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112 Solutions to Problem Sets

Problem Set 7.1, page 295

1 ATA =




0 0 0

0 1 0

0 0 64


 AAT =




1 0 0

0 64 0

0 0 0


 give σ1 = 8 and σ2 = 1.

v1 = (0, 0, 1), v2 = (0, 1, 0), u1 = (0, 1, 0), u2 = (1, 0, 4). After removing

row 3 of A and column 3 of AT,


 1 0

0 64


 still has σ2

1 = 64 and σ2
2 = 1.

2 det(B − λI) = −λ3 + 1
125 = 0 gives λ = 1

5 times 1 and e2πi/3 and e4πi/3.

The singular values are σ = 8 and 1 and 1/1000. So λ changed by 1/5 and σ only

changed by 1/1000.

3 AT has the same singular values as A, and the singular vectors change from Av = σu

to Au = σv.

4


 0 A

AT 0




uk

vk


=


 Avk

ATuk


=σk


uk

vk


 and


 0 A

AT 0




−uk

vk


=


 Avk

−ATuk


=−σk


−uk

vk




So this one symmetric matrix S reveals the u’s and v’s and σ’s in the SVD of A.

5 ATA is symmetric with λ1 = 25 and λ2 = 0 so A has σ1 = 5. The eigenvectors of

ATA are v1 = (2, 1) and v2 = (−1, 2) : orthogonal. They are the v’s in A = UΣV T.

6 A1A
T
1 =


 1 0

1 1




 1 1

0 1


 =


 1 1

1 2


 produces λ2 − 3λ + 1 = 0 and

λ =
1

2

(
3±
√
5
)
. The singular values are the square roots σ =

1

2

(√
5± 1

)
.

A2A
T
2 =


 1 0 1 0

1 1 1 1







1 1

0 1

1 1

0 1




=


 2 2

2 4


 has λ2 − 6λ + 4 = 0 and

λ =
1

2

(
6±
√
20
)
= 3±

√
5. The singular values are the square roots σ =

√
2

2

(√
5± 1

)
.

For the singular vectors I recommend the SVD commands in MATLAB or Julia or

Mathematica.
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7 There are 20 singular values because a random 20 by 40 matrix almost surely has rank 20.

8 (a) The singular values of A+ I are square roots of eigenvalues of (A+ I)T(A + I).

They are not eigenvalues of ATA+ I .

(b) This formula V Σ−1UT is the best way to compute the pseudoinverse A+.

We could check the four Penrose conditions on A+ from Section 4.5. For example

AA+A =
(
Σσiuiv

T
i

)(
Σvju

T
j /σj

)(
Σσkukv

T
k

)
= Σσiuiv

T
i .

Notice also that AA+ = Σuiv
T
i viui = ΣuT

i ui = UTU = projection.

9 The singular values of Q are the positive square roots of eigenvalues of QTQ—and all

those eigenvalues are 1 because QTQ = I when Q is orthogonal.

10 If the λ’s are in descending order, the maximum of R(x) = (λ1c
2
1+ · · ·+λnc

2
n)/(c

2
1+

· · · + c2n) is λ1 (when x = v1). Then c1, c2, . . . , cn is 1, 0, . . . , 0. The minimum is

R(x) = λn when x = vn and c = (0, 0, . . . , 0, 1).

11 xTv1 = 0 means that the coefficient is c1 = 0 in x = c1v1 + · · · + cnvn. Then

max
λ2c

2
2 + · · ·+ λnc

2
n

c22 + · · ·+ c2n
= λ2.

12 The first matrix has ATA =


 5 3

3 5


 with λ = 8 and λ = 2. The eigenvectors of

ATA = right singular vectors v1,v2 of A are (1, 1)/
√
2 and (1,−1)/

√
2. The left

singular vectors are u = Av/σ = (4, 0)/
√
2
√
8 = (1, 0) and (0, 2)/

√
2
√
2 = (0, 1).

The second matrix has ATA =


 25 25

25 25


 so λ = 50 and λ = 0. The right singular

vectors of A are again v1 = (1, 1)/
√
2 with σ1 =

√
50 and v2 = (1,−1)/

√
2 with no

σ2 (or you could say σ2 = 0 but our convention is no σ2). Then u1 = Av1/
√
50 =

(3, 4)/5.

13 This matrix has ATA =




1 1 0

1 2 1

0 1 1


 with eigenvalues λ = 3, 1, 0 and σ1 =

√
3 and

σ2 = 1 and no σ3. The eigenvectors of ATA are v1 = (1, 2, 1)/
√
6 and
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v2 = (1, 0,−1)/
√
2 and v3 = (1,−1, 1)/

√
3. Then Av = σu gives u = (1, 1)/

√
2

and u2 = (1,−1)/
√
2.

A =


1 1 0

0 1 1


 =

1√
2


1 1

1 −1





√
3 0

0 1




1 2 1

1 0 −1


 /
√
6

/
√
2

14 This small question is a key to everything. It is based on the associative law (AAT)A =

A(ATA). Here we are applying both sides to an eigenvector v of ATA :

(AAT)Av = A(ATA)v = Aλv = λAv.

So Av is an eigenvector of AAT with the same eigenvalue λ = σ2.

15 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5

This A =


1 2

3 6


 is a 2 by 2 matrix of rank 1. Its row space has basis v1, its nullspace

has basis v2, its column space has basis u1, its left nullspace has basis u2 :

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1

3


 , N(AT)

1√
10


 3

−1


 .

16 (a) The main diagonal of ATA contains the squared lengths ||row 1||2, · · · , ||row m||2.

So the trace of ATA is the sum of all a2ij .

(b) If A has rank 1, then ATA has rank 1. So the only singular value of A is

σ1 = (trace ATA)1/2.

17 The number σmax(A
−1)σmax(A) is the same as σmax(A)/σmin(A). This is ≥ 1.

It equals 1 if all σ’s are equal, and A = UΣV T is a multiple of an orthogonal matrix.

The ratio σmax/σmin is the important condition number of A.

18 The smallest change in A is to set its smallest singular value σ2 to zero.
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Problem Set 7.2, page 301

1 (a) Suppose the identity matrix I is N by N , and an N by N approximating matrix A

has rank r < N . Then I − A will have N − r eigenvalues equal to 1, meaning that

the error norm ||I − A|| is at least 1, and I is impossible to compress by a lower

rank matrix.

(b) A matrix with a horizontal-vertical cross looks like A :




zeros ones zeros

ones ones ones

zeros ones zeros


 =




zeros ones zeros

zeros ones zeros

zeros ones zeros


+




zeros zeros zeros

ones zeros ones

zeros zeros zeros




Those are both rank one matrices (all nonzero rows equal) so A has rank 2.

2 A =




1 2 1 1

2 4 2 2

1 2 1 1


+




0 0 0 0

0 −2 0 0

0 0 0 0


 =




1

2

1




[
1 2 1 1

]

+




0

1

0




[
0 −2 0 0

]

and the rank is 2.

B =


 1 2 2

1 3 3


 =


 1

1



[
1 2 2

]

+


 0

1



[
0 1 1

]

also has rank 2.

3 BBT =


 1 2 2

1 3 3







1 1

2 3

2 3


 =


 9 13

13 19


 trace = 28 and det = 2.

BTB =




1 1

2 3

2 3





 1 2 2

1 3 3


 =




2 5 5

5 13 13

5 13 13


 trace = 28 and det = 0.

The 2 nonzero eigenvalues must be the same for both matrices. They are σ1, σ2 =

14±
√
142 − 2. I would call B compressible when σ2 is so much smaller than σ1.

4 (computer question svd(A)).

5 The Japanese flag has a circle filled by 1’s, with diameter = 2N 1’s. Outside the circle

are zeros. The rank is approximately CN . What is the number C ? Alex Townsend
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contributed this key idea : The circle contains a big square matrix filled by 1’s. The

rank of that all-ones matrix is only 1.

So we only have to count the rows above and below that square ! Multiply by 2 to

include the columns to the left and right of the square.

0

√
2

2
N

N
01

1 1

The picture shows

(
1−
√
2

2

)
N rows of 1’s above the

square—and repeated below the square. It also shows(
1−
√
2

2

)
N columns of 1’s to the right of the square—and

repeated to the left.

Combined, those (2 −
√
2)N rows and columns (plus 1 for the big square) tell us the

rank of this 2N by 2N Japanese flag containing the red circle.

6 The N by N matrix A is filled by the values Aij = F (i/N, j/N) of the two-variable

function F (x, y), by taking the points (x, y) = (i/N, j/N) on a uniform square grid

(x and y go from 0 to 1). Three choices of that function F :

1) F = xy produces a symmetric rank-1 matrix. Its i, j entry is a multiple of the

product i times j. All rows of F contain a multiple of the vector (1, 2, . . . , N).

2) F2 = x + y gives a sum of 2 rank-one matrices (the rank is 2). One matrix has

constants along each row. The other has constants down each column.

3) F3 = (x, y) = x2 + y2 will also produce a sum of constant rows (from x2) and

constant columns (from y2). Again rank = 2.

7 Symmetric matrix S if F (x, y) = F (y, x). Example F = x+ y.

Antisymmetric matrix A if F (x, y) = −F (y, x). Example F = x− y.

Matrix of rank 2 if F (x, y) = F (x) + F (y) (and other possibilities too ?)

Singular matrix M from a sum of less than n rank-one matrices (please expand this

part of the answer).
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Problem Set 7.3, page 307

1 The row averages of A0 are 3 and 0. Therefore

A =


 2 1 0 −1 −2
−1 1 0 1 −1


 and S =

AAT

4
=

1

4


10 0

0 4




The eigenvalues of S are λ1 =
10

4
and λ2 =

4

4
= 1. The top eigenvector of S is


1

0


. I think this means that a horizontal line (the x axis) is closer to the five points

(2,−1), . . . , (−2,−1) in the columns of A than any other line through the origin (0, 0).

2 Now the row averages of A0 are 1
2 and 2. Therefore

A =




1
2 − 1

2
1
2 − 1

2
1
2 − 1

2

−1 0 1 1 0 −1


 and S =

AAT

5
=

1

5




3
2 0

0 4


 .

Again the rows of A are accidentally orthogonal (because of the special patterns of

those rows). This time the top eigenvector of S is


0

1


. So a horizontal line is closer

to the six points
(
1
2 ,−1

)
, . . . ,

(
− 1

2 ,−1
)

from the columns of A than any other line

through the center point (0, 0).

3 A0 =


1 2 3

5 2 2


 has row averages 2 and 3 so A =


−1 0 1

2 −1 −1


.

Then S =
1

2
AAT =

1

2


 2 −3

−3 6


.

Then trace (S) = 1
2 (8) and det(S) =

(
1
2

)2
(3). The eigenvalues λ(S) are 1

2 times the

roots of λ2 − 8λ + 3 = 0. Those roots are 4 ±
√
16− 3. Then the σ’s are

√
λ1 and

√
λ2.

4 This matrix A with orthogonal rows has S =
AAT

n− 1
=

1

3




2 0 0

0 8 0

0 0 4


.
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With λ’s in descending order λ1 > λ2 > λ3, the eigenvectors are (0, 1, 0) and (0, 0, 1)

and (1, 0, 0). The first eigenvector shows the u1 direction = y axis. Combined with

the second eigenvector u2 in the z direction, the best plane is the yz plane.

These problems are examples where the sample correlation matrix (rescaling S so all

its diagonal entries are 1) would be the identity matrix. If we think the original scaling

is not meaningful and the rows should have the same length, then there is no reason to

choose u1 = (0, 1, 0) from the 8 in row 2.

5 Recall that least squares measures vertical errors (squared distances up or down from

data points to the closest line) while PCA measures perpendicular distances to the line.

They are different problems. Ordinary least squares is different from PCA = perpen-

dicular least squares.

ATAx̂=ATb is


 3 0

0 14


 x̂=


 0

5


 leads to x̂=


 0

5/14


. Best line is y =

5

14
t.

PCA finds the line through (0, 0) whose perpendicular distances to the points (−3,−1),
(1, 0), (2, 1) is smallest. The computation finds the top eigenvector of ATA, where A

is now the 2 by 3 matrix of data points :

AAT =


 −3 1 2

−1 0 1







−3 −1
1 0

2 1


 =


 14 5

5 2


 has λ2 − 16λ+ 3 = 0.

Then λ = 8±
√
61 and the top eigenvector of AAT is in the direction of (5,

√
61− 6)

≈ (5, 1.8). That is the (approximate) direction of the line y =
1.8

5
t.

6 See eigenfaces on Wikipedia.

7 The closest matrix A3 of rank 3 has the 3 top singular values 5, 4, 3. Then A−A3 has

singular values 2 and 1.

8 If A has σ1 = 9 and B has σ1 = 4, then A + B has σ1 ≤ 13 because ||A + B|| ≤
||A||+ ||B||. Also σ1 ≥ 5 for A+B because ||A+B||+ || −B|| ≥ ||A||.




