INTRODUCTION TO LINEAR ALGEBRA

Sixth Edition

SOLUTIONS TO PROBLEM SETS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/weborder.php (orders)

math.mit.edu/linearalgebra (book website)

math.mit.edu/~gs (author website)

www.wellesleycambridge.com (all books)

Wellesley - Cambridge Press

Box 812060 Wellesley, Massachusetts 02482

Problem Set 6.1, page 226

1 The eigenvalues of A are $\lambda = 1$ and 0.5 (or $\frac{1}{2}$).

The eigenvalues of A^n are $\lambda = 1$ and $\left(\frac{1}{2}\right)^n$.

The eigenvalues of A^{∞} are $\lambda = 1$ and 0.

(a) A row exchange leaves this A with $\lambda = 1$ and -0.5 (or $-\frac{1}{2}$).

(b) Every A has n - r zero eigenvalues (r = rank): not changed by elimination.

- 2 A has λ₁ = -1 and λ₂ = 5 with eigenvectors x₁ = (-2, 1) and x₂ = (1, 1). The matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6. That zero eigenvalue correctly indicates that A + I is singular.
- **3** A has $\lambda_1 = 2$ and $\lambda_2 = -1$ (check trace and determinant) with $\boldsymbol{x}_1 = (1, 1)$ and $\boldsymbol{x}_2 = (2, -1)$. A^{-1} has the same eigenvectors, with eigenvalues $1/\lambda = \frac{1}{2}$ and -1.
- 4 det(A − λI) = λ² + λ − 6 = (λ + 3)(λ − 2). Then A has λ₁ = −3 and λ₂ = 2 (check trace = −1 and determinant = −6) with x₁ = (3, −2) and x₂ = (1, 1). A² has the same eigenvectors as A, with eigenvalues λ₁² = 9 and λ₂² = 4.
- **5** A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A + Bhas $\lambda^2 + 8\lambda + 15 = 0$ and $\lambda_1 = 3$, $\lambda_2 = 5$. Eigenvalues of A + B are not equal to eigenvalues of A plus eigenvalues of B.
- 6 A and B have λ₁ = 1 and λ₂ = 1. AB and BA have λ² − 4λ + 1 = 0 and the quadratic formula gives λ = 2±√3. Eigenvalues of AB are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of Section 6.2).
- 7 The eigenvalues of U (on its diagonal) are the *pivots* of A. The eigenvalues of L (on its diagonal) are all 1's. The eigenvalues of A are not the same as the pivots.
- **8** (a) Multiply Ax to see λx which reveals λ (b) Solve $(A \lambda I)x = 0$ to find x.

- **9** (a) Multiply $A\boldsymbol{x} = \lambda \boldsymbol{x}$ by $A : A(A\boldsymbol{x}) = A(\lambda \boldsymbol{x}) = \lambda A\boldsymbol{x}$ gives $A^2\boldsymbol{x} = \boldsymbol{\lambda}^2 \boldsymbol{x}$
 - (b) Multiply by A^{-1} : $\boldsymbol{x} = A^{-1}A\boldsymbol{x} = A^{-1}\lambda\boldsymbol{x} = \lambda A^{-1}\boldsymbol{x}$ gives $A^{-1}\boldsymbol{x} = \frac{1}{\lambda}\boldsymbol{x}$
 - (c) Add $I \boldsymbol{x} = \boldsymbol{x} : (A + I) \boldsymbol{x} = (\boldsymbol{\lambda} + \mathbf{1}) \boldsymbol{x}.$
- **10** det $(A \lambda I) = \lambda^2 1.4\lambda + 0.4$ so A has $\lambda_1 = 1$ and $\lambda_2 = 0.4$ with $x_1 = (1, 2)$ and $x_2 = (1, -1)$. A^{∞} has $\lambda_1 = 1$ and $\lambda_2 = 0$ (same eigenvectors as A). A^{100} has $\lambda_1 = 1$ and $\lambda_2 = (0.4)^{100}$ which is near zero. So A^{100} is very near A^{∞} : same eigenvectors and close eigenvalues.
- 11 Proof 1. A λ₁I is singular so its two columns are in the same direction. Also (A λ₁I)x₂ = (λ₂ λ₁)x₂. So x₂ is in the column space and both columns must be multiples of x₂. Here is also a second proof: Columns of A λ₁I are in the nullspace of A λ₂I because M = (A λ₂I)(A λ₁I) is the zero matrix [this is the *Cayley-Hamilton Theorem* in Problem 6.2.30]. Notice that M has zero eigenvalues (λ₁ λ₂)(λ₁ λ₁) = 0 and (λ₂ λ₂)(λ₂ λ₁) = 0. So those columns solve (A λ₂I) x = 0, they are eigenvectors.
- 12 The projection matrix P has λ = 1, 0, 1 with eigenvectors (1, 2, 0), (2, -1, 0), (0, 0, 1).
 Add the first and last vectors: (1, 2, 1) also has λ = 1. The whole column space of P contains eigenvectors with λ = 1 ! Note P² = P leads to λ² = λ so λ = 0 or 1.
- 13 (a) Pu = (uu^T)u = u times u^Tu = u times 1. So λ = 1.
 (b) Pv = (uu^T)v = u(u^Tv) = 0.
 (c) x₁ = (-1,1,0,0), x₂ = (-3,0,1,0), x₃ = (-5,0,0,1) all have Px = 0x = 0.
- 14 $\det(Q \lambda I) = \lambda^2 2\lambda \cos \theta + 1 = 0$ when $\lambda = \cos \theta \pm i \sin \theta = e^{i\theta}$ and $e^{-i\theta}$. Check $\lambda_1 \lambda_2 = \cos^2 \theta + \sin^2 \theta = 1$ and $\lambda_1 + \lambda_2 = 2 \cos \theta$. Two eigenvectors of this rotation matrix are $\boldsymbol{x}_1 = (1, i)$ and $\boldsymbol{x}_2 = (1, -i)$ (or $c\boldsymbol{x}_1$ and $d\boldsymbol{x}_2$ with $cd \neq 0$).
- **15** The other two eigenvalues are $\lambda = \frac{1}{2}(-1 \pm i\sqrt{3})$. Those three eigenvalues add to 0 = trace of P. The three eigenvalues of the second P are 1, 1, -1.
- **16** Set $\lambda = 0$ in det $(A \lambda I) = (\lambda_1 \lambda) \dots (\lambda_n \lambda)$ to find det $A = (\lambda_1)(\lambda_2) \dots (\lambda_n)$.

17 Comparing $\lambda^2 - (a+d)\lambda + (ad-bc)$ with $(\lambda - \lambda_1) (\lambda - \lambda_2) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2$ shows: $a + d = \lambda_1 + \lambda_2 = \text{trace}$ $ad - bc = \lambda_1\lambda_2 = \text{determinant}$ If $\lambda_1 = 3$ and $\lambda_2 = 4$ then $\det(A - \lambda I) = \lambda^2 - 7\lambda + 12$. 18 Trace = 9. Three possibilities are $A = \begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}$, $\begin{bmatrix} 10 & -1 \\ 30 & -1 \end{bmatrix}$, $\begin{bmatrix} 4 & 6 \\ 0 & 5 \end{bmatrix}$. 19 (a) rank = 2 (b) $\det(B^T B) = 0$ (d) eigenvalues of $(B^2 + I)^{-1}$ are $1, \frac{1}{2}, \frac{1}{5}$. 20 $A = \begin{bmatrix} 0 & 1 \\ -28 & 11 \end{bmatrix}$ has trace 11 and determinant 28, so $\lambda = 4$ and 7. Moving to a 3 by 3 companion matrix, for eigenvalues 1, 2, 3 we want $\det(C - \lambda I) = (1 - \lambda)(2 - \lambda)$ $(3 - \lambda)$. Multiply out to get $-\lambda^3 + 6\lambda^2 - 11\lambda + 6$. To get those numbers 6, -11, 6from a companion matrix you just put them into the last row: $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

$$C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \mathbf{6} & -\mathbf{11} & \mathbf{6} \end{bmatrix}$$
 Notice the trace $6 = 1 + 2 + 3$ and determinant $6 = (1)(2)(3)$.

21 $(A - \lambda I)$ has the same determinant as $(A - \lambda I)^{T}$ because every square matrix has $\det M = \det M^{T}$. Pick $M = A - \lambda I$.

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \text{ have different eigenvectors } \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

22 We can choose $M = \begin{bmatrix} .1 & 0 & 0 \\ .2 & .4 & 0 \\ .7 & .6 & 1 \end{bmatrix}$. Its eigenvalues $\lambda = .1, .4, 1.0$ are on the

diagonal. Clearly M^{T} has rows adding to 1 so M^{T} times the column $\boldsymbol{v} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathrm{T}}$ equals \boldsymbol{v} . Challenge : A 3 by 3 singular Markov matrix with trace $\frac{1}{2}$ has $\boldsymbol{\lambda} = \boldsymbol{0}$, $\boldsymbol{1}$, $-\frac{1}{2}$. **23** $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$. Always A^2 is the zero matrix if $\lambda = 0$ and 0, by the Cayley-Hamilton Theorem in Problem 6.2.30. **24** $\lambda = \boldsymbol{0}, \boldsymbol{0}, \boldsymbol{6}$ (notice rank 1 and trace 6). Two eigenvectors of $\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}$ are perpendicular to \boldsymbol{v} and the third eigenvector is $\boldsymbol{u} : \boldsymbol{x}_1 = (0, -2, 1), \boldsymbol{x}_2 = (1, -2, 0), \boldsymbol{x}_3 = (1, 2, 1).$

90

- **25** When A and B have the same $n \lambda$'s and x's, look at any combination $v = c_1x_1 + \cdots + c_nx_n$. Multiply by A and B: $Av = c_1\lambda_1x_1 + \cdots + c_n\lambda_nx_n$ equals $Bv = c_1\lambda_1x_1 + \cdots + c_n\lambda_nx_n$ for all vectors v. So A = B.
- **26** A has eigenvalues 1 and 2 from block B (with eigenvectors ending in 0, 0). A also has eigenvalues 5 and 7 from block D because A^{T} has eigenvalues 5, 7 from block D^{T} (and transposing doesn't change eigenvalues).
- 27 A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank 2 (ensuring two zero eigenvalues) and (1, 1, 1, 1) is an eigenvector with λ = 2. With trace 4, the other eigenvalue is also λ = 2, and its eigenvector is (1, -1, 1, -1).
- **28** The 4 by 4 matrix A of 1's has $\lambda = 0, 0, 0, 4$. Then B = A I has $\lambda = -1, -1, -1, 3$. And C = I - A has $\lambda = 1, 1, 1, -3$.
- **29** A is triangular: $\lambda(A) = 1, 4, 6; \lambda(B) = 2, \sqrt{3}, -\sqrt{3}; C$ has rank one: $\lambda(C) = 0, 0, 6.$ **30** $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = (a+b) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ when a+b=c+d. Thus $\lambda_1 = a+b$. Then $\lambda_2 = \text{trace } -\lambda_1 = (a+d) - (a+b) = d-b$.
- **31** If PA exchanges rows 1 and 2 of A, then AP^{T} exchanges columns 1 and 2. In fact

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = P^{\mathrm{T}} = P^{-1} \text{ and } B = PAP^{\mathrm{T}} = PAP^{-1}.$$

Then *B* is **similar** to *A* and they have the same eigenvalues. In this rank 1 and trace 11 example, the eigenvalues of *A* and *B* are 0, 0, 11. From $A-11I = \begin{bmatrix} -10 & 2 & 1 \\ 3 & -5 & 3 \\ 4 & 8 & -7 \end{bmatrix}$ the eigenvector for $\lambda = 11$ is $\begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$. **32** (a) u is a basis for the nullspace (we know Au = 0u); v and w give a basis for the column space (we know Av and Aw are in the column space).

(b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. So x = v/3 + w/5 is a particular solution to Ax = v + w. Add any cu from the nullspace to find all solutions.
(c) If Ax = u had a solution, u would be in the column space: wrong dimension 3.

33 Always $(\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}})\boldsymbol{u} = \boldsymbol{u}(\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u})$ so \boldsymbol{u} is an eigenvector of $\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}$ with $\lambda = \boldsymbol{v}^{\mathrm{T}}\boldsymbol{u}$. (Watch numbers $\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u}$, vectors \boldsymbol{u} , matrices $\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}$!!) If $\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u} = 0$ then $A^{2} = \boldsymbol{u}(\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u})\boldsymbol{v}^{\mathrm{T}}$ is the zero matrix and $\lambda^{2} = 0, 0$ and $\lambda = 0, 0$ and trace (A) = 0. This zero trace also comes from adding the diagonal entries of $A = \boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}$:

$$A = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} u_1 v_1 & u_1 v_2 \\ u_2 v_1 & u_2 v_2 \end{bmatrix} \text{ has trace } u_1 v_1 + u_2 v_2 = \boldsymbol{v}^{\mathrm{T}} \boldsymbol{u} = 0$$

34 The vector (1, 1, 1, 1) is not changed by *P*. It is the eigenvector for $\lambda = 1$. The other 3 eigenvectors (discussed in detail in Section 6.4) are

$$m{x}_2, m{x}_3, m{x}_4 = egin{bmatrix} 1 \ i \ i^2 \ i^3 \end{bmatrix} egin{bmatrix} -1 \ -1 \ 1 \ -1 \ -1 \end{bmatrix} egin{bmatrix} 1 \ -i \ (-i)^2 \ (-i)^3 \end{bmatrix}.$$

- **35** The six 3 by 3 permutation matrices include P = I and three single row exchange matrices P_{12} , P_{13} , P_{23} and two double exchange matrices like $P_{12}P_{13}$. Since $P^{T}P = I$ gives $(\det P)^{2} = 1$, the determinant of P is 1 or -1. The pivots are always 1 (but there may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange) or 0 (for double exchange). The possible eigenvalues are 1 and -1 and $e^{2\pi i/3}$ and $e^{-2\pi i/3}$.
- **36** AB BA = I can happen only for infinite matrices. If $A^{\mathrm{T}} = A$ and $B^{\mathrm{T}} = -B$ then $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}} (AB - BA) \, \boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}} (A^{\mathrm{T}}B + B^{\mathrm{T}}A) \, \boldsymbol{x} \le ||A\boldsymbol{x}|| \, ||B\boldsymbol{x}|| + ||B\boldsymbol{x}|| \, ||A\boldsymbol{x}||.$ Therefore $||A\boldsymbol{x}|| \, ||B\boldsymbol{x}|| \ge \frac{1}{2} ||\boldsymbol{x}||^2$ and $(||A\boldsymbol{x}||/||\boldsymbol{x}||) \, (||B\boldsymbol{x}||/||\boldsymbol{x}||) \ge \frac{1}{2}.$

- **37** $\lambda_1 = e^{2\pi i/3}$ and $\lambda_2 = e^{-2\pi i/3}$ give det $\lambda_1 \lambda_2 = 1$ and trace $\lambda_1 + \lambda_2 = -1$. $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ with $\theta = \frac{2\pi}{3}$ has this trace and det. So does every $M^{-1}AM!$
- **38** (a) Since the columns of A add to 1, one eigenvalue is $\lambda = 1$ and the other is c 0.6 (to give the correct trace c + 0.4).

(b) If c = 1.6 then both eigenvalues are 1, and all solutions to (A - I) x = 0 are multiples of x = (1, -1). In this case A has rank 1.

(c) If c = 0.8, the eigenvectors for $\lambda = 1$ are multiples of (1, 3). Since all powers A^n also have column sums = 1, A^n will approach $\frac{1}{4} \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} = \text{rank-1 matrix } A^\infty$ with eigenvalues 1, 0 and correct eigenvectors. (1, 3) and (1, -1).

Problem Set 6.2, page 242

- $\begin{array}{l} \mathbf{1} \quad \text{Eigenvectors in } \boldsymbol{X} \text{ and eigenvalues 1 and 3 in } \Lambda. \text{ Then } A = X\Lambda X^{-1} \text{ is} \\ \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}. \text{ The second matrix has } \lambda = 0 \text{ (rank 1) and} \\ \lambda = 4 \text{ (trace = 4). Then } A = X\Lambda X^{-1} \text{ is } \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}. \\ A^3 = X\Lambda^3 X^{-1} \text{ and } A^{-1} = X\Lambda^{-1} X^{-1}. \\ \mathbf{2} \quad \begin{array}{c} \text{Put the eigenvectors in } X \\ \text{and eigenvalues 2, 5 in } \Lambda. \end{array} A = X\Lambda X^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}. \end{aligned}$
- **3** If $A = X\Lambda X^{-1}$ then the eigenvalue matrix for A + 2I is $\Lambda + 2I$ and the eigenvector matrix is still X. So $A + 2I = X(\Lambda + 2I)X^{-1} = X\Lambda X^{-1} + X(2I)X^{-1} = A + 2I$.
- 4 (a) False: We are not given the λ's (b) True (c) True since X has independent columns.
 (d) False: For this we would need the eigenvectors of X.
- **5** With $X = I, A = X\Lambda X^{-1} = \Lambda$ is a diagonal matrix. If X is triangular, then X^{-1} is triangular, so $X\Lambda X^{-1}$ is also triangular.
- 6 The columns of X are nonzero multiples of (2,1) and (0,1): either order. The same eigenvector matrices diagonalize A and A⁻¹.

7 Every matrix that has eigenvectors
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and $\begin{bmatrix} 1\\-1\\\end{bmatrix}$ has the form
$$A = X\Lambda X^{-1} = \begin{bmatrix} 1 & 1\\1 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1\\\lambda_2 \end{bmatrix} / 2 = \frac{1}{2} \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2\\\lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix}$$

You could check trace $= \lambda_1 + \lambda_2$ and det $= \frac{1}{4} 4\lambda_1\lambda_2 = \lambda_1\lambda_2$.

$$\mathbf{8} \ A = X\Lambda X^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix}$$
$$X\Lambda^k X^{-1} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

The second component is
$$F_k = (\lambda_1^k - \lambda_2^k)/(\lambda_1 - \lambda_2)$$
.
9 (a) The equations are $\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = A \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}$ with $A = \begin{bmatrix} .5 & .5 \\ 1 & 0 \end{bmatrix}$. This matrix has $\lambda_1 = 1, \ \lambda_2 = -\frac{1}{2}$ with $\mathbf{x}_1 = (1, 1), \ \mathbf{x}_2 = (1, -2)$
(b) $A^n = X\Lambda^n X^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1^n & 0 \\ 0 & (-.5)^n \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \rightarrow A^\infty = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$

10 The rule $F_{k+2} = F_{k+1} + F_k$ produces the pattern: even, odd, odd, even, odd, odd, ...

- (a) *True* (no zero eigenvalues) (b) *False* (repeated λ = 2 may have only one line of eigenvectors) (c) *False* (repeated λ may have a full set of eigenvectors)
- **12** (a) False: don't know if $\lambda = 0$ or not.

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors. $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

13
$$A = \begin{bmatrix} 8 & 3 \\ -3 & 2 \end{bmatrix}$$
 (or other), $A = \begin{bmatrix} 9 & 4 \\ -4 & 1 \end{bmatrix}$, $A = \begin{bmatrix} 10 & 5 \\ -5 & 0 \end{bmatrix}$; only eigenvectors are $\boldsymbol{x} = (c, -c)$.

14 The rank of A - 3I is r = 1. Changing any entry except $a_{12} = 1$ makes A diagonalizable (the new A will have two different eigenvalues)

15 $A^k = X\Lambda^k X^{-1}$ approaches zero **if and only if every** $|\boldsymbol{\lambda}| < 1$; A_1 is a Markov matrix so $\lambda_{\max} = 1$ and $A_1^k \to A_1^\infty$, A_2 has $\lambda = .6 \pm .3$ so $A_2^k \to 0$. $\begin{bmatrix} .6 .9 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$

$$\begin{aligned} \mathbf{16} \begin{bmatrix} .6 & .9 \\ .4 & .1 \end{bmatrix} &= X\Lambda X^{-1} \text{ with } \Lambda = \begin{bmatrix} 1 & 0 \\ 0 & .2 \end{bmatrix} \text{ and } X = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}; \Lambda^{k} \to \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}. \\ \text{Then } A_{1}^{k} &= X\Lambda^{k} X^{-1} \to \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}: \text{ steady state.} \\ \mathbf{17} A_{2} \text{ is } X\Lambda X^{-1} \text{ with } \Lambda &= \begin{bmatrix} .9 & 0 \\ 0 & .3 \end{bmatrix} \text{ and } X = \begin{bmatrix} 3 & -3 \\ 1 & 1 \end{bmatrix}; A_{2}^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = (.9)^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix}. \\ A_{2}^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = (.3)^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix}. \text{ Then } A_{2}^{10} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = (.9)^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} + (.3)^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix} \text{ because} \\ u_{0} &= \begin{bmatrix} 6 \\ 0 \end{bmatrix} \text{ is the sum of } \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix}. \end{aligned}$$

$$18 \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = X\Lambda X^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \text{ and}$$
$$A^{k} = X\Lambda^{k} X^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

Multiply those last three matrices to get $A^k = \frac{1}{2} \begin{bmatrix} 1+3^k & 1-3^k \\ 1-3^k & 1+3^k \end{bmatrix}$.

19
$$B^k = X\Lambda^k X^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}^k \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 5^k & 5^k - 4^k \\ 0 & 4^k \end{bmatrix}.$$

- **20** det $A = (\det X)(\det \Lambda)(\det X^{-1}) = \det \Lambda = \lambda_1 \cdots \lambda_n$. This proof $(\det = \text{product} of \lambda$'s) works when A is *diagonalizable*. The formula is always true.
- 21 trace XY = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = trace YX. Diagonalizable case: the trace of XΛX⁻¹ = trace of (ΛX⁻¹)X = trace of Λ = Σλ_i. AB BA = I is impossible since the left side has trace = 0.
- **22** If $A = X\Lambda X^{-1}$ then $B = \begin{bmatrix} A & 0 \\ 0 & 2A \end{bmatrix} = \begin{bmatrix} X & 0 \\ 0 & X \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & 2\Lambda \end{bmatrix} \begin{bmatrix} X^{-1} & 0 \\ 0 & X^{-1} \end{bmatrix}$. So *B* has the original λ 's from *A* and the additional eigenvalues $2\lambda_1, \dots, 2\lambda_n$ from 2A.
- **23** The *A*'s form a subspace since cA and $A_1 + A_2$ all have the same *X*. When X = I the *A*'s with those eigenvectors give the subspace of **diagonal matrices**. The dimension of that matrix space is 4 since the matrices are 4 by 4.
- 24 If A has columns x₁,..., x_n then column by column, A² = A means every Ax_i = x_i. All vectors in the column space (combinations of those columns x_i) are eigenvectors with λ = 1. Always the nullspace has λ = 0 (A might have dependent columns, so there could be less than n eigenvectors with λ = 1). Dimensions of those spaces C(A) and N(A) add to n by the Fundamental Theorem, so A is diagonalizable (n independent eigenvectors altogether).
- **25** Two problems: The nullspace and column space can overlap, so x could be in both. There may not be r independent eigenvectors in the column space.

26
$$R = X\sqrt{\Lambda}X^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} / 2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 has $R^2 = A$.

 \sqrt{B} needs $\lambda = \sqrt{9}$ and $\sqrt{-1}$, the trace (their sum) is not real so \sqrt{B} cannot be real. Note that the square root of $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ has *two* imaginary eigenvalues $\sqrt{-1} = i$ and -i, real trace 0, real square root $R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

- **27** The factorizations of A and B into $X\Lambda X^{-1}$ are the same. So A = B.
- **28** $A = X\Lambda_1 X^{-1}$ and $B = X\Lambda_2 X^{-1}$. Diagonal matrices always give $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$. Then AB = BA from

$$X\Lambda_1 X^{-1} X\Lambda_2 X^{-1} = X\Lambda_1 \Lambda_2 X^{-1} = X\Lambda_2 \Lambda_1 X^{-1} = X\Lambda_2 X^{-1} X\Lambda_1 X^{-1} = BA.$$
29 (a) $A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ has $\lambda = a$ and $\lambda = d$: $(A - aI)(A - dI) = \begin{bmatrix} 0 & b \\ 0 & d - a \end{bmatrix} \begin{bmatrix} a - d & b \\ 0 & 0 \end{bmatrix}$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$
 (b) $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ has $A^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $A^2 - A - I = 0$ is true, matching det $(A - \lambda I) = \lambda^2 - \lambda - 1 = 0$ as the Cayley-Hamilton Theorem predicts.

30 When $A = X\Lambda X^{-1}$ is diagonalizable, the matrix $A - \lambda_j I = X(\Lambda - \lambda_j I)X^{-1}$ will have 0 in the *j*, *j* diagonal entry of $\Lambda - \lambda_j I$. The product p(A) becomes

 $p(A) = (A - \lambda_1 I) \cdots (A - \lambda_n I) = X(\Lambda - \lambda_1 I) \cdots (\Lambda - \lambda_n I) X^{-1}.$

That product is the zero matrix because the factors produce a zero in each diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem. (If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices approaching A.)

Comment I have also seen the following Cayley-Hamilton proof but I am not convinced :

Apply the formula $AC^{T} = (\det A)I$ from Section 5.1 to $A - \lambda I$ with variable λ . Its cofactor matrix C will be a polynomial in λ , since cofactors are determinants:

 $(A - \lambda I)C^{\mathrm{T}}(\lambda) = \det(A - \lambda I)I = p(\lambda)I.$

"For fixed A, this is an identity between two matrix polynomials." Set $\lambda = A$ to find the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-Hamilton Theorem.

I am not certain about the key step of substituting a matrix A for λ . If other matrices B are substituted for λ , does the identity remain true? If $AB \neq BA$, even the order of multiplication seems unclear . . .

31 If AB = BA, then B has the same eigenvectors (1, 0) and (0, 1) as A. So B is also diagonal b = c = 0. The nullspace for the following equation is 2-dimensional:

AB - BA =	1	0	a	b] –	a	b	1	0	_	0	-b	_	0	0]
	0	2	c	d		c	d	0	2	_	$\left\lfloor c \right\rfloor$	0		0	0	
			-													

Those 4 equations 0 = 0, -b = 0, c = 0, 0 = 0 have a 4 by 4 coefficient matrix with rank = 4 - 2 = 2.

- **32** B has $\lambda = i$ and -i, so B^4 has $\lambda^4 = 1$ and 1. Then $B^4 = I$ and $B^{1024} = I$. C has $\lambda = (1 \pm \sqrt{3}i)/2$. This λ is $\exp(\pm \pi i/3)$ so $\lambda^3 = -1$ and -1. Then $C^3 = -I$ which leads to $C^{1024} = (-I)^{341}C = -C$.
- **33** The eigenvalues of $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ are $\lambda = e^{i\theta}$ and $e^{-i\theta}$ (trace $2\cos\theta$ and determinant $\lambda_1\lambda_2 = 1$). Their eigenvectors are (1, -i) and (1, i):

$$A^{n} = X\Lambda^{n}X^{-1} = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} e^{in\theta} & \\ & e^{-in\theta} \end{bmatrix} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix} / 2i$$
$$= \begin{bmatrix} (e^{in\theta} + e^{-in\theta})/2 & \cdots \\ (e^{in\theta} - e^{-in\theta})/2i & \cdots \end{bmatrix} = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}.$$

Geometrically, n rotations by θ give one rotation by $n\theta$.

34 Columns of X times rows of ΛX^{-1} gives a sum of r rank-1 matrices (r = rank of A). Those matrices are $\lambda_1 \boldsymbol{x}_1 \boldsymbol{y}_1^{\mathrm{T}}$ to $\lambda_r \boldsymbol{x}_r \boldsymbol{y}_r^{\mathrm{T}}$.

35 Multiply ones(n) * ones(n) = n * ones(n). Then

$$\begin{split} AA^{-1} &= (\mathsf{eye}(n) + \mathsf{ones}(n)) * (\mathsf{eye}(n) + C * \mathsf{ones}(n)) \\ &= \mathsf{eye}(n) + (1 + C + Cn) * \mathsf{ones}(n) = \mathsf{eye}(n) \text{ for } C = -1/(n+1). \end{split}$$

- **36** $B = A_1^{-1}$ leads to $A_2A_1 = B(A_1A_2)B^{-1}$. Then A_2A_1 is similar to A_1A_2 : they have the same eigenvectors (not zero because A_1 and A_2 are invertible).
- **37** Choose $B = A_1^{-1}$ to show that A_2A_1 is **similar** to A_1A_2 . Assuming invertibility (no zero eigenvalues) this shows that A_2A_1 and A_1A_2 have the same eigenvalues.
- **38** This matrix has column 1 = 2 (column 2) so $x_1 = (1, -2, 0)$ is an eigenvector with $\lambda_1 = 0$. Also A(1, 1, 1) = (1, 1, 1) and $\lambda_2 = 1$. Trace = zero so $\lambda_3 = -1$. Then $1^{2020} = 1$ and $(-1)^{2020} = 1$ and $(0)^{2020} = 0$. So A^{2019} has the same eigenvalues and eigenvectors as $A : A^{2019} = A$ and $A^{2020} = A^2$. TO COMPLETE FOR 2023

Problem Set 6.3, page 238

- **1** (a) ASB stays symmetric like S when $B = A^{T}$
 - (b) ASB is similar to S when $B = A^{-1}$

To have both (a) and (b) we need $B = A^{T} = A^{-1}$ to be an **orthogonal matrix** Q. Then QSQ^{T} is similar to S and also symmetric like S.

- **2** $\lambda = 0, 4, -2$; unit vectors $\pm (0, 1, -1)/\sqrt{2}$ and $\pm (2, 1, 1)/\sqrt{6}$ and $\pm (1, -1, -1)/\sqrt{3}$. Those are for S. The eigenvalues of T are $\lambda = 0, \sqrt{5}, -\sqrt{5}$ in Λ (trace = 0). The eigenvectors of T are $\frac{1}{3}(2, 2, -1)$ and $(1 + \sqrt{5}, 1 - \sqrt{5}, 2)$ and $(1 - \sqrt{5}, 1 + \sqrt{5}, 4)$.
- **3** $S = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$ has $\lambda = 0$ and 25 so the columns of Q are the two eigenvectors: $Q = \begin{bmatrix} .8 & .6 \\ -.6 & .8 \end{bmatrix}$ or we can exchange columns or reverse the signs of any column. **4** (a) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ has $\lambda = -1$ and 3 (b) The pivots $1, 1 - b^2$ have the same signs as the λ 's
 - (c) The trace is $\lambda_1 + \lambda_2 = 2$, so S can't have two negative eigenvalues.
- **5** $(A^{\mathrm{T}}CA)^{\mathrm{T}} = A^{\mathrm{T}}C^{\mathrm{T}}(A^{\mathrm{T}})^{\mathrm{T}} = A^{\mathrm{T}}CA$. When A is 6 by 3, C will be 6 by 6 and the triple product $A^{\mathrm{T}}CA$ is 3 by 3.
- **6** $\lambda = 10$ and -5 in $\Lambda = \begin{bmatrix} 10 & 0 \\ 0 & -5 \end{bmatrix}$, $\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ have to be normalized to unit vectors in $Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. Then $S = Q\Lambda Q^{\mathrm{T}}$.

If $A^3 = 0$ then all $\lambda^3 = 0$ so all $\lambda = 0$ as in $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. If A is symmetric then $A^3 = Q\Lambda^3 Q^T = 0$ requires $\Lambda = 0$. The only symmetric A is $Q \, 0 \, Q^T =$ zero matrix. **7** $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = 2 \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} + 4 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}; \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix} = 0 \begin{bmatrix} .64 & -.48 \\ -.48 & .36 \end{bmatrix} + 25 \begin{bmatrix} .36 & .48 \\ .48 & .64 \end{bmatrix}$

8
$$\begin{bmatrix} x_1 & x_2 \end{bmatrix}$$
 is an orthogonal matrix so $P_1 + P_2 = x_1 x_1^{\mathrm{T}} + x_2 x_2^{\mathrm{T}} =$
 $\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{T}} \\ x_2^{\mathrm{T}} \end{bmatrix} = QQ^{\mathrm{T}} = I$; also $P_1 P_2 = x_1 (x_1^{\mathrm{T}} x_2) x_2^{\mathrm{T}} =$ zero matrix.

Second proof: $P_1P_2 = P_1(I - P_1) = P_1 - P_1 = 0$ since $P_1^2 = P_1$.

- **9** $A = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$ has $\lambda = ib$ and -ib. The block matrices $\begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$ and $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ are also skew-symmetric with $\lambda = ib$ (twice) and $\lambda = -ib$ (twice).
- 10 M is skew-symmetric and orthogonal; every λ is imaginary with |λ| = 1. So λ's must be i, i, -i, -i to have trace zero.

11
$$A = \begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix}$$
 has $\lambda = 0, 0$ and only one independent eigenvector $\boldsymbol{x} = (i, 1)$.

The good property for complex matrices is not $A^{T} = A$ (symmetric) but $\overline{A}^{\perp} = A$ (Hermitian with real eigenvalues and orthogonal eigenvectors).

12 S has
$$Q = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; B has $X = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2d \end{bmatrix}$. Perpendicular in Q.
Not perpendicular in X since $S^{T} = S$ but $B^{T} \neq B$

13
$$S = \begin{bmatrix} 1 & 3+4i \\ 3-4i & 1 \end{bmatrix}$$
 is a *Hermitian matrix* ($\overline{S}^{T} = S$). Its eigenvalues 6 and -4 are

real. Here is the proof that λ is always real when $\overline{S}^{T} = S$:

$$S \boldsymbol{x} = \lambda \boldsymbol{x}$$
 leads to $\overline{S} \overline{\boldsymbol{x}} = \overline{\lambda} \overline{\boldsymbol{x}}$. Transpose to $\overline{\boldsymbol{x}}^{\mathrm{T}} S = \overline{\boldsymbol{x}}^{\mathrm{T}} \overline{\lambda}$ using $\overline{S}^{\mathrm{T}} = S$.
Then $\overline{\boldsymbol{x}}^{\mathrm{T}} S \boldsymbol{x} = \overline{\boldsymbol{x}}^{\mathrm{T}} \lambda \boldsymbol{x}$ and also $\overline{\boldsymbol{x}}^{\mathrm{T}} S \boldsymbol{x} = \overline{\boldsymbol{x}}^{\mathrm{T}} \overline{\lambda} \boldsymbol{x}$. So $\lambda = \overline{\lambda}$ is real.

14 (a) False.
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 (b) True from $A^{\mathrm{T}} = Q\Lambda Q^{\mathrm{T}} = A$
(c) True from $S^{-1} = Q\Lambda^{-1}Q^{\mathrm{T}}$ (d) False!

(e) True. If x is a column of the identity matrix, then the energy $x^{T}Sx$ is a diagonal entry of S. Since S is positive definite in this problem, each diagonal entry is a positive number $x^{T}Sx$.

- **15** A and A^{T} have the same λ 's but the *order* of the x's can change. $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ has $\lambda_1 = i$ and $\lambda_2 = -i$ with $x_1 = (1,i)$ first for A but $x_1 = (1,-i)$ is first for $A^{\overline{T}}$.
- 16 A is invertible, orthogonal, permutation, diagonalizable; B is projection, diagonalizable. A allows $QR, X\Lambda X^{-1}, Q\Lambda Q^{\mathrm{T}}; B$ allows $X\Lambda X^{-1}$ and $Q\Lambda Q^{\mathrm{T}}$.
- **17** Symmetry gives $Q\Lambda Q^{\mathrm{T}}$ if b = 1; repeated λ and no X if b = -1; singular if b = 0.
- **18** Orthogonal and symmetric requires $|\lambda| = 1$ and λ real, so $\lambda = \pm 1$. Then $S = \pm I$ or $\pm S = Q\Lambda Q^{\mathrm{T}} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos2\theta & \sin2\theta\\ \sin2\theta & -\cos2\theta \end{bmatrix}.$
- **19** Eigenvectors (1,0) and (1,1) give a 45° angle even with A^{T} very close to A
- **20** a_{11} is $\begin{bmatrix} q_{11} \dots q_{1n} \end{bmatrix} \begin{bmatrix} \lambda_1 \overline{q}_{11} \dots \lambda_n \overline{q}_{1n} \end{bmatrix}^{\mathrm{T}} \leq \lambda_{\max} \left(|q_{11}|^2 + \dots + |q_{1n}|^2 \right) = \lambda_{\max}.$
- **21** (a) $\boldsymbol{x}^{\mathrm{T}}(A\boldsymbol{x}) = (A\boldsymbol{x})^{\mathrm{T}}\boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}}A^{\mathrm{T}}\boldsymbol{x} = -\boldsymbol{x}^{\mathrm{T}}A\boldsymbol{x}$ so $\boldsymbol{x}^{\mathrm{T}}A\boldsymbol{x} = 0$. (b) $\overline{\boldsymbol{z}}^{\mathrm{T}}A\boldsymbol{z}$ is pure imaginary, its real part is $\boldsymbol{x}^{\mathrm{T}}A\boldsymbol{x} + \boldsymbol{y}^{\mathrm{T}}A\boldsymbol{y} = 0 + 0$ (c) det $A = \lambda_1 \dots \lambda_n \geq 0$: because pairs of λ 's = ib, -ib multiply to give $+b^2$.
- **22** Since S is diagonalizable with eigenvalue matrix $\Lambda = 2I$, the matrix S itself has to be $X\Lambda X^{-1} = X(2I)X^{-1} = 2I$. The unsymmetric matrix [2 1 ; 0 2] also has $\lambda = 2, 2$ but this matrix can't be diagonalized.
- **23** (a) $S^{\mathrm{T}} = S$ and $S^{\mathrm{T}}S = I$ lead to $S^{2} = I$.
 - (b) The only possible eigenvalues of S are 1 and -1.

(c)
$$\Lambda = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$$
 so $\boldsymbol{S} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \Lambda \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix} = \boldsymbol{Q}_1 \boldsymbol{Q}_1^T - \boldsymbol{Q}_2 \boldsymbol{Q}_2^T$ with $Q_1^T Q_2 = 0$.
24 Suppose $a > 0$ and $ac > b^2$ so that also $c > b^2/a > 0$.

- - (i) The eigenvalues have the same sign because $\lambda_1 \lambda_2 = \det = ac b^2 > 0$.
 - (ii) That sign is *positive* because $\lambda_1 + \lambda_2 > 0$ (it equals the trace a + c > 0).
- **25** Only $S_4 = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}$ has two positive eigenvalues since $101 > 10^2$.

 $x^{T}S_{1}x = 5x_{1}^{2} + 12x_{1}x_{2} + 7x_{2}^{2}$ is negative for example when $x_{1} = 4$ and $x_{2} = -3$: A_1 is not positive definite as its determinant confirms; S_2 has trace c_0 ; S_3 has det = 0.

$$\begin{array}{cccc} \mathbf{Positive definite} & \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 9 - b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 9 - b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}} \\ \begin{array}{c} \mathbf{Positive definite} \\ \text{for } c > 8 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & c - 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & c - 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}} \\ \begin{array}{c} \mathbf{Positive definite} \\ \text{for } c > |b| \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 \\ -b/c & 1 \end{bmatrix} \quad D = \begin{bmatrix} c & 0 \\ 0 & c - b^2/c \end{bmatrix} \quad S = LDL^{\mathrm{T}}. \end{array}$$

27 $x^2 + 4xy + 3y^2 = (x+2y)^2 - y^2 = difference of squares is negative at <math>x = 2, y = -1$, where the first square is zero.

28
$$S = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 produces $f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2xy$. S has $\lambda = 1$ and $\lambda = -1$. Then S is an *indefinite matrix* and $f(x, y) = 2xy$ has a *saddle point*.

29
$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & 2 \\ 2 & 13 \end{bmatrix}$$
 and $A^{\mathrm{T}}A = \begin{bmatrix} 6 & 5 \\ 5 & 6 \end{bmatrix}$ are positive definite; $A^{\mathrm{T}}A = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 5 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is

singular (and positive semidefinite). The first two A's have independent columns. The 2 by 3 A cannot have full column rank 3, with only 2 rows; third $A^{T}A$ is singular.

30
$$S = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 has pivots $T = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ is singular; $T \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

- **31** Corner determinants $|S_1| = 2$, $|S_2| = 6$, $|S_3| = 30$. The pivots are 2/1, 6/2, 30/6.
- **32** S is positive definite for c > 1; determinants $c, c^2 1$, and $(c 1)^2(c + 2) > 0$. T is *never* positive definite (determinants d - 4 and -4d + 12 are never both positive).
- **33** $S = \begin{bmatrix} 1 & 5 \\ 5 & 10 \end{bmatrix}$ is an example with a + c > 2b but $ac < b^2$, so not positive definite.
- **34** The eigenvalues of S^{-1} are positive because they are $1/\lambda(S)$. Also the energy is $\boldsymbol{x}^{\mathrm{T}}S^{-1}\boldsymbol{x} = (S^{-1}\boldsymbol{x})^{\mathrm{T}}S(S^{-1}\boldsymbol{x}) > 0$ for all $\boldsymbol{x} \neq \boldsymbol{0}$.
- **35** $x^{T}Sx$ is zero when $(x_1, x_2, x_3) = (0, 1, 0)$ because of the zero on the diagonal. Actually $x^{T}Sx$ goes *negative* for x = (1, -10, 0) because the second pivot is *negative*.

- **36** If a_{jj} were smaller than all λ 's, $S a_{jj}I$ would have all eigenvalues > 0 (positive definite). But $S a_{jj}I$ has a zero in the (j, j) position; impossible by Problem 35.
- 37 (a) The determinant is positive; all λ > 0 (b) All projection matrices except I are singular (c) The diagonal entries of D are its eigenvalues
 (d) S = -I has det = +1 when n is even, but this S is negative definite.
- **38** S is positive definite when s > 8; T is positive definite when t > 5 by determinants.

39
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{9} \\ \sqrt{1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; A = Q \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} Q^{\mathrm{T}} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

40 The ellipse $x^2 + xy + y^2 = 1$ comes from $S = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix}$ with $\lambda = \frac{1}{2}$ and $\frac{3}{2}$. The axes have half-lengths $\sqrt{2}$ and $\sqrt{2/3}$.

41
$$S = C^{\mathrm{T}}C$$
$$S \operatorname{not} A = \begin{bmatrix} 9 & 3\\ 3 & 5 \end{bmatrix}; \begin{bmatrix} 4 & 8\\ 8 & 25 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0\\ 0 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} \operatorname{and} C = \begin{bmatrix} 2 & 4\\ 0 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

42 The Cholesky factors
$$C = \left(L\sqrt{D}\right)^{\mathrm{T}} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $C = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & \sqrt{5} \end{bmatrix}$ have

square roots of the pivots from D. Note again $C^{T}C = LDL^{T} = S$.

- **43** (a) det S = (1)(10)(1) = 10; (b) $\lambda = 2$ and 5; (c) $x_1 = (\cos \theta \sin \theta)$ and $x_2 = (-\sin \theta, \cos \theta)$; (d) The λ 's are positive, so S is positive definite.
- **44** $ax^2 + 2bxy + cy^2$ has a saddle point if $ac < b^2$. The matrix is *indefinite* ($\lambda < 0$ and $\lambda > 0$) because the determinant $ac b^2$ is *negative*.
- **45** If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the graph of $z = (2x + 3y)^2$ is a "trough" staying at zero along the line 2x + 3y = 0.
- 46 A product ST of symmetric positive definite matrices comes into many applications. The "generalized" eigenvalue problem Kx = λMx has ST = M⁻¹K. (Often we use eig(K, M) without actually inverting M.) All eigenvalues λ of ST are positive :

$$ST \boldsymbol{x} = \lambda \boldsymbol{x}$$
 gives $(T \boldsymbol{x})^{\mathrm{T}} ST \boldsymbol{x} = (T \boldsymbol{x})^{\mathrm{T}} \lambda x$. Then $\lambda = \boldsymbol{x}^{\mathrm{T}} T^{\mathrm{T}} ST \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x} > 0$.

47 Put parentheses in $x^{T}A^{T}CAx = (Ax)^{T}C(Ax)$. Since *C* is assumed positive definite, this energy can drop to zero only when Ax = 0. Sine *A* is assumed to have independent columns, Ax = 0 only happens when x = 0. Thus $A^{T}CA$ has positive energy and is positive definite.

My textbooks *Computational Science and Engineering* and *Introduction to Applied Mathematics* start with many examples of $A^{T}CA$ in a wide range of applications. I believe positive definiteness of $A^{T}CA$ is a unifying concept from linear algebra.

- **48** (a) The eigenvalues of $\lambda_1 I S$ are $\lambda_1 \lambda_1, \lambda_1 \lambda_2, \dots, \lambda_1 \lambda_n$. Those are ≥ 0 ; $\lambda_1 I S$ is semidefinite.
 - (b) Semidefinite matrices have energy $\boldsymbol{x}^{\mathrm{T}} \left(\lambda_1 I S \right) \boldsymbol{x}_2 \geq 0$. Then $\lambda_1 \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$.
 - (c) Part (b) says $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} \leq \lambda_1$ for all \boldsymbol{x} . Equality at the eigenvector with $S \boldsymbol{x} = \lambda_1 \boldsymbol{x}$. So the maximum value of $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$ is λ_1 .
- **49** Energy $\mathbf{x}^{T}S\mathbf{x} = a (x_1 + x_2 + x_3)^2 + c (x_2 x_3)^2 \ge 0$ if $a \ge 0$ and $c \ge 0$: semidefinite. *S* has rank ≤ 2 and determinant = 0; cannot be positive definite for any *a* and *c*.

Problem Set 6.4, page 269

1 z = 1 - i leads to $\overline{z} = 1 + i$ and $r = \sqrt{2}$ and $\frac{1}{z} = \frac{1 + i}{(1 - i)(1 + i)} = \frac{1}{2}(1 + i)$ and $\theta = -\frac{\pi}{4} = -45^{\circ}$. **2** det $\begin{bmatrix} 1-\lambda & 1+i \\ 1-i & 2-\lambda \end{bmatrix} = \lambda^2 - 3\lambda + 2 - 2 = 0$ gives eigenvalues $\lambda = \mathbf{3}$ and **0**. **3** If $Qx = \lambda x$ then $||Qx|| = |\lambda| ||x||$. Square both sides and use $\overline{Q}^{\mathrm{T}}Q = I$ to find $|\lambda|^2 = 1$. Therefore $|\lambda| = 1$ for unitary matrices Q. $\mathbf{4} \ F_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{2\pi 1/3} & e^{4\pi 1/3} \\ 1 & e^{4\pi 1/3} & e^{8\pi 1/3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \frac{1}{2} \left(-1 + \sqrt{3} i \right) & \frac{1}{2} \left(-1 - \sqrt{3} i \right) \\ 1 & \frac{1}{2} \left(-1 - \sqrt{3} i \right) & \frac{1}{2} \left(-1 + \sqrt{3} i \right) \end{bmatrix}$

5
$$F_6 = 6$$
 by 6 matrix = $\begin{bmatrix} I & B \\ I & -B \end{bmatrix} \begin{bmatrix} F_3 & 0 \\ 0 & F_3 \end{bmatrix} \begin{bmatrix} \text{columns} \\ 0, 2, 4, 1, 3, 5 \\ \text{of } I \ (6 \text{ by } 6) \end{bmatrix}$

The 3 by 3 matrix B is diagonal with entries $1, e^{2\pi i/6}, e^{4\pi i/6}$.

$$\mathbf{6} \ CD = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}$$
$$\underbrace{\begin{array}{c} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ \end{array}}_{1 \ 2 \ 1}$$

convolution c * d 1 3 4 3 1 reduces to 4 4 4 for cyclic convolution $c \circledast d$

7 Convolution Rule
$$F(\mathbf{c} \circledast \mathbf{d}) = (F\mathbf{c}) \cdot \ast (F\mathbf{d})$$
. This is $F \begin{bmatrix} 4\\ 4\\ 4 \end{bmatrix} = F \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \cdot \ast F \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$
with the 2 by 3 Fourier matrix $E = E$. Multiply components for \mathbf{d}

г

٦

with the 3 by 3 Fourier matrix $F = F_3$: Multiply components for .*.

$$F\begin{bmatrix} 4\\4\\4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1\\1 & e^{2\pi i/3} & e^{4\pi i/3}\\1 & e^{4\pi i/3} & e^{8\pi i/3} \end{bmatrix} \begin{bmatrix} 4\\4\\4 \end{bmatrix} = \begin{bmatrix} 12\\0\\0 \end{bmatrix}$$

$$F\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 3\\0\\0 \end{bmatrix} \quad F\begin{bmatrix} 1\\2\\1 \end{bmatrix} = \begin{bmatrix} 4\\e^{2\pi i/3}\\e^{4\pi i/3} \end{bmatrix} \text{ and } \begin{bmatrix} 3\\0\\0 \end{bmatrix} \cdot * \begin{bmatrix} 4\\e^{2\pi i/3}\\e^{4\pi i/3} \end{bmatrix} \begin{bmatrix} 12\\0\\0 \end{bmatrix}$$

8
$$\cos \theta + i \sin \theta = \left(1 - \frac{1}{2}\theta^2 + \cdots\right) + i \left(\theta - \frac{\theta^3}{6} + \cdots\right) = 1 + i\theta + \frac{1}{2}(i\theta)^2 + \frac{1}{6}(i\theta)^3 + \cdots$$

9
$$(e^{i\theta})(e^{i\theta}) = e^{2i\theta}$$
 is $(\cos\theta + i\sin\theta)^2 = \cos 2\theta + i\sin 2\theta$.

The left side is $\cos^2 \theta + 2i \cos \theta \sin \theta + i^2 \sin^2 \theta$.

Matching the right side gives $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ and $\sin 2\theta = 2\cos\theta\sin\theta$

10 The eigenvalues of a circulant matrix C are Fc in equation (10).

If C is invertible then all its eigenvalues must be nonzero.

In that case C^{-1} is also a circulant because its entries (from the formula for C^{-1}) are also constant down each (cyclic) diagonal. There are other proofs too.

- **11** This problem is looking for a solution !
- **12** An *n* by *n* circulant matrix has $\overline{C}^{T} = C$ (Hermitian) if its diagonal entries have c_0 real, $\overline{c}_1 = c_{n-1}, \overline{c}_2 = c_{n-2}, \dots$ The circulant has $\overline{C}^{T}C = I$ (unitary) if $|c_0 + c_1x + \dots + c_{n-1}x^{n-1}|^2 = 1$.
- **13** Columns 0 and 2 of the Fourier matrix F_4 in equation (7) add to (2, 0, 2, 0). Columns 1 and 3 add to (2, 0, -2, 0).
- **14** $z = w^2 = e^{2\pi i/32}$ would be a 32nd root of $1: z^{32} = 1$. $z = \sqrt{w} = e^{2\pi i/128}$ would be a 128th root of 1.
- **15** The 4 eigenvalues 0, 2, 4, 2 of C come from the eigenvalues 1, i, -1, -i of P_4 . $\lambda = 2 - 1 - 1 = 0$ $\lambda = 2 - i - i^3 = 2$ $\lambda = 2 - (-1) - (-1)^3 = 4$ $\lambda = 2 + i + i^3 = 2$.

Problem Set 6.5, page 280

- **1** Eigenvalues 4 and 1 with eigenvectors (1,0) and (1,-1) give solutions $\boldsymbol{u}_1 = e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\boldsymbol{u}_2 = e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. If $\boldsymbol{u}(0) = \begin{bmatrix} 5 \\ -2 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then use those coefficients 3 and 2: $\boldsymbol{u}(t) = 3e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
- **2** $z(t) = 2e^t$ solves dz/dt = z with z(0) = 2. Then $dy/dt = 4y 6e^t$ with y(0) = 5 gives $y(t) = 3e^{4t} + 2e^t$ as in Problem 1.
- 3 (a) If every column of A adds to zero, this means that the rows add to the zero row.
 So the rows are dependent, and A is singular, and λ = 0 is an eigenvalue.
 - (b) The eigenvalues of $A = \begin{bmatrix} -2 & 3\\ 2 & -3 \end{bmatrix}$ are $\lambda_1 = 0$ with eigenvector $\boldsymbol{x}_1 = (3, 2)$ and $\lambda_2 = -5$ (to give trace = -5) with $\boldsymbol{x}_2 = (1, -1)$. Then the usual 3 steps: 1. Write $u(0) = \begin{bmatrix} 4\\ 1 \end{bmatrix}$ as $\begin{bmatrix} 3\\ 2 \end{bmatrix} + \begin{bmatrix} 1\\ -1 \end{bmatrix} = \boldsymbol{x}_1 + \boldsymbol{x}_2$ = combination of eigenvectors
 - 2. The solutions follow those eigenvectors: $e^{0t}x_1$ and $e^{-5t}x_2$
 - 3. The solution $u(t) = x_1 + e^{-5t}x_2$ has steady state $x_1 = (3, 2)$ since $e^{-5t} \rightarrow 0$.

$$4 \ d(v+w)/dt = (w-v) + (v-w) = 0, \text{ so the total } v+w \text{ is constant.}$$

$$A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \text{ has } \begin{array}{l} \lambda_1 = 0 \\ \lambda_2 = -2 \end{array} \text{ with } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

$$\begin{bmatrix} v(0) \\ w(0) \end{bmatrix} = \begin{bmatrix} 30 \\ 10 \end{bmatrix} = 20 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 10 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ leads to } \begin{array}{l} v(1) = 20 + 10e^{-2} & v(\infty) = 20 \\ w(1) = 20 - 10e^{-2} & w(\infty) = 20 \end{bmatrix}$$

$$5 \ \frac{d}{dt} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \text{ has } \lambda = 0 \text{ and } \lambda = +2: v(t) = 20 + 10e^{2t} \rightarrow -\infty \text{ as } t \rightarrow \infty.$$

6 $A = \begin{bmatrix} a & 1 \\ 1 & a \end{bmatrix}$ has real eigenvalues a+1 and a-1. These are both negative if a < -1. In this case the solutions of du/dt = Au approach zero.

$$B = \begin{bmatrix} b & -1 \\ 1 & b \end{bmatrix}$$
 has complex eigenvalues $b + i$ and $b - i$. These have negative real parts if $b < 0$. In this case all solutions of $dv/dt = Bv$ approach zero.

7 A projection matrix has eigenvalues λ = 1 and λ = 0. Eigenvectors Px = x fill the subspace that P projects onto: here x = (c, c). Eigenvectors with Px = 0 fill the perpendicular subspace: here x = (c, -c). For the solution to du/dt = -Pu,

$$\boldsymbol{u}(0) = \begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} + \begin{bmatrix} 1\\-1 \end{bmatrix} \qquad \boldsymbol{u}(t) = e^{-t} \begin{bmatrix} 2\\2 \end{bmatrix} + e^{0t} \begin{bmatrix} 1\\-1 \end{bmatrix} \text{ approaches } \begin{bmatrix} 1\\-1 \end{bmatrix}.$$

$$\begin{array}{l} \mathbf{8} \begin{bmatrix} 6 & -2 \\ 2 & 1 \end{bmatrix} \text{has } \lambda_1 = 5, \ \mathbf{x}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ \lambda_2 = 2, \ \mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \text{ rabbits } r(t) = 20e^{5t} + 10e^{2t}, \\ w(t) = 10e^{5t} + 20e^{2t}. \text{ The ratio of rabbits to wolves approaches } 20/10; \text{ (somewhat the second s$$

against nature) e^{5t} dominates.

9 (a)
$$\begin{bmatrix} 4\\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1\\ i \end{bmatrix} + 2 \begin{bmatrix} 1\\ -i \end{bmatrix}$$
 (b) Then $u(t) = 2e^{it} \begin{bmatrix} 1\\ i \end{bmatrix} + 2e^{-it} \begin{bmatrix} 1\\ -i \end{bmatrix} = \begin{bmatrix} 4\cos t\\ 4\sin t \end{bmatrix}$
10
$$\frac{d}{dt} \begin{bmatrix} y\\ y' \end{bmatrix} = \begin{bmatrix} y'\\ y'' \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 4 & 5 \end{bmatrix} \begin{bmatrix} y\\ y' \end{bmatrix}$$
. This correctly gives $y' = y'$ and $y'' = 4y + 5y'$.

$$A = \begin{bmatrix} 0 & 1\\ 4 & 5 \end{bmatrix}$$
 has $\det(A - \lambda I) = \lambda^2 - 5\lambda - 4 = 0$. Directly substituting $y = e^{\lambda t}$ into
 $y'' = 5y' + 4y$ also gives $\lambda^2 = 5\lambda + 4$ and the same two values of λ . Those values are
 $\frac{1}{2}(5 \pm \sqrt{41})$ by the quadratic formula.

11 The series for
$$e^{At}$$
 is $e^{At} = I + t \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \text{zeros} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$. Then
$$\begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix} = \begin{bmatrix} y(0) + y'(0)t \\ y'(0) \end{bmatrix}$$
. This $y(t) = y(0) + y'(0)t$ solves the equation—the factor t tells us that A had only one eigenvector : not diagonalizable.

12 $A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix}$ has trace 6, det 9, $\lambda = 3$ and 3 with *one* independent eigenvector (1,3). Substitute $y = te^{3t}$ to show that this gives the needed second solution ($y = e^{3t}$ is the first solution).

13 (a)
$$y(t) = \cos 3t$$
 and $\sin 3t$ solve $y'' = -9y$. It is $3 \cos 3t$ that starts with $y(0) = 3$ and $y'(0) = 0$. (b) $A = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix}$ has $\det = 9$: $\lambda = 3i$ and $-3i$ with eigenvectors $x = \begin{bmatrix} 1 \\ 3i \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -3i \end{bmatrix}$. Then $u(t) = \frac{3}{2}e^{3it} \begin{bmatrix} 1 \\ 3i \end{bmatrix} + \frac{3}{2}e^{-3it} \begin{bmatrix} 1 \\ -3i \end{bmatrix} = \begin{bmatrix} 3\cos 3t \\ -9\sin 3t \end{bmatrix}$

14 When A is skew-symmetric, the derivative of $||u(t)||^2$ is zero. Then $||u(t)|| = ||e^{At}u(0)||$ stays at ||u(0)||. So the matrix e^{At} is orthogonal when A is skew-symmetric $(A^T = -A)$.

15
$$\boldsymbol{u}_p = 4$$
 and $\boldsymbol{u}(t) = ce^t + 4$. For the matrix equation, the particular solution $\boldsymbol{u}_p = A^{-1}\boldsymbol{b}$
is $\begin{bmatrix} 4\\2 \end{bmatrix}$ and $\boldsymbol{u}(t) = c_1e^t \begin{bmatrix} 1\\t \end{bmatrix} + c_2e^t \begin{bmatrix} 0\\1 \end{bmatrix} + \begin{bmatrix} 4\\2 \end{bmatrix}$.

16 $d/dt(e^{At}) = A + A^2t + \frac{1}{2}A^3t^2 + \frac{1}{6}A^4t^3 + \dots = A(I + At + \frac{1}{2}A^2t^2 + \frac{1}{6}A^3t^3 + \dots).$ This is exactly Ae^{At} , the derivative we expect from e^{At} .

17 $e^{Bt} = I + Bt$ (short series with $B^2 = 0$) = $\begin{bmatrix} \mathbf{1} & -4t \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$. Derivative = $\begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix}$ = $Be^{Bt} = B$ in this example.

18 The solution at time t + T is $e^{A(t+T)}\boldsymbol{u}(0)$. Thus e^{At} times e^{AT} equals $e^{A(t+T)}$.

19 $A^2 = A$ gives $e^{At} = I + At + \frac{1}{2}At^2 + \frac{1}{6}At^3 + \dots = I + (e^t - 1)A$.

110

20
$$e^{A} = \begin{bmatrix} e & 4(e-1) \\ 0 & 1 \end{bmatrix}$$
 from 21 and $e^{B} = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix}$ from 19. By direct multiplication
 $e^{A}e^{B} \neq e^{B}e^{A} \neq e^{A+B} = \begin{bmatrix} e & 0 \\ 0 & 1 \end{bmatrix}$.
21 The matrix has $A^{2} = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}^{2} = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}^{2} = A$. Then all $A^{n} = A$. So $e^{At} = I + (t + t^{2}/2! + \cdots)A = I + (e^{t} - 1)A = \begin{bmatrix} e^{t} & 3(e^{t} - 1) \\ 0 & 0 \end{bmatrix}$ as in Problem 19.
22 (a) The inverse of e^{At} is e^{-At} (b) If $Ax = \lambda x$ then $e^{At}x = e^{\lambda t}x$ and $e^{\lambda t} \neq 0$.
To see $e^{At}x$, write $(I + At + \frac{1}{2}A^{2}t^{2} + \cdots)x = (1 + \lambda t + \frac{1}{2}\lambda^{2}t^{2} + \cdots)x = e^{\lambda t}x$.
23 Invert $\begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix}$ to produce $U_{n+1} = \begin{bmatrix} 1 & 0 \\ -\Delta t & 1 \end{bmatrix} \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} U_{n} = \begin{bmatrix} 1 & \Delta t \\ -\Delta t & 1 - (\Delta t)^{2} \end{bmatrix} U_{n}$.
At $\Delta t = 1$, $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ has $\lambda = e^{i\pi/3}$ and $e^{-i\pi/3}$. Both eigenvalues have $\lambda^{6} = 1$ so
 $A^{6} = I$. Therefore $U_{6} = A^{6}U_{0}$ comes exactly back to U_{0} .

24 First A has
$$\lambda = \pm i$$
 and $A^4 = I$.
Second A has $\lambda = -1, -1$ and $A^n = (-1)^n \begin{bmatrix} 1 - 2n & -2n \\ 2n & 2n + 1 \end{bmatrix}$ Linear growth.
25 With $a = \Delta t/2$ the trapezoidal step is $U_{n+1} = \frac{1}{1+a^2} \begin{bmatrix} 1 - a^2 & 2a \\ -2a & 1 - a^2 \end{bmatrix} U_n$.

 $\lfloor -2u & 1-u \rfloor$ That matrix has orthonormal columns \Rightarrow orthogonal matrix $\Rightarrow \|U_{n+1}\| = \|U_n\|$

26 For proof 2, square the start of the series to see $(I + A + \frac{1}{2}A^2 + \frac{1}{6}A^3)^2 = I + 2A + \frac{1}{2}(2A)^2 + \frac{1}{6}(2A)^3 + \cdots$. The diagonalizing proof is easiest when it works (but it needs a diagonalizable A).