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Solutions to Problem Sets

Problem Set 6.1, page 226

o

The eigenvalues of A are A = 1 and 0.5 (or 3).
The eigenvalues of A™ are A = 1 and (%)n

The eigenvalues of A are A = 1 and 0.

(a) A row exchange leaves this A with A = 1 and —0.5 (or — %)

(b) Every A has n — r zero eigenvalues ( = rank) : not changed by elimination.
Ahas \y = —1 and Ay = 5 with eigenvectors z; = (—2,1) and 22 = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.
That zero eigenvalue correctly indicates that A 4 I is singular.

A has A\; = 2 and Ay = —1 (check trace and determinant) with &1 = (1,1) and
@y = (2,—1). A~! has the same eigenvectors, with eigenvalues 1/A = § and —1.
det(A—X) =22+ X—6= (A+3)(A—2). Then Ahas \; = —3 and )2 = 2 (check
trace = —1 and determinant = —6) with z; = (3, —2) and 3 = (1,1). A? has the
same eigenvectors as A, with eigenvalues A3 = 9 and \3 = 4.

A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A + B
has A2 + 8\ + 15 = 0 and \; = 3, A\, = 5. Eigenvalues of A + B are not equal to
eigenvalues of A plus eigenvalues of B.

Aand Bhave \; = 1and A\, = 1. AB and BA have \> —4)\+1 = 0 and the quadratic
formula gives A\ = 2 & v/3. Eigenvalues of AB are not equal to eigenvalues of A times
eigenvalues of B. Eigenvalues of AB and B A are equal (this is proved at the end of
Section 6.2).

The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its

diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.

(a) Multiply Az to see Az which reveals A (b) Solve (A — M)z = 0 to find .
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(a) Multiply Az = A\ by A: A(Ax) = A(\x) = Az gives A%z = X’z

(b) Multiplyby A=z = A" TAx = A"\ = \A "'z gives A~ la = %m

) AddIz=x: (A+x=(A+ 1)z

det(A — M) = X2 — 1.4\ + 0.4 50 Ahas \; = 1 and Ay = 0.4 with z; = (1,2) and
3 = (1,—1). A% has \; = 1 and M2 = 0 (same eigenvectors as A). A% has \; = 1
and A2 = (0.4)1%° which is near zero. So A% is very near A*°: same eigenvectors

and close eigenvalues.

Proof 1. A — X\;I is singular so its two columns are in the same direction.
Also (A — MI)x2 = (A2 — A1)x2. So x5 is in the column space and both columns
must be multiples of x5. Here is also a second proof: Columns of A — A1 [ are in the
nullspace of A — A21 because M = (A — Ao2I)(A — A1) is the zero matrix [this is
the Cayley-Hamilton Theorem in Problem 6.2.30]. Notice that M has zero eigenval-
ues (A1 — A2)(A\1 — A1) = 0and (A2 — A2)(A2 — A1) = 0. So those columns solve

(A — X\oI) & = 0, they are eigenvectors.

The projection matrix P has A = 1, 0, 1 with eigenvectors (1, 2,0), (2,—1,0), (0,0, 1).
Add the first and last vectors: (1,2,1) also has A\ = 1. The whole column space of P

contains eigenvectors with A = 1! Note P?> = P leadsto A> = Aso A = O or 1.

Tu=wtimes 1. So \ = 1.

(@) Pu=(uu)u = u times u
(b) Pv=(uul)v=u(uTv)=0.

(c) ¢1 =(-1,1,0,0), 2 = (—3,0,1,0), 3 = (—5,0,0,1) all have Px = 0z = 0.

det(Q — M) = A2 —2X\cosf+1 = 0when A\ = cosf £isinf = e? and e~*°. Check
Ao = cos?6 +sin?6 = 1 and A\ + A2 = 2cosf. Two eigenvectors of this rotation

matrix are 1 = (1,4) and &3 = (1, —i) (or c; and dxo with cd # 0).

The other two eigenvalues are \ = %(71 + i1/3). Those three eigenvalues add to

0 = trace of P. The three eigenvalues of the second P are 1,1, —1.

Set A=0indet(A— M) = (A —A)...(Ap —A) tofinddet A = (A1)(A2) -+ - (An).
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Solutions to Problem Sets

Comparing A2 — (a+d)A+ (ad — be) with (A— A1) (A= X2) = A2 — (A1 +X2) A+ A1 A2

shows :
a+d= M\ + Ay = trace ad — bc = A1 A2 = determinant

If \; = 3and \y = 4 then det(A — A1) = \2 — T\ + 12.

4 0 10 —1 4 6
Trace = 9. Three possibilities are A = , ,
0 5 30 —1 0 5
(a) rank = 2 (b) det(BTB) =0  (d) eigenvalues of (B + ) tare 1,1, 1.
0 1 ) ]
A= has trace 11 and determinant 28, so A = 4 and 7. Moving to a 3 by
—28 11

3 companion matrix, for eigenvalues 1,2, 3 we want det(C' — A\I) = (1 — X\)(2 — \)
(3 — A). Multiply out to get —A3 + 6A% — 11\ + 6. To get those numbers 6, —11,6
from a companion matrix you just put them into the last row :
0 1 0
C=10 0 1| Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).
6 —11 6
(A — X\I) has the same determinant as (A — AI)T because every square matrix has

det M = det MT. Pick M = A — \I.

1 0 1 1 1 1
and have different eigenvectors and
1 0 0 0 1 0
1 0 0
We can choose M = 2 4 0 |. Its eigenvalues A = .1, .4, 1.0 are on the
7 6 1

diagonal. Clearly M T has rows adding to 1 so M T times the columnv = [ 1 1 1 }T
equals v. Challenge : A 3 by 3 singular Markov matrix with trace % hasA =0, 1, — %
0 0 0 1 —1 1| Always A2 is the zero matrix if A\ = 0 and 0,
1 0 ’ 0 0 ’ -1 1 . by the Cayley-Hamilton Theorem in Problem 6.2.30.
X = 0,0, 6 (notice rank 1 and trace 6). Two eigenvectors of uv™ are perpendicular to

v and the third eigenvectoris u: 1 =(0,—-2,1), 2 =(1,—2,0), xz3=(1,2,1).
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When A and B have the same n A’s and x’s, look at any combination v = cyx; +

<+ + cpx,. Multiply by A and B: Av = ¢t \ixy + -+ + cp @y, equals Bv =

caMT1 + -+ cpAnxy, for all vectors v. So A = B.

A has eigenvalues 1 and 2 from block B (with eigenvectors ending in 0,0). A also

has eigenvalues 5 and 7 from block D because AT has eigenvalues 5, 7 from block D™

(and transposing doesn’t change eigenvalues).

A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank

2 (ensuring two zero eigenvalues) and (1, 1,1, 1) is an eigenvector with A = 2. With

trace 4, the other eigenvalue is also A\ = 2, and its eigenvectoris (1, —1,1, —1).

The 4 by 4 matrix A of I’shas A = 0,0,0,4. Then B=A—Thas A= —-1,-1,-1,3.

AndC=1—-AhasA=1,1,1,-3.

Ais triangular: AM(A) = 1,4,6; A\(B) = 2, V3, —/3; C has rank one: A(C) =0,0,6.
a b 1

1
=(a+Db) whena +b=c+d. Thus \y = a +b.
c d 1 1

Then Ay =trace —A\; = (a+d) — (a+b) =d—b.
If PA exchanges rows 1 and 2 of A, then APT exchanges columns 1 and 2. In fact

01 0
P=|100]|=P'=P ' and B=PAPT = PAP!.
00 1

Then B is similar to A and they have the same eigenvalues. In this rank 1 and trace 11

—10 2 1
example, the eigenvalues of A and B are 0,0,11. From A—111 = 3 -5 3
4 8 —7

1

the eigenvector for A = 111is | 3

4
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(a) w is a basis for the nullspace (we know Au = Ou); v and w give a basis for the
column space (we know Av and Aw are in the column space).

(b) A(v/3+w/5) = 3v/3+5w/5 =v+w. Sox = v/3+ w/5is a particular
solution to Ax = v + w. Add any cu from the nullspace to find all solutions.
(¢) If Az = wu had a solution, w would be in the column space : wrong dimension 3.

T

Always (uvT)u = u(vTu) so u is an eigenvector of uv™ with A = vTu. (Watch

T

numbers vTu, vectors u, matrices uv™ !!) If vTu = 0 then A2 = u(vTu)vT is the

zero matrix and A2 = 0,0 and A = 0,0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uv™T :

T

U1 Uivy  U1v2
A= [vl ’02:| = has trace ujv1 +ugvs = v u =0

U2 U201 U2V2

The vector (1,1, 1, 1) is not changed by P. It is the eigenvector for A = 1. The other 3

eigenvectors (discussed in detail in Section 6.4) are

1 1 1

) -1 —1
T2, T3, T4 =

i2 1 (—i)?

i3 -1 (—i)3

The six 3 by 3 permutation matrices include P = I and three single row exchange
matrices P2, P13, P23 and two double exchange matrices like P12 P;3. Since PTp=1
gives (det P)? = 1, the determinant of P is 1 or —1. The pivots are always 1 (but there

may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

or 0 (for double exchange). The possible eigenvalues are 1 and —1 and e2™*/3 and
6_27Ti/3.
AB — BA = I can happen only for infinite matrices. If AT = A and BT = — B then

z'z = 2" (AB - BA)x = 2" (A"B + BT A) x < ||Az||||Bz|| + || Bz|| || Az||.

Therefore || Ax|| || Bz|| > 3|z and ([Az||/[|x[|) (||Bz]l/ll=l]) > 5.
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37 A1 = €2™/3 and Ay = e 27/3 give det \; Ao = 1 and trace \; + Ay = —1.
cosf —sinf

2
A= with @ = 2 has this trace and det. So does every ML AM!
sin ¢ cos @ 3

38 (a) Since the columns of A add to 1, one eigenvalue is A = 1 and the other is ¢ — 0.6

(to give the correct trace ¢ + 0.4).

(b) If ¢ = 1.6 then both eigenvalues are 1, and all solutions to (A — I) = 0 are

multiples of & = (1, —1). In this case A has rank 1.

(c) If ¢ = 0.8, the eigenvectors for A = 1 are multiples of (1, 3). Since all powers A™

1
also have column sums = 1, A™ will approach 1 = rank-1 matrix A>° with
3

eigenvalues 1, 0 and correct eigenvectors. (1,3) and (1, —1).
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Problem Set 6.2, page 242

1 Eigenvectors in X and eigenvalues 1 and 3 in A. Then A = XAX s

1 2 1 1 1 0] |1 -1 )
= . The second matrix has A = 0 (rank 1) and
0 3 0 1|10 3]0 1
11 1 1|0 o] |2 —%
A =4 (trace =4). Then A = XAX 1is =
3 3 -1 3] (0 4| |1 1
1 1
A3 =XA3Xtand A~' = XA-1X L
Put the eigenvectors in X 1 1 2 0 1 -1 2 3
A=XAX"1= = .
and eigenvalues 2, 5 in A. 0 1] (0 5] 1|0 1 0 5

3 If A = XAX ! then the eigenvalue matrix for A + 27 is A + 2I and the eigenvector
matrix is still X. So A +2/ = X(A+2)X ' = XAX 1+ X(2)X 1= A+2I

4 (a)False: We are not given the \’s (b) True (c) True since X has independent columns.
(d) False: For this we would need the eigenvectors of X.

5 With X = I, A = XAX ! = Ais a diagonal matrix. If X is triangular, then X ~! is
triangular, so X A X~ is also triangular.

6 The columns of X are nonzero multiples of (2,1) and (0,1): either order. The same

eigenvector matrices diagonalize A and A~1.

1 1
7 Every matrix that has eigenvectors and has the form
1 -1
1 1 A 1| M+ A—A
A=XAX"!= ' Jo= | TR
1 -1 Ao 20— A4

You could check trace = Ay + Az and det = I 4A; Xy = A As.

8 A— XAXfl _ 1 1 _ 1 )\1 )\2 )\1 0 1 —)\2
1ol M= 1]lo x|l-1 N
1

P [)\1 |l [ o] [ 1 x|
1

A=A o M|l-1 ] lo]
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The second component is Fy, = (A\¥ — \§) /(A1 — \o).

G G 55
(a) The equations are A A i with A = . This matrix
Gry1 Gy, 1 0
has A\; =1, Ay = —3 with@, = (1,1), = = (1,-2)
1|2 1 2 1
1 1 1 0 3 3 3 3
(b) A" = XA"X 1 = B3 g |03
_ _E\n 1 1 2 1
1 2 0 (-.5) 113 -3 z 1

The rule Fy42 = Fi41 + F};, produces the pattern: even, odd, odd, even, odd, odd, ...

(a) True (no zero eigenvalues) (b) False (repeated A = 2 may have only one line of

eigenvectors) (c) False (repeated A may have a full set of eigenvectors)

(a) False: don’t know if A\ = 0 or not.
(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.
8 3 9 4 10 5 only eigenvectors
A= (or other), A = , A= ;
-3 2 -4 1 -5 0| arex = (c,—c).

The rank of A — 3] is r = 1. Changing any entry except aj2 = 1 makes A
diagonalizable (the new A will have two different eigenvalues)

A% = X A¥ X1 approaches zero if and only if every |\| < 1; A; is a Markov matrix
$0 Amax = 1 and A¥ — A3°, Ay has A = .6 £ .3 s0 A5 — 0.

6 9 1 0 1 1 1
= XAX ' with A = and X = (AP
401 0 .2 1 -1 0 0
101
Then AY = XAFX 1 ? ? : steady state.
2 2
) ) 9 0 -3 3
Ayis XAX 1 with A = and X = ; A0 (.9)10
0 .3 1 1 1 1
3 3 6 3 3
A0 = (.3)10 . Then A° = (.9)1° + (.3)10 because
-1 -1 0 1 -1
6| 3 3
Uy = is the sum of +
0 1 -1
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2 -1 111 -1 1 0 1 1
=XAX1=2= and
-1 2 211 1| o 3||-1 1
1 -1 1 0 1 1
A = XARX -1 ==
211 1] o 38| |-1 1
. . 1|1+3% 1-3F
Multiply those last three matrices to get A¥ = ~
211-3k 143k
k
1[5 0 1 1 5k 5k — 4k
BF = XAFX 1 = =
0 —-1| (0 4 0 -1 0 4k
det A = (det X)(det A)(det X 1) = det A = A; -+ \,,. This proof (det = product

of X’s) works when A is diagonalizable. The formula is always true.

trace XY = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = traceY X.
Diagonalizable case: the trace of X AX ~! = trace of (AX 1) X = trace of A = T\,;.
AB — BA = I is impossible since the left side has trace = 0.

A 0 X 0

0 24 0 X
B has the original \’s from A and the additional eigenvalues 21, . .

A O Xt 0
. So

0 2A 0 X!
., 2\, from 2A.

If A= XAX"!then B =

The A’s form a subspace since cA and A; + A, all have the same X. When X =T
the A’s with those eigenvectors give the subspace of diagonal matrices. The dimension

of that matrix space is 4 since the matrices are 4 by 4.

If A has columns 1, . . ., ,, then column by column, A? = A means every Ax; = x;.
All vectors in the column space (combinations of those columns x;) are eigenvectors
with A = 1. Always the nullspace has A = 0 (A might have dependent columns,
so there could be less than n eigenvectors with A = 1). Dimensions of those spaces

C(A) and N(A) add to n by the Fundamental Theorem, so A is diagonalizable

(n independent eigenvectors altogether).

Two problems: The nullspace and column space can overlap, so « could be in both.

There may not be r independent eigenvectors in the column space.
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1 1 3 1 1 2 1
R=XVAX~!= /2 = has R? = A.
1 -1 1 1 -1 1 2
/B needs A = v/9 and v/—1, the trace (their sum) is not real so V/B cannot be real.
-1 0 . .
Note that the square root of has rwo imaginary eigenvalues v/—1 = 7 and
0 -1
0 1
—1, real trace 0, real square root R = .
-1 0

The factorizations of A and B into X AX ~! are the same. So A = B.

A= XA X 'and B = XA, X~!. Diagonal matrices always give AjAy = AgA;.
Then AB = BA from

XA X' XAX = XAJAoX ' = XAgA1 X1 = XA X ' XA X! = BA.

a b 0 b a—d b
(a) A= has A = aand A\ = d: (A—al)(A—dI) =
0 d 0 d—a 0 0

0 0 11 2 1 .
= . (b)) A= has A% = and A2 — A — I = 0 is true,
0 0 1 0 11

matching det(A — AI) = A2 — X\ — 1 = 0 as the Cayley-Hamilton Theorem predicts.
When A = XAX ! is diagonalizable, the matrix A — \;I = X (A — \; 1) X ! will
have 0 in the j, j diagonal entry of A — ;1. The product p(A) becomes

p(A) =(A—=\I)--- (A= X)) = XA =X\ I)--- (A= N\, )X L.
That product is the zero matrix because the factors produce a zero in each
diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices
approaching A.)
Comment 1 have also seen the following Cayley-Hamilton proof but I am not con-
vinced :

Apply the formula ACT = (det A)I from Section 5.1 to A — AI with variable \. Its

cofactor matrix C' will be a polynomial in A, since cofactors are determinants:
(A= ADNCT(\) = det(A — NI = p(\)I.
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“For fixed A, this is an identity between two matrix polynomials.” Set A = A to find
the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

I am not certain about the key step of substituting a matrix A for A. If other matrices
B are substituted for A, does the identity remain true ? If AB # BA, even the order

of multiplication seems unclear . . .

If AB = BA, then B has the same eigenvectors (1,0) and (0,1) as A. So B is also
diagonal b = ¢ = 0. The nullspace for the following equation is 2-dimensional :

1 0 a b a b 1 0 0 —-b 0 0
AB — BA = — — _
0 2 c d c d 0 2 c 0 00

Those 4 equations 0 = 0, —b = 0,c = 0,0 = 0 have a 4 by 4 coefficient matrix with
rank =4 — 2 = 2.

Bhas A =iand —7, so B*has A* = 1 and 1. Then B* = [ and B'0%4 = J.

C has A\ = (1 £ +/3i)/2. This X is exp(#7i/3) so A3 = —1 and —1. Then C® = —T
which leads to C19%4 = (—1)3C = —C.

) cosf —sinf , .
The eigenvalues of A = are A = e and e~ (trace 2 cos@ and

sinf  cosd
determinant \q A2 = 1). Their eigenvectors are (1, —i) and (1,7):

1 1 ein() 1 —1
AM = XAPX L= | /%
i e—mé 7 1
(e + ein0) /2 ... cosnf —sinnd
(e — e=in0) /2 ... sinnf  cosnd

Geometrically, n rotations by 6 give one rotation by nf.

Columns of X times rows of AX ~! gives a sum of r rank-1 matrices (r = rank of A).

Those matrices are Almlyrf to )\Tmry;f.
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35 Multiply ones(n) * ones(n) = n * ones(n). Then

AA~! = (eye(n) + ones(n)) * (eye(n) + C * ones(n))

=eye(n)+ (1 +C + Cn) xones(n) = eye(n) for C = —1/(n + 1).

36 B = A;l leads to Ax A1 = B(AlAg)B_l. Then As A1 is similar to A; As : they have
the same eigenvectors (not zero because A; and As are invertible).

37 Choose B = Al_1 to show that A A; is similar to A; As. Assuming invertibility (no

zero eigenvalues) this shows that A3 A; and A; A have the same eigenvalues.

38 This matrix has column 1 = 2 (column 2) so z; = (1,—2,0) is an eigenvector with
A1 = 0. Also A(1,1,1) = (1,1,1) and Ay = 1. Trace = zero so A3 = —1. Then
12920 = 1 and (—1)2°2° = 1 and (0)2°2° = 0. So A2?°!” has the same eigenvalues and

eigenvectors as A: A%2019 = A and A?°20 = A2, TO COMPLETE FOR 2023
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Problem Set 6.3, page 238

1 (a) ASB stays symmetric like S when B = AT
(b) ASB is similar to S when B = A~!
To have both (a) and (b) we need B = AT = A~! to be an orthogonal matrix Q.
Then QSQ™ is similar to S and also symmetric like S.

2 \ = 0,4, —2; unit vectors (0,1, —1)/v/2 and +(2,1,1)/v/6 and £(1, —1,—1)/+/3.
Those are for S. The eigenvalues of 7" are A = 0, \/5, —v/5in A (trace = 0).
The eigenvectors of T"are £(2,2, —1) and (1+/5,1—+/5,2) and (1 —v/5,1+/5,4).

9 12

35 = has A = 0 and 25 so the columns of () are the two eigenvectors:
12 16
8 6 .
Q= or we can exchange columns or reverse the signs of any column.
—6 .8

1 2
4 (a) has A = —1and 3 (b) The pivots 1, 1 — b? have the same signs as the \’s
2 1

(c) The traceis A1 + A2 = 2, so S can’t have two negative eigenvalues.
5 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the
triple product ATC' A is 3 by 3.

10 0 1
6 A=10and —5in A = , T = and have to be normalized to
0 -5 2 -1
. ) 1|1 2
unit vectors in Q = — . Then S = QAQT.
V5o 1

0 1
If A3 = 0thenall \> =0soall A\ =0asin A = . If A is symmetric then
0 0

A3 = QA2QT = 0requires A = 0. The only symmetric A is Q0QT = zero matrix.

31 3 -3 3 9 12 64 —.48 36 .48
7 =2 +4 : =0 +25
1 3 -1 1 1112 16 —48 .36 A8 .64
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l 1 T2 ] is an orthogonal matrix so P; + P, = 331331T + wgwg =
x]
T1 T2 =QQ" =I;also P, P, = x(x]x2)xd = zero matrix.
2

Second proof: PP, = P;(I — P;) = P, — P, = 0 since P = P,.

A 0 0 A
A= has A = b and —:b. The block matrices and are
-b 0 0 A A 0
also skew-symmetric with A\ = ¢b (twice) and A = —ib (twice).

M is skew-symmetric and orthogonal; every A is imaginary with |A\| = 1. So A’s must
be 7, 7, —%, —1 to have trace zero.
i1 ) )
A= has A = 0,0 and only one independent eigenvector x = (i, 1).
1 —i
The good property for complex matrices is not AT = A (symmetric) but At =4

(Hermitian with real eigenvalues and orthogonal eigenvectors).

1 1 0 1 0 1 Perpendicular in )
Shas@Q@= |1 -1 0|;BhasX={0 1 0. Notperpendicularin X
0 01 0 0 2d| since ST =Sbut BT #B
1 3+4i| T )
S = is a Hermitian matrix (S~ = S). Its eigenvalues 6 and —4 are
3—4: 1

real. Here is the proof that )\ is always real when S =5:
Sx = Az leads to ST = A\x. Transpose to T1 S = T L\ using St =5

Then Z' Sz = L Az and also Z' S = TX Ax. So A = ) is real.

1 2| (b) Truefrom AT = QAQT = A
(a) False. A = (d) False!

0 1| (c) TruefromS—!=QA QT
(e) True. If x is a column of the identity matrix, then the energy ¥ Sz is a diagonal
entry of S. Since S is positive definite in this problem, each diagonal entry is a positive

number T Sz.
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0 1
A and AT have the same \’s but the order of the x’s can change. A =
-1 0

has \; = i and Ay = —i with &1 = (1,14) first for A but £, = (1, —i) is first for AT.

A is invertible, orthogonal, permutation, diagonalizable; B is projection, diagonaliz-

able. A allows QR, XAX 1, QAQT; B allows XAX ! and QAQ™.

Symmetry gives QAQT if b = 1; repeated X and no X if b = —1; singular if b = 0.
Orthogonal and symmetric requires |A\| = 1 and A real, so A = 1. Then S = £ or
cosf —sinf| |1 0 cosf sinf cos 26 sin 26
+5 =QAQT = =
sin cosf| |0 —1]| | —siné cosé sin20 — cos26

Eigenvectors (1,0) and (1, 1) give a 45° angle even with AT very close to A.

T
ai is |:q11 e q1n:| |:>\1§11 e )‘nal'n:| S )\max (|Q11|2 +- |q1n|2) = )\max-
(@) z¥(Az) = (Az)Tz = 2TATe = —xTAx so xTAx = 0. (b) Z' Az is pure

imaginary, its real part is T Az + yTAy = 0+ 0 (c) detA = A\;...\, >0 :
because pairs of \’s = ib, —ib multiply to give +b2.

Since S is diagonalizable with eigenvalue matrix A = 21, the matrix S itself has to be
XAX~! = X(2I)X~! = 2]. The unsymmetric matrix [2 1 ; 0 2] also has A = 2,2
but this matrix can’t be diagonalized.

(@) ST =Sand STS = Ileadto S? = I.

(b) The only possible eigenvalues of .S are 1 and —1.

I 0 T
(c) A= s0S = @
0 —I Qs

Suppose a > 0 and ac > b? so that also ¢ > b2 /a > 0.

= Q1Q7 — Q2Q7 with QT Q2=0.

Q1 Qz] A

(i) The eigenvalues have the same sign because A\; Ay = det = ac — b? > 0.

(ii) That sign is positive because A1 + Ay > 0 (it equals the trace a + ¢ > 0).
10 o .
Only Sy = has two positive eigenvalues since 101 > 102,
10 101
2 S1x = 522 4 12x129 + T2 is negative for example when 1 = 4 and x5 = —3:

Aj is not positive definite as its determinant confirms; Ss has trace ¢g; S3 has det = 0.
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27

28

29

30

31

32

33

34

35

Positive definite [ 1 0 17 1 b [ 1 0 17 1 0 1 0

= =LDLT
for—3<b<3 b 1|0 9—-10b2 b 1|0 9-v2||0 1
Positive definite 1 0] |2 4 1 0]1(2 0

= =LDILT.
forc > 8 2 1110 ¢—8 2 1 0 c—8](0 1
Positive definite 1 0 c 0

L = D= S=LDL"T.

for ¢ > |b| —b/c 1 0 c—b*ec

22 +4xy+3y? = (z+2y)? —y? = difference of squares is negativeat v = 2,y = —1,
where the first square is zero.

0 1 0 1 T
S = produces f(z,y) = |:x y} = 2xy. Shas A = 1 and
1 0 1 0 Y

A = —1. Then S is an indefinite matrix and f(x,y) = 2xy has a saddle point.

2 3 3
1 2 6 5 .. . .
ATA = and ATA = are positive definite; ATA= |3 5 4] is
2 13 5 6
3 4 5

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; third AT A is singular.

2 -1 0 2 -1 -1 1 0
has pivots o
S=1-1 2 -1 5 4 T=|-1 2 —1|issingular; T |1| =10
27_7_;
0 -1 2 273 —1 -1 2 1 0

Corner determinants | S| = 2,

Sa| =6,

S3| = 30. The pivots are 2/1,6/2,30/6.

S is positive definite for ¢ > 1; determinants ¢,c? — 1, and (¢ — 1)%(c + 2) > 0.
T is never positive definite (determinants d — 4 and —4d + 12 are never both positive).
L5, . . .
S = is an example with a + ¢ > 2b but ac < b?, so not positive definite.
5 10
The eigenvalues of S~ are positive because they are 1/A(S). Also the energy is

'S 1z = (S7'z)TS(S~1x) > 0 forall = # 0.

xSz is zero when (1, 22, 73) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally £ Sx goes negative for x = (1, —10,0) because the second pivot is negative.
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36

37

38

39

40

41

42

43

44

45

46

Solutions to Problem Sets

If aj; were smaller than all \’s, S — a;;1 would have all eigenvalues > 0 (positive
definite). But .S — a;;I has a zero in the (7, j) position; impossible by Problem 35.

(a) The determinant is positive; all A > 0  (b) All projection matrices except [
are singular  (c) The diagonal entries of D are its eigenvalues

(d) S = —1I has det = +1 when n is even, but this S is negative definite.

S is positive definite when s > 8; T is positive definite when ¢ > 5 by determinants.

1 —1| |9 11

A— |1 1 Vill-1 1 _ 2 1 A-0 4 0 o — 31
V2 V2 1 2 0 2 1 3
] 1 1/2 ) 1 3
The ellipse 2 + zy + y> = 1 comes from S = with A\ = = and —.
/2 1 22
The axes have half-lengths \/5 and /2/3.
S=CTC 9 3 4 8 1 0| |4 o1 2 2 4
— ; = and C =
S not A 3 5 8 25 2 1 0 9]0 1 0o 3
3 00 1 1 1
T
The Cholesky factors C' = (L\/E) =10 1 2landC = |0 1 1 | have
00 2 00 V5

square roots of the pivots from D. Note again CTC = LDLT = S.
(a) det S = (1)(10)(1) = 10; (b) A = 2 and 5; (¢) 1 = (cosfsinf) and
X2 = (—sin 6, cosf); (d) The \’s are positive, so S is positive definite.
ax® + 2bzxy + cy? has a saddle point if ac < b2. The matrix is indefinite (A < 0 and
A > 0) because the determinant ac — b? is negative.
If ¢ > 9 the graph of z is a bowl, if ¢ < 9 the graph has a saddle point. When ¢ = 9 the
graph of z = (2x + 3y)? is a “trough” staying at zero along the line 2z + 3y = 0.
A product ST of symmetric positive definite matrices comes into many applications.
The “generalized” eigenvalue problem Ka = AMx has ST = M ~' K. (Often we use
eig( K, M) without actually inverting M.) All eigenvalues A of ST are positive :

STx = M\ gives (Tx)"STx = (Tx)"A\z. Then A = ' TTSTx /=" Tx > 0.
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47

48

49

Put parentheses in zT ATC Az = (Az)TC(Ax). Since C is assumed positive definite,
this energy can drop to zero only when Az = 0. Sine A is assumed to have independent
columns, Az = 0 only happens when = 0. Thus ATC A has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-
plied Mathematics start with many examples of ATC A in a wide range of applications.

I believe positive definiteness of ATC A is a unifying concept from linear algebra.

(a) The eigenvalues of \yI — S are \; — A\, A1 — Ao, ..., A1 — A\y,. Those are > 0;

A1 — S is semidefinite.
(b) Semidefinite matrices have energy zT (MI—S)x2 > 0. Then A, zTx > 2T Sz.

(c) Part (b) says T Sx/xTx < \; for all . Equality at the eigenvector with Sz =

A1z. So the maximum value of zT Sz /zTx is \;.
Energy ' Sz = a (v1+x2+x3)? +c(v9—x3)? > 0ifa > 0 and ¢ > 0: semidefinite.

S has rank < 2 and determinant = 0; cannot be positive definite for any a and c.
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Problem Set 6.4, page 269

1 142 1
1z:l—ileadstozz1+iandr=\/§and; :W—Efﬁ»z) = 5(1"‘2)
™
do=-" = 45°
an 1

1—XA 1+ o
2 det = A2 —3)\+2— 2 =0 gives eigenvalues A = 3 and 0.

1—7 2—-2AX
3 If Qr = Az then ||Qx|| = || ||z||. Square both sides and use @TQ = [ to find

|A|> = 1. Therefore |A| = 1 for unitary matrices Q.

e

1 1 1 [ 1 1 1
4 Fy= |1 /3 43 | =11 1(-1+v3i) 3(-1-+34)
1 edml/3 e8ml/3 |1 3 (-1-V3i) i(-1+VBi)
1 columns
) I B F; 0
5 Fs = 6 by 6 matrix = 0,2,4,1,3,5
I -B 0 F;
- of I (6 by 6)
2mi/6_,4mi/6

The 3 by 3 matrix B is diagonal with entries 1, e

1 1 1 1 2 1 4 4 4
6CD=|1 11 11 2|=14 4 4
1 1 1 2 1 1 4 4 4

121

111

121

121

121
convolutionck d 1 3 4 3 1 reducesto4 4 4 forcyclic convolutionc & d

4 1 1
7 ConvolutionRule F(¢ ® d) = (Fe¢).x (Fd). ThisisF' | 4 | =F | 1 |.xF | 2

4 1 1
with the 3 by 3 Fourier matrix F' = F3: Multiply components for . .



Solutions to Problem Sets 107

10

11

12

13

14

15

(4] [1 1 1 1] [
Fl 4| = 1 e2mi/3  p4mi/3 4 | = 0
4 1 eAmi/3  8mi/3 4 0
1 3 1 4 3 4 12
F 1 — 0 F ) — 271'1/3 and 0 .k 627”'/3 0
1 0 1 471'2/5 0 647”'/3 0
1
cosf+ising = (1 - 592 + - ) ( - —+- ) = 1+i0+— (29) (i9)3+
(€?) (e'9) = 2 is (cos  + isin§)? = cos 26 + i sin 26.

The left side is cos? 6 4 2i cos 0 sin 6 + i2 sin? 6.

Matching the right side gives cos 26 = cos? § — sin? § and sin 20 = 2 cos 6 sin 6
The eigenvalues of a circulant matrix C' are F'c in equation (10).

If C is invertible then all its eigenvalues must be nonzero.

In that case C~! is also a circulant because its entries (from the formula for C 1) are

also constant down each (cyclic) diagonal. There are other proofs too.
This problem is looking for a solution !

An n by n circulant matrix has ¢ =c (Hermitian) if its diagonal entries have c real,
€1 = Cpn_1,C2 = Cn_a, ... The circulant has clo=1 (unitary) if |co + 1z + - -+ +
Cn1x" 2 =1

Columns 0 and 2 of the Fourier matrix Fy in equation (7) add to (2,0, 2,0). Columns
1 and 3 add to (2,0,—2,0).

z = w? = €2™/32 would be a 32nd root of 1: 22 = 1.

2 = /w = e2™/128 would be a 128th root of 1.

The 4 eigenvalues 0, 2, 4, 2 of C' come from the eigenvalues 1,7, —1, —i of Pj.

A=2-1-1=0 A=2-i—=2 A=2-(-1)—(-1)* =4  IN=24i+i’=2.
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Problem Set 6.5, page 280

1
1 Eigenvalues 4 and 1 with eigenvectors (1,0) and (1, —1) give solutions u; = e*!
0
1 ) 1 1
and uy = e . If w(0) = =3 + 2 , then use those
-1 -2 0 -1

—_
—_

coefficients 3 and 2: u(t) = 3e*t + 2e¢?
0 -1

2 z(t) = 2¢! solves dz/dt = z with 2(0) = 2. Then dy/dt = 4y — 6e! with y(0) = 5

gives y(t) = 3e** + 2¢! as in Problem 1.

3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and A = 0 is an eigenvalue.

-2 3
(b) The eigenvalues of A = are Ay = 0 with eigenvector z; = (3,2) and
2 -3
Ao = —5 (to give trace = —5)_with @2 = (1, —1). Then the usual 3 steps:
4 3 1
1. Write u(0) = as + = x; + x2 = combination of eigenvectors
1 2 -1
2. The solutions follow those eigenvectors: ¢”'x; and e~z
3. The solution u(t) = x1 + e 5tx; has steady state x; = (3,2) since e >* — 0.
4 dlv + w)/dt = (w—v) 4+ (v —w) = 0, so the total v + w is constant.
-1 1 A=0 1 1
A= has with 1 = , Loy =
I -1 Ay = =2 1 -1
v(0) 30 1 1 v(1) =20+ 10e72  v(o0) =2
= =20 +10 leads to
w(0) 10 1 -1 w(1) =20 — 10e=2  w(oo) =2
d |v 1 -1
5 — = has A = 0 and A = +2: v(t) = 20 + 10e?* — —o0 as
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a 1
6 A= has real eigenvalues a+1 and a — 1. These are both negativeifa < —1.

1 a
In this case the solutions of du /dt = Aw approach zero.

b —1
B = has complex eigenvalues b+ ¢ and b — i. These have negative real parts
1 b

if b < 0. In this case all solutions of dv /dt = Bwv approach zero.

7 A projection matrix has eigenvalues A = 1 and A = 0. Eigenvectors Px = « fill the

subspace that P projects onto: here = (¢, c¢). Eigenvectors with Px = 0 fill the

perpendicular subspace: here x = (¢, —c). For the solution to du/dt = —Pu,
3 2 1 . 2 ot 1 1
u(0) = = + u(t) =e” +e approaches
1 2 -1 2 -1 -1
6 — 2 1 ,
8 has A\ =5, ¢1 = c A =2, g = ; rabbits 7(t) = 20e% +10e?,
2 1 1 2

w(t) = 10e% + 20e?!. The ratio of rabbits to wolves approaches 20/10; (somewhat

against nature) > dominates.

4 1 1 1 , 1 4cost
9 (a) =2 +2 . (b) Thenu(t) = 2% +2e7 =
0 ) —1 ) —1 4sint
d ! 0 1
10 — L I L Y . This correctly givesy’ =y’ and y” = 4y+5y’.
dt y/_ _y// 4 5 Y/
0 1
A= has det(A — M) = A2 — 5\ — 4 = 0. Directly substituting y = e*! into
4 5
y’' =5y + Zly also gives A2 = 5\ + 4 and the same two values of \. Those values are

(5 £ v/41) by the quadratic formula.

N[
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11

12

13

14

15

16

17

18

19
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0 1 1 ¢
The series for et is et = J + ¢ + zeros = . Then
0 0 0 1

y(®) = bt y(0) = y(0) +y (0}t . This y(t) = y(0) + y'(0)t solves

y'(t) 0 1] |¥(0) y'(0)
the equation—the factor ¢ tells us that A had only one eigenvector : not diagonalizable.

0
A= has trace 6, det 9, A = 3 and 3 with one independent eigenvector

-9 6

(1,3). Substitute y = te3! to show that this gives the needed second solution (y = €%

is the first solution).

(a) y(t) = cos 3t and sin 3¢ solve y”" = —9y. Itis 3 cos 3¢ that starts with y(0) = 3 and

01
y'(0) = 0. (b) A= has det = 9: A\ = 3¢ and —3i with eigenvectors
-9 0

1 1 3 ., 1] 3 1 3 cos 3t
T = and . Thenu(t) = 5 +5 .
31 —3i 3% —31 —9sin 3t

When A is skew-symmetric, the derivative of |[u(t)||? is zero. Then ||u(t)|| = |[e*u(0))|

A

stays at ||u(0)||. So the matrix e is orthogonal when A is skew-symmetric (AT =—A4).

u, = 4 and u(t) = ce’+4. For the matrix equation, the particular solution u, = A~'b
K 1 0 4
is and u(t) = cref + o€t +
2 t 1 2
Aty _ 274 1432 1 4443 — 14242 1 43,3
ddi(eA) = A+ A%t + S AB? + S AP o = AT+ At + 5 A2 4+ G AP ).

This is exactly Ae“?, the derivative we expect from e“*.

1 —4t 0 —4
eBt = I + Bt (short series with B? = 0) = . Derivative = =
0 1 0 0

BeP' = B in this example.

The solution at time ¢ + T is eA(*+7)4(0). Thus e times 47 equals eA(¢+7),

A? = AgiveseM =T+ At + LA2 + LA+ =T+ (¢! — 1)A
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21

22

23

24

25

26

111

e 4le—1) L - . o
et = from 21 and e® = from 19. By direct multiplication
0 1 0 1
A_B B, A A+B 0
e“e” £e et #e =
0 1
2 .
1 3 1 3
The matrix has A? = = = A. Then all A* = A. So edt =
0 0 0 0
et 3(et —1) ‘
T+ (t+t2/20 4+ - )A=T+(e! —1)A = as in Problem 19.
0 0

At (b) If Az = A then eM*x = eMax and e # 0.

(a) The inverse of et is e~

To see e, write (I + At + $A%2 + - Yz = (1 + M+ A2 + -z = eMa.

1 0 1 0 1 At 1 At
Invert toproduceU,,+1 = U, = U,.
At 1 At 1[0 1 —At 11— (At)?
1 . . .
At At = 1, has A = e'™/3 and e~*"/3. Both eigenvalues have A% = 1 so
-1 0

A8 = I. Therefore Ug = ASU comes exactly back to U.

First A has A\ = &4 and A* = I. 1—-2n —2n )
Linear growth.
Second Ahas A = —1,—1and A" = (—1)" 2n 2n+1
. . . 1 1-a? 2a
With a = At/2 the trapezoidal step is U, 11 = — U,.
B Y
That matrix has orthonormal columns =- orthogonal matrix = ||U p41|| = ||[U ||

For proof 2, square the start of the series to see (I + A+ $ A% + £ A43)2 = I + 24+
2(24)%+ 1 (24)3 + - - -. The diagonalizing proof is easiest when it works (but it needs

a diagonalizable A).





