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Solutions to Problem Sets 1

Problem Set 1.1, page 6

1 c = ma and d = mb lead to ad = amb = bc. With no zeros, ad = bc is the equation

for a 2× 2 matrix to have rank 1.

2 The three edges going around the triangle are u = (5, 0),v = (−5, 12),w = (0,−12).
Their sum is u + v + w = (0, 0). Their lengths are ||u|| = 5, ||v|| = 13, ||w|| = 12.

This is a 5− 12− 13 right triangle with 52 + 122 = 25 + 144 = 169 = 132—the best

numbers after the 3− 4− 5 right triangle if we don’t count 6− 8− 10.

3 The combinations give (a) a line in R3 (b) a plane in R3 (c) all of R3.

4 v +w = (2, 3) and v −w = (6,−1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

w =

[
−2
2

] v +w =

[
2

3

]

v =

[
4

1

]

v −w =

[
6

−1

]

−w

5 This problem gives the diagonals v + w = (5, 1) and v − w = (1, 5) of the paral-

lelogram and asks for the sides v and w : The opposite of Problem 4. In this example

v = (3, 3) and w = (2,−2). Those come from v = 1
2 (v + w) + 1

2 (v − w) and

w = 1
2 (v +w)− 1

2 (v −w).

v −w

v

v +w

w



2 Solutions to Problem Sets

6 3v +w = (7, 5) and cv + dw = (2c+ d, c+ 2d).

7 u+v = (−2, 3, 1) andu+v+w = (0, 0, 0) and 2u+2v+w = ( add first answers) =

(−2, 3, 1). The vectors u,v,w are in the same plane because a combination u+v+w

gives (0, 0, 0). Stated another way : u = −v −w is in the plane of v and w.

8 The components of every cv+dw add to zero because the components of v = (1,−2, 1)
and of w = (0, 1,−1) add to zero. c = 3 and d = 9 give 3v+9w = (3, 3,−6). There

is no solution to cv + dw = (3, 3, 6) because 3 + 3 + 6 is not zero.

9 The nine combinations c(2, 1) + d(0, 1) with c = 0, 1, 2 and d = 0, 1, 2 will lie on a

lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

c = 2, d = 2

c = 2, d = 0c = 0, d = 2

c = 0, d = 1

c = 0, d = 0

10 The question is whether (a, b, c) is a combination x1u+ x2v. Can we solve

x1




1

1

0


+ x2




0

1

1


 =




a

b

c


 ?

Certainly x1 has to be a. Certainly x2 has to be c. So the middle components give the

requirement a + c = b.

11 The fourth corner can be (4, 4) or (4, 0) or (−2, 2). Draw 3 possible parallelograms !

12 Four more corners (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is
(
1
2 ,

1
2 ,

1
2

)
.

Centers of 6 faces :
(
1
2 ,

1
2 , 0
)
,
(
1
2 ,

1
2 , 1
)

&
(
0, 12 ,

1
2

)
,
(
1, 1

2 ,
1
2

)
&
(
1
2 , 0,

1
2

)
,
(
1
2 , 1,

1
2

)
.12 edges.

13 The combinations of i = (1, 0, 0) and i+ j = (1, 1, 0) fill the xy plane in xyz space.

14 (a) Sum = zero vector. (b) Sum = −2:00 vector = 8:00 vector.

(c) 2:00 is 30◦ from horizontal = (cos π
6 , sin

π
6 ) = (

√
3/2, 1/2).
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15 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 12j = (0, 12).

16 First part : u,v,w are all in the same direction.

Second part : Some combination of u,v,w gives the zero vector but those 3 vectors

are not on a line. Then their combinations fill a plane in 3D.

17 The two equations are c+ 3d = 14 and 2c+ d = 8. The solution is c = 2 and d = 4.

18 The point
3

4
v +

1

4
w is three-fourths of the way to v starting from w. The vector

1

4
v +

1

4
w is halfway to u =

1

2
v +

1

2
w. The vector v +w is 2u (the far corner of the

parallelogram).

19 The combinations cv + dw with 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 fill the parallelogram with

sides v and w. For example, if v = (1, 0) and w = (0, 1) then cv + dw fills the unit

square. In a special case like v = (a, 0) and w = (b, 0) these combinations only fill a

segment of a line.

With c ≥ 0 and d ≥ 0 we get the infinite “cone” or “wedge” between v and w.

For example, if v = (1, 0) and w = (0, 1), then the cone is the whole first quadrant

x ≥ 0, y ≥ 0. Question: What if w = −v? The cone opens to a half-space. But the

combinations of v = (1, 0) and w = (−1, 0) only fill a line.

20 (a) 1
3u + 1

3v + 1
3w is the center of the triangle between u,v and w; 1

2u + 1
2w lies

halfway between u and w (b) To fill the triangle keep c ≥ 0, d ≥ 0, e ≥ 0, and

c+ d+ e = 1.

21 The sum is (v−u)+(w−v)+(u−w) = zero vector. Those three sides of a triangle

are in the same plane !

22 The vector 1
2 (u+ v+w) is outside the pyramid because c+ d+ e = 1

2 +
1
2 + 1

2 > 1.

23 All vectors in 3D are combinations of u,v,w as drawn (not in the same plane). Start by

seeing that cu+dv fills a plane, then adding all the vectors ew fills all of R3. Different

answer when u,v,w are in the same plane.
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24 A four-dimensional cube has 24 = 16 corners and 2 · 4 = 8 three-dimensional faces

and 24 two-dimensional faces and 32 edges.

25 Fact : For any three vectors u,v,w in the plane, some combination cu + dv + ew is

the zero vector (beyond the obvious c = d = e = 0). So if there is one combination

Cu+Dv+Ew that produces b, there will be many more—just add c, d, e or 2c, 2d, 2e

to the particular solution C,D,E.

The example has 3u − 2v + w = 3(1, 3) − 2(2, 7) + 1(1, 5) = (0, 0). It also has

−2u+ 1v + 0w = b = (0, 1). Adding gives u − v +w = (0, 1). In this case c, d, e

equal 3,−2, 1 and C,D,E = −2, 1, 0.

Could another example have u,v,w that could NOT combine to produce b ? Yes. The

vectors (1, 1), (2, 2), (3, 3) are on a line and no combination produces b. We can easily

solve cu+ dv + ew = 0 but not Cu+Dv + Ew = b.

26 The combinations of v and w fill the plane unless v and w lie on the same line through

(0, 0). Four vectors whose combinations fill 4-dimensional space: one example is the

“standard basis” (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1).

27 The equations cu+ dv + ew = b are

2c −d = 1

−c +2d −e = 0

−d+2e = 0

So d = 2e

then c = 3e

then 4e = 1

c = 3/4

d = 2/4

e = 1/4
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Problem Set 1.2, page 15

1 u · v = −2.4 + 2.4 = 0, u ·w = −.6 + 1.6 = 1, u · (v + w) = u · v + u · w =

0 + 1,w · v = 4 + 6 = 10 = v ·w.

2 The lengths are ‖u‖ = 1 and ‖v‖ = 5 and ‖w‖ =
√
5. Then |u · v| = 0 < (1)(5) and

|v ·w| = 10 < 5
√
5, confirming the Schwarz inequality.

3 Unit vectors v/‖v‖ = (45 ,
3
5 ) = (0.8, 0.6) and w/‖w‖ = (1/

√
5, 2/
√
5). The vectors

w, (2,−1), and −w make 0 ◦, 90 ◦, 180 ◦ angles with w. The cosine of θ is v
‖v‖ ·

w
‖w‖ = 10/5

√
5 = 2/

√
5.

4 For unit vectors u,v,w : (a) v · (−v) = −1 (b) (v +w) · (v −w) = v · v +

w · v − v ·w −w ·w = 1+ ( )− ( )− 1 = 0 so θ = 90◦ (notice v ·w = w · v)

(c) (v − 2w) · (v + 2w) = v · v − 4w ·w = 1− 4 = −3.

5 u1 = v/‖v‖ = (1, 3)/
√
10 and u2 = w/‖w‖ = (2, 1, 2)/3. U1 = (3,−1)/

√
10 is

perpendicular to u1 (and so is (−3, 1)/
√
10). U2 could be (1,−2, 0)/

√
5: There is a

whole plane of vectors perpendicular to u2, and a whole circle of unit vectors in that

plane.

6 All vectors w = (c, 2c) are perpendicular to v = (2,−1). They lie on a line. All

vectors (x, y, z) with x + y + z = 0 lie on a plane. All vectors perpendicular to both

(1, 1, 1) and (1, 2, 3) lie on a line in 3-dimensional space.

7 (a) cos θ = v · w/‖v‖‖w‖ = 1/(2)(1) so θ = 60◦ or π/3 radians (b) cos θ =

0 so θ = 90◦ or π/2 radians (c) cos θ = 2/(2)(2) = 1/2 so θ = 60◦ or π/3

(d) cos θ = −5/
√
10
√
5 = −1/

√
2 so θ = 135◦ or 3π/4 radians.

8 (a) False: v and w are any vectors in the plane perpendicular to u (b) True :

u · (v + 2w) = u · v + 2u · w = 0 (c) True, ‖u − v‖2 = (u − v) · (u − v)

splits into u · u+ v · v = 2 when u · v = v · u = 0.

9 If v2w2/v1w1 = −1 then v2w2 = −v1w1 or v1w1+v2w2 = v ·w = 0: perpendicular !

The vectors (1, 4) and (1,− 1
4 ) are perpendicular because 1− 1 = 0.
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10 Slopes 2/1 and −1/2 multiply to give −1. Then v · w = 0 and the two vectors

(the arrow directions) are perpendicular.

11 v · w < 0 means angle > 90◦; these w’s fill half of 3-dimensional space. Draw a

picture to show v and the w’s.

12 (1, 1) is perpendicular to (1, 5)− c(1, 1) if (1, 1) · (1, 5)− c(1, 1) · (1, 1) = 6− 2c = 0

(then c = 3). v · (w − cv) = 0 if c = v · w/v · v. Subtracting cv is the key to

constructing a perpendicular vector w − cv.

13 One possibility among many: u = (1,−1, 0, 0),v = (0, 0, 1,−1),w = (1, 1,−1,−1)
and (1, 1, 1, 1) are perpendicular to each other. “We can rotate those u,v,w in their

3D hyperplane and they will stay perpendicular.”

14
1
2 (x + y) = (2 + 8)/2 = 5 and 5 > 4; cos θ = 2

√
16/
√
10
√
10 = 8/10.

15 ‖v‖2 = 1+1+ · · ·+1 = 9 so ‖v‖ = 3;u = v/3 = (13 , . . . ,
1
3 ) is a unit vector in 9D;

w = (1,−1, 0, . . . , 0)/
√
2 is a unit vector in the 8D hyperplane perpendicular to v.

16 cosα = 1/
√
2, cosβ = 0, cos γ = −1/

√
2. For any vector v = (v1,v2,v3) the

cosines with the 3 axes are cos2 α+ cos2 β + cos2 γ=(v21 + v22 + v23)/‖v‖2= 1.

17 ‖v‖2 = 42 + 22 = 20 and ‖w‖2 = (−1)2 + 22 = 5. Pythagoras is ‖(3, 4)‖2 = 25 =

20 + 5 for the length of the hypotenuse v +w = (3, 4).

18 ||v + w||2 = (v + w) · (v + w) = v · (v + w) + w · (v + w). This expands to

v · v + 2v ·w +w ·w = ||v||2 + 2||v|| ||w|| cos θ + ||w||2.

19 We know that (v−w) · (v−w) = v ·v− 2v ·w+w ·w. The Law of Cosines writes

‖v‖‖w‖ cos θ for v · w. Here θ is the angle between v and w. When θ < 90◦ this

v ·w is positive, so in this case v · v +w ·w is larger than ‖v −w‖2.

Pythagoras changes from equality a2+b2 = c2 to inequality when θ < 90 ◦ or θ > 90 ◦.

20 2v ·w ≤ 2‖v‖‖w‖ leads to ‖v+w‖2 = v ·v+2v ·w+w ·w ≤ ‖v‖2+2‖v‖‖w‖+
‖w‖2. This is (‖v‖+ ‖w‖)2. Taking square roots gives ‖v +w‖ ≤ ‖v‖+ ‖w‖.

21 v21w
2
1 + 2v1w1v2w2 + v22w

2
2 ≤ v21w

2
1 + v21w

2
2 + v22w

2
1 + v22w

2
2 is true (cancel 4 terms)

because the difference is v21w
2
2 + v22w

2
1 − 2v1w1v2w2 which is (v1w2 − v2w1)

2 ≥ 0.
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22 Example 6 gives |u1||U1| ≤ 1
2 (u

2
1 + U2

1 ) and |u2||U2| ≤ 1
2 (u

2
2 + U2

2 ). The whole line

becomes .96 ≤ (.6)(.8) + (.8)(.6) ≤ 1
2 (.6

2 + .82) + 1
2 (.8

2 + .62) = 1. True : .96 < 1.

23 The cosine of θ is x/
√
x2 + y2, near side over hypotenuse. Then | cos θ|2 is not greater

than 1 : x2/(x2 + y2) ≤ 1.

24 These two lines add to 2||v||2 + 2||w||2 :

||v +w||2 = (v +w) · (v +w) = v · v + v ·w +w · v +w ·w

||v −w||2 = (v −w) · (v −w) = v · v − v ·w −w · v +w ·w

25 The length ‖v−w‖ is between 2 and 8 (triangle inequality when ‖v‖ = 5 and ‖w‖ =
3). The dot product v ·w is between −15 and 15 by the Schwarz inequality.

26 Three vectors in the plane could make angles greater than 90◦ with each other: for

example (1, 0), (−1, 4), (−1,−4). Four vectors could not do this (360◦ total angle).

How many can can be perpendicular to each other in R3 or Rn? Ben Harris and Greg

Marks showed me that the answer is n + 1. The vectors from the center of a regular

simplex in Rn to its n+1 vertices all have negative dot products. If n+2 vectors in Rn

had negative dot products, project them onto the plane orthogonal to the last one. Now

you have n+1 vectors in Rn−1 with negative dot products. Keep going to 4 vectors in

R2 : no way!

27 The columns of the 4 by 4 “Hadamard matrix” (times 1
2 ) are perpendicular unit

vectors:

1

2
H =

1

2




1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




The columns have

1
4 + 1

4 + 1
4 + 1

4 = 1.

Their dot products

are all zero.

.

28 The commands V = randn (3, 30);D = sqrt (diag (V ′ ∗ V )); U = V \D; will give

30 random unit vectors in the columns of U . Then u ′ ∗ U is a row matrix of 30 dot

products whose average absolute value should be close to 2/π.
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29 The four vectors v1,v2,v3,v4 must add to zero. Then the four corners of the quadri-

lateral could be 0 and v1 and v1 + v2 and v1 + v2 + v3. We are allowing the side

vectors v to cross each other—can you answer if that is not allowed ?
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Problem Set 1.3, page 24

1 The column space C(A1) is a plane in R3 : the two columns of A1 are independent

The column space C(A2) is all of R3

The column space C(A3) is a line in R3

2 The combination Ax = column 1−2 (column 2) + column 3 is zero for both matrices.

This leaves 2 independent columns. So C(A) is a (2-dimensional) plane in R3.

3 B has 2 independent columns so its column space is a plane. The matrix C has the

same 2 independent columns and the same column space as B.

4 Ax =




14

28

2




Typical dot product is

2(1) + 1(2) + 2(5) = 14
By =




4

8

18


 Iz = z =




z1

z2

z3




5 Ax = 1




2

4

0


+ 2




1

2

1


+ 5




2

4

0


 =




14

28

2




By = 4




1

1

1


+ 4




0

1

1


+ 10




0

0

1


 =




4

8

18




Iz = z1




1

0

0


+ z2




0

1

0


+ z3




0

0

1


 =




z1

z2

z3




6 A has 2 independent columns, B has 3, and A+B has 3. These are the ranks of A and

B and A+B. The rule is that rank(A+B) ≤ rank(A) + rank(B).

7 (a) A =


 1 3

2 4


 B =


 3 1

4 2


 A+B =


 4 4

6 6


 = rank 1

(b) A =


 1 3

2 4


 B =


 −1 −3

−2 −4


 A+B =


 0 0

0 0


 = rank 0
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(c) A =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




B =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




A+B = I = rank 4

8 The column space of A is all of R3. The column space of B is a line in R3. The

column space of C is a 2-dimensional plane in R3. If C had an additional row of zeros,

its column space would be a 2-dimensional plane in R4.

9 A =




1 1 2

1 1 1

1 2 1




Seven ones is the maximum for

rank 3. With eight ones, two

columns will be equal

10 A =


 3 9

5 15


 has rank 1 : 1 independent column,

1 independent row

B =


 1 2 −5

4 8 −20


 has 1 independent column in R2,

1 independent row in R3

11 (a) If B has an extra zero column, A and B have the same column space. Different row

spaces because of different row lengths !

(b) If column 3 = column 2− column 1, A and B have the same column spaces.

(c) If the new column 3 in B is (1, 1, 1), then the column space is not changed or

changed depending whether (1, 1, 1) was already in C(A).

12 If b is in the column space of A, then b is a combination of the columns of A and

the numbers in that combination give a solution x to Ax = b. The examples are solved

by (x1, x2) = (1, 1) and (1,−1) and
(
− 1

2 ,
1
2

)
.

13 A =




1 0

−1 1

0 −1


 B =




1 0

0 2

−1 −2


 A + B =




2 0

−1 3

−1 −3


 has the

same column space as A and B (other examples could have a smaller column space :

for example if B = −A in which case A+B = zero matrix).



Solutions to Problem Sets 11

14 A =




1 0 2

3 1 9

5 0 10


 has column 3 = 2 (column 1) +3 (column 2)

A =




1 4 7

2 5 8

3 6 9


 has column 3 = −1 (column 1) +2 (column 2)

A =




1 1 2

2 2 4

0 0 q


 has 2 independent columns if q 6= 0

15 If Ax = b then the extra column b in
[
A b

]
is a combination of the first columns,

so the column space and the rank are not changed by including the b column.

16 (a) False : B could be −A, then A+B has rank zero.

(b) True : If the n columns of A are independent, they could not be in a space Rm with

m < n. Therefore m ≥ n.

(c) True : If the entries are random and the matrix has m = n (or m ≥ n), then the

columns are almost surely independent.

17 rank 2 :


 1 0

0 0


+


 0 0

0 1


 rank 1 :


 1 0

0 0


+


 1 0

0 0




rank 0 :


 1 0

0 0


−


 1 0

0 0




18 3




1

1

1


+ 4




0

1

1


+ 5




0

0

1


 =




3

7

12


 = Sx = b

S =




1 0 0

1 1 0

1 1 1


 and the 3 dot products in Sx are 3, 7, 12
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19 Suppose a = mc and b = md (all nonzero). Then amd = bmc. Then a/b = c/d.

If those ratios are M , then (a, c) = M(b, d).

20 Sy =




1 0 0

1 1 0

1 1 1







y1

y2

y3


 =




c1

c2

c3


 is solved by y =




c1

c2 − c1

c3 − c2


. This is

y = S−1c =




1 0 0

−1 1 0

1 −1 1







c1

c2

c3


. S is square with independent columns. So S

has an inverse with SS−1 = S−1S = I .

21 To solve Ax = 0 we can simplify the 3 equations (this is the subject of Chapter 2).

Start from Ax = 0

x1 +2x2+3x3= 0

3x1 +5x2+6x3= 0

4x1 +7x2+9x3= 0

Row 2− 3(row 1)

row 3− 4(row 1)

x1 +2x2+3x3 = 0

− x2− 3x3 = 0

− x2− 3x3 = 0

If x3 = 1 then x2 = −3 and x1 = 3. Any answer x = (3c,−3c, c) is correct.

22




1 1 0

3 2 1

7 4 c = 3







1 0 c = −1

1 1 0

0 1 1







0 0 0

2 1 5

3 3 6





 2 −1
−4 2





 −2 1

4 −2




have

dependent

columns

23 The equation Ax = 0 says that x is perpendicular to each row of A (three dot products

are zero). So x is perpendicular to all combinations of those rows. In other words, x is

perpendicular to the row space (here a plane).

An important fact for linear algebra : Every x in the nullspace of A (meaning Ax = 0)

is perpendicular to every vector in the row space.
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Problem Set 1.4, page 35

1 Here are the 4 ways to multiply AB and the operation counts. A is m by n, B is n by p.

Row i times column k mp dot products, n multiplications each

Matrix A times column k p columns, mn multiplications each

Row i times matrix B m rows, np multiplications each

Column j of A times row j of B n (columns) (rows), mp multiplications each

2 A =
[
a a a

]
factors into CR =

[
a
][

1 1 1
]

3




1 0 0

1 1 0

1 1 1







1 0 0

−1 1 0

1 −1 1


 =




1 0 0

0 1 0

1 0 1




[
1 2 3

]


4

5

6


 =

[
32
]




4

5

6




[
1 2 3

]

=




4 8 12

5 10 15

6 12 18




4 (a)
[
1 1

]
 1

1



[
1 1 1

]

= 2
[
1 1 1

]
=
[
2 2 2

]

[
1 1

]


1

1

1




[
1 1 1

]

=
[
1 1

]



1 1 1

1 1 1

1 1 1


=

[
2 2 2

]

(b)


 1 2

0 1




 1 3

0 1




 1 4

0 1


 =


 1 5

0 1




 1 4

0 1


 =


 1 9

0 1





 1 2

0 1




 1 3

0 1




 1 4

0 1


 =


 1 2

0 1




 1 7

0 1


 =


 1 9

0 1




5 A has 7 columns and 4 rows. Those columns are vectors in 4-dimensional space. We

cannot have 5 independent column vectors because we cannot have 5 independent vec-

tors in 4-dimensional space. (This is really just a restatement of the problem. The proof
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comes in Section 3.2 : Every m by n matrix C, with m < n has a nonzero solution to

Cx = 0. Here m = 4 and n = 5 and 5 columns of C cannot be independent.)

6 A =




2 −2 1 6 0

1 −1 0 2 0

3 −3 0 6 1


 C =




2 1 0

1 0 0

3 0 1




7 CR =




2 1 0

1 0 0

3 0 1







1 −1 0 2 0

0 0 1 2 0

0 0 0 0 1


 = A in Problem 6.

8 A =




2 2 2

0 4 4

0 0 6


 =




2 2 2

0 4 4

0 0 6







1

1

1


 = AI

A = C

and

R = I

B =




2 2 2

0 0 4

0 0 6


 =




2 2

0 4

0 6





 1 1 0

0 0 1



= CR

9 A random 4 by 4 matrix has independent columns (C=A andR=I) with probability 1.

(We could be choosing the 16 entries of A between 0 and 1 with uniform probability

by A = rand(4, 4). We could be choosing those 16 entries of A from a “bell-shaped”

normal distribution by A = rand(4, 4). If we were choosing those 16 entries from

a finite list of numbers, then there is a nonzero probability that the columns of A are

dependent. In fact a nonzero probability that all 16 numbers are the same.)

10 If A is a random 4 by 5 matrix, then (using rand or randn as above) with probability 1

the first 4 columns are independent and go into C. With probability zero (this does not

mean it can’t happen !) the first 4 columns will be dependent and C will be different

(C will have r columns with r ≤ 4).

11 A=




1 0 a c

0 1 b d

0 0 0 0

0 0 0 0



=




1 0

0 1

0 0

0 0





 1 0 a c

0 1 b d




= CR. Many other possibilities !



Solutions to Problem Sets 15

12 A1 =


 1 2

1 3




 1 0 1

0 1 1


 A2 =


 1 2

1 3




 0 1 0 −1

0 0 1 2




A3 =


 2

6



[
1 0.5 1.5

]

A4 =


 1 0

0 2




 1 0 0 4

0 1 1 0




13 C =


 1

3


 and R =

[
2 4

]
have CR =


 2 4

6 12


 and RC =

[
14
]

and CRC =


 14

42


 and RCR =

[
28 56

]
.

Here is an interesting fact when A is m by n and B is n by m. The m numbers on

the main diagonal of AB have the same total as the n numbers on the main diagonal of

BA. Example :

A =


 1 2 3

4 5 6


 B =




0 3

1 4

2 5


 AB =


 8 26

17 62


 BA =




12 15 18

17 22 27

22 29 36




8 + 62 = 12 + 22 + 36

14


 3 6

5 10





 6 −7

7 6





 2 0

3 6





 3 4

−2 −3




rank one orthogonal columns rank 2 A2 = I

15 1. Column j of A equals the matrix C times column j of R.

This is a combination of the columns of C.

2. Row i of A is row i of C times the matrix R.

This is a combination of the rows of R.

3. (row i of C) · (column j of R) gives Aij

That dot product requires the number of columns of C to equal the number of

rows of R.
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4. C has r columns so R has r rows (to multiply CR). Those columns of C are

independent (by construction). Those rows of R are independent (because R

contains the r by r identity matrix).

16 (a) The vector ABx is the matrix A times the vector Bx. So it is a combination of the

columns of A. Therefore C(AB) ⊆ C(A).

(b) A=


 1 0

0 0


 B=


 0 0

0 1


 give AB = zero matrix and C(AB)= zero vectors.

17 (a) If A and B have rank 1, then AB has rank 1 or 0. A = uvT and B = xyT give

AB = u(vTx)yT so AB = zero matrix if the dot product vTx happens to be zero.

(b) If A and B are 3 by 3 matrices of rank 3, then it is true that AB has rank 3.

One approach : If ABx = 0 then Bx = 0 because A has 3 independent columns.

But Bx = 0 only when x = 0, because B has 3 independent columns.

(c) Suppose AB = BA for all 2 by 2 matrices B. Choose B =


 1 0

0 0


 so that

AB=


 c d

e f




 1 0

0 0


=


 1 0

0 0




 c d

e f


. This tells us that


 c 0

e 0


=


 c d

0 0




and therefore d = e = 0. Now chooseB =


 0 1

0 0


 so that AB =


 c 0

0 f




 0 1

0 0




=


 0 1

0 0




 c 0

0 f


. This tells us that


 0 c

0 0


=


 0 f

0 0


and c = f andA = cI .

18 (a) AB =


 3 4

1 2


 and BC =


 2 1

4 3


.

(b) (AB)C = column exchange of AB =


 4 3

2 1




A(BC) = row exchange of BC =


 4 3

2 1


 = same result ABC.
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19 AB =




1 0 0

1 1 0

1 1 1







1 1 1

0 1 1

0 0 1


 =




1

1

1




[
1 1 1

]

+




0

1

1




[
0 1 1

]

+




0

0

1




[
0 0 1

]

=




1 1 1

1 1 1

1 1 1


+




0 0 0

0 1 1

0 1 1


+




0 0 0

0 0 0

0 0 1


 =




1 1 1

1 2 2

1 2 3




BA =




1

0

0




[
1 0 0

]

+




1

1

0




[
1 1 0

]

+




1

1

1




[
1 1 1

]

=




3 2 1

2 2 1

1 1 1




20 AB = (4× 3) (3× 2) needs mnp = (4) (3) (2) = 24 multiples.

Then (AB)C = (4× 2) (2× 1) needs (4) (2) (1) = 8 more : TOTAL 32.

BC = (3× 2) (2× 1) needs mnp = (3) (2) (1) = 6 multiplies.

Then A(BC) = (4× 3) (3× 1) needs (4) (3) (1) = 12 more : TOTAL 18.

Best to start with C = vector. Multiply by B to get the vector BC, and then the vector

A(BC). Vectors need less computing time than matrices !




