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88 Solutions to Problem Sets

Problem Set 6.1, page 226

1 The eigenvalues of A are λ = 1 and 0.5
(
or 1

2

)
.

The eigenvalues of An are λ = 1 and
(
1
2

)n
.

The eigenvalues of A∞ are λ = 1 and 0.

(a) A row exchange leaves this A with λ = 1 and −0.5
(
or − 1

2

)
.

(b) Every A has n− r zero eigenvalues (r = rank) : not changed by elimination.

2 A has λ1 = −1 and λ2 = 5 with eigenvectors x1 = (−2, 1) and x2 = (1, 1). The

matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.

That zero eigenvalue correctly indicates that A+ I is singular.

3 A has λ1 = 2 and λ2 = −1 (check trace and determinant) with x1 = (1, 1) and

x2 = (2,−1). A−1 has the same eigenvectors, with eigenvalues 1/λ = 1
2 and −1.

4 det(A−λI) = λ2 +λ− 6 = (λ+3)(λ− 2). Then A has λ1 = −3 and λ2 = 2 (check

trace = −1 and determinant = −6) with x1 = (3,−2) and x2 = (1, 1). A2 has the

same eigenvectors as A, with eigenvalues λ2
1 = 9 and λ2

2 = 4.

5 A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A+B

has λ2 + 8λ + 15 = 0 and λ1 = 3, λ2 = 5. Eigenvalues of A + B are not equal to

eigenvalues of A plus eigenvalues of B.

6 A and B have λ1 = 1 and λ2 = 1. AB and BA have λ2−4λ+1 = 0 and the quadratic

formula gives λ = 2±
√
3. Eigenvalues of AB are not equal to eigenvalues of A times

eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of

Section 6.2).

7 The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its

diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.

8 (a) Multiply Ax to see λx which reveals λ (b) Solve (A− λI)x = 0 to find x.
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9 (a) Multiply Ax = λx by A : A(Ax) = A(λx) = λAx gives A2x = λ2x

(b) Multiply by A−1 : x = A−1Ax = A−1λx = λA−1x gives A−1x = 1

λ
x

(c) Add Ix = x : (A+ I)x = (λ + 1)x.

10 det(A − λI) = λ2 − 1.4λ+ 0.4 so A has λ1 = 1 and λ2 = 0.4 with x1 = (1, 2) and

x2 = (1,−1). A∞ has λ1 = 1 and λ2 = 0 (same eigenvectors as A). A100 has λ1 = 1

and λ2 = (0.4)100 which is near zero. So A100 is very near A∞: same eigenvectors

and close eigenvalues.

11 Proof 1. A − λ1I is singular so its two columns are in the same direction.

Also (A − λ1I)x2 = (λ2 − λ1)x2. So x2 is in the column space and both columns

must be multiples of x2. Here is also a second proof : Columns of A − λ1I are in the

nullspace of A − λ2I because M = (A − λ2I)(A − λ1I) is the zero matrix [this is

the Cayley-Hamilton Theorem in Problem 6.2.30]. Notice that M has zero eigenval-

ues (λ1 − λ2)(λ1 − λ1) = 0 and (λ2 − λ2)(λ2 − λ1) = 0. So those columns solve

(A− λ2I)x = 0, they are eigenvectors.

12 The projection matrix P has λ = 1, 0, 1 with eigenvectors (1, 2, 0), (2,−1, 0), (0, 0, 1).
Add the first and last vectors: (1, 2, 1) also has λ = 1. The whole column space of P

contains eigenvectors with λ = 1 ! Note P 2 = P leads to λ2 = λ so λ = 0 or 1.

13 (a) Pu=(uuT)u = u times uTu=u times 1. So λ = 1.

(b) Pv=(uuT)v=u(uTv)= 0.

(c) x1 = (−1, 1, 0, 0), x2 = (−3, 0, 1, 0), x3 = (−5, 0, 0, 1) all have Px = 0x = 0.

14 det(Q−λI) = λ2− 2λ cos θ+1 = 0 when λ = cos θ± i sin θ = eiθ and e−iθ . Check

λ1λ2 = cos2 θ + sin2 θ = 1 and λ1 + λ2 = 2 cos θ. Two eigenvectors of this rotation

matrix are x1 = (1, i) and x2 = (1,−i) (or cx1 and dx2 with cd 6= 0).

15 The other two eigenvalues are λ = 1
2 (−1 ± i

√
3). Those three eigenvalues add to

0 = trace of P . The three eigenvalues of the second P are 1, 1,−1.

16 Set λ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to find detA = (λ1)(λ2) · · · (λn).
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17 Comparing λ2−(a+d)λ+(ad−bc) with (λ−λ1) (λ−λ2) = λ2−(λ1+λ2)λ+λ1λ2

shows :
a+ d = λ1 + λ2 = trace ad− bc = λ1λ2 = determinant

If λ1 = 3 and λ2 = 4 then det(A− λI) = λ2 − 7λ+ 12.

18 Trace = 9. Three possibilities are A =


 4 0

0 5


 ,


 10 −1

30 −1


 ,


 4 6

0 5


.

19 (a) rank = 2 (b) det(BTB) = 0 (d) eigenvalues of (B2 + I)−1 are 1, 12 ,
1
5 .

20 A =


 0 1

−28 11


 has trace 11 and determinant 28, so λ = 4 and 7. Moving to a 3 by

3 companion matrix, for eigenvalues 1, 2, 3 we want det(C − λI) = (1 − λ)(2 − λ)

(3 − λ). Multiply out to get −λ3 + 6λ2 − 11λ + 6. To get those numbers 6,−11, 6
from a companion matrix you just put them into the last row :

C =




0 1 0

0 0 1

6 −11 6


 Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).

21 (A − λI) has the same determinant as (A − λI)T because every square matrix has

detM = detMT. Pick M = A− λI .


1 0

1 0


 and


1 1

0 0


 have different eigenvectors


1

1


 and


1

0


 .

22 We can choose M =




.1 0 0

.2 .4 0

.7 .6 1


. Its eigenvalues λ = .1, .4, 1.0 are on the

diagonal. ClearlyMT has rows adding to 1 so MT times the columnv =
[
1 1 1

]T

equals v. Challenge : A 3 by 3 singular Markov matrix with trace 1
2 hasλ = 0, 1, −1

2
.

23


0 0

1 0


,


0 1

0 0


,


−1 1

−1 1


.

Always A2 is the zero matrix if λ = 0 and 0,

by the Cayley-Hamilton Theorem in Problem 6.2.30.

24 λ = 0, 0, 6 (notice rank 1 and trace 6). Two eigenvectors of uvT are perpendicular to

v and the third eigenvector is u : x1=(0,−2, 1), x2=(1,−2, 0), x3=(1, 2, 1).
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25 When A and B have the same n λ’s and x’s, look at any combination v = c1x1 +

· · · + cnxn. Multiply by A and B : Av = c1λ1x1 + · · · + cnλnxn equals Bv =

c1λ1x1 + · · ·+ cnλnxn for all vectors v. So A = B.

26 A has eigenvalues 1 and 2 from block B (with eigenvectors ending in 0, 0). A also

has eigenvalues 5 and 7 from block D because AT has eigenvalues 5, 7 from block DT

(and transposing doesn’t change eigenvalues).

27 A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank

2 (ensuring two zero eigenvalues) and (1, 1, 1, 1) is an eigenvector with λ = 2. With

trace 4, the other eigenvalue is also λ = 2, and its eigenvector is (1,−1, 1,−1).

28 The 4 by 4 matrix A of 1’s has λ = 0, 0, 0, 4. Then B = A− I has λ = −1,−1,−1, 3.

And C = I −A has λ = 1, 1, 1,−3.

29 A is triangular : λ(A) = 1, 4, 6; λ(B) = 2,
√
3,−
√
3; C has rank one : λ(C) = 0, 0, 6.

30


 a b

c d




 1

1


 = (a+ b)


 1

1


 when a+ b = c+ d. Thus λ1 = a+ b.

Then λ2 = trace −λ1 = (a+ d)− (a+ b) = d− b.

31 If PA exchanges rows 1 and 2 of A, then APT exchanges columns 1 and 2. In fact

P =




0 1 0

1 0 0

0 0 1


 = PT = P−1 and B = PAPT = PAP−1.

Then B is similar to A and they have the same eigenvalues. In this rank 1 and trace 11

example, the eigenvalues ofA andB are 0, 0, 11. FromA−11I =




−10 2 1

3 −5 3

4 8 −7




the eigenvector for λ = 11 is




1

3

4


.
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32 (a) u is a basis for the nullspace (we know Au = 0u); v and w give a basis for the

column space (we know Av and Aw are in the column space).

(b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. So x = v/3 + w/5 is a particular

solution to Ax = v + w. Add any cu from the nullspace to find all solutions.

(c) If Ax = u had a solution, u would be in the column space : wrong dimension 3.

33 Always (uvT)u = u(vTu) so u is an eigenvector of uvT with λ = vTu. (Watch

numbers vTu, vectors u, matrices uvT !!) If vTu = 0 then A2 = u(vTu)vT is the

zero matrix and λ2 = 0, 0 and λ = 0, 0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uvT :

A =


u1

u2



[
v1 v2

]
=


u1v1 u1v2

u2v1 u2v2


 has trace u1v1 + u2v2 = vTu = 0

34 The vector (1, 1, 1, 1) is not changed by P . It is the eigenvector for λ = 1. The other 3

eigenvectors (discussed in detail in Section 6.4) are

x2,x3,x4 =




1

i

i2

i3







1

−1
1

−1







1

−i
(−i)2

(−i)3



.

35 The six 3 by 3 permutation matrices include P = I and three single row exchange

matrices P12, P13, P23 and two double exchange matrices like P12P13. Since PTP = I

gives (detP )2 = 1, the determinant of P is 1 or−1. The pivots are always 1 (but there

may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

or 0 (for double exchange). The possible eigenvalues are 1 and −1 and e2πi/3 and

e−2πi/3.

36 AB −BA = I can happen only for infinite matrices. If AT = A and BT = −B then

xTx = xT (AB −BA)x = xT (ATB +BTA)x ≤ ||Ax|| ||Bx||+ ||Bx|| ||Ax||.

Therefore ||Ax|| ||Bx|| ≥ 1
2 ||x||2 and (||Ax||/||x||) (||Bx||/||x||) ≥ 1

2 .
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37 λ1 = e2πi/3 and λ2 = e−2πi/3 give detλ1λ2 = 1 and trace λ1 + λ2 = −1.

A =


cos θ − sin θ

sin θ cos θ


 with θ =

2π

3
has this trace and det. So does every M−1AM !

38 (a) Since the columns of A add to 1, one eigenvalue is λ = 1 and the other is c− 0.6

(to give the correct trace c+ 0.4).

(b) If c = 1.6 then both eigenvalues are 1, and all solutions to (A − I) x = 0 are

multiples of x = (1,−1). In this case A has rank 1.

(c) If c = 0.8, the eigenvectors for λ = 1 are multiples of (1, 3). Since all powers An

also have column sums = 1, An will approach
1

4


1 1

3 3


 = rank-1 matrix A∞ with

eigenvalues 1, 0 and correct eigenvectors. (1, 3) and (1,−1).
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Problem Set 6.2, page 242

1 Eigenvectors in X and eigenvalues 1 and 3 in Λ. Then A = XΛX−1 is

1 2

0 3


 =


1 1

0 1




1 0

0 3




1 −1
0 1


. The second matrix has λ = 0 (rank 1) and

λ = 4 (trace = 4). Then A = XΛX−1 is


1 1

3 3


 =


 1 1

−1 3




0 0

0 4







3
4 − 1

4

1
4

1
4


.

A3 = XΛ3X−1 and A−1 = XΛ−1X−1.

2
Put the eigenvectors in X

and eigenvalues 2, 5 in Λ.
A = XΛX−1 =


1 1

0 1




2 0

0 5




1 −1

0 1


 =


2 3

0 5


.

3 If A = XΛX−1 then the eigenvalue matrix for A + 2I is Λ + 2I and the eigenvector

matrix is still X . So A+ 2I = X(Λ + 2I)X−1 = XΛX−1 +X(2I)X−1 = A+ 2I .

4 (a) False: We are not given the λ’s (b) True (c) True since X has independent columns.

(d) False: For this we would need the eigenvectors of X .

5 With X = I, A = XΛX−1 = Λ is a diagonal matrix. If X is triangular, then X−1 is

triangular, so XΛX−1 is also triangular.

6 The columns of X are nonzero multiples of (2,1) and (0,1): either order. The same

eigenvector matrices diagonalize A and A−1.

7 Every matrix that has eigenvectors


 1

1


 and


 1

−1


 has the form

A = XΛX−1 =


 1 1

1 −1




 λ1

λ2


 /2 =

1

2


 λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2


 .

You could check trace = λ1 + λ2 and det = 1
4 4λ1λ2 = λ1λ2.

8 A = XΛX−1 =


1 1

1 0


 =

1

λ1 − λ2


λ1 λ2

1 1




λ1 0

0 λ2




 1 −λ2

−1 λ1


.

XΛkX−1 =
1

λ1 − λ2


λ1 λ2

1 1




λ

k
1 0

0 λk
2




 1 −λ2

−1 λ1




1

0


.



Solutions to Problem Sets 95

The second component is Fk = (λk
1 − λk

2)/(λ1 − λ2).

9 (a) The equations are


 Gk+2

Gk+1


 = A


 Gk+1

Gk


 with A =


 .5 .5

1 0


. This matrix

has λ1 = 1, λ2 = − 1
2 with x1 = (1, 1), x2 = (1,−2)

(b) An = XΛnX−1 =


1 1

1 −2




1

n 0

0 (−.5)n







2
3

1
3

1
3 − 1

3


→ A∞ =




2
3

1
3

2
3

1
3




10 The rule Fk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd, . . .

11 (a) True (no zero eigenvalues) (b) False (repeated λ = 2 may have only one line of

eigenvectors) (c) False (repeated λ may have a full set of eigenvectors)

12 (a) False: don’t know if λ = 0 or not.

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

13 A =


 8 3

−3 2


 (or other), A =


 9 4

−4 1


, A =


 10 5

−5 0


;

only eigenvectors

are x = (c,−c).
14 The rank of A − 3I is r = 1. Changing any entry except a12 = 1 makes A

diagonalizable (the new A will have two different eigenvalues)

15 Ak = XΛkX−1 approaches zero if and only if every |λ| < 1; A1 is a Markov matrix

so λmax = 1 and Ak
1 → A∞

1 , A2 has λ = .6± .3 so Ak
2 → 0.

16


 .6 .9

.4 .1


 = XΛX−1 with Λ =


1 0

0 .2


 and X =


1 1

1 −1


 ; Λk →


1 0

0 0


.

Then Ak
1 = XΛkX−1 →




1
2

1
2

1
2

1
2


: steady state.

17 A2 is XΛX−1 with Λ =


 .9 0

0 .3


 and X =


3 −3
1 1


; A10

2


3

1


 = (.9)10


3

1


.

A10
2


 3

−1


 = (.3)10


 3

−1


. Then A10

2


6

0


 = (.9)10


3

1


 + (.3)10


 3

−1


 because

u0 =


6

0


 is the sum of


3

1


+


 3

−1


.
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18


 2 −1

−1 2


 = XΛX−1 =

1

2


1 −1

1 1




1 0

0 3




 1 1

−1 1


 and

Ak = XΛkX−1 =
1

2


1 −1
1 1




1 0

0 3k




 1 1

−1 1


.

Multiply those last three matrices to get Ak =
1

2


1 + 3k 1− 3k

1− 3k 1 + 3k


.

19 Bk = XΛkX−1 =


1 1

0 −1




5 0

0 4



k 
1 1

0 −1


 =


5

k 5k − 4k

0 4k


.

20 detA = (detX)(detΛ)(detX−1) = det Λ = λ1 · · ·λn. This proof (det = product

of λ’s) works when A is diagonalizable. The formula is always true.

21 traceXY = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = traceY X .

Diagonalizable case: the trace of XΛX−1 = trace of (ΛX−1)X = trace of Λ = Σλi.

AB −BA = I is impossible since the left side has trace = 0.

22 If A = XΛX−1 then B =


A 0

0 2A


 =


X 0

0 X




Λ 0

0 2Λ




X

−1 0

0 X−1


. So

B has the original λ’s from A and the additional eigenvalues 2λ1, . . . , 2λn from 2A.

23 The A’s form a subspace since cA and A1 + A2 all have the same X . When X = I

the A’s with those eigenvectors give the subspace of diagonal matrices. The dimension

of that matrix space is 4 since the matrices are 4 by 4.

24 If A has columns x1, . . . ,xn then column by column, A2 = A means every Axi = xi.

All vectors in the column space (combinations of those columns xi) are eigenvectors

with λ = 1. Always the nullspace has λ = 0 (A might have dependent columns,

so there could be less than n eigenvectors with λ = 1). Dimensions of those spaces

C(A) and N(A) add to n by the Fundamental Theorem, so A is diagonalizable

(n independent eigenvectors altogether).

25 Two problems: The nullspace and column space can overlap, so x could be in both.

There may not be r independent eigenvectors in the column space.
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26 R=X
√
ΛX−1 =


1 1

1 −1




3

1




1 1

1 −1


 /2 =


2 1

1 2


 has R2=A.

√
B needs λ =

√
9 and

√
−1, the trace (their sum) is not real so

√
B cannot be real.

Note that the square root of


−1 0

0 −1


 has two imaginary eigenvalues

√
−1 = i and

−i, real trace 0, real square root R =


 0 1

−1 0


.

27 The factorizations of A and B into XΛX−1 are the same. So A = B.

28 A = XΛ1X
−1 and B = XΛ2X

−1. Diagonal matrices always give Λ1Λ2 = Λ2Λ1.

Then AB = BA from

XΛ1X
−1XΛ2X

−1 = XΛ1Λ2X
−1 = XΛ2Λ1X

−1 = XΛ2X
−1XΛ1X

−1 = BA.

29 (a) A =


a b

0 d


 has λ = a and λ = d: (A−aI)(A−dI) =


0 b

0 d− a




a− d b

0 0




=


0 0

0 0


. (b) A =


1 1

1 0


 has A2 =


2 1

1 1


 and A2 − A − I = 0 is true,

matching det(A− λI) = λ2 − λ− 1 = 0 as the Cayley-Hamilton Theorem predicts.

30 When A = XΛX−1 is diagonalizable, the matrix A − λjI = X(Λ − λjI)X
−1 will

have 0 in the j, j diagonal entry of Λ− λjI . The product p(A) becomes

p(A) = (A− λ1I) · · · (A− λnI) = X(Λ− λ1I) · · · (Λ− λnI)X
−1.

That product is the zero matrix because the factors produce a zero in each

diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.

(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices

approaching A.)

Comment I have also seen the following Cayley-Hamilton proof but I am not con-

vinced :

Apply the formula ACT = (detA)I from Section 5.1 to A − λI with variable λ. Its

cofactor matrix C will be a polynomial in λ, since cofactors are determinants :

(A− λI)CT(λ) = det(A− λI)I = p(λ)I.
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“For fixed A, this is an identity between two matrix polynomials.” Set λ = A to find

the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

I am not certain about the key step of substituting a matrix A for λ. If other matrices

B are substituted for λ, does the identity remain true ? If AB 6= BA, even the order

of multiplication seems unclear . . .

31 If AB = BA, then B has the same eigenvectors (1, 0) and (0, 1) as A. So B is also

diagonal b = c = 0. The nullspace for the following equation is 2-dimensional :

AB − BA =


1 0

0 2




a b

c d


 −


a b

c d




1 0

0 2


 =


0 −b

c 0


 =


0 0

0 0


.

Those 4 equations 0 = 0,−b = 0, c = 0, 0 = 0 have a 4 by 4 coefficient matrix with

rank = 4− 2 = 2.

32 B has λ = i and −i, so B4 has λ4 = 1 and 1. Then B4 = I and B1024 = I .

C has λ = (1 ±
√
3i)/2. This λ is exp(±πi/3) so λ3 = −1 and −1. Then C3 = −I

which leads to C1024 = (−I)341C = −C.

33 The eigenvalues of A =


cos θ − sin θ

sin θ cos θ


 are λ = eiθ and e−iθ (trace 2 cos θ and

determinant λ1λ2 = 1). Their eigenvectors are (1,−i) and (1, i) :

An = XΛnX−1 =


 1 1

−i i




e

inθ

e−inθ




 i −1
i 1


 /2i

=


 (einθ + e−inθ)/2 · · ·

(einθ − e−inθ)/2i · · ·


 =


cosnθ − sinnθ

sinnθ cosnθ


 .

Geometrically, n rotations by θ give one rotation by nθ.

34 Columns of X times rows of ΛX−1 gives a sum of r rank-1 matrices (r = rank of A).

Those matrices are λ1x1y
T
1 to λrxry

T
r .
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35 Multiply ones(n) ∗ ones(n) = n ∗ ones(n). Then

AA−1 = (eye(n) + ones(n)) ∗ (eye(n) + C ∗ ones(n))

= eye(n) + (1 + C + Cn) ∗ ones(n) = eye(n) for C = −1/(n + 1).

36 B = A−1
1 leads to A2A1 = B(A1A2)B

−1. Then A2A1 is similar to A1A2 : they have

the same eigenvectors (not zero because A1 and A2 are invertible).

37 Choose B = A−1
1 to show that A2A1 is similar to A1A2. Assuming invertibility (no

zero eigenvalues) this shows that A2A1 and A1A2 have the same eigenvalues.

38 This matrix has column 1 = 2 (column 2) so x1 = (1,−2, 0) is an eigenvector with

λ1 = 0. Also A(1, 1, 1) = (1, 1, 1) and λ2 = 1. Trace = zero so λ3 = −1. Then

12020 = 1 and (−1)2020 = 1 and (0)2020 = 0. So A2019 has the same eigenvalues and

eigenvectors as A : A2019 = A and A2020 = A2. TO COMPLETE FOR 2023
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Problem Set 6.3, page 238

1 (a) ASB stays symmetric like S when B = AT

(b) ASB is similar to S when B = A−1

To have both (a) and (b) we need B = AT = A−1 to be an orthogonal matrix Q.

Then QSQT is similar to S and also symmetric like S.

2 λ = 0, 4,−2; unit vectors ±(0, 1,−1)/
√
2 and ±(2, 1, 1)/

√
6 and ±(1,−1,−1)/

√
3.

Those are for S. The eigenvalues of T are λ = 0,
√
5,−
√
5 in Λ (trace = 0).

The eigenvectors of T are 1
3 (2, 2,−1) and (1+

√
5, 1−

√
5, 2) and (1−

√
5, 1+

√
5, 4).

3 S =


 9 12

12 16


 has λ = 0 and 25 so the columns of Q are the two eigenvectors:

Q =


 .8 .6

−.6 .8


 or we can exchange columns or reverse the signs of any column.

4 (a)


1 2

2 1


 has λ = −1 and 3 (b) The pivots 1, 1− b2 have the same signs as the λ’s

(c) The trace is λ1 + λ2 = 2, so S can’t have two negative eigenvalues.

5 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the

triple product ATCA is 3 by 3.

6 λ = 10 and −5 in Λ =


10 0

0 −5


, x =


1

2


 and


 2

−1


 have to be normalized to

unit vectors in Q =
1√
5


1 2

2 −1


. Then S = QΛQT.

If A3 = 0 then all λ3 = 0 so all λ = 0 as in A =


0 1

0 0


. If A is symmetric then

A3 = QΛ3QT = 0 requires Λ = 0. The only symmetric A is Q 0QT = zero matrix.

7


3 1

1 3


 = 2




1
2 − 1

2

− 1
2

1
2


+4




1
2

1
2

1
2

1
2


;


 9 12

12 16


 = 0


 .64 −.48

−.48 .36


+25


.36 .48

.48 .64
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8

[
x1 x2

]
is an orthogonal matrix so P1 + P2 = x1x

T
1 + x2x

T
2 =

[
x1 x2

]

xT
1

xT
2


 = QQT = I; also P1P2 = x1(x

T
1 x2)x

T
2 = zero matrix.

Second proof: P1P2 = P1(I − P1) = P1 − P1 = 0 since P 2
1 = P1.

9 A =


 0 b

−b 0


 has λ = ib and −ib. The block matrices


A 0

0 A


 and


 0 A

A 0


 are

also skew-symmetric with λ = ib (twice) and λ = −ib (twice).

10 M is skew-symmetric and orthogonal; every λ is imaginary with |λ| = 1. So λ’s must

be i, i, −i,−i to have trace zero.

11 A =


 i 1

1 −i


 has λ = 0, 0 and only one independent eigenvector x = (i, 1).

The good property for complex matrices is not AT = A (symmetric) but A
T

= A

(Hermitian with real eigenvalues and orthogonal eigenvectors).

12 S has Q =




1 1 0

1 −1 0

0 0 1


; B has X =




1 0 1

0 1 0

0 0 2d


.

Perpendicular in Q

Not perpendicular in X

since ST = S but BT 6= B

13 S =


 1 3 + 4i

3− 4i 1


 is a Hermitian matrix (S

T
= S). Its eigenvalues 6 and −4 are

real. Here is the proof that λ is always real when S
T
= S :

Sx = λx leads to Sx = λx. Transpose to xTS = xTλ using S
T
= S.

Then xTSx = xTλx and also xTSx = xTλx. So λ = λ is real.

14 (a) False. A =


1 2

0 1


 (b) True from AT = QΛQT = A

(c) True from S−1 = QΛ−1QT
(d) False!

(e) True. If x is a column of the identity matrix, then the energy xTSx is a diagonal

entry of S. Since S is positive definite in this problem, each diagonal entry is a positive

number xTSx.
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15 A and AT have the same λ’s but the order of the x’s can change. A =


 0 1

−1 0




has λ1 = i and λ2 = −i with x1 = (1, i) first for A but x1 = (1,−i) is first for AT.

16 A is invertible, orthogonal, permutation, diagonalizable; B is projection, diagonaliz-

able. A allows QR,XΛX−1, QΛQT; B allows XΛX−1 and QΛQT.

17 Symmetry gives QΛQT if b = 1; repeated λ and no X if b = −1; singular if b = 0.

18 Orthogonal and symmetric requires |λ| = 1 and λ real, so λ = ±1. Then S = ±I or

±S = QΛQT =


cos θ − sin θ

sin θ cos θ




1 0

0 −1




 cos θ sin θ

− sin θ cos θ


=


cos 2θ sin 2θ

sin 2θ − cos 2θ


.

19 Eigenvectors (1, 0) and (1,1) give a 45◦ angle even with AT very close to A.

20 a11 is
[
q11 . . . q1n

] [
λ1q11 . . . λnq1n

]T
≤ λmax

(
|q11|2 + · · ·+ |q1n|2

)
= λmax.

21 (a) xT(Ax) = (Ax)Tx = xTATx = −xTAx so xTAx = 0. (b) zTAz is pure

imaginary, its real part is xTAx + yTAy = 0 + 0 (c) detA = λ1 . . . λn ≥ 0 :

because pairs of λ’s = ib,−ib multiply to give +b2.

22 Since S is diagonalizable with eigenvalue matrix Λ = 2I , the matrix S itself has to be

XΛX−1 = X(2I)X−1 = 2I . The unsymmetric matrix [2 1 ; 0 2] also has λ = 2, 2

but this matrix can’t be diagonalized.

23 (a) ST = S and STS = I lead to S2 = I .

(b) The only possible eigenvalues of S are 1 and −1.

(c) Λ=


 I 0

0 −I


 so S=

[
Q1 Q2

]
Λ


QT

1

QT
2


= Q1Q

T

1
− Q2Q

T

2
with QT

1 Q2=0.

24 Suppose a > 0 and ac > b2 so that also c > b2/a > 0.

(i) The eigenvalues have the same sign because λ1λ2 = det = ac− b2 > 0.

(ii) That sign is positive because λ1 + λ2 > 0 (it equals the trace a+ c > 0).

25 Only S4 =


 1 10

10 101


 has two positive eigenvalues since 101 > 102.

xTS1x = 5x2
1 + 12x1x2 + 7x2

2 is negative for example when x1 = 4 and x2 = −3:

A1 is not positive definite as its determinant confirms; S2 has trace c0; S3 has det = 0.
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26
Positive definite

for −3 < b < 3


1 0

b 1




1 b

0 9− b2


=


1 0

b 1




1 0

0 9− b2




1 b

0 1


=LDLT

Positive definite

for c > 8


1 0

2 1




2 4

0 c− 8


 =


1 0

2 1




2 0

0 c− 8




1 2

0 1


=LDLT.

Positive definite

for c > |b|
L =


 1 0

−b/c 1


 D =


 c 0

0 c− b2/c


 S = LDLT.

27 x2+4xy+3y2 = (x+2y)2−y2 = difference of squares is negative at x = 2, y = −1,

where the first square is zero.

28 S =


0 1

1 0


 produces f(x, y) =

[
x y

]

0 1

1 0




x

y


 = 2xy. S has λ = 1 and

λ = −1. Then S is an indefinite matrix and f(x, y) = 2xy has a saddle point.

29 ATA =


1 2

2 13


 and ATA =


6 5

5 6


 are positive definite; ATA =




2 3 3

3 5 4

3 4 5


 is

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; third ATA is singular.

30 S =




2 −1 0

−1 2 −1
0 −1 2




has pivots

2, 3
2
, 4
3

;
T =




2 −1 −1
−1 2 −1
−1 −1 2


 is singular; T




1

1

1


 =




0

0

0


.

31 Corner determinants |S1| = 2, |S2| = 6, |S3| = 30. The pivots are 2/1, 6/2, 30/6.

32 S is positive definite for c > 1; determinants c, c2 − 1, and (c − 1)2(c + 2) > 0.

T is never positive definite (determinants d− 4 and −4d+ 12 are never both positive).

33 S =


1 5

5 10


 is an example with a+ c > 2b but ac < b2, so not positive definite.

34 The eigenvalues of S−1 are positive because they are 1/λ(S). Also the energy is

xTS−1x = (S−1x)TS(S−1x) > 0 for all x 6= 0.

35 xTSx is zero when (x1, x2, x3) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally xTSx goes negative for x = (1,−10, 0) because the second pivot is negative.
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36 If ajj were smaller than all λ’s, S − ajjI would have all eigenvalues > 0 (positive

definite). But S − ajjI has a zero in the (j, j) position; impossible by Problem 35.

37 (a) The determinant is positive; all λ > 0 (b) All projection matrices except I

are singular (c) The diagonal entries of D are its eigenvalues

(d) S = −I has det = +1 when n is even, but this S is negative definite.

38 S is positive definite when s > 8; T is positive definite when t > 5 by determinants.

39 A =











1 −1

1 1











√
2











√
9
√
1





















1 1

−1 1











√
2

=


2 1

1 2


; A = Q


4 0

0 2


QT =


3 1

1 3


.

40 The ellipse x2 + xy + y2 = 1 comes from S =


 1 1/2

1/2 1


 with λ =

1

2
and

3

2
.

The axes have half-lengths
√
2 and

√
2/3.

41
S = CTC

S not A
=


9 3

3 5


;


4 8

8 25


 =


1 0

2 1




4 0

0 9




1 2

0 1


 and C =


2 4

0 3




42 The Cholesky factors C =
(
L
√
D
)T

=




3 0 0

0 1 2

0 0 2


 and C =




1 1 1

0 1 1

0 0
√
5


 have

square roots of the pivots from D. Note again CTC = LDLT = S.

43 (a) detS = (1)(10)(1) = 10; (b) λ = 2 and 5; (c) x1 = (cos θ sin θ) and

x2 = (− sin θ, cos θ); (d) The λ’s are positive, so S is positive definite.

44 ax2 + 2bxy + cy2 has a saddle point if ac < b2. The matrix is indefinite (λ < 0 and

λ > 0) because the determinant ac− b2 is negative.

45 If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the

graph of z = (2x+ 3y)2 is a “trough” staying at zero along the line 2x+ 3y = 0.

46 A product ST of symmetric positive definite matrices comes into many applications.

The “generalized” eigenvalue problem Kx = λMx has ST = M−1K . (Often we use

eig(K,M) without actually inverting M .) All eigenvalues λ of ST are positive :

STx = λx gives (Tx)TSTx = (Tx)Tλx. Then λ = xTTTSTx/xTTx > 0.
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47 Put parentheses in xTATCAx = (Ax)TC(Ax). Since C is assumed positive definite,

this energy can drop to zero only whenAx = 0. Sine A is assumed to have independent

columns, Ax = 0 only happens when x = 0. Thus ATCA has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-

plied Mathematics start with many examples of ATCA in a wide range of applications.

I believe positive definiteness of ATCA is a unifying concept from linear algebra.

48 (a) The eigenvalues of λ1I − S are λ1 − λ1, λ1 − λ2, . . . , λ1 − λn. Those are ≥ 0;

λ1I − S is semidefinite.

(b) Semidefinite matrices have energy xT (λ1I − S)x2 ≥ 0. Then λ1x
Tx ≥ xTSx.

(c) Part (b) says xTSx/xTx ≤ λ1 for all x. Equality at the eigenvector with Sx =

λ1x. So the maximum value of xTSx/xTx is λ1.

49 EnergyxTSx = a (x1+x2+x3)
2+c (x2−x3)

2 ≥ 0 if a ≥ 0 and c ≥ 0 : semidefinite.

S has rank ≤ 2 and determinant = 0; cannot be positive definite for any a and c.
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Problem Set 6.4, page 269

1 z = 1 − i leads to z = 1 + i and r =
√
2 and

1

z
=

1 + i

(1 − i) (1 + i)
=

1

2
(1 + i)

and θ = −π

4
= −45◦.

2 det


 1− λ 1 + i

1− i 2− λ


 = λ2 − 3λ+ 2− 2 = 0 gives eigenvalues λ = 3 and 0.

3 If Qx = λx then ||Qx|| = |λ| ||x||. Square both sides and use Q
T
Q = I to find

|λ|2 = 1. Therefore |λ| = 1 for unitary matrices Q.

4 F3 =




1 1 1

1 e2π1/3 e4π1/3

1 e4π1/3 e8π1/3


 =




1 1 1

1 1
2

(
−1 +

√
3 i
)

1
2

(
−1−

√
3 i
)

1 1
2

(
−1−

√
3 i
)

1
2

(
−1 +

√
3 i
)




5 F6 = 6 by 6 matrix =


 I B

I −B




 F3 0

0 F3







columns

0, 2, 4, 1, 3, 5

of I (6 by 6)




The 3 by 3 matrix B is diagonal with entries 1, e2πi/6, e4πi/6.

6 CD =




1 1 1

1 1 1

1 1 1







1 2 1

1 1 2

2 1 1


 =




4 4 4

4 4 4

4 4 4




1 2 1
1 1 1

1 2 1
1 2 1

1 2 1

convolution c
∗
d 1 3 4 3 1 reduces to 4 4 4 for cyclic convolution c

∗©
d

7 Convolution Rule F (c
∗©

d) = (Fc) .
∗
(Fd). This is F




4

4

4


 = F




1

1

1


 .
∗
F




1

2

1




with the 3 by 3 Fourier matrix F = F3 : Multiply components for .
∗

.



Solutions to Problem Sets 107

F




4

4

4


 =




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3







4

4

4


 =




12

0

0




F




1

1

1


 =




3

0

0


 F




1

2

1


 =




4

e2πi/3

e4πi/3


 and




3

0

0


 .
∗



4

e2πi/3

e4πi/3







12

0

0




8 cos θ+i sin θ =

(
1− 1

2
θ2 + · · ·

)
+i

(
θ − θ3

6
+ · · ·

)
= 1+iθ+

1

2
(iθ)2+

1

6
(iθ)3+· · ·

9 (eiθ) (eiθ) = e2iθ is (cos θ + i sin θ)2 = cos 2θ + i sin 2θ.

The left side is cos2 θ + 2i cos θ sin θ + i2 sin2 θ.

Matching the right side gives cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 cos θ sin θ

10 The eigenvalues of a circulant matrix C are Fc in equation (10).

If C is invertible then all its eigenvalues must be nonzero.

In that case C−1 is also a circulant because its entries (from the formula for C−1) are

also constant down each (cyclic) diagonal. There are other proofs too.

11 This problem is looking for a solution !

12 An n by n circulant matrix has C
T
= C (Hermitian) if its diagonal entries have c0 real,

c1 = cn−1, c2 = cn−2, . . . The circulant has C
T
C = I (unitary) if |c0 + c1x + · · · +

cn−1x
n−1|2 = 1.

13 Columns 0 and 2 of the Fourier matrix F4 in equation (7) add to (2, 0, 2, 0). Columns

1 and 3 add to (2, 0,−2, 0).

14 z = w2 = e2πi/32 would be a 32nd root of 1 : z32 = 1.

z =
√
w = e2πi/128 would be a 128th root of 1.

15 The 4 eigenvalues 0, 2, 4, 2 of C come from the eigenvalues 1, i,−1,−i of P4.

λ = 2−1−1 = 0 λ = 2−i−i3 = 2 λ = 2−(−1)−(−1)3 = 4 λ = 2+i+i3 = 2.
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Problem Set 6.5, page 280

1 Eigenvalues 4 and 1 with eigenvectors (1, 0) and (1,−1) give solutions u1 = e4t


1

0




and u2 = et


 1

−1


. If u(0) =


 5

−2


 = 3


1

0


 + 2


 1

−1


, then use those

coefficients 3 and 2 : u(t) = 3e4t


1

0


+ 2et


 1

−1


.

2 z(t) = 2et solves dz/dt = z with z(0) = 2. Then dy/dt = 4y − 6et with y(0) = 5

gives y(t) = 3e4t + 2et as in Problem 1.

3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and λ = 0 is an eigenvalue.

(b) The eigenvalues of A =


−2 3

2 −3


 are λ1 = 0 with eigenvector x1 = (3, 2) and

λ2 = −5 (to give trace = −5) with x2 = (1,−1). Then the usual 3 steps:

1. Write u(0) =


4

1


 as


3

2


+


 1

−1


 = x1 + x2 = combination of eigenvectors

2. The solutions follow those eigenvectors: e0tx1 and e−5tx2

3. The solution u(t) = x1 + e−5tx2 has steady state x1 = (3, 2) since e−5t → 0.

4 d(v + w)/dt = (w − v) + (v − w) = 0, so the total v + w is constant.

A =


−1 1

1 −1


 has

λ1 = 0

λ2 = −2
with x1 =


1

1


, x2 =


 1

−1


.


 v(0)

w(0)


 =


 30

10


 = 20


 1

1


+10


 1

−1


 leads to

v(1) = 20 + 10e−2

w(1) = 20− 10e−2

v(∞) = 20

w(∞) = 20

5
d

dt


 v

w


 =


 1 −1
−1 1


 has λ = 0 and λ = +2 : v(t) = 20 + 10e2t → −∞ as

t→∞.
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6 A =


a 1

1 a


 has real eigenvalues a+1 and a−1. These are both negative if a < −1.

In this case the solutions of du/dt = Au approach zero.

B =


 b −1
1 b


 has complex eigenvalues b+ i and b− i. These have negative real parts

if b < 0. In this case all solutions of dv/dt = Bv approach zero.

7 A projection matrix has eigenvalues λ = 1 and λ = 0. Eigenvectors Px = x fill the

subspace that P projects onto: here x = (c, c). Eigenvectors with Px = 0 fill the

perpendicular subspace: here x = (c,−c). For the solution to du/dt = −Pu,

u(0) =


3

1


 =


2

2


+


 1

−1


 u(t) = e−t


2

2


+e0t


 1

−1


 approaches


 1

−1


 .

8


6 −2
2 1


 has λ1 = 5, x1 =


2

1


, λ2 = 2, x2 =


1

2


; rabbits r(t) = 20e5t+10e2t,

w(t) = 10e5t + 20e2t. The ratio of rabbits to wolves approaches 20/10; (somewhat

against nature) e5t dominates.

9 (a)


4

0


 = 2


1

i


+2


 1

−i


. (b) Then u(t) = 2eit


1

i


+2e−it


 1

−i


 =


4 cos t

4 sin t


.

10
d

dt


y

y′


 =


y

′

y′′


 =


0 1

4 5




y

y′


. This correctly gives y ′ = y ′ and y ′′ = 4y+5y ′.

A =


0 1

4 5


 has det(A− λI) = λ2 − 5λ− 4 = 0. Directly substituting y = eλt into

y′′ = 5y′ + 4y also gives λ2 = 5λ+ 4 and the same two values of λ. Those values are

1

2
(5±

√
41) by the quadratic formula.
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11 The series for eAt is eAt = I + t


0 1

0 0


+ zeros =


1 t

0 1


. Then


 y(t)

y′(t)


 =


1 t

0 1




 y(0)

y′(0)


 =


y(0) + y′(0)t

y′(0)


. This y(t) = y(0) + y ′(0)t solves

the equation—the factor t tells us that A had only one eigenvector : not diagonalizable.

12 A =


 0 1

−9 6


 has trace 6, det 9, λ = 3 and 3 with one independent eigenvector

(1, 3). Substitute y = te3t to show that this gives the needed second solution (y = e3t

is the first solution).

13 (a) y(t) = cos 3t and sin 3t solve y′′ = −9y. It is 3 cos 3t that starts with y(0) = 3 and

y′(0) = 0. (b) A =


 0 1

−9 0


 has det = 9: λ = 3i and −3i with eigenvectors

x =


 1

3i


 and


 1

−3i


. Thenu(t) = 3

2
e3it


 1

3i


+3

2
e−3it


 1

−3i


 =


 3 cos 3t

−9 sin 3t


.

14 WhenA is skew-symmetric, the derivative of ||u(t)||2 is zero. Then ‖u(t)‖ = ‖eAtu(0)‖

stays at ‖u(0)‖. So the matrix eAt is orthogonal when A is skew-symmetric (AT=−A).

15 up = 4 andu(t) = cet+4. For the matrix equation, the particular solution up = A−1b

is


4

2


 and u(t) = c1e

t


1

t


+ c2e

t


0

1


+


4

2


.

16 d/dt(eAt) = A+A2t+ 1

2
A3t2 + 1

6
A4t3 + · · · = A(I +At+ 1

2
A2t2 + 1

6
A3t3 + · · · ).

This is exactly AeAt, the derivative we expect from eAt.

17 eBt = I + Bt (short series with B2 = 0) =


1 −4t

0 1


. Derivative =


0 −4
0 0


 =

BeBt = B in this example.

18 The solution at time t+ T is eA(t+T )u(0). Thus eAt times eAT equals eA(t+T ).

19 A2 = A gives eAt = I +At+ 1
2At2 + 1

6At3 + · · · = I + (et − 1)A.
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20 eA =


e 4(e− 1)

0 1


 from 21 and eB =


1 −4

0 1


 from 19. By direct multiplication

eAeB 6= eBeA 6= eA+B =


e 0

0 1


.

21 The matrix has A2 =


1 3

0 0



2

=


1 3

0 0


 = A. Then all An = A. So eAt =

I + (t+ t2/2! + · · · )A = I + (et − 1)A =


e

t 3(et − 1)

0 0


 as in Problem 19.

22 (a) The inverse of eAt is e−At (b) If Ax = λx then eAtx = eλtx and eλt 6= 0.

To see eAtx, write (I +At+ 1
2A

2t2 + · · · )x = (1 + λt+ 1
2λ

2t2 + · · · )x = eλtx.

23 Invert


 1 0

∆t 1


 to produceUn+1 =


 1 0

−∆t 1




1 ∆t

0 1


Un =


 1 ∆t

−∆t 1− (∆t)2


Un.

At ∆t = 1,


 1 1

−1 0


 has λ = eiπ/3 and e−iπ/3. Both eigenvalues have λ6 = 1 so

A6 = I . Therefore U6 = A6U0 comes exactly back to U0.

24 iFirst A has λ = ±i and A4 = I .

Second A has λ = −1,−1 and An = (−1)n


1− 2n −2n

2n 2n+ 1


 Linear growth.

25 With a = ∆t/2 the trapezoidal step is Un+1 =
1

1 + a2


1− a2 2a

−2a 1− a2


Un.

That matrix has orthonormal columns⇒ orthogonal matrix⇒ ‖Un+1‖ = ‖Un‖

26 For proof 2, square the start of the series to see (I + A + 1
2A

2 + 1
6A

3)2 = I + 2A+

1
2 (2A)

2+ 1
6 (2A)

3+ · · · . The diagonalizing proof is easiest when it works (but it needs

a diagonalizable A).




