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Singular value decomposition of matrices

Theorem. Let A be an m× n real matrix. Then A = UΣV t where U is an m× m
orthogonal matrix, V is an n× n orthogonal matrix and Σ is an m× n diagonal
matrix whose diagonal entries are non-negative.

The diagonal entries of Σ are called the singular values of A.

The column vectors of V are called the right singular vectors of A

The column vectors of V are called the left singular vectors of A.

The equation A = UΣV t is called a singular value decomposition of A.

There are numerous applications of SVD. For example:
Computation of bases of the four fundamental subspaces of A.

Polar decomposition of square matrices
Least squares approximation of vectors and data fitting
Data compression
Approximation of A by matrices of lower rank
Computation of matrix norms
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A brief history of SVD

Eugenio Beltrami (1835-1899) and Camille Jordan (1838-1921) found the SVD
for simplification of bilinear forms in 1870s.
C. Jordan obtained geometric interpretation of the largest singular value
J. J. Sylvester wrote two papers on the SVD in 1889.
He found algorithms to diagonalise quadratic and bilinear forms by means of
orthogonal substitutions.
Erhard Schmidt (1876-1959) discovered the SVD for function spaces while
investigating integral equations.
His problem was to find the best rank k approximations to A of the form

u1vt
1 + · · ·+ ukvt

k.

Autonne found the SVD for complex matrices in 1913.
Eckhart and Young extended SVD to rectangular matrices in 1936.
Golub and Kahan introduced SVD in numerical analysis in 1965 .
Golub proposed an algorithm for SVD in 1970.
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Review of orthogonal matrices

A real n× n matrix Q is called orthogonal if QtQ = I.
A 2× 2 orthogonal matrix has two possibilities:

A =

[
cos θ − sin θ
sin θ cos θ

]
or B =

[
cos θ sin θ
sin θ − cos θ

]
.

The matrix A represents rotation of the plane by an angle of θ in anticlockwise
direction.
The matrix B represents a reflection with respect to y = tan(θ/2)x.
Definition. A hyperplane in Rn is a subspace of dimension n− 1.
A linear transformation T : Rn → Rn is called a reflection with respect to a
hyperplane H if Tu = −u where u ⊥ H and Tu = u for all u ∈ H.
The Householder matrix for reflection. Let u be a unit vector in Rn.
The Householder matrix of u, for reflection with respect to L(u)⊥ is

H = I − 2uut.

Then Hu = u− 2u(utu) = −u. If w ⊥ u then Hw = w− 2uutw = w.
So H induces reflection in the plane perpendicular to the line L(u).
Since H = I − uut, H is a symmetric and as HtH = I, it is orthogonal.
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Review of orthogonal matrices

Theorem. (Elié Cartan) Any orthogonal n× n matrix is a product of atmost n
Householder matrices.
Definition [Orthogonal Transformation] Let V be a vector space with an inner
product. A linear transformation T : V → V is called orthogonal if ‖Tu‖ = ‖u‖
for all u ∈ V .
Theorem. An orthogonal matrix is orthogonally similar to

Ir
. . .

−Is

cos θ1 − sin θ1
sin θ1 cos θ1

. . .
cos θk − sin θk

sin θk cos θk
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Positive definite and positive semi-definite matrices

Definition. A real symmetric matrix A is called positive definite (resp. positive
semi-definite ) if xtAx > 0 ( resp. xtAx ≥ 0) ∀x 6= 0.
Theorem. Let A be an n× n real symmetric matrix. The A is positive definite if
and only if each eigenvalue of A is positive.
Proof. Let A be positive definite and x be an eigenvector with eigenvalue λ. Then
Ax = λx. Hence xtAx = λ||x||2. Thus λ > 0.
Conversely, let each eigenvalue of A be positive.
Suppose that {v1, v2, . . . , vn} is an orthonormal basis of eigenvectors with
positive eigenvalues λ1, . . . , λn.

Then any nonzero vector x can be written as x = a1v1 + · · ·+ anvn where at least
one ai 6= 0. Then

xtAx = xt(a1λ1v1 + · · ·+ anλnvn) =

n∑
i=1

λia2
i > 0.

Theorem. Let A be an n× n real symmetric matrix. Then A is positive definite if
and only if all principal minors are positive definite.
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Proof of existence of SVD

Theorem. Let A be an m× n real matrix of rank r. Then there exist orthogonal
matrices U ∈ Rm×m,V ∈ Rn×n and a diagonal matrix Σ ∈ Rm×n with
nonnegative diagonal entries σ1, σ2, . . . , . . . such that

A = UΣV t.

Proof. Since Since AtA is symmetric and positive semi-definite, there exists an
n× n orthogonal matrix V whose column vectors are the eigenvectors of AtA
with non-negative eigenvalues λ1, λ2, . . . , λn.

Hence AtAvi = λivi for i = 1, 2, . . . , n. Let r = rank A. Assume that
λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and λj = 0 for j = r + 1, r + 2, . . . , n.
Set σi =

√
λi for all i = 1, 2, . . . , n. Then vt

iA
tAvi = λivt

ivi = λi ≥ 0. Then
||Avi|| = σi for i = 1, 2, . . . , n. Set Avi/σi = ui.

The set u1, u2, . . . , ur is an orthonormal basis of C(A).

ut
iuj =

(Avi)
tAvj

σiσj
=

vt
ivjλj

σiσj
= δij.
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Proof of existence of SVD

We can add to it an orthonormal basis {ur+1, . . . , um} of N(At) so that
U = [u1, u2, . . . , um] is an orthogonal matrix.
Since Avi = σiui for all i, we have the singular value decomposition

A = UΣV t where Σ = diag (σ1, σ2, . . . , σr, 0, 0, . . . , 0).

Theorem. Let A be an m× n real matrix. Then the largest singular value of A is
given by

σ1 = max{||Ax|| : x ∈ Sn−1}

Proof. Let v1, . . . , vn be an orthonormal basis of Rn consisting of e.vectors of
AtA with eigenvalues σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

r > 0 ≥ · · · ≥ 0.
Write x = c1v1 + c2v2 + · · ·+ cnvn for c1, . . . , cn ∈ R. Hence

||Ax||2 = xtAtAx = x.(c1σ
2
1v1 + · · ·+ crσ

2
r vr) = c2

1σ
2
1 + · · ·+ c2

rσ
2
r .

Therefore ||Ax||2 ≤ σ2
1(c2

1 + c2
2 + · · ·+ c2

n) ≤ σ2
1 if ||x|| = 1.

The equality holds if x = v1.
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Polar decomposition and data compression

Theorem. (Polar decomposition of matrices.) Let A be an n× n real matrix.
Then A = US. where U is orthogonal and S is positive semi-definite.
Proof. Let A = UΣV t be a singular value decomposition of A.

Then A = UV t(VΣV t). The matrix UV t is orthogonal.
Since the entries of Σ are nonnegative, VΣV t is a positive semi-definite.
Use of SVD in image processing. Suppose that a picture consists of
1000× 1000 array of pixels. This can be thought of a 1000× 1000 matrix A of
numbers which represent colors.
Suppose A = UΣV t. Then can be written as a sum of rank one matrices:

A = σ1u1vt
1 + σ2u2vt

2 + · · ·+ σrurvt
r.

Suppose that we take 20 singular values. Then we send 20× 2000 = 40000
numbers rather than a million numbers.
This represents a compression of 25 : 1.
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Least squares approximation

Consider a system of linear equations Ax = b

where A is an m× n real matrix, x is an unknown vector and b ∈ Rm.

If b ∈ C(A) then we use Gauss elimination to find x.

Otherwise we try to find x so that ||Ax− b|| is smallest.
To find such an x, we project b in the column space of A.

Therefore Ax− b ∈ C(A)⊥. Hence At(Ax− b) = 0. So

AtAx = Atb.

These are called the normal equations.
Let A = UΣV t be an SVD for A. Then

Ax− b = UΣV tx− b = UΣV tx− UUtb = U(ΣV tx− Utb).

Set y = V tx, c = Utb. As U is orthogonal ||Ax− b|| = ||Σy− c||.
Let y = (y1, y2, . . . , ym)t and c = Utb = (c1, c2, . . . , cm)t. Then

Σy− c = (σ1y1 − c1, σ2y2 − c2, . . . σryr − cr,−cr+1, . . . , cm).

So Ax is the best approximation to b ⇐⇒ σiyi = ci for i = 1, . . . , r.
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Data fitting

Suppose we have a large number of data points (xi, yi), i = 1, 2, . . . , n collected
from some experiment. Sometime we believe that these points should lie on a
straight line. So we want a linear function

y(x) = s + tx such that y(xi) = yi, i = 1, . . . , n′.
Due to uncertainity in data and experimental error, in practice the points will
deviate somewhat from a straightline and so it is impossible to find a linear y(x)
that passes through all of them.
So we seek a line that fits the data well, in the sense that the errors are made as
small as possible. A natural question that arises now is: how do we define the
error?
Consider the following system of linear equations, in the variables s and t, and
known coefficients xi, yi, i = 1, . . . , n:

y1 = s + x1t, y2 = s + x2t . . . yn = s + xnt
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Data fitting

Note that typically n would be much greater than 2. If we can find s and t to
satisfy all these equations, then we have solved our problem. However, for
reasons mentioned above, this is not always possible.
For given values of s and t the error in the ith equation is |yi − s− xit|. There are
several ways of combining the errors in the individual equations to get a measure
of the total error.
The following are three examples:√√√√ n∑

i=1

(yi − s− xit)2,

n∑
i=1

|yi − s− xit|, max 1≤i≤n |yi − s− xit|.

Both analytically and computationally, a nice theory exists for the first of these
choices and this is what we shall study. The problem of finding s, t so as to
minimize √√√√ n∑

i=1

(yi − s− xit)2

is called a least squares problem.
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The problem can be written in terms of matrices as

A =


1 x1
1 x2
. .
. .
1 xn

 , b =


y1
y2
.
.

yn

 , and x =

[
s
t

]
, so that Ax =


s + tx1
s + tx2
.
.

s + txn

 .
The least squares problem is finding an x such that ||b− Ax|| is minimized, i.e.,
find an x such that Ax is the best approximation to b in the column space of A.
This is precisely the problem of finding x such that b− Ax is orthogonal to the
column space of A.
A straight line can be considered as a polynomial of degree 1. We can also try to
fit an mth degree polynomial

y(x) = s0 + s1x + s2x2 + · · ·+ smxm

to the data points (xi, yi), i = 1, . . . , n, so as to minimize the error. In this case
s0, s1, . . . , sm are the variables and we have
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A =


1 x1 x2

1 . . xm
1

1 x2 x2
2 . . xm

2
. . . . .
. . . . .

1 xn x2
n . . xm

n

 , b =


y1
y2
.
.

yn

 , x =


s0
s1
.
.

sm

 .

Example: Find s, t such that the straight line y = s + tx best fits the following
data in the least squares sense:

y = 1 at x = −1, y = 1 at x = 1, y = 3 at x = 2.

We want to project b = (1, 1, 3)t onto the column space of A =

 1 −1
1 1
1 2

.

Now AtA =

(
3 2
2 6

)
and Atb =

(
5
6

)
.

The normal equations are
(

3 2
2 6

)(
s
t

)
=

(
5
6

)
.

The solution is s = 9/7, t = 4/7 and the best line is y = 9
7 + 4

7 x.
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Approximation of a matrix by lower rank matrices

A matrix norm on the space V = Rm×n is a function f : Rm×n → R which
satisfies the following conditions for all A,B ∈ V and r ∈ R,
(1) f (A) ≥ 0 and f (A) = 0 if and only if A = 0.
(2) f (A + B) ≤ f (A) + f (B)
(3) f (rA) = |r|f (A).

Matrix norms are constructed using vector norms. If v = (v1, v2, . . . , vn) ∈ Rn

then the p norm of v is defined as
||v||p = p

√
|v1|p + · · ·+ |vn|p.

The infinity norm is defined as ||v||∞ = max{|v1|, |v2|, . . . , |vn|}.
Example. (1) The Frobenius norm of A ∈ Rm×n is defined as

||A||F =

√∑
i,j

|aij|2.

One can show that ||A||F =
√

Tr(AAt) =
√
σ2

1 + · · ·+ σ2
r .

(2) Let p be a positive integer. Then ||A||p = supx 6=0
||Ax||p
||x||p .

We shall denote the 2-norm of A simply by ||A||.
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Low rank approximations

Theorem. [Eckhart-Young, 1936] Let A ∈ Rm×n and rank(A) = r. Let
A = UΣV t be a singular value decomposition of A with singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
Let Ak =

∑k
i=1 σiuivt

i. Then minrank(B)=k ||A− B|| = ||A− Ak|| = σk+1.

Proof. Since Ak = Udiag(σ1, σ2, . . . , σk, 0, . . . , 0)V t, rank(Ak) = k.
Note that UtAV − UtAkV = diag(0, . . . , 0, σk+1, . . . , σr, 0, . . . , 0).

Hence ||A− Ak|| = ||Ut(A− Ak)V|| = σk+1.

Let B ∈ Rm×n be a rank k matrix. Since dim N(B) = n− k,
We can choose an orthonormal basis {x1, x2, . . . , xn−k} of N(B).

Therefore W = L(v1, v2, . . . , vk+1) ∩ N(B) 6= 0.
Let z be a unit vector in W ∩ N(B). Then Bz = 0 and

Az =

r∑
i=1

σiuivt
iz =

k+1∑
i=1

σi(vt
iz)ui

Hence ||A− B||2 ≥ ||Az− Bz||2 = ||Az||2 =
∑k+1

i=1 σ
2
i (vt

iz)
2 ≥ σ2

k+1.

Thus Ak is closest to A among rank k matrices.
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