have $r=n \quad$ (i.e. null $A=0$) This implies $m \geqslant n$ since $r \leqslant m$ always.

Then if $x \neq 0$

$$
\begin{aligned}
x^{\top} A^{\top} A x & =(A x)^{\top}(A x) \\
& =|A x|^{2}>0 \quad \text { since null } A=0
\end{aligned}
$$

On the other hand, if $r<n$ then there is some $v \neq 0$ in null A. Then

$$
v^{\top} A^{r} A v=0
$$

so not positive defrite.

Your PRINTED Name is:

Please circle your section:

Thank you for taking 18.06. I hope you have a great summer. You could look at 18.085 (Computational Science and Engineering) which starts with applied linear algebra.
This exam has 20 parts, worth 5 points each.
For each problem, explain your answer as much as you can.

1. (15 points)
(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace?
(b) If we also know that

$$
A x=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

has no solution, what do we know about the rank of A ?
(c) If $A x=b$ and $A^{T} y=0$, find $y^{T} b$ by using those equations. This says that the \qquad space of A and the \qquad are \qquad .
2. (15 points) Suppose $A x=b$ reduces by the usual row operations to $U x=c$:

$$
U x=\left[\begin{array}{llll}
2 & 6 & 4 & 8 \\
0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}-b_{1} \\
b_{3}-2 b_{2}+b_{1}
\end{array}\right]=c .
$$

(a) Give a basis for the nullspace of A (that matrix is not shown) and a basis for the row space of A.
(b) When does $A x=b$ have a solution? Give a basis for the column space of A.
(c) Give a basis for the nullspace of A^{T}.
3. (10 points)
(a) Suppose q_{1}, q_{2} are orthonormal in \mathbb{R}^{4}, and v is NOT a combination of q_{1} and q_{2}. Find a vector q_{3} by Gram-Schmidt, so that q_{1}, q_{2}, q_{3} is an orthonormal basis for the space spanned by q_{1}, q_{2}, v.
(b) If p is the projection of b onto the subspace spanned by q_{1} and q_{2} and v, find p as a combination of q_{1}, q_{2}, q_{3}. (You are solving the least squares problem $A x=b$ with $A=\left[q_{1}, q_{2}, q_{3}\right]$.)
4. (10 points)
(a) To solve a square system $A x=b$ when $\operatorname{det} A \neq 0$, Cramer's Rule says that the first component of x is

$$
x_{1}=\frac{\operatorname{det} B}{\operatorname{det} A} \text { with } B=\left[b a_{2} \ldots a_{n}\right] .
$$

So b goes into the first column of A, replacing a_{1}. If $b=a_{1}$, this formula gives the right answer $x_{1}=\frac{\operatorname{det} A}{\operatorname{det} A}=1$.

1. If $b=$ a different column a_{j}, show that this formula gives the right answer, $x_{1}=$ \qquad _.
2. If b is any combination $x_{1} a_{1}+\cdots+x_{n} a_{n}$, why does this formula give the right answer x_{1} ?
(b) Find the determinant of

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0 \\
5 & 0 & 6 & 7 \\
0 & 0 & 8 & 9
\end{array}\right]
$$

Scrap Paper
5. (15 points)
(a) Suppose an n by n matrix A has n independent eigenvectors x_{1}, \ldots, x_{n} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. What matrix equation would you solve for c_{1}, \ldots, c_{n} to write the vector u_{0} as a combination $u_{0}=c_{1} x_{1}+\cdots+c_{n} x_{n}$?
(b) Suppose a sequence of vectors $u_{0}, u_{1}, u_{2}, \ldots$ starts from u_{0} and satisfies $u_{k+1}=A u_{k}$. Find the vector u_{k} as a combination of x_{1}, \ldots, x_{n}.
(c) State the exact requirement on the eigenvalues λ so that $A^{k} u_{0} \rightarrow 0$ as $k \rightarrow \infty$ for every vector u_{0}. Prove that your condition must hold.
6. (10 points)
(a) Find the eigenvalues of this matrix A (the numbers in each column add to zero).

$$
A=\left[\begin{array}{rrr}
-1 & \frac{1}{2} & 0 \\
1 & -1 & 1 \\
0 & \frac{1}{2} & -1
\end{array}\right]
$$

(b) If you solve $\frac{d u}{d t}=A u$, is (1) or (2) or (3) true as $t \rightarrow \infty$?
(1) $u(t)$ goes to zero?
(2) $u(t)$ approaches a multiple of (what vector?)
(3) $u(t)$ blows up?
7. (10 points) Every invertible matrix A equals an orthogonal matrix Q times a positive definite matrix S. This famous fact comes directly from the SVD for the square matrix $A=U \Sigma V^{T}$, by choosing $Q=U V^{T}$.
(a) How can you prove that $Q=U V^{T}$ is orthogonal?
(b) Substitute Q^{-1} and A to write $S=Q^{-1} A$ in terms of U, V and Σ. How can you tell that this matrix S is symmetric positive definite?
8. (15 points) A 4-node graph has all six possible edges. Its incidence matrix A and its Laplacian matrix $A^{T} A$ are

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right] \quad A^{T} A=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

(a) Describe the nullspace of A.
(b) The all-ones matrix $B=$ ones (4) has what eigenvalues? Then what are the eigenvalues of $A^{T} A=4 I-B$?
(c) For the Singular Value Decomposition $A=U \Sigma V^{T}$, can you find the nonzero entries in the diagonal matrix Σ and one column of the orthogonal matrix V ?

Scrap Paper

1. (15 points)
(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace?

Solution: $\operatorname{dim} N(A) \geq 1$, since $\operatorname{rank}(A) \leq 3$.
(b) If we also know that

$$
A x=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

has no solution, what do we know about the rank of A ?
Solution: $C(A)$ does not span the entire \mathbf{R}^{3}, so $\operatorname{rank}(A) \leq 2$.
(c) If $A x=b$ and $A^{T} y=0$, find $y^{T} b$ by using those equations. This says that the \qquad space of A and the \qquad are \qquad -
Solution: $y^{T} b=y^{T}(A x)=\left(A^{T} y\right) x=0$. This says that the column space of A and the null space of A^{T} are orthogonal.
2. (15 points) Suppose $A x=b$ reduces by the usual row operations to $U x=c$:

$$
U x=\left[\begin{array}{llll}
2 & 6 & 4 & 8 \\
0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}-b_{1} \\
b_{3}-2 b_{2}+b_{1}
\end{array}\right]=c
$$

(a) Give a basis for the nullspace of A (that matrix is not shown) and a basis for the row space of A.
Solution: $N(A)=N(U), R(A)=R(U)$. Therefore we can read the bases directly from U :

$$
\begin{gathered}
N(A)=\operatorname{span}\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
-1 \\
1
\end{array}\right]\right\} \\
R(A)=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
6 \\
4 \\
8
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
4 \\
4
\end{array}\right]\right\}
\end{gathered}
$$

(b) When does $A x=b$ have a solution? Give a basis for the column space of A.

Solution: $b \in C(A)$, equivalent to $c \in C(U)$.
By looking at c as a function of b we can reconstruct A. Let $E=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 1\end{array}\right]$. We
have $U=E A, c=E b$. Hence $A=E^{-1} U=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{llll}2 & 6 & 4 & 8 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]=\left[\begin{array}{cccc}2 & 6 & 4 & 8 \\ 2 & 6 & 8 & 12 \\ 2 & 6 & 12 & 16\end{array}\right]$
From here we see that
$C(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$.
(c) Give a basis for the nullspace of A^{T}.

Solution: $N\left(A^{T}\right) \perp C(A)$. So $N\left(A^{T}\right)=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$ (we only need to find a vector orthogonal to both basis vectors we gave for $C(A))$.
3. (10 points)
(a) Suppose q_{1}, q_{2} are orthonormal in \mathbb{R}^{4}, and v is NOT a combination of q_{1} and q_{2}. Find a vector q_{3} by Gram-Schmidt, so that q_{1}, q_{2}, q_{3} is an orthonormal basis for the space spanned by q_{1}, q_{2}, v.
Solution:

$$
q_{3}=\frac{v-\left(v^{T} q_{1}\right) q_{1}-\left(v^{T} q_{2}\right) q_{2}}{\left\|v-\left(v^{T} q_{1}\right) q_{1}-\left(v^{T} q_{2}\right) q_{2}\right\|}
$$

(b) If p is the projection of b onto the subspace spanned by q_{1} and q_{2} and v, find p as a combination of q_{1}, q_{2}, q_{3}. (You are solving the least squares problem $A x=b$ with $\left.A=\left[q_{1}, q_{2}, q_{3}\right].\right)$
Solution:

$$
p=A\left(A^{T} A\right)^{-1} A^{T} b=A A^{T} b=q_{1}\left(q_{1}^{T} b\right)+q_{2}\left(q_{2}^{T} b\right)+q_{3}\left(q_{3}^{T} b\right)
$$

where we used the fact that the columns of A are orthonormal for $A^{T} A=I$. (It is easy to see the final result just by thinking that we are actually projecting onto an orthonormal basis).
4. (10 points)
(a) To solve a square system $A x=b$ when $\operatorname{det} A \neq 0$, Cramer's Rule says that the first component of x is

$$
x_{1}=\frac{\operatorname{det} B}{\operatorname{det} A} \text { with } B=\left[b a_{2} \ldots a_{n}\right] .
$$

So b goes into the first column of A, replacing a_{1}. If $b=a_{1}$, this formula gives the right answer $x_{1}=\frac{\operatorname{det} A}{\operatorname{det} A}=1$.

1. If $b=$ a different column a_{j}, show that this formula gives the right answer, $x_{1}=$
2. If b is any combination $x_{1} a_{1}+\cdots+x_{n} a_{n}$, why does this formula give the right answer x_{1} ?

Solution:

1. $x_{1}=0$, since $\operatorname{det}(B)=0$. Let us check that it gives the correct answer: the solution to $A x=a_{j}$ is $x=e_{j}$ (it is unique, since $\operatorname{det}(A) \neq 0$, so A 's columns are linearly independent). Hence $x_{1}=0$.
2. For the same reason as above the first component of x is indeed x_{1}, the coefficient of a_{1}.
Now let us see what Cramer's Rule gives. In this case $\operatorname{det}(B)=\operatorname{det}\left(\left[b a_{2} \ldots a_{n}\right]\right)=$ $\operatorname{det}\left(x_{1} \cdot a_{1} a_{2} \ldots a_{n}\right)=x_{1} \operatorname{det}(A)$. So, indeed, $x_{1}=\operatorname{det}(B) / \operatorname{det}(A)$.
(b) Find the determinant of

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0 \\
5 & 0 & 6 & 7 \\
0 & 0 & 8 & 9
\end{array}\right]
$$

Cofactor expansion by the first row:

$$
\begin{gathered}
C_{11}=\operatorname{det}\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 6 & 7 \\
0 & 8 & 9
\end{array}\right]=4 \cdot 6 \cdot 9-4 \cdot 8 \cdot 7=-8 \\
C_{12}=-\operatorname{det}\left[\begin{array}{lll}
3 & 0 & 0 \\
5 & 6 & 7 \\
0 & 8 & 9
\end{array}\right]=-(3 \cdot 6 \cdot 9-3 \cdot 7 \cdot 8)=6
\end{gathered}
$$

So $\operatorname{det}(A)=1 \cdot(-8)+2 \cdot 6=4$

5. (15 points)

(a) Suppose an n by n matrix A has n independent eigenvectors x_{1}, \ldots, x_{n} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. What matrix equation would you solve for c_{1}, \ldots, c_{n} to write the vector u_{0} as a combination $u_{0}=c_{1} x_{1}+\cdots+c_{n} x_{n}$?
Solution:

$$
\left[\begin{array}{ll}
x_{1} x_{2} \ldots x_{n}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=u_{0}
$$

(b) Suppose a sequence of vectors $u_{0}, u_{1}, u_{2}, \ldots$ starts from u_{0} and satisfies $u_{k+1}=A u_{k}$. Find the vector u_{k} as a combination of x_{1}, \ldots, x_{n}.
Solution: Let $u_{0}=c_{1} x_{1}+\cdots+c_{n} x_{n}$. Then $u_{k}=A^{k} u_{0}=\sum_{i=1}^{n}\left(\lambda_{i}^{k} c_{i}\right) x_{i}$.
(c) State the exact requirement on the eigenvalues λ so that $A^{k} u_{0} \rightarrow 0$ as $k \rightarrow \infty$ for every vector u_{0}. Prove that your condition must hold.
Solution: $\left|\lambda_{i}\right|<1$, for all i. Clearly, if this holds, all the coefficients of x_{i} in $A^{k} u_{0}$ go to 0 as $k \rightarrow \infty$.
For the converse, we require that the coefficient $\lambda_{i}^{k} c_{i}$ of x_{i} in $A^{k} u_{0}$ to go to 0 , for any choice of u_{0}. Equivalently, we need $\lambda_{i}^{k} c_{i} \rightarrow 0$ for any c_{i}. Hence $\left|\lambda_{i}\right|<1$.
6. (10 points)
(a) Find the eigenvalues of this matrix A (the numbers in each column add to zero).

$$
A=\left[\begin{array}{rrr}
-1 & \frac{1}{2} & 0 \\
1 & -1 & 1 \\
0 & \frac{1}{2} & -1
\end{array}\right]
$$

Solution: The number in each column add to zero, hence $\mathbf{1} \in N\left(A^{T}\right)$, so $\operatorname{dim} N\left(A^{T}\right)>$ 0 , and thus $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)<3$. So $\lambda_{1}=0$.

We can easily spot $\lambda_{2}=-1$ as another eigenvalue, since subtracting $A+I$ has two equal columns, and hence $\operatorname{det}(A+I)=0$.
Looking at the trace we get that $\lambda_{3}=\operatorname{tr}(A)-\lambda_{1}-\lambda_{2}=-2$.
(b) If you solve $\frac{d u}{d t}=A u$, is (1) or (2) or (3) true as $t \rightarrow \infty$?
(1) $u(t)$ goes to zero?
(2) $u(t)$ approaches a multiple of (what vector?)
(3) $u(t)$ blows up?

Solution: Approaches a multiple of $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
Observe that $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ is an eigenvector for the 0 eigenvalue, and that the only nonzero eigenvalue of $e^{A t}$ as $t \rightarrow \infty$ is $e^{0 \cdot t}=1$, with the same eigenvector.
Also, $u(t)=e^{A t} u(0)$, and that the only nonzero eigenvalue of $e^{A t}($ as $t \rightarrow \infty)$ is 1 , with the same eigenvector. So $\lim _{t \rightarrow \infty} u(t)$ is a projection of $u(0)$ on the line spanned by $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$, hence a multiple of it.
7. (10 points) Every invertible matrix A equals an orthogonal matrix Q times a positive definite matrix S. This famous fact comes directly from the SVD for the square matrix $A=U \Sigma V^{T}$, by choosing $Q=U V^{T}$.
(a) How can you prove that $Q=U V^{T}$ is orthogonal?

Solution: Q is orthogonal if and only if $Q^{T} Q=I$. Notice that since A is invertible, U and V are both square matrices of full rank.

$$
Q^{T} Q=\left(U V^{T}\right)^{T}\left(U V^{T}\right)=V U^{T} U V^{T}=V\left(U^{T} U\right) V^{T}=V V^{T}=I
$$

We used the fact that U is orthogonal, hence $U^{T} U=I$, and that V^{T} is orthogonal because V 's columns are eigenvectors of a symmetric matrix $A^{T} A$, so $V^{T}=V^{-1}$.
(b) Substitute Q^{-1} and A to write $S=Q^{-1} A$ in terms of U, V and Σ. How can you tell that this matrix S is symmetric positive definite?

Solution:

$$
S=Q^{-1} A=\left(U V^{T}\right)^{-1} A=\left(V^{T}\right)^{-1} U^{-1} U \Sigma V^{T}=V \Sigma V^{T}=\left(\Sigma^{1 / 2} V^{T}\right)^{T}\left(\Sigma^{1 / 2} V^{T}\right)
$$

8. (15 points) A 4-node graph has all six possible edges. Its incidence matrix A and its Laplacian matrix $A^{T} A$ are

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right] \quad A^{T} A=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

(a) Describe the nullspace of A.

Solution: $N(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$ (Recall that applying A to a vector of potentials gives the potential drops along edges, so in order for a vector of potentials to be in the null space, all the potentials within one connected component must be the same.)
(b) The all-ones matrix $B=$ ones (4) has what eigenvalues? Then what are the eigenvalues of $A^{T} A=4 I-B$?
Solution: $B=\overrightarrow{1} \cdot \overrightarrow{1}^{T}=4(\overrightarrow{1} / 2)(\overrightarrow{1} / 2)^{T}$, where $\overrightarrow{1}$ is the all-ones vector in \mathbb{R}^{4}. So B has eigenvalues $4,0,0,0$.
I and B diagonalize in the same eigenbasis, so $\lambda_{i}(4 I-B)=\lambda_{i}(4 I)-\lambda_{i}(B)=4 \lambda_{i}(I)-$ $\lambda_{i}(B)$ for all i. So the eigenvalues of $A^{T} A$ are $0,4,4,4$.
(c) For the Singular Value Decomposition $A=U \Sigma V^{T}$, can you find the nonzero entries in the diagonal matrix Σ and one column of the orthogonal matrix V ?
Solution: $\sigma_{i}=\sqrt{\lambda_{i}\left(A^{T} A\right)}$, so the nonzero singular values are $2,2,2$. We only need to find one eigenvector of $A^{T} A$. An obvious one is $\overrightarrow{1} / 2$, since all the rows sum up to 0 .

Grading 1 :

2 :

3 :

4:
$5:$
$6:$

7:

8:

Thank you for taking 18.06! I hope you have a wonderful summer!

EACH PART OF EACH QUESTION IS 5 POINTS.

1. (a) Find the reduced row echelon form $R=\operatorname{rref}(A)$ for this matrix A :

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

(b) Find a basis for the column space $C(A)$.
(c) Find all solutions (and first tell me the conditions on b_{1}, b_{2}, b_{3} for solutions to exist!).

$$
A x=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

2. (a) What is the 3 by 3 projection matrix P_{a} onto the line through $a=(2,1,2)$?
(b) Suppose P_{v} is the 3 by 3 projection matrix onto the line through $v=(1,1,1)$. Find a basis for the column space of the matrix $A=$ $P_{a} P_{v}$ (product of 2 projections)
3. Suppose I give you an orthonormal basis q_{1}, \ldots, q_{4} for \mathbf{R}^{4} and an orthonormal basis z_{1}, \ldots, z_{6} for \mathbf{R}^{6}. From these you create the 6 by 4 matrix $A=z_{1} q_{1}^{T}+z_{2} q_{2}^{T}$.
(a) Find a basis for the nullspace of A.
(b) Find a particular solution to $A x=z_{1}$ and find the complete solution.
(c) Find $A^{T} A$ and find an eigenvector of $A^{T} A$ with $\lambda=1$.
4. Symmetric positive definite matrices H and orthogonal matrices Q are the most important. Here is a great theorem: Every square invertible matrix A can be factored into $A=H Q$.
(a) Start from $A=U \Sigma V^{T}$ (the SVD) and choose $Q=U V^{T}$. Find the other factor H so that $U \Sigma V^{T}=H Q$. Why is your H symmetric and why is it positive definite?
(b) Factor this 2 by 2 matrix into $A=U \Sigma V^{T}$ and then into $A=H Q$:

$$
A=\left[\begin{array}{rr}
1 & 3 \\
-1 & 3
\end{array}\right]=U \Sigma V^{T}=H Q
$$

5. (a) Are the vectors $(0,1,1),(1,0,1),(1,1,0)$ independent or dependent?
(b) Suppose T is a linear transformation with input space $=$ output space $=\mathbf{R}^{3}$. We have a basis u, v, w for \mathbf{R}^{3} and we know that $T(u)=$ $v+w, T(v)=u+w, T(w)=u+v$. Describe the transformation T^{2} by finding $T^{2}(u)$ and $T^{2}(v)$ and $T^{2}(w)$.
6. Suppose A is a 3 by 3 matrix with eigenvalues $\lambda=0,1,-1$ and corresponding eigenvectors x_{1}, x_{2}, x_{3}.
(a) What is the rank of A ? Describe all vectors in its column space $C(A)$.
(b) How would you solve $d u / d t=A u$ with $u(0)=(1,1,1)$?
(c) What are the eigenvalues and determinant of e^{A} ?
7. (a) Find a 2 by 2 matrix such that

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \text { and also } A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

or say why such a matrix can't exist.
(b) The columns of this matrix H are orthogonal but not orthonormal:

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 0 & -3 & 1
\end{array}\right]
$$

Find H^{-1} by the following procedure. First multiply H by a diagonal matrix D that makes the columns orthonormal. Then invert. Then account for the diagonal matrix D to find the 16 entries of H^{-1}.
8. (a) Factor this symmetric matrix into $A=U^{T} U$ where U is upper triangular:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

(b) Show by two different tests that A is symmetric positive definite.
(c) Find and explain an upper bound on the eigenvalues of A. Find and explain a (positive) lower bound on those eigenvalues if you know that

$$
A^{-1}=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] .
$$

Scrap Paper

Grading 1 :

2 :

3:

R01	T10	$26-302$	Dmitry Vaintrob
R02	T10	$26-322$	Francesco Lin
R03	T11	$26-302$	Dmitry Vaintrob
R04	T11	$26-322$	Francesco Lin
R05	T11	$26-328$	Laszlo Lovasz
R06	T12	$36-144$	Michael Andrews
R07	T12	$26-302$	Netanel Blaier
R08	T12	$26-328$	Laszlo Lovasz
R09	T1pm	$26-302$	Sungyoon Kim
R10	T1pm	$36-144$	Tanya Khovanova
R11	T1pm	$26-322$	Jay Shah
R12	T2pm	$36-144$	Tanya Khovanova
R13	T2pm	$26-322$	Jay Shah
R14	T3pm	$26-322$	Carlos Sauer
ESG			Gabrielle Stoy

4:
$5:$

6 :

7:

8:

Thank you for taking 18.06! I hope you have a wonderful summer!

EACH PART OF EACH QUESTION IS 5 POINTS.

1. (a) Find the reduced row echelon form $R=\operatorname{rref}(A)$ for this matrix A :

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Solution. We have

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The last matrix is the RREF.
(b) Find a basis for the column space $C(A)$.

Solution. We can see that the pivot columns are columns 1 and 3, so these columns from the original matrix form a basis,

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

(c) Find all solutions (and first tell me the conditions on b_{1}, b_{2}, b_{3} for solutions to exist!).

$$
A x=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Solution. We can see that we need $b_{2}=b_{3}$. First, let us find a particular solution. Since x_{2}, x_{4} are free variables, we can set them to 0 , and then we can solve to get

$$
\left(\begin{array}{c}
b_{1}-b_{2} \\
0 \\
b_{2} \\
0
\end{array}\right)
$$

Now, we need a basis for the nullspace, the special solutions. Setting each free variable to 1 and the other to 0 , we obtain the special
solutions

$$
\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
-2 \\
1
\end{array}\right)
$$

So, the general solutions are given by vectors

$$
\left(\begin{array}{c}
b_{1}-b_{2} \\
0 \\
b_{2} \\
0
\end{array}\right)+c_{1}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
0 \\
-2 \\
1
\end{array}\right)
$$

2. (a) What is the 3 by 3 projection matrix P_{a} onto the line through $a=(2,1,2)$?

Solution.

$$
P_{a}=\frac{\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 2
\end{array}\right)}{\left(\begin{array}{lll}
2 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)}=\frac{1}{9}\left(\begin{array}{lll}
4 & 2 & 4 \\
2 & 1 & 2 \\
4 & 2 & 4
\end{array}\right)
$$

(b) Suppose P_{v} is the 3 by 3 projection matrix onto the line through $v=(1,1,1)$. Find a basis for the column space of the matrix $A=$ $P_{a} P_{v}$ (product of 2 projections)
Solution. $P_{a} P_{v} v=P_{a} v=\frac{5}{9} a$ and so $a \in C\left(P_{a} P_{v}\right) \subset C\left(P_{a}\right)$. Since $C\left(P_{a}\right)$ is spanned by a, a basis for $C\left(P_{a} P_{v}\right)$ is given by $\{a\}$.
3. Suppose I give you an orthonormal basis q_{1}, \ldots, q_{4} for \mathbf{R}^{4} and an orthonormal basis z_{1}, \ldots, z_{6} for \mathbf{R}^{6}. From these you create the 6 by 4 matrix $A=z_{1} q_{1}^{T}+z_{2} q_{2}^{T}$.
(a) Find a basis for the nullspace of A.

Solution. The matrix has SVD $Z J Q^{T}$ where J is the 6 by 4 matrix with diagonal entries $(1,1,0,0)$. This means that its nullspace consists of the q 's in columns of Q corresponding to zero singular values, which is q_{3}, q_{4}.
(b) Find a particular solution to $A x=z_{1}$ and find the complete solution.

Solution. One particular solution to $A x_{1}$ is q_{1}, since $\left(z_{1} q_{1}^{T}\right) q_{1}=$ $z_{1}\left(q_{1}^{T} z_{1}\right)=z_{1}\left(q_{1} \cdot q_{1}\right)=z_{1}$, by and $\left(z_{2} q_{2}^{T}\right) q_{1}=z_{2}\left(q_{2}^{T} q_{1}\right)=z_{1}\left(q_{2} \cdot q_{1}\right)=0$ by orthonormality of q_{i}. The complete solution is obtained by adding an element of the nullspace, i.e. a linear combination of basis vectors of the nullspace: $q_{1}+c q_{2}+d q_{4}$ for scalars c, d.
(c) Find $A^{T} A$ and find an eigenvector of $A^{T} A$ with $\lambda=1$.

Solution. $A^{T} A=\left(q_{1} z_{1}^{T}+q_{2} z_{2}^{T}\right)\left(z_{1} q_{1}^{T}+z_{2} q_{2}^{T}\right)$. Expanding and reparenthezising gives $A^{T} A=q_{1}\left(z_{1}^{T} z_{1}\right) q_{1}^{T}+q_{1}\left(z_{1}^{T} z_{2}\right) q_{2}^{T}+q_{2}\left(z_{2} z_{1}^{T}\right) q_{2}^{T}+$ $q_{2}\left(z_{2} z_{2}^{T}\right) q_{2}^{T}$. In every term, the parenthesized scalar in the middle is a dot product: $z_{1} \cdot z_{2}=0$ for the middle two terms and 1 for the first and fourth terms, leaving $A^{T} A=q_{1} q_{1}^{T}+q_{2} q_{2}^{T}$. We see that $A^{T} A q_{1}=q_{1}\left(q_{1} \cdot q_{1}\right)+q_{2}\left(q_{2} \cdot q_{1}\right)=q_{1}$ and, for the same reason, $A^{T} A q_{2}=q_{2}$. So q_{1} and q_{2} (or any nonzero linear combination) are all eigenvectors with eigenvalue 1 .
4. Symmetric positive definite matrices H and orthogonal matrices Q are the most important. Here is a great theorem: Every square invertible matrix A can be factored into $A=H Q$.
(a) Start from $A=U \Sigma V^{T}$ (the SVD) and choose $Q=U V^{T}$. Find the other factor H so that $U \Sigma V^{T}=H Q$. Why is your H symmetric and why is it positive definite?
Solution. By definition we need $U \Sigma V^{T}=A=H Q=H U V^{T}$ so we get by inverting U and V^{T} (which are orthogonal hence invertible) that $H=U \Sigma U^{-1}$. The last item can also be written as $U \Sigma U^{T}$ because U is orthogonal. This matrix is symmetric because $H^{T}=$ $\left(U \Sigma U^{T}\right)^{T}=U \Sigma^{T} U^{T}=H$ as Σ is diagonal so it is equal to its own transpose. To see that it is positive definite we can use the eigenvalue test: the eigenvalues of H are given by the diagonal elements of Σ, i.e. the singular values of A. They are all nonnegative because they are the eigenvalues of $A^{T} A$, and they cannot be zero because A is invertible by assumption. Hence the eigenvalues of H are all positive.
(b) Factor this 2 by 2 matrix into $A=U \Sigma V^{T}$ and then into $A=H Q$:

$$
A=\left[\begin{array}{rr}
1 & 3 \\
-1 & 3
\end{array}\right]=U \Sigma V^{T}=H Q
$$

Solution. We have $A^{T} A=\left[\begin{array}{rr}2 & 0 \\ 0 & 18\end{array}\right]$ so the singular values are $\sigma_{1}=\sqrt{18}=3 \sqrt{2}$ and $\sigma_{2}=\sqrt{2}$ and the corresponding eigenvectors are $v_{1}=(0,1)$ and $v_{2}=(1,0)$ so that $V=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. We then have

$$
u_{1}=A v_{1} / \sigma_{1}=(1 / \sqrt{2}, 1 / \sqrt{2}) \quad u_{2}=A v_{2} / \sigma_{2}=(1 / \sqrt{2},-1 / \sqrt{2}),
$$

so the SVD is

$$
A=\left[\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{rr}
3 \sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Finally

$$
H=U \Sigma U^{T}=\left[\begin{array}{rr}
2 \sqrt{2} & \sqrt{2} \\
\sqrt{2} & 2 \sqrt{2}
\end{array}\right] \quad Q=U V^{T}\left[\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2} .
\end{array}\right]
$$

5. (a) Are the vectors $(0,1,1),(1,0,1),(1,1,0)$ independent or dependent? Solution. These vectors are independent. One way to see this is that

$$
\operatorname{det}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=2 \neq 0
$$

(b) Suppose T is a linear transformation with input space $=$ output space $=\mathbf{R}^{3}$. We have a basis u, v, w for \mathbf{R}^{3} and we know that $T(u)=$ $v+w, T(v)=u+w, T(w)=u+v$. Describe the transformation T^{2} by finding $T^{2}(u)$ and $T^{2}(v)$ and $T^{2}(w)$.
Solution. We have

$$
\begin{aligned}
& T^{2}(u)=T(v+w)=T(v)+T(w)=2 u+v+w \\
& T^{2}(v)=T(u+w)=T(u)+T(w)=u+2 v+w \\
& T^{2}(w)=T(u+v)=T(u)+T(v)=u+v+2 w
\end{aligned}
$$

Note that this means that in the basis (u, v, w), the matrix of T^{2} is

$$
\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

6. Suppose A is a 3 by 3 matrix with eigenvalues $\lambda=0,1,-1$ and corresponding eigenvectors x_{1}, x_{2}, x_{3}.
(a) What is the rank of A ? Describe all vectors in its column space $C(A)$.
Solution. Vectors x_{1}, x_{2}, and x_{3} are independent. Any vector y in \mathbf{R}^{3} can be represented as a linear combination of the eigenvectors: $y=a x_{1}+b x_{2}+c x_{3}$. Applying A we get $A y=b x_{2}-c x_{3}$. Thus x_{2} and x_{3} form a basis in the column space and the rank of A is 2 .
(b) How would you solve $d u / d t=A u$ with $u(0)=(1,1,1)$?

Solution. By the formula $u(t)=c_{1} e^{\lambda_{1} t} x_{1}+\cdots+c_{n} e^{\lambda_{n} t} x_{n}$, where λ_{i} are eigenvalues and x_{i} the corresponding eigenvectors. We are given λ_{i} and x_{i}, so we can plug them in to get: $u(t)=c_{1} e^{0 t} x_{1}+$ $c_{2} e^{t} x_{2}+c_{3} e^{-t} x_{3}=c_{1} x_{1}+c_{2} e^{t} x_{2}+c_{3} e^{-t} x_{3}$. To find the coefficients c_{1}, c_{2}, and c_{3}, we need to use the initial conditions, that is to solve the equation: $u(0)=(1,1,1)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$.
(c) What are the eigenvalues and determinant of e^{A} ?

Solution. The eigenvalues of e^{A} are the same as the eigenvalues of e^{Λ}, where Λ is the diagonalization of A. Therefore, the eigenvalues of e^{A} equal e to the power of the eigenvalues of $A: e^{0}=1, e^{1}=e$ and $e^{-1}=1 / e$. The determinant is the product of the eigenvalues and is equal to $1 \cdot e \cdot 1 / e=1$.
7. (a) Find a 2 by 2 matrix such that

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \text { and also } A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

or say why such a matrix can't exist.
Solution. $A=\left(\begin{array}{cc}1 & 1 \\ 4 / 3 & 4 / 3\end{array}\right)$ is the 2 by 2 matrix such that $A\binom{1}{2}=$ $\binom{3}{4}$ and $A\binom{2}{1}=\binom{3}{4}$. One way to arrive at A is to let $B=$ $\left(\begin{array}{ll}3 & 3 \\ 4 & 4\end{array}\right)$ be the matrix which sends the standard basis vectors $\binom{1}{0}$ and $\binom{0}{1}$ both to $\binom{3}{4}$ and let $C=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ be the change of basis matrix which sends the standard basis vectors to $\binom{1}{2}$ and $\binom{2}{1}$. Then $A=B C^{-1}$.
(b) The columns of this matrix H are orthogonal but not orthonormal:

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 0 & -3 & 1
\end{array}\right]
$$

Find H^{-1} by the following procedure. First multiply H by a diagonal matrix D that makes the columns orthonormal. Then invert. Then account for the diagonal matrix D to find the 16 entries of H^{-1}.
Solution. To normalize the columns of H, we let D be the diagonal matrix with diagonal entries $1 / \sqrt{2}, 1 / \sqrt{6}, 1 / \sqrt{12}$, and $1 / 2$, and we multiply H by D on the right: $H^{\prime}=H D$. Because H^{\prime} is an orthogonal matrix, $H^{\prime-1}=H^{\prime T}$. Then $H^{-1}=D(H D)^{-1}=D H^{\prime T}$. Computing, we obtain $H^{-1}=\left(\begin{array}{cccc}1 / 2 & -1 / 2 & 0 & 0 \\ 1 / 6 & 1 / 6 & -1 / 3 & 0 \\ 1 / 12 & 1 / 12 & 1 / 12 & -1 / 4 \\ 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4\end{array}\right)$.
8. (a) Factor this symmetric matrix into $A=U^{T} U$ where U is upper triangular:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

Solution. By applying row operations we find the factorization $A=L U$

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

so that $L=U^{T}$.
(b) Show by two different tests that A is symmetric positive definite.

Solution. Unfortunately it is hard to compute the eigenvalues explicitly, but nevertheless one can apply one of these tests:
i. $A=U^{T} U$ for U invertible;
ii. the energy test, $x^{T} A x=x U^{T} U x=\|U x\|^{2} \geq 0$ of $x \neq 0$ because U is invertible;
iii. the pivots of A are the pivots of U which are all positive;
iv. the upper left determinants of A are all 1 hence positive;
v. the eigenvalues satisfy the equation $-\left(\lambda^{3}-6 \lambda^{2}+5 \lambda-1\right)$ which cannon be zero for negative λ by checking the signs in the sum.
(c) Find and explain an upper bound on the eigenvalues of A. Find and explain a (positive) lower bound on those eigenvalues if you know that

$$
A^{-1}=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] .
$$

Solution. The eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are positive and they sum to the trace, which is 6 , so they can be at most 6 . The inverses of the eigenvalues $1 / \lambda_{1}, 1 / \lambda_{2}, 1 / \lambda_{3}$ are the eigenvalues of A^{-1}, which has trace 5 , so this tells us that each of the λ_{i} is at least $1 / 5$.

Scrap Paper

