
18.06 Quiz 2 April 7, 2010 Professor Strang

Your PRINTED name is: 1.

Your recitation number or instructor is 2.

3.

1. (33 points)

(a) Find the matrix P that projects every vector b in R3 onto the line in the direction of

a = (2, 1, 3).

Solution The general formula for the orthogonal projection onto the column space of a

matrix A is

P = A(ATA)−1AT .

Here,

A =


2

1

3

 so that P =
1

14


4 2 6

2 1 3

6 3 9


Remarks:

• Since we’re projecting onto a one-dimensional space, ATA is just a number and we

can write things like P = (AAT )/(ATA). This won’t work in general.

• You don’t have to know the formula to do this. The ith column of P is, pretty much

by definition, the projection of ei (e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)) onto the

line in the direction of a. And this is something you should know how to do without

a formula.

RUBRIC: There was some leniency for computational errors, but otherwise there weren’t

many opportunities for partial credit.
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(b) What are the column space and nullspace of P ? Describe them geometrically and also

give a basis for each space.

Solution The column space is the line in R3 in the direction of a = (2, 1, 3). One basis for

it is 
2

1

3


and there’s not really much choice in giving this basis (you can rescale by a non-zero con-

stant).

The nullspace is the plane in R3 that is perpendicular to a = (2, 1, 3) (i.e., 2x+y+z = 0.)

One basis for it is 
3

0

−2

 ,

−1

2

0


though there are a lot of different looking choices for it (any two vectors that are perpendic-

ular to a and not in the same line will work).

RUBRIC: 6 points for giving a correct basis, and 4 points for giving the complete geometric

description. Note that it is not correct to say e.g., N(P) = R2. It is correct to say that N(P)

is a (2-dimensional) plane in R3, but this is not a complete geometric description unless you

say (geometrically) which plane it is: the one perpendicular to a/to the line through a.



(c) What are all the eigenvectors of P and their corresponding eigenvalues? (You can use

the geometry of projections, not a messy calculation.) The diagonal entries of P add up

to .

Solution The diagonal entries of P add up to 1 = the sum of the eigenvalues

Since P is a projection, it’s only possible eigenvalues are λ = 0 (with multiplicity equal to

the dimension of the nullspace, here 2) and λ = 1 (with multiplicity equal to the dimension

of the column space, here 1). So, a complete list of eigenvectors and eigenvalues is:

• λ = 0 with multiplicity 2. The eigenvectors for λ = 0 are precisely the vectors in the

null space. That is, all linear combinations of
[
3 0 −2

]T
and

[
−1 2 0

]T
.

• λ = 1 with multiplicity 1. The eigenvectors for λ = 1 are precisely the vectors in the

column space. That is, all multiples of
[
2 1 3

]T
.

RUBRIC: 2 points for the sum of eigenvalues, 4 points for a full list (with multiplicities)

of eigenvalues, and 4 points for a complete description of all eigenvectors. In light of the

emphasized “all,” you’d lose 1 point if you gave two eigenvectors for λ = 0 and didn’t say

that all (at least non-zero) linear combinations were also eigenvectors for λ = 0.



2. (34 points)

(a) p = Ax̂ is the vector in C(A) nearest to a given vector b. If A has independent columns,

what equation determines x̂ ? What are all the vectors perpendicular to the error

e = b− Ax̂ ? What goes wrong if the columns of A are dependent?

Solution x̂ is determined by the equation x̂ = (ATA)−1AT b (since A has independent

columns, ATA is invertible whether or not A is square). The vectors perpendicular to an

arbitrary error vector are the elements of the column space of A. If the columns of A are

dependent, ATA is no longer invertible, and there is no unique nearest vector (i.e. there are

multiple solutions).

RUBRIC: 4 points for the determining equation (1 point off for actually inverting ATA

or saying that it was invertible), 3 points for identifying the column space, and three points

for identifying the multiple solutions (1 point off if you just say that ATA is not invertible).

Note that you cannot write A−1B as B
A

: this only works for numbers because multiplication

and division are commutative, which is not true for matrices.

(b) Suppose A = QR where Q has orthonormal columns and R is upper triangular invertible.

Find x̂ and p in terms of Q and R and b (not A).

Solution Since QTQ = I and R is invertible, we obtain

x̂ = (ATA)−1AT b = ((QR)T (QR))−1(QR)T b

= (RTQTQR)−1RTQT b = R−1(RT )−1RTQT b = R−1QT b

p = (QR)x̂ = QQT b

Note that QQT is not the identity matrix in general.

RUBIC: 6 points for finding x̂, 4 points for p. One point off from each if the equations are

not simplified, more points off for bad form, having variables other than Q,R and b, etc.

(c) If q1 and q2 are any orthonormal vectors in R5, give a formula for the projection p of any

vector b onto the plane spanned by q1 and q2 (write p as a combination of q1 and q2).

Solution p = (qT
1 b)q1 + (qT

2 b)q
2.

RUBRIC: little partial credit. If you identified the difference between b and p instead, you

may have gotten some points.



3. (33 points) This problem is about the n by n matrix An that has zeros on its main

diagonal and all other entries equal to −1. In MATLAB An = eye (n)− ones (n).

(a) Find the determinant of An. Here is a suggested approach:

Start by adding all rows (except the last) to the last row, and then factoring out a

constant. (You could check n = 3 to have a start on part b.)

Solution Following the hint, add all of the rows to the last row (which does not change the

determinant). Thus the matrix becomes

0 −1 −1 · · · −1

−1 0 −1 · · · −1

−1 −1 0 · · · −1
...

...
...

...

−(n− 1) −(n− 1) −(n− 1) · · · −(n− 1)


.

Next, pull out the factor of −(n − 1) from the last row. As the determinant is linear in

each row separately, we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 −1 · · · −1

−1 0 −1 · · · −1

−1 −1 0 · · · −1
...

...
...

...

−(n− 1) −(n− 1) −(n− 1) · · · −(n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (1− n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 −1 · · · −1

−1 0 −1 · · · −1

−1 −1 0 · · · −1
...

...
...

...

1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Next, add the last row back to each of the other rows (which again keeps the determinant

the same). So now we want to find

(1− n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This matrix is lower triangular. So its determinant is the product of the entries on its

diagonal. Thus the above quantity is (1− n).



Alternately, one can find the determinant of the matrix by finding all its eigenvalues.

As An = I − ones(n), we know that N(An − I) = N(− ones(n)). The latter nullspace

has dimension n − 1. Thus 1 is an eigenvalue of multiplicity n − 1, and the corresponding

eigenvectors are all the nonzero vectors whose entries add up to 0.

In addition, all of the rows of An add up to 1−n. So 1−n is an eigenvalue with eigenvector

(1, 1, . . . , 1). Thus we have found all of the eigenvectors and eigenvalues. The determinant

is the product of the eigenvalues, so it is 1n−1 · (1− n) or 1− n.

RUBRIC: 2 points for following the hint, 2 points for pulling out the factor of (1 − n)

correctly, 2 points for adding the last row to the other rows, 2 points for the correct answer.

(b) For any invertible matrix A, the (1, 1) entry of A−1 is the ratio of .

So the (1, 1) entry of A−1
4 is .

Solution Cramer’s rule gives A−1 = 1
|A|C

T where C is the cofactor matrix, whose (i, j) entry

is (−1)i+j|Mij| where Mij is the submatrix obtained by deleting row i and column j of the

(arbitrary) invertible matrix A. Thus the entry with i = j = 1 is |M11|/|A|.

In the case whereA = An, the submatrixM11 isAn−1; so the desired formula is |An−1|/|An|.

Now, |An| = 1 − n by part (a). So |A4| = −3 and |A3| = −2. Thus the (1, 1) entry of A−1
4

is 2/3.

RUBRIC: 5 points for the correct ratio, 5 points for the correct application to the current

problem. If the wrong ratio was given, then no credit was given for applying it.



(c) Find two orthogonal eigenvectors with A3 x = x. (So λ = 1 is a double eigenvalue.)

Solution In solution 2 of part (a) above, we saw that the eigenvectors are all the nonzero

vectors whose entries add up to 0. Two obvious such vectors are (1,−1, 0) and (0, 1,−1),

but there are many more linearly independent pairs.

However, (1,−1, 0) and (0, 1,−1) are not orthogonal! So we must find another pair. We

can use the Gram–Schmidt process to get orthogonal vectors, or we can just try to guess two

orthogonal vectors whose entries add up to 1. For example, (1,−1, 0) and (1, 1,−2) work.

(Note that the vectors are not required to have unit length.)

RUBRIC: up to 5 points for a correct method, 2 points for finding linearly independent

vectors, 3 points for orthogonality.

(d) What is the third eigenvalue of A3 and a corresponding eigenvector?

Solution In solution 2 of part (a) above, we saw that the third eigenvalue is −2 and a

corresponding eigenvector is (1, 1, 1).

Another way to proceed is to notice that the trace of A3 is 0. However, the trace is the

sum of the eigenvalues, and two of them are 1. So the third must be −2. Alternatively, in

part (a), we saw that |A3| = −2. However, the determinant is the product of the eigenvalues,

and two of them are 1. So the third must be −2.

A third way to proceed is to find the characteristic polynomial of A3, which is λ3−3λ+ 2.

Since 1 is a double root, we can find the third root by dividing twice by λ− 1.

RUBRIC: 5 points for the eigenvalue, 5 points for a corresponding eigenvector.
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1 (27 pts.)

P is any n× n Projection Matrix. Compute the ranks of A,B, and C below. Your method

must be visibly correct for every such P, not just one example.

a) (8 pts.) A = (I − P )P.

Since P is a projection matrix, P 2 = P , so (I−P )P = P −P 2 = P −P = 0 and has rank 0.

b) (10 pts.) B = (I − P )− P. (Hint: Squaring B might be helpful.)

B2 = (I − 2P )2 = I2 − 4P + 4P 2 = I. The rank of I is n. The rank of B2 is at most the

rank of B and the rank of B is at most n, so B must have rank n.

c) (9 pts.) C = (I − P )2012 + P 2012.

Note I − P is a projection matrix, so (I − P )2012 = I − P and P 2012 = P , so the above

simplifies to I, which has rank n.
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2 (22 pts.)

Consider a 4× 4 matrix

A =


0 x y z

x 1 0 0

y 0 1 0

z 0 0 1

 .

a) (17 pts.) Compute |A|, the determinant of A, in simplest form.

The answer is detA = −x2 − y2 − z2. But before we discuss how to get this answer, I’d

like to call your attention to that fact that the expression −x2 − y2 − z2 is symmetric in

the three variables x, y, z. That is to say, if we swap the roles of any two of these variables,

the expression as a whole is unchanged. Why might we have predicted that detA has this

property? Well, if we swap rows 2 and 3 of A, and then swap columns 2 and 3 of the result,

we end up with

A′ =


0 y x z

y 1 0 0

x 0 1 0

z 0 0 1

 ,

which is the same as A, but with the roles of x and y swapped. In performing one row swap

and one column swap, we have multiplied the determinant by (−1)2 = 1, so A′ has the same

determinant as A. From this we conclude that detA, whatever it is, must be an expression

that’s symmetric in x and y. Similar considerations show that it’s symmetric in all three

variables x, y, z.

Anyway, let’s actually compute detA. Here were some of the most common ways from the

students’ tests:
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• By cofactor expansion (p. 260) in the first row (or the first column), using the big

formula (p. 257) or any other method for each 3× 3 minor:

detA = 0

∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣− x

∣∣∣∣∣∣∣∣∣
x 0 0

y 1 0

z 0 1

∣∣∣∣∣∣∣∣∣+ y

∣∣∣∣∣∣∣∣∣
x 1 0

y 0 0

z 0 1

∣∣∣∣∣∣∣∣∣− z

∣∣∣∣∣∣∣∣∣
x 1 0

y 0 1

z 0 0

∣∣∣∣∣∣∣∣∣
= 0− x(x) + y(−y)− z(z)

= −x2 − y2 − z2.

Note the alternating + and − signs in the cofactors:

C11 =

∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣ , C12 = −

∣∣∣∣∣∣∣∣∣
x 0 0

y 1 0

z 0 1

∣∣∣∣∣∣∣∣∣ , C13 =

∣∣∣∣∣∣∣∣∣
x 1 0

y 0 0

z 0 1

∣∣∣∣∣∣∣∣∣ , C14 = −

∣∣∣∣∣∣∣∣∣
x 1 0

y 0 1

z 0 0

∣∣∣∣∣∣∣∣∣ .
In general, the formula is Cij = (−1)i+j detMij.

• By cofactor expansion in the second row (or the second column), using the big formula

or any other method for each 3× 3 minor:

detA = −x

∣∣∣∣∣∣∣∣∣
x y z

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣+ 1

∣∣∣∣∣∣∣∣∣
0 y z

y 1 0

z 0 1

∣∣∣∣∣∣∣∣∣− 0

∣∣∣∣∣∣∣∣∣
0 x z

y 0 0

z 0 1

∣∣∣∣∣∣∣∣∣+ 0

∣∣∣∣∣∣∣∣∣
0 x y

y 0 1

z 0 0

∣∣∣∣∣∣∣∣∣
= −x(1) + 1(−y2 − z2)

= −x2 − y2 − z2.

The cofactor C22, for example, can be calculated using the big formula for 3×3matrices:∣∣∣∣∣∣∣∣∣
0 y z

y 1 0

z 0 1

∣∣∣∣∣∣∣∣∣ = 0 · 1 · 1 + y · 0 · z + z · y · 0− 0 · 0 · 0− y · y · 1− z · 1 · z = −y2 − z2.
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• By the big formula (pp. 258–259) for 4 × 4 matrices. The big formula has 24 terms

(one for each 4× 4 permutation matrix), but only three of them are nonzero:

detA = x2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
+ y2

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
+ z2

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

These three permutation matrices all have determinant −1, because they are one row

exchange away from the identity matrix, so

detA = −x2 − y2 − z2.

• By performing row operations to reach an upper triangular matrix. First exchange

row 1 with another row to put a pivot in the top-left corner; to make the future

computations simpler, let’s swap row 1 with row 4:

|A| = −

∣∣∣∣∣∣∣∣∣∣∣∣

z 0 0 1

x 1 0 0

y 0 1 0

0 x y z

∣∣∣∣∣∣∣∣∣∣∣∣
;

here we have a − sign because row exchanges negate the determinant (rule 2, p. 246).

Now subtract x/z times row 1 from row 2, and y/z times row 1 from row 3:

|A| = −

∣∣∣∣∣∣∣∣∣∣∣∣

z 0 0 1

0 1 0 −x/z

0 0 1 −y/z

0 x y z

∣∣∣∣∣∣∣∣∣∣∣∣
;

remember that such operations do not affect the determinant (rule 5, p. 247). Finally
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subtract x times row 2 and y times row 3 from row 4:

|A| = −

∣∣∣∣∣∣∣∣∣∣∣∣

z 0 0 1

0 1 0 −x/z

0 0 1 −y/z

0 0 0 z + x2/z + y2/z

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now we can mutiply the diagonal entries (rule 7, p. 247) to find that

|A| = −z · 1 · 1 · (z + x2/z + y2/z) = −x2 − y2 − z2.

• By performing row operations to reach a lower triangular matrix. From row 1 of A,

we subtract x times row 2, y times row 3, and z times row 4. These operations do not

change the determinant, so

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣

−x2 − y2 − z2 0 0 0

x 1 0 0

y 0 1 0

z 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= −x2 − y2 − z2.

In other words, we may factorize A as

A =


1 x y z

0 1 0 0

0 0 1 0

0 0 0 1




−x2 − y2 − z2 0 0 0

x 1 0 0

y 0 1 0

z 0 0 1

 ,

so the product rule (rule 9, p. 248) says

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x y z

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

−x2 − y2 − z2 0 0 0

x 1 0 0

y 0 1 0

z 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= −x2 − y2 − z2.
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b) (5 pts.) For what values of x, y, z is A singular?

A square matrix is singular if and only if its determinant equals zero. So we are asked to

find all triples (x, y, z) such that

detA = −x2 − y2 − z2 = 0,

or in other words

x2 + y2 + z2 = 0.

So far, we have been talking about real numbers x, y, z in this course, so the left-hand side

is just the square of the distance from (x, y, z) to the origin in R3. Since only the origin is

at a distance 0 from the origin, the matrix A is singular if and only if x = y = z = 0.
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3 (22 pts.)

The 3× 3 matrix


a b c

d e f

g h i

 has QR decomposition


a b c

d e f

g h i

 = Q


r11 r12 r13

0 r22 r23

0 0 r33

 .

a) (7 pts.) What is r11 in terms of the variables a, b, c, d, e, f, g, h, i? (but not any of the

elements of Q.)

You should probably remember that r11 is the norm of the first column of the matrix on the

left, which we will call A. But let’s rederive it. So, when we do a QR decomposition, we

always start with the first column of our matrix, here the vector (a d g)T , and we normalize it

to obtain the first column of Q: q1 = (a d g)T/
∥∥(a d g)T

∥∥. Now, if we look at the first column

of A = QR, we have (a d g)T = r11 · q1 + 0 · q2 + 0 · q3 = r11 · q1 = r11 · (a d g)T/
∥∥(a d g)T

∥∥,
which implies that r11 =

∥∥(a d g)T
∥∥ =

√
a2 + d2 + g2.

b) (15 pts.) Solve for x in the equation,

QTx =


1

0

0

 ,

expressing your answer possibly in terms of r11,r22, r33 and the variables a, b, c, d, e, f, g, h, i,

(but not any of the elements of Q.)

Look at the product

QTx =


1

0

0


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row by row: we take the first row of QT , that is, the first column of Q, and take its dot

product with x to obtain 1. We also take the second and third row of QT , that is, the second

and third column of Q, and take their dot products with x to obtain 0. This means that x

is perpendicular to the last 2 columns of Q. But because Q has orthonormal columns and

we are in R3, this can only mean that x is a multiple of the first column, say x = zq1 for

some real number z. But remember we said that qT1 x = 1, which means qT1 zq1 = zqT1 q1 = 1,

but we know qT1 q1 = 1 because the columns of Q have norm 1. So clearly z = 1 and x is q1,

which we found in the previous question. So x = q1 = (a d g)T/
∥∥(a d g)T

∥∥ = (a d g)T/r11.
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4 (29 pts.)

a) (15 pts.) Use loops or otherwise to find a basis for the left nullspace of the incidence

matrix A for the graph above. We will start you off, one basis vector is



1

0

0

−1

1

0


.

The incidence matrix is 6 by 4. Since the graph is connected, the nullspace has dimension 1,

it is the line generated by (1, 1, 1, 1)T , therefore, the matrix has rank 3. It follows that the

left nullspace has dimension 6− 3 = 3.

We use the result of page 425 of the book :
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A basis of the left nullspace of the incidence matrix is given by a set of independant loops.

In this case, we need to find 3 independant loops in the graph. It is easy to check that the

3 small loops are independant :

A basis of the left nullspace is :



1

0

0

−1

1

0


,



0

1

0

−1

0

1


,



0

0

1

0

−1

1



11
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There are 24 ways to relabel the four nodes in the graph in part(a). Edge labels remain

unchanged. One of the 24 ways is pictured above. This produces 24 incidence matrices A.

b) (7 pts.) Is the row space of A independent of the labelling? Argue convincingly either

way.

Yes it is independent. Indeed, the incidence matrix of a connected graph with 4 nodes has

the line generated by (1, 1, 1, 1)T as its nullspace whatever the graph is. In particular, we

see that the nullspace is independant of the labelling. Since the row space is the orthogonal

of the nullspace it is also independant of the labelling.

c) (7 pts.) Is the column space of A independent of the labelling? Argue convincingly either

way.

Yes, it is independent. Relabelling the nodes has the effect of permuting the columns of the

incidence matrix. The columns space is the space of linear combinations of the columns of

the matrix, therefore, it is independent of the way the columns are ordered in the matrix.

13
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18.06 Professor Strang Quiz 2 April 11th, 2012

Grading

1

2

3

Your PRINTED name is:

Please circle your recitation:

r01 T 11 4-159 Ailsa Keating ailsa

r02 T 11 36-153 Rune Haugseng haugseng

r03 T 12 4-159 Jennifer Park jmypark

r04 T 12 36-153 Rune Haugseng haugseng

r05 T 1 4-153 Dimiter Ostrev ostrev

r06 T 1 4-159 Uhi Rinn Suh ursuh

r07 T 1 66-144 Ailsa Keating ailsa

r08 T 2 66-144 Niels Martin Moller moller

r09 T 2 4-153 Dimiter Ostrev ostrev

r10 ESG Gabrielle Stoy gstoy



1 (40 pts.)

(a) Find the projection p of the vector b onto the plane of a1 and a2, when

b =


1

0

0

1

 , a1 =


1

7

1

7

 , a2 =


−1

7

1

−7

 .

Solution. Observe that aT1 a2 = 0. Thus

p =
aT1 b

aT1 a1
a1 +

aT2 b

aT2 a2
a2 =

8

100
a1 −

8

100
a2 =


4/25

0

0

28/25

 .

(b) What projection matrix P will produce the projection p = Pb for every vector b in R4 ?

Solution. Let A be the 4×2matrix with columns a1, a2. P is given by P = A(ATA)−1AT .

Notice that

ATA =

100 0

0 100

 .
(a1 and a2 are orthogonal and of same length.)

Thus

P =
1

100
AAT =

1

100


2 0 0 14

0 98 14 0

0 14 2 0

14 0 0 98

 .
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(c) What is the determinant of I − P ? Explain your answer.

Solution. I − P is the matrix of the projection to the orthgonal complement of C(A),

i.e. N(AT ). In particular, I − P has rank the dimension of N(AT ), which is 3. Thus

I − P is singular, and det(I − P ) = 0.

(d) What are all nonzero eigenvectors of P with eigenvalue λ = 1 ?

How is the number of independent eigenvectors with λ = 0 of a square matrix A con-

nected to the rank of A ?

(You could answer (c) and (d) even if you don’t answer (b).)

Solution. The non-zero eigenvectors with eigenvalue λ = 1 are all the non-zero linear

combinations of a1 and a2, i.e. all the non-zero vectors in the plane spanned by a1 and

a2.

Suppose A is a n× n matrix, with rank r.

# independent zero-eigenvectors of A = # independent vectors in N(A)

= dimension of N(A) = n− r
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2 (30 pts.)

(a) Suppose the matrix A factors into A = PLU with a permutation matrix P, and 1’s on

the diagonal of L (lower triangular) and pivots d1, . . . , dn on the diagonal of U (upper

triangular).

What is the determinant of A ? EXPLAIN WHAT RULES YOU ARE USING.

Solution. Use

det(A) = det(P ) · det(L) · det(U)

where we make two uses of the rule det(MN) = det(M) det(N), for any two n × n

matrices M and N . We will compute each of the determinants on the right-hand side.

The determinant of a triangular matrix is the product of its diagonal entries; this is true

whether the matrix is upper or lower triangular. Thus

det(L) = 1 and det(U) = d1 · d2 · . . . · dn.

The determinant changes sign whenever two rows are swapped. Thus

det(P ) =

+1 if P is even (even # of row exchanges)

−1 if P is odd (odd # of row exchanges)

and so

det(A) = ±d1 · d2 · . . . · dn

where the sign depends on the parity of P .

(b) Suppose the first row of a new matrix A consists of the numbers 1, 2, 3, 4. Suppose the

cofactors Cij of that first row are the numbers 2, 2, 2, 2.

(Cofactors already include the ± signs.)

Which entries of A−1 does this tell you and what are those entries?
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Solution. Using the cofactor expansion in the first row gives

det(A) = a11C11 + a12C12 + a13C13 + a14C14

= 1× 2 + 2× 2 + 3× 2 + 4× 2

= 20

As A−1 = CT/ det(A), where C is the cofactor matrix, this data gives us the entries of

the first column of A−1; they are all 2/20 = 1/10.
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(c) What is the determinant of the matrix M(x) ? For which values of x is the determinant

equal to zero?

M(x) =


1 1 1 1

1 −1 2 x

1 1 4 x2

1 −1 8 x3


Solution. Solution no. 1.

From, for instance, the ‘Big Formula’, we know that det(M) is a cubic polynomial in x.

Say

det(M) = ax3 + bx2 + cx+ d.

We can calculate d by setting x = 0. Using the cofactor expansion in the last column,

we get that

d = −

∣∣∣∣∣∣∣∣∣
1 −1 2

1 1 4

1 −1 8

∣∣∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣∣∣∣
1 −1 2

0 2 2

0 0 6

∣∣∣∣∣∣∣∣∣ = −12.
We will determine the other coefficients of det(M) by finding three roots for it. x is a

root of det(M) if and only if M(x) is a singular matrix. Now, notice that

(1, 1, 1) = (x, x2, x3) for x = 1

(1,−1, 1) = (x, x2, x3) for x = −1

(2, 4, 8) = (x, x2, x3) for x = 2.

Thus M(x) is singular for x = 1,−1 and 2; moreover, this implies that

det(M) = a(x− 1)(x+ 1)(x− 2).

As d = 2a, we must have a = −6. Thus

det(M) = −6(x− 1)(x+ 1)(x− 2) = −6x3 + 12x2 + 6x− 12.
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The values of x for which M(x) is singular are 1,−1 and 2.

Solution no. 2.∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

1 −1 2 x

1 1 4 x2

1 −1 8 x3

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

0 −2 1 x− 1

0 0 3 x2 − 1

0 −2 7 x3 − 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

0 −2 1 x− 1

0 0 3 x2 − 1

0 0 6 x3 − x

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
−2 1 x− 1

0 3 x2 − 1

0 6 x3 − x

∣∣∣∣∣∣∣∣∣ = −2
∣∣∣∣∣∣3 x2 − 1

6 x3 − x

∣∣∣∣∣∣ = −6x3 + 12x2 + 6x− 12

In the first step, subtract the first row from the second, third and fourth rows. In the

second step, subtract the second row from the fourth. For the third and fourth steps,

use the cofactor expansion in the first column.

We factorize det(M) by guessing roots, trying small integers; we find that 1,−1 and 2

are all roots, which gives

det(M) = −6(x− 1)(x+ 1)(x− 2).

The values of x for which M(x) is singular are 1,−1 and 2.

Page 7 of 9



3 (30 pts.)

(a) Starting from independent vectors a1 and a2, use Gram-Schmidt to find formulas for two

orthonormal vectors q1 and q2 (combinations of a1 and a2):

Solution.

q1 =
a1
||a1||

q2 =
a2 − (aT2 q1)q1
||a2 − (aT2 q1)q1||

=
(
a2 −

(aT2 a1)

aT1 a1
a1
)
/ ||a2 −

(aT2 a1)

aT1 a1
a1||

(b) The connection between the matrices A = [a1 a2] and Q = [q1 q2] is often written

A = QR. From your answer to Part (a), what are the entries in this matrix R ?

Solution. Re-arranging the expressions above gives

a1 = q1||a1||

a2 = (aT2 q1)q1 + ||a2 − (aT2 q1)q1||q2

and thus

R =

aT1 q1 aT2 q1

aT1 q2 aT2 q2

 =

||a1|| aT2 q1

0 ||a2 − (aT2 q1)q1||


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(c) The least squares solution x̂ to the equation Ax = b comes from solving what equation?

If A = QR as above, show that R x̂ = QT b.

Solution. x̂ comes from solving ATAx̂ = AT b.

Suppose we have A = QR. Notice that:

• QTQ = I, so ATA = (QR)TQR = RTQTQR = RTR.

• As a1 and a2 are independent, R is invertible. Thus RT is also invertible.

Thus we have
ATA x̂ = AT b

⇔ RTR x̂ = RTQT b

⇔ R x̂ = QT b.
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18.06 Professor Edelman Quiz 2 November 4, 2011

Your PRINTED name is:

Grading

1

2

3

4

Please 
ir
le your re
itation:

1 T 9 2-132 Kestutis Cesnavi
ius 2-089 2-1195 kestutis

2 T 10 2-132 Niels Moeller 2-588 3-4110 moller

3 T 10 2-146 Kestutis Cesnavi
ius 2-089 2-1195 kestutis

4 T 11 2-132 Niels Moeller 2-588 3-4110 moller

5 T 12 2-132 Yan Zhang 2-487 3-4083 yanzhang

6 T 1 2-132 Taedong Yun 2-342 3-7578 tedyun



1 (30 pts.)

Consider the dire
ted graph with four verti
es and four edges pi
tured below:

1. (7 pts) The 4× 4 in
iden
e matrix (following 
lass 
onventions) of this dire
ted graph

is:

A =




1 −1 0 0

−1 0 1 0

0 1 −1 0

0 0 −1 1




2. (7 pts) Find the determinant of the in
iden
e matrix. (The easy way or the hard way)

2



det(A)=0. This 
an be done by dire
t expansion or appeal 
on
ep-

tually to show matrix is not invertible. Can use that the sum of all


olumns is 0, that we know from book/
lass that rank is 4 − 1 = 3,

or that the nullspa
e in
ludes (1, 1, 1, 1)T (note this is equivalent to

the 
olumns summing to 0 
ondition) and thus is nonempty.

3



3. (8 pts) Find a basis for the 
olumn spa
e of the in
iden
e matrix (Note this 
an be

done with or without the answer in part 1.)

We need 4−1 = 3 basis ve
tors. Any three 
olumns of A form a basis,

as would any three independent ve
tors whose �rst three 
omponents

sum to 0.

4. (8 pts) Consider whether or not it is possible to have an in
iden
e matrix for a graph

with n nodes and n edges that is invertible. If it is possible, draw the dire
ted graph,

if not possible, argue brie�y why not.

Impossible, as the ones ve
tor is in the nullspa
e of every in
iden
e

matrix for every graph. As in problem 2, 
an also argue from

book/
lass knowledge, or expli
itly show that the 
olumn sums are 0.

You 
an also show that the rows 
orresponding to a loop must sum

to 0 and we must have a loop.

4
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2 (20 pts.)

1. (10 pts) Proje
t the fun
tion sin(x) + cos(x) de�ned on the interval [0, 2π] onto the

three dimensional spa
e of fun
tions spanned by cos x, cos2x, and cos 3x. Express the

(hint: very simple) answer in simplest form. Brie�y explain your answer.

The proje
tion is cos x. We know sin x is orthogonal to the spa
e and

proje
ts to 0, while cos x is already in the spa
e.

2. (10 pts) Write down all n× n permutation matri
es that are also proje
tion matri
es.

(Explain brie�y.)

Sin
e P 2 = P, multiplying both sides by P−1, we get P = I is the

only proje
tion, permutation. Note P−1 exists and you need it to

exist; it is P T , or you 
an note that it has nonzero determinant and

is thus invertible.

6
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3 (15 pts.)

1. (10 pts) What are all possible values for the determinant of a proje
tion matrix?

(Please explain brie�y.)

Sin
e P 2 = P, det(P )2 = det(P )so that only 0 or 1 are possible.

2. (5 pts) What are all possible values for the determinant of a permutation matrix?

(Please explain brie�y.)

Starting with I, a permutation matrix is obtained through row ex-


hanges, therefore we 
an get only ±1.

8



4 (35 pts.)

1. (20 pts) The matrix A is 2000× 2000 and AT A = I. Let v be the ve
tor [1, 2, 3, . . . , 2000]T .

Let v1 be the proje
tion of v onto the spa
e spanned by the �rst 1000 
olumns of A.

Let v2 be the proje
tion of v onto the spa
e spanned by the remaining 1000 
olumns

of A. What is v1 + v2 in simplest form? Why? Give an example of a 2000 × 2000 A,

where AT A 6= I, and where v1 + v2 gives a di�erent answer.

v1 + v2 = v sin
e proje
tions onto orthogonal 
omplements add to

the identity. Here's something more expli
it: let A take blo
k form[
A1 A2

]
. Then v1 and v2 are proje
tions onto the 
olumn spa
es of

A1 and A2 respe
tively. Note that sin
e AT A = I, we have:

I = AAT = A1A
T

1
+ A2A

T

2
.

Adding the two proje
tions (re
all in the orthogonal 
ase this is just

(A1A
T

1
v + A2A

T

2
v) gives Iv = v by the above equation.

An easy example where we get a di�erent answer is if A is the zero

matrix, where we have v1 + v2 = 0 always for every v.

2. (15 pts) In a matrix A, (whi
h may not be invertible) the 
ofa
tors from the �rst row

are C11, C12, . . . , C1n.. Prove that the ve
tor C = (C11, C12, . . . , C1n.) is orthogonal to

every row of A from row 2 to row n. Hint: the dot produ
t of C with row i (i = 2, . . . , n)

is the determinant of what matrix?

Take the matrix A and repla
e row 1 with row i. This matrix has

two equal rows hen
e 0 determinant. The determinant expansion by


ofa
tors is the desired dot produ
t.

9
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18.06 Professor Edelman Quiz 2 November 6, 2013

Grading

1

2

3

4

Your PRINTED name is:

Please circle your recitation:

1 T 9 Dan Harris E17-401G 3-7775 dmh

2 T 10 Dan Harris E17-401G 3-7775 dmh

3 T 10 Tanya Khovanova E18-420 4-1459 tanya

4 T 11 Tanya Khovanova E18-420 4-1459 tanya

5 T 12 Saul Glasman E18-301H 3-4091 sglasman

6 T 1 Alex Dubbs 32-G580 3-6770 dubbs

7 T 2 Alex Dubbs 32-G580 3-6770 dubbs
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1 (25 pts.)

Compute the determinant of

a) (10 pts.) A =


1 1 1

1806 1806 0

2013 2014 2015



3



b) (15 pts.)

The n × n matrix An has ones in every element off the diagonal, and also a11 = 1 as well.

The rest of the diagonal elements are 0: a22 = a33 = . . . = ann = 0. For example

A5 =



1 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0


Write the determinant of An in terms of n in simplest form. Argue briefly but convincingly

your answer is right.

4
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2 (30 pts.)

Let Q = [q1 q2 q3] be an m× 3 real matrix with m > 3 and QTQ = I3, the 3× 3 identity.

Let P = QQT .

a) (7 pts.) What are all possible values of det(P )?

b) (7 pts.) What are all the eigenvalues of the m×m matrix P including multiplicities?

6



c) (8 pts.) Find one eigenvalue, eigenvector pair of the non-symmetric m×m matrix q1qT2 .

d) (8 pts.) What are the four fundamental subspaces of M = I − P in terms of the column

space of P?

7
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3 (20 pts.)

Let A be a 4× 4 general matrix and x a scalar variable. Circle your answers and provide a

very brief explanation.

a) (5 pts.) What kind of polynomial in x best describes det(A− xI)?

constant linear quadratic cubic (degree 3) quartic (degree 4)

b) (5 pts.) What kind of polynomial in A11 best describes det(A− xI)?

constant linear quadratic cubic (degree 3) quartic (degree 4)

c) (5 pts.) What kind of polynomial in x best describes det(xA)?

constant linear quadratic cubic (degree 3) quartic (degree 4)

d) (5 pts.) What kind of polynomial in x best describes det(A(x)), where

A(x) =



xA11 xA12 xA13 xA14

A21 + x A22 + x A23 + x A24 + x

A31 − x A32 − x A33 − x A34 − x

A41 A42 A43 A44



constant linear quadratic cubic (degree 3) quartic (degree 4)

9
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4 (20 pts.)

In R3 an artist plans an MIT triangular pyramid artwork with one vertex at the origin. The

other three vertices are at the tips of vectors A,B and C.

The triangular base of the pyramid (0, A,B) is an isosceles right triangle, The vectors A and

B are unit vectors orthogonal to each other.

The other vector C is not in any especially convenient position.

a) (12 pts.) Write an expression for L the length of the altitude of the top of the pyramid

to the base in terms of A,B and C.

11



b) (8 pts.) Write an expression for the volume of the pyramid.

12











18.06 Quiz 2 Professor Strang April 10, 2013

Please PRINT your name 1.

2.

Please Circle your Recitation: 3.

r1 T 10 36-156 Russell Hewett r7 T 1 36-144 Vinoth Nandakumar

r2 T 11 36-153 Russell Hewett r8 T 1 24-307 Aaron Potechin

r3 T 11 24-407 John Lesieutre r9 T 2 24-307 Aaron Potechin

r4 T 12 36-153 Stephen Curran r10 T 2 36-144 Vinoth Nandakumar

r5 T 12 24-407 John Lesieutre r11 T 3 36-144 Jennifer Park

r6 T 1 36-153 Stephen Curran

(1) (40 pts)

(a) If P projects every vector b in R
5 to the nearest point in the subspace spanned by

a1 = (1, 0, 1, 0, 4) and a2 = (2, 0, 0, 0, 4), what is the rank of P and why?

(b) If these two vectors are the columns of the 5 by 2 matrix A, which of the four

fundamental subspaces for A is the nullspace of P?

(c) By Gram-Schmidt find an orthonormal basis for the column space of A (spanned by

a1 and a2).

(d) If P is any (symmetric) projection matrix, show that Q = I − 2P is an orthogonal

matrix.

1





(2) (30 pts.)

(a) Find the determinant of the matrix A

A =




1 2 0 0

1 2 3 0

0 2 3 4

0 0 3 4




.

(b) The absolute value of det A tells you the volume of a box in R
4. Describe that box

(2 points – describe a different box with the same volume).

(c) Suppose you remove row 3 and column 4 of an invertible 5 by 5 matrix A. If that

reduced matrix is not invertible, what fact does that tell you about A−1 ?





(3) (30 pts.) This 4 by 4 Hadmard matrix is an orthogonal matrix. Its columns are

orthogonal unit vectors.

Q =
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




=

[
q1 q2 q3 q4

]

(a) What projection matrix P4 (give numbers) will project every b in R
4 onto the line

through q4?

(b) What projection matrix P123 will project every b in R
4 onto the subspace spanned

by q1, q2, and q3? Remember that those columns are orthogonal.

(c) Suppose A is the 4 by 3 matrix whose columns are q1, q2, q3. Find the least-squares

solution x̂ to the four equations

Ax =
1

2




1 1 1

1 −1 1

1 1 −1

1 −1 −1







x1

x2

x3


 =




1

2

3

4




= b.

What is the error vector e?





SOLUTIONS TO EXAM 2

Problem 1 (30 pts)

(a) The rank of P is 2. Any vector perpendicular to the subspace spanned by a1 and a2
is in the nullspace of P , and the orthogonal complement of the subspace spanned by
a1 and a2 is 3-dimensional (that is, there are three independent vectors that project
to 0 by P ). This is exactly the nullspace of P , and since

rank P = dimC(P ) = 5− dim Nullspace P,

the rank of P is 5− 3 = 2.
(b) The nullspace of P is the left nullspace of A. Indeed, we have

Pv = 0⇔ aT1 v = 0 and aT2 v = 0

⇔ vTa1 = 0 and vTa2 = 0

⇔ vA = 0.

(c) Gram-Schmidt gives

q1 =
a1
||a1||

=
(1, 0, 1, 0, 4)T√

12 + 02 + 12 + 02 + 42
=

1

3
√

2
(1, 0, 1, 0, 4)T

and

q2 =
a2 − aT2 q1

qT1 q1
q1

||a2 − aT2 q1
qT1 q1

q1||
=

a2 − aT2 q1q1
||a2 − aT2 q1q1||

=
(2, 0, 0, 0, 4)T − (1, 0, 1, 0, 4)T

||(2, 0, 0, 0, 4)T − (1, 0, 1, 0, 4)T ||

=
1√
2

(1, 0,−1, 0, 0)T ,

and q1 and q2 form an orthonormal basis for the column space of A.
(d) Since P is a projection matrix, we have P = P T . To show that Q is an orthogonal

matrix, we need to check that QQT = I. We have

QQT = (I − 2P )(I − 2P )T

= (I − 2P )(IT − 2P T )

= (I − 2P )(I − 2P )( I and P are symmetric)

= I − 4P + 4P 2

Since for a projection matrix we have P 2 = P , this product is equal to QQT = I, as
required.

Problem 2 (30 pts)
1



(a) We will find the determinant by doing row operations:

det


1 2 0 0
1 2 3 0
0 2 3 4
0 0 3 4

 = det


1 2 0 0
0 0 3 0
0 2 3 4
0 0 3 4



= − det


1 2 0 0
0 2 3 4
0 0 3 0
0 0 3 4



= − det


1 2 0 0
0 2 3 4
0 0 3 0
0 0 0 4



and the last matrix has determinant (1) · (2) · (3) · (4) = 24, so the original matrix
has determinant −24.

(b) detA tells the volume of a box in R4 whose sides are given by the vectors (1, 1, 0, 0)T , (2, 2, 2, 0)T ,
(0, 3, 3, 3)T , and (0, 0, 4, 4)T . Another box with the same volume would be a box whose
sides are given by the vectors (1, 0, 0, 0)T , (2, 2, 0, 0)T , (0, 3, 3, 0)T , and (0, 4, 0, 4)T .
(these are obtained from A via row operations, and so the absolute value of the
determinants do not change!)

(c) The formula for A−1 says that (see page 270 of the textbook!)

(A−1)ij =
Cji

detA

where Cji is the cofactor given by removing row j and column i. From the problem,
this matrix is not invertible, so its determinant is 0, meaning that Cij = 0. This
means that the (4, 3)-entry of A−1 is also 0.

Problem 3 (30 pts)

(a) Letting

A =


1
−1
−1
1

 ,

2



the projection matrix that projects every b ∈ R4 onto the column space of A (which
is the line through q4) is given by the formula

A(ATA)−1AT =


1
−1
−1
1


[1 −1 −1 1

] 
1
−1
−1
1




−1 [
1 −1 −1 1

]

=
1

4


1
−1
−1
1

 [1 −1 −1 1
]

=
1

4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 .

(b) Letting

A =


1 1 1
1 −1 1
1 1 −1
1 −1 −1


the projection matrix that projects every b ∈ R4 onto the column space of A (which
is the subspace spanned by q1, q2 and q3) is given by the formula

A(ATA)−1AT =
1

4


1 1 1
1 −1 1
1 1 −1
1 −1 −1


1 1 1 1

1 −1 1 −1
1 1 −1 −1



=
1

4


3 1 1 −1
1 3 −1 1
1 −1 3 1
−1 1 1 3


(c) We must solve the new system

ATAx̂ = AT b.

Since ATA = I, we have

x̂ = AT b =

 5
−1
−2

 .

Then Ax̂ =


1
2
3
4

, and e = b− Ax̂ = 0.

3



18.06 EXAM 2 November 5, 2014

Grading

1

2

3

4

Total:

Your PRINTED name is:

Please circle your recitation:

R01 T 9 E17-136 Darij Grinberg

R02 T 10 E17-136 Darij Grinberg

R03 T 10 24-307 Carlos Sauer

R04 T 11 24-307 Carlos Sauer

R05 T 12 E17-136 Tanya Khovanova

R06 T 1 E17-139 Michael Andrews

R07 T 2 E17-139 Tanya Khovanova

Each problem is 25 points, and each of its five parts (a)–(e) is 5 points.

In all problems, write all details of your solutions. Just giving an answer is not enough to

get a full credit. Explain how you obtained the answer.



Problem 1. (a) Do Gram-Schmidt orthogonalization for the vectors


1

0

1

,


0

1

0

,


1

2

3

.

(Find an orthogonal basis. Normalization is not required.)

(b) Find the A = QR decomposition for the matrix A =

0 −1

1 2

.

(c) Find the projection of the vector


1

0

0

 onto the line spanned by the vector


1

1

1

.

(d) Find the projection of the vector


1

−1

0

 onto the plane x+ y + z = 0 in R3.

(e) Find the least squares solution x̂ for the system


1 −1

1 0

1 1

1 2

 x =


0

0

10

0

.



Problem 2. Let A =


1 1 2

1 2 1

2 1 1

. (a) Calculate the determinant det(A).

(b) Explain why A is an invertible matrix. Find the entry (2, 3) of the inverse matrix A−1.

(c) Notice that all sums of entries in rows of A are the same. Explain why this implies that

(1, 1, 1)T is an eigenvector of A. What is the corresponding eigenvalue λ1?

(d) Find two other eigenvalues λ2 and λ3 of A.

(e) Find the projection matrix P for the projection onto the column space of A.



Problem 3.

(a) Calculate the area of the triangle on the plane R2 with the vertices (1, 0), (0, 1), (3, 3)

using determinants.

(b) Find all values of x for which the matrix A =

1 x

1 1

 has an eigenvalue equal to 2.

(c) Diagonalize the matrix B =

1 2

0 −1

.

(d) Calculate the power B2014 of the matrix B =

1 2

0 −1

.

(e) Let Q be any matrix which is symmetric and orthogonal. Find Q2014. Explain your

answer.



Problem 4. Consider the Markov matrix A =


0 1/3 1/3 0

1/2 0 1/3 1/2

1/2 1/3 0 1/2

0 1/3 1/3 0

.

(a) Three of the eigenvalues of A are 1, 0,−1/3. Find the fourth eigenvalue of A.

(b) Find the determinant det(A).

(c) Find the eigenvector of the transposed matrix AT with the eigenvalue λ1 = 1.

(d) Find the eigenvector of the matrix A with the eigenvalue λ1 = 1. (Hint: Notice that

nonzero entries in each column of A are the same.)

(e) Find the limit of Ak (1 0 0 0)T as k → +∞.



If needed, you can use this extra sheet for your calculations.



If needed, you can use this extra sheet for your calculations.



Exam Solutions

Problem 1

(a) Do Gram-Schmidt orthogonalization for the vectors a1 =

1
0
1

, a2 =

0
1
0

, a3 =

1
2
3

.

(b) Find the A = QR decomposition for the matrix

(
0 −1
1 2

)
.

(c) Find the projection of the vector (1, 0, 0)T onto the line spanned by the vector (1, 1, 1)T .

(d) Find the projection of the vector (1,−1, 0)T onto the plane x+ y + z = 0 in R3.

(e) Find the least squares solution x̂ for the system


1 −1
1 0
1 1
1 2

x =


0
0
10
0

.

Solutions:

(a) a1 and a2 are already orthogonal so b1 = a1 and b2 = a2.

b3 = a3 −
a3 · b1
b1 · b1

b1 −
a3 · b2
b2 · b2

b2 = a3 − 2a1 − 2a2 =

−1
0
1

 .

(b) Gram-Schmidt orthogonalization on a1 =

(
0
1

)
and a2 =

(
−1
2

)
gives b1 = a1 and b2 =

(
−1
0

)
so Q =

(
0 −1
1 0

)
. Inspection gives R =

(
1 2
0 1

)
.

(c)


1
1
1

(1 1 1
)

(
1 1 1

)
1
1
1



1
0
0

 =

1
1
1

 /3.

(d) The vector already lies in the plane so projection does nothing: (1,−1, 0)T .

(e) We must solve

(
1 1 1 1
−1 0 1 2

)
1 −1
1 0
1 1
1 2

 x̂ =

(
1 1 1 1
−1 0 1 2

)
0
0
10
0

, i.e.

(
4 2
2 6

)
x̂ =

(
10
10

)
.

So x̂ =

(
4 2
2 6

)−1(
10
10

)
=

(
2
1

)
.

1



Problem 2

Let A =

1 1 2
1 2 1
2 1 1

.

(a) Calculate det(A).

(b) Explain why A is an invertible matrix. Find the (2, 3) entry of the inverse matrix A−1.

(c) Notice that all sums of entries in rows of A are the same. Explain why this implies that (1, 1, 1)T

is an eigenvector of A. What is the corresponding eigenvalue λ1.

(d) Find two other eigenvalues λ2 and λ3 of A.

(e) Find the projection matrix P for the projection onto the column space of A.

Solutions:

(a) Using row operations we see that det(A) = det

1 1 2
0 1 −1
0 −1 −3

. Moreover, using the cofactor

formula, det

1 1 2
0 1 −1
0 −1 −3

 = det

(
1 −1
−1 −3

)
= −3− 1 = −4.

(b) det(A) = −4 6= 0. Matrices with non-zero determinants are invertible. The (2, 3) entry of A−1

is given by
C3,2

detA
=

1

4
det

(
1 2
1 1

)
= −1/4.

(c) A(1, 1, 1)T = 4(1, 1, 1)T shows directly that (1, 1, 1)T is an eigenvector for A with eigenvalue
λ1 = 4.

(d) We have λ1 + λ2 + λ3 = tr(A) = 4 and λ1λ2λ3 = det(A) = −4. Remembering that λ1 = 4
this gives λ2 + λ3 = 0 and λ2λ3 = −1. Up to reordering, this system of equations has a unique
solution, λ2 = 1, λ3 = −1.

(e) Since det(A) 6= 0, A is invertible and so the column space of A is all of R3. The projection
matrix onto R3 is the identity I.

2



Problem 3

(a) Calculate the area of a triangle on the plane R2 with the vertices (1, 0), (0, 1), (3, 3) using the
determinant.

(b) Find all values of x for which the matrix A =

(
1 x
1 1

)
has an eigenvlue equal to 2.

(c) Diagonalize the matrix B =

(
1 2
0 −1

)
.

(d) Calculate the power B2014 of the matrix B =

(
1 2
0 −1

)
.

(e) Let Q be any matrix which is symmetric and orthogonal. Find Q2014. Explain your answer.

Solutions:

(a) Translation by (−1, 0) is an isometry and so it is equivalent to find the area of a triangle with
the vertices (0, 0), (−1, 1), (2, 3). This is given by

1

2

∣∣∣∣∣ det

(
−1 1
2 3

) ∣∣∣∣∣ =
5

2
.

(b) A has an eigenvalue equal to 2 if and only if the matrix A − 2I is singular. Thus, A has an
eigenvalue equal to 2 if and only if det(A− 2I) = 0. But

det(A− 2I) = det

(
−1 x
1 −1

)
= 1− x.

So det(A− 2I) = 0 if and only if 1− x = 0, i.e. x = 1.

(c) Since B is diagonal its eigenvalues can be read off from the diagonal λ1 = 1 and λ2 = −1. We
find corresponding eigenvectors (1, 0)T and (1,−1)T . So B = SΛS−1, where

Λ =

(
1 0
0 −1

)
and S =

(
1 1
0 −1

)
.

By chance we have S = S−1.

(d) B2 = SΛ2S−1 = SIS−1 = I, so B2014 = (B2)1007 = I.

(e) Since Q is orthogonal we have QTQ = I. Since Q is symmetric we have QT = Q. Thus

Q2 = QQ = QTQ = I and Q2014 = (Q2)1007 = I.

3



Problem 4

Consider the Markov matrix A =


0 1/3 1/3 0

1/2 0 1/3 1/2
1/2 1/3 0 1/2
0 1/3 1/3 0

.

(a) Three of the eigenvalues are 1, 0,−1/3. Find the fourth eigenvalue of A.

(b) Find the determinant det(A).

(c) Find the eigenvector of the transposed matrix AT with eigenvalue λ1 = 1.

(d) Find the eigenvector of the matrix A with the eigenvalue λ1 = 1. (Hint: notice that the nonzero
entries in each column of A are the same.)

(e) Find the limit of Ak(1, 0, 0, 0)T as k −→ +∞.

Solutions:

(a) Since tr(A) = 0 the sum of the eigenvalues are 0. Thus, the fourth eigenvalue must be −2/3.

(b) The determinant is the product of the eigenvalues, which is 0.

(c) (1, 1, 1, 1)A = (1, 1, 1, 1) and so the eigenvector of AT with eigenvalue λ1 = 1 is (1, 1, 1, 1)T .

(d) The Markov matrix A corresponds to a random walk on the graph with four nodes 1, 2, 3, 4
connected by the edges (1, 2), (1, 3), (2, 3), (2, 4), (3, 4). The degrees of the nodes are 2, 3, 3,
2. Thus the vector (2, 3, 3, 2)T is an eigenvector with eigenvalue λ1 = 1.

(e) Let v1 = (2, 3, 3, 2)T and let v2, v3 and v4 be eigenvectors for 0,−1/3,−2/3, respectively. Then
there exist c1, . . . , c4 ∈ R with

(1, 0, 0, 0)T = c1v1 + c2v2 + c3v3 + c4v4.

Thus

Ak(1, 0, 0, 0)T = c1v1 +
(−1)kc3

3k
v3 +

(−2)kc4
3k

v4 −→ c1v1, as k −→ +∞

To find c1 we recall that (1, 1, 1, 1)A = (1, 1, 1, 1). By induction we obtain

(1, 1, 1, 1)Ak = (1, 1, 1, 1)

and so (1, 1, 1, 1)Ak(1, 0, 0, 0)T = (1, 1, 1, 1)(1, 0, 0, 0)T = 1. Letting k −→ +∞ we obtain

(1, 1, 1, 1)c1v1 = 1

so that c1 = 1/((1, 1, 1, 1)v1) = 1/10. The answer to the question is (2, 3, 3, 2)T /10.

4
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1. (24 points total)

(a) (6 points) What matrix P projects every vector in R3 onto the line that passes through
origin and a = (3, 4, 5)?

(b) (6 points) What is the nullspace of that matrix P?

(c) (6 points) What is the row space of P 2?

(d) (6 points) What is the determinant of P?

2



2. (25 points total)

(a) (11 points) Suppose x̂ is the best least squares solution to Ax = b and ŷ is the best least
squares solution to Ay = c.

Does this tell you the best least squares solution ẑ to Az = b + c ? If so, what is the best ẑ
and why?

(b) (7 points) If Q is an m by n matrix with orthonormal columns, find the best least squares
solution x̂ to Qx = b.

(c) (7 points) If A = QR, where R is square invertible and Q is the same as in (b), find the
least squares solution to Ax = b.

3



3. (25 points total)

(a) (17 points) Find the determinant of this matrix A (with an unknown x in 4 entries).

A =


x 1 0 0
2 x 2 0
0 3 x 3
0 0 4 x

 B =


x 1 0 1
2 x 2 0
0 3 x 3
0 0 4 x


You could use the big formula or the cofactor formula or possibly the pivot formula.

(b) (5 points) Find the determinant for matrix B which has an additional 1 in the corner.
What new contribution to the determinant does this 1 make?

(c) (3 points) If M is any 3 by 3 matrix, let f(x) = det(xM). Find the derivative of f at
x = 1.

4



4. (26 points total)

(a) (6 points) Find the projection p of the vector b onto the column space of A.

A =

 1 3
2 2
2 1

 b =

 1
4
1


(b) (7 points) Use Gram-Schmidt to find an orthogonal basis q1, q2 for the column space of
A.

(c) (6 points) Find the projection p of the same vector b onto the column space of the new
matrix Q with columns q1 and q2.

(d) (7 points) True or False: The best least squares solution x̂ to Ax = b is the same as the
best least squares solution ŷ to Qy = b. Explain why.

5
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18.06 Exam II Professor Strang April 7, 2014

Solutions

1. (24 points total)

(a) (6 points) What matrix P projects every vector in R3 onto the line
that passes through origin and a = (3, 4, 5)?

(b) (6 points) What is the nullspace of that matrix P?

(c) (6 points) What is the row space of P 2?

(d) (6 points) What is the determinant of P?

Solution.

(a) The projection of the vector (1, 0, 0) onto the line a = (3, 4, 5) is
(9/50, 12/50, 15/50). Similarly, the projections of vectors (0, 1, 0) and
(0, 0, 1) are (12/50, 16/50, 20/50) and (15/50, 20/50, 25/50) correspond-
ingly. These are the columns of the projection matrix:

P =

 9/50 12/50 15/50
12/50 16/50 20/50
15/50 20/50 25/50

 =

 9/50 6/25 3/10
6/25 8/25 2/5
3/10 2/5 1/2

 .

(b) The nullspace of P is 2-dimensional. It can be generated by the fol-
lowing two vectors orthogonal to a = (3, 4, 5): (−5/3, 0, 1) and (−4/3, 1, 0).

(c) Row space of P 2 is the same as row space of P , since P 2 = P . Row
space of P is generated by a = (3, 4, 5).

(d) The projection is onto 1-dimensional space, therefore, the rank of
matrix P must equal to 1. Therefore, the determinant of P is 0.



2. (25 points total)

(a) (11 points) Suppose x̂ is the best least squares solution to Ax = b
and ŷ is the best least squares solution to Ay = c.

Does this tell you the best least squares solution ẑ to Az = b+ c ? If so,
what is the best ẑ and why?

(b) (7 points) If Q is an m by n matrix with orthonormal columns, find
the best least squares solution x̂ to Qx = b.

(c) (7 points) If A = QR, where R is square invertible and Q is the
same as in (b), find the least squares solution to Ax = b.

Solution.

(a) Denote by P the projection onto the column space of A. We have
Ax̂ = Pb and Aŷ = Pc. That means Ax̂+Aŷ = Pb+Pc = P (b+ c). It
follows that x̂ + ŷ is the least squares solution for Aẑ = b + c.

(b) The least squares solution can be written as x̂ = (QTQ)−1QT b. As
Q is orthonormal, QTQ = I. Therefore, x̂ = QT b. Alternatively, solving
least squares means finding a solution to QTQx̂ = QT b. As QTQ = I,
we see that x̂ = QT b.

(c) The least squares solution can be written as x̂ = (ATA)−1AT b =
(RTQTQR)−1RTQT b. As Q is orthonormal, QTQ = I. Therefore, x̂ =
(RTR)−1RTQT b. As R is invertible, we get x̂ = (RTR)−1RTQT b =
R−1(RT )−1RTQT b = R−1QT b.

2



3. (25 points total)

(a) (17 points) Find the determinant of this matrix A (with an unknown
x in 4 entries).

A =


x 1 0 0
2 x 2 0
0 3 x 3
0 0 4 x

 B =


x 1 0 1
2 x 2 0
0 3 x 3
0 0 4 x


You could use the big formula or the cofactor formula or possibly the
pivot formula.

(b) (5 points) Find the determinant for matrix B which has an additional
1 in the corner. What new contribution to the determinant does this 1
make?

(c) (3 points) If M is any 3 by 3 matrix, let f(x) = det(xM). Find the
derivative of f at x = 1.

Solution.

(a) Using the cofactor method we can expand the determinant of A as:

= x det

x 2 0
3 x 3
0 4 x

− 1 det

2 2 0
0 x 3
0 4 x

 .

We can calculate the 3 by 3 determinants by using any formula. The
first one has determinant x3 − 18x, and the second one 2x2 − 24. The
determinant of A is x4 − 20x2 + 24.

(b)

By the cofactor formula one more term is added, which is equal

−1 det

2 x 2
0 3 x
0 0 4

 .

3



The 3 by 3 matrix is triangular, so its determinant is the product of
the diagonal elements and is equal to 24. So det(B) = det(A) − 24 =
x4 − 20x2.

(c)

For a 3 by 3 matrix f(x) = det(xM) = x3 det(M). The derivative
f ′(x) = 3x2 det(M).

4



4. (26 points total)

(a) (6 points) Find the projection p of the vector b onto the column
space of A.

A =

 1 3
2 2
2 1

 b =

 1
4
1


(b) (7 points) Use Gram-Schmidt to find an orthogonal basis q1, q2 for
the column space of A.

(c) (6 points) Find the projection p of the same vector b onto the column
space of the new matrix Q with columns q1 and q2.

(d) (7 points) True or False: The best least squares solution x̂ to Ax = b

is the same as the best least squares solution ŷ to Qy = b. Explain why.

Solution.

(a) By the formula, the projection is A(ATA)−1AT b:

1 3
2 2
2 1

[1 2 2
3 2 1

]1 3
2 2
2 1

−1 [1 2 2
3 2 1

]1
4
1

 =

1 3
2 2
2 1

[9 9
9 14

]−1 [
11
12

]
=

=

1 3
2 2
2 1

[14/45 −0.2
−0.2 0.2

] [
1 2 2
3 2 1

]
=

−13/45 0.4
2/9 0

19/45 −0.2

[11
12

]
=

 73/45
22/9

101/45

 .

(b) q1 = (1, 2, 2)—the first column of A. The projection of (3, 2, 1)
onto (1, 2, 2) is (1, 2, 2), with an error vector e = (2, 0,−1). Thus q2 =
(2, 0,−1).

(c) Columns q1 and q2 span the same space as columns of A. Thus the
projection must be the same as before.

5



(d) Matrices A and Q span the same column space. Dentoe the pro-
jection of b onto that space as p. The solution x̂ satisfies the equation:
Ax̂ = p, the solution ŷ satisfies the equation Qŷ = p. Now A = QR,
which means ŷ = Rx̂.

6
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1. (33 points) Suppose we measure b = 0, 0, 0, 1, 0, 0, 0 at times
t = −3,−2,−1, 0, 1, 2, 3.

(a) To fit these 7 measurements by a straight line C+Dt, what 7 equa-
tions Ax = b would we want to solve?

(b) Find the least squares solution x̂ = (Ĉ, D̂).

(c) The projection of that vector b in R7 onto the column space of A is
what vector p?

2



2. (34 points) Suppose q1 = (c, d, e) and q2 = (f, g, h) are orthonormal
column vectors in R3. They span a subspace S.

(a) Find the (1, 1) entry in the projection matrix P that projects each
vector in R3 onto that subspace S.

(b) For this projection matrix P, describe 3 independent eigenvectors
(vectors for which Px is a number λ times x). What are the 3
eigenvalues of P? What is its determinant?

(c) For some vectors v and w in R3 the Gram-Schmidt orthonormal-
ization process (applied to v and w) will produce those particular
vectors q1 and q2. Describe the vectors v and w that lead to this q1
and q2.

3



3. (34 points)

(a) If q1, q2, q3 are orthonormal vectors in R3, what are the possible
determinants of this matrix A with columns 2q1 and 3q2 and 5q3?
Why?

A =
[

2q1 3q2 5q3
]

(b) For a matrix A, suppose the cofactor C11 of the first entry a11 is
zero. What information does that give about A−1? Can this inverse
exist?

(c) Find the 3 eigenvalues of this matrix A and find all of its eigenvec-
tors. Why is the diagonalization S−1AS = Λ not possible?

A =

 2 1 0
0 2 0
0 0 2



4
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18.06 Exam II Solutions Professor Strang April 10, 2015

1. (33 points) Suppose we measure b = 0, 0, 0, 1, 0, 0, 0 at times
t = −3,−2,−1, 0, 1, 2, 3.

(a) To fit these 7 measurements by a straight line C +Dt, what 7 equations Ax = b
would we want to solve?

Solution. We want to solve the following 7 equations: C − 3D = 0, C − 2D = 0,
C −D = 0, C = 1, C +D = 0, C + 2D = 0, and C + 3D = 0.

(b) Find the least squares solution x̂ = (Ĉ, D̂).

Solution. First we need to find the projection of b onto the plane generated by
two vectors: (1, 1, 1, 1, 1, 1, 1) and (−3,−2,−1, 0, 1, 2, 3). As b is perpendicular to
the second vector, we only need to find the projection of b on the line generated
by the first vector, which is (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7). Now we need to
solve the seven equations: C − 3D = 1/7, C − 2D = 1/7, C −D = 1/7, C = 1/7,
C +D = 1/7, C + 2D = 1/7, and C + 3D = 1/7, and C = 1/7 and D = 0.

Alternatively, we can denote by A the matrix that has these two vectors as its two
columns, then ATA = [ 7 0

0 28 ] and AT b = (1, 0). The two equations corresponding
to ATAx̂ = AT b are 7C = 1 and 28D = 0, resulting in the same solution C = 1/7
and D = 0.

(c) The projection of that vector b in R7 onto the column space of A is what vector
p?

Solution. If we used the first method above, we already calculated the projection
as (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7). If we used the second method, the projection
is Ax̂ = (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7)T .

2. (34 points) Suppose q1 = (c, d, e) and q2 = (f, g, h) are orthonormal column vectors
in R3. They span a subspace S.

(a) Find the (1, 1) entry in the projection matrix P that projects each vector in R3

onto that subspace S.

Solution. Denote by Q the matrix with columns q1 and q2: Q =
[

c f
d g
e h

]
. The

projection matrix P = Q(QTQ)−1QT . As the column vectors are orthonormal,
we know that QTQ is the 2-by-2 identity matrix. Thus, P = QQT , and the first
entry is c2 + f 2.

(b) For this projection matrix P, describe 3 independent eigenvectors (vectors for
which Px is a number λ times x). What are the 3 eigenvalues of P? What is its
determinant?

Solution. The projection matrix P projects onto a 2d plane. That means its
eigenvalues are (1, 1, 0) and the determinant is 0. The eigenvector corresponding
to the eigenvalue 0 is orthogonal to the projection plane, that is orthogonal to
both vectors q1 and q2. The independent vectors corresponding to value 1 are any
two independent vectors in the projection plane. We can choose q1 and q2 as such
vectors.



(c) For some vectors v and w in R3 the Gram-Schmidt orthonormalization process
(applied to v and w) will produce those particular vectors q1 and q2. Describe
the vectors v and w that lead to this q1 and q2.

Solution. Vector v is on the same line as q1 and in the same direction. Therefore,
v = aq1, where a is a positive number. The second vector w has to be in the same
plane as q1 and q2, on the same side of the line drawn through q1 as q2 and has
to be independent of v.

3. (34 points)

(a) If q1, q2, q3 are orthonormal vectors in R3, what are the possible determinants of
this matrix A with columns 2q1 and 3q2 and 5q3? Why?

A =
[

2q1 3q2 5q3
]

Solution. The determinant of the matrix Q = [q1 q2 q3] has to be 1 or −1. This
is because QTQ = I, which means that detQT · detQ = 1, that is, detQ2 = 1.
When we multiply a column by a number, the determinant is multiplied by the
same number. Thus, the determinant of A is either 30 or −30.

(b) For a matrix A, suppose the cofactor C11 of the first entry a11 is zero. What
information does that give about A−1? Can this inverse exist?

Solution. The cofactor C11 being zero does not give us enough information to
decide whether the inverse exists or not. For example, in the matrix [ 1 0

0 0 ] this
cofactor is zero and the inverse does not exist, and in the matrix [ 1 1

1 0 ] this cofactor
is zero and the inverse exists. If this inverse exists, then we know that the entry
(1, 1) in this inverse is zero.

(c) Find the 3 eigenvalues of this matrix A and find all of its eigenvectors. Why is
the diagonalization S−1AS = Λ not possible?

A =

 2 1 0
0 2 0
0 0 2


Solution. The eigenvalues of this matrix are (2, 2, 2). But the rank of A − 2I
is 1. That means, you can only find two independent eigenvectors. When the
number of independent eigenvectors is smaller than the size of the matrix, then
the diagonalization is not possible because you cannot build the square matrix of
eigenvectors S.
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