Singular Value Decomposition of Real Matrices

Jugal K. Verma
Indian Institute of Technology Bombay
Vivekananda Centenary College, 13 March 2020

Singular value decomposition of matrices

- Theorem. Let A be an $m \times n$ real matrix. Then $A=U \Sigma V^{t}$ where U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix and Σ is an $m \times n$ diagonal matrix whose diagonal entries are non-negative.
- The diagonal entries of Σ are called the singular values of A.
- The column vectors of V are called the right singular vectors of A
- The column vectors of V are called the left singular vectors of A.
- The equation $A=U \Sigma V^{t}$ is called a singular value decomposition of A.
- There are numerous applications of SVD. For example:
- Computation of bases of the four fundamental subspaces of A.
- Polar decomposition of square matrices
- Least squares approximation of vectors and data fitting
- Data compression
- Approximation of A by matrices of lower rank
- Computation of matrix norms

A brief history of SVD

- Eugenio Beltrami (1835-1899) and Camille Jordan (1838-1921) found the SVD for simplification of bilinear forms in 1870s.
- C. Jordan obtained geometric interpretation of the largest singular value
- J. J. Sylvester wrote two papers on the SVD in 1889.
- He found algorithms to diagonalise quadratic and bilinear forms by means of orthogonal substitutions.
- Erhard Schmidt (1876-1959) discovered the SVD for function spaces while investigating integral equations.
- His problem was to find the best rank k approximations to A of the form

$$
u_{1} v_{1}^{t}+\cdots+u_{k} v_{k}^{t} .
$$

- Autonne found the SVD for complex matrices in 1913.
- Eckhart and Young extended SVD to rectangular matrices in 1936.
- Golub and Kahan introduced SVD in numerical analysis in 1965 .
- Golub proposed an algorithm for SVD in 1970.

Review of orthogonal matrices

- A real $n \times n$ matrix Q is called orthogonal if $Q^{t} Q=I$.
- A 2×2 orthogonal matrix has two possibilities:

$$
A=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text { or } B=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right] .
$$

- The matrix A represents rotation of the plane by an angle of θ in anticlockwise direction.
- The matrix B represents a reflection with respect to $y=\tan (\theta / 2) x$.
- Definition. A hyperplane in \mathbb{R}^{n} is a subspace of dimension $n-1$.
- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a reflection with respect to a hyperplane H if $T u=-u$ where $u \perp H$ and $T u=u$ for all $u \in H$.
- The Householder matrix for reflection. Let u be a unit vector in \mathbb{R}^{n}.
- The Householder matrix of u, for reflection with respect to $L(u)^{\perp}$ is

$$
H=I-2 u u^{t} .
$$

- Then $H u=u-2 u\left(u^{t} u\right)=-u$. If $w \perp u$ then $H w=w-2 u u^{t} w=w$.
- So H induces reflection in the plane perpendicular to the line $L(u)$.
- Since $H=I-u u^{t}, H$ is a symmetric and as $H^{t} H=I$, it is orthogonal.

Review of orthogonal matrices

- Theorem. (Elié Cartan) Any orthogonal $n \times n$ matrix is a product of atmost n Householder matrices.
- Definition [Orthogonal Transformation] Let V be a vector space with an inner product. A linear transformation $T: V \rightarrow V$ is called orthogonal if $\|T u\|=\|u\|$ for all $u \in V$.
- Theorem. An orthogonal matrix is orthogonally similar to

Positive definite and positive semi-definite matrices

- Definition. A real symmetric matrix A is called positive definite (resp. positive semi-definite) if $x^{t} A x>0$ (resp. $\left.x^{t} A x \geq 0\right) \forall x \neq 0$.
- Theorem. Let A be an $n \times n$ real symmetric matrix. The A is positive definite if and only if each eigenvalue of A is positive.
- Proof. Let A be positive definite and x be an eigenvector with eigenvalue λ. Then $A x=\lambda x$. Hence $x^{t} A x=\lambda\|x\|^{2}$. Thus $\lambda>0$.
- Conversely, let each eigenvalue of A be positive.
- Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis of eigenvectors with positive eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
- Then any nonzero vector x can be written as $x=a_{1} v_{1}+\cdots+a_{n} v_{n}$ where at least one $a_{i} \neq 0$. Then

$$
x^{t} A x=x^{t}\left(a_{1} \lambda_{1} v_{1}+\cdots+a_{n} \lambda_{n} v_{n}\right)=\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}>0 .
$$

- Theorem. Let A be an $n \times n$ real symmetric matrix. Then A is positive definite if and only if all principal minors are positive definite.

Proof of existence of SVD

- Theorem. Let A be an $m \times n$ real matrix of rank r. Then there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ with nonnegative diagonal entries $\sigma_{1}, \sigma_{2}, \ldots, \ldots$ such that

$$
A=U \Sigma V^{t} .
$$

- Proof. Since Since $A^{t} A$ is symmetric and positive semi-definite, there exists an $n \times n$ orthogonal matrix V whose column vectors are the eigenvectors of $A^{t} A$ with non-negative eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
- Hence $A^{t} A v_{i}=\lambda_{i} v_{i}$ for $i=1,2, \ldots, n$. Let $r=\operatorname{rank} A$. Assume that
- $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0$ and $\lambda_{j}=0$ for $j=r+1, r+2, \ldots, n$.
- Set $\sigma_{i}=\sqrt{\lambda_{i}}$ for all $i=1,2, \ldots, n$. Then $v_{i}^{t} A^{t} A v_{i}=\lambda_{i} v_{i}^{t} v_{i}=\lambda_{i} \geq 0$. Then $\left\|A v_{i}\right\|=\sigma_{i}$ for $i=1,2, \ldots, n$. Set $A v_{i} / \sigma_{i}=u_{i}$.
- The set $u_{1}, u_{2}, \ldots, u_{r}$ is an orthonormal basis of $C(A)$.

$$
u_{i}^{t} u_{j}=\frac{\left(A v_{i}\right)^{t} A v_{j}}{\sigma_{i} \sigma_{j}}=\frac{v_{i}^{t} v_{j} \lambda_{j}}{\sigma_{i} \sigma_{j}}=\delta_{i j}
$$

Proof of existence of SVD

- We can add to it an orthonormal basis $\left\{u_{r+1}, \ldots, u_{m}\right\}$ of $N\left(A^{t}\right)$ so that $U=\left[u_{1}, u_{2}, \ldots, u_{m}\right]$ is an orthogonal matrix.
- Since $A v_{i}=\sigma_{i} u_{i}$ for all i, we have the singular value decomposition

$$
A=U \Sigma V^{t} \text { where } \Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}, 0,0, \ldots, 0\right)
$$

- Theorem. Let A be an $m \times n$ real matrix. Then the largest singular value of A is given by

$$
\sigma_{1}=\max \left\{\|A x\|: x \in S^{n-1}\right\}
$$

- Proof. Let v_{1}, \ldots, v_{n} be an orthonormal basis of \mathbb{R}^{n} consisting of e.vectors of $A^{t} A$ with eigenvalues $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{r}^{2}>0 \geq \cdots \geq 0$.
- Write $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ for $c_{1}, \ldots, c_{n} \in \mathbb{R}$. Hence

$$
\|A x\|^{2}=x^{t} A^{t} A x=x \cdot\left(c_{1} \sigma_{1}^{2} v_{1}+\cdots+c_{r} \sigma_{r}^{2} v_{r}\right)=c_{1}^{2} \sigma_{1}^{2}+\cdots+c_{r}^{2} \sigma_{r}^{2}
$$

- Therefore $\|A x\|^{2} \leq \sigma_{1}^{2}\left(c_{1}^{2}+c_{2}^{2}+\cdots+c_{n}^{2}\right) \leq \sigma_{1}^{2}$ if $\|x\|=1$.
- The equality holds if $x=v_{1}$.

Polar decomposition and data compression

- Theorem. (Polar decomposition of matrices.) Let A be an $n \times n$ real matrix. Then $A=U S$. where U is orthogonal and S is positive semi-definite.
- Proof. Let $A=U \Sigma V^{t}$ be a singular value decomposition of A.
- Then $A=U V^{t}\left(V \Sigma V^{t}\right)$. The matrix $U V^{t}$ is orthogonal.
- Since the entries of Σ are nonnegative, $V \Sigma V^{t}$ is a positive semi-definite.
- Use of SVD in image processing. Suppose that a picture consists of 1000×1000 array of pixels. This can be thought of a 1000×1000 matrix A of numbers which represent colors.
- Suppose $A=U \Sigma V^{t}$. Then can be written as a sum of rank one matrices:

$$
A=\sigma_{1} u_{1} v_{1}^{t}+\sigma_{2} u_{2} v_{2}^{t}+\cdots+\sigma_{r} u_{r} v_{r}^{t} .
$$

- Suppose that we take 20 singular values. Then we send $20 \times 2000=40000$ numbers rather than a million numbers.
- This represents a compression of $25: 1$.

Least squares approximation

- Consider a system of linear equations $A x=b$
- where A is an $m \times n$ real matrix, x is an unknown vector and $b \in \mathbb{R}^{m}$.
- If $b \in C(A)$ then we use Gauss elimination to find x.
- Otherwise we try to find x so that $\|A x-b\|$ is smallest.
- To find such an x, we project b in the column space of A.
- Therefore $A x-b \in C(A)^{\perp}$. Hence $A^{t}(A x-b)=0$. So

$$
A^{t} A x=A^{t} b .
$$

- These are called the normal equations.
- Let $A=U \Sigma V^{t}$ be an SVD for A. Then

$$
A x-b=U \Sigma V^{t} x-b=U \Sigma V^{t} x-U U^{t} b=U\left(\Sigma V^{t} x-U^{t} b\right)
$$

- Set $y=V^{t} x, c=U^{t} b$. As U is orthogonal $\|A x-b\|=\|\Sigma y-c\|$.
- Let $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right)^{t}$ and $c=U^{t} b=\left(c_{1}, c_{2}, \ldots, c_{m}\right)^{t}$. Then

$$
\Sigma y-c=\left(\sigma_{1} y_{1}-c_{1}, \sigma_{2} y_{2}-c_{2}, \ldots \sigma_{r} y_{r}-c_{r},-c_{r+1}, \ldots, c_{m}\right) .
$$

- So $A x$ is the best approximation to $b \Longleftrightarrow \sigma_{i} y_{i}=c_{i}$ for $i=1, \ldots, r$.

Data fitting

- Suppose we have a large number of data points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ collected from some experiment. Sometime we believe that these points should lie on a straight line. So we want a linear function

$$
y(x)=s+t x \text { such that } y\left(x_{i}\right)=y_{i}, i=1, \ldots, n^{\prime} .
$$

- Due to uncertainity in data and experimental error, in practice the points will deviate somewhat from a straightline and so it is impossible to find a linear $y(x)$ that passes through all of them.
- So we seek a line that fits the data well, in the sense that the errors are made as small as possible. A natural question that arises now is: how do we define the error?
- Consider the following system of linear equations, in the variables s and t, and known coefficients $x_{i}, y_{i}, i=1, \ldots, n$:

$$
y_{1}=s+x_{1} t, \quad y_{2}=s+x_{2} t \quad \ldots \quad y_{n}=s+x_{n} t
$$

Data fitting

- Note that typically n would be much greater than 2 . If we can find s and t to satisfy all these equations, then we have solved our problem. However, for reasons mentioned above, this is not always possible.
- For given values of s and t the error in the i th equation is $\left|y_{i}-s-x_{i} t\right|$. There are several ways of combining the errors in the individual equations to get a measure of the total error.
- The following are three examples:

$$
\sqrt{\sum_{i=1}^{n}\left(y_{i}-s-x_{i} t\right)^{2}}, \quad \sum_{i=1}^{n}\left|y_{i}-s-x_{i} t\right|, \quad \max _{1 \leq i \leq n}\left|y_{i}-s-x_{i} t\right|
$$

- Both analytically and computationally, a nice theory exists for the first of these choices and this is what we shall study. The problem of finding s, t so as to minimize

$$
\sqrt{\sum_{i=1}^{n}\left(y_{i}-s-x_{i} t\right)^{2}}
$$

- is called a least squares problem.
- The problem can be written in terms of matrices as

$$
A=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
1 & x_{n}
\end{array}\right], b=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right] \text {, and } x=\left[\begin{array}{c}
s \\
t
\end{array}\right] \text {, so that } A x=\left[\begin{array}{c}
s+t x_{1} \\
s+t x_{2} \\
\cdot \\
\cdot \\
s+t x_{n}
\end{array}\right] \text {. }
$$

- The least squares problem is finding an x such that $\|b-A x\|$ is minimized, i.e., find an x such that $A x$ is the best approximation to b in the column space of A.
- This is precisely the problem of finding x such that $b-A x$ is orthogonal to the column space of A.
- A straight line can be considered as a polynomial of degree 1 . We can also try to fit an m th degree polynomial

$$
y(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{m} x^{m}
$$

- to the data points $\left(x_{i}, y_{i}\right), i=1, \ldots, n$, so as to minimize the error. In this case $s_{0}, s_{1}, \ldots, s_{m}$ are the variables and we have

$$
A=\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \cdot & . & x_{1}^{m} \\
1 & x_{2} & x_{2}^{2} & \cdot & \cdot & x_{2}^{m} \\
& \cdot & \cdot & \cdot & \cdot & \cdot \\
& \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & x_{n} & x_{n}^{2} & \cdot & \cdot & \cdot \\
x_{n}^{m}
\end{array}\right), b=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right), x=\left(\begin{array}{c}
s_{0} \\
s_{1} \\
\cdot \\
\cdot \\
s_{m}
\end{array}\right) .
$$

- Example: Find s, t such that the straight line $y=s+t x$ best fits the following data in the least squares sense:

$$
y=1 \text { at } x=-1, \quad y=1 \text { at } x=1, \quad y=3 \text { at } x=2 \text {. }
$$

- We want to project $b=(1,1,3)^{t}$ onto the column space of $A=\left(\begin{array}{rr}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right)$. Now $A^{t} A=\left(\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right)$ and $A^{t} b=\binom{5}{6}$.
- The normal equations are $\left(\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right)\binom{s}{t}=\binom{5}{6}$.
- The solution is $s=9 / 7, t=4 / 7$ and the best line is $y=\frac{9}{7}+\frac{4}{7} x$.

Approximation of a matrix by lower rank matrices

- A matrix norm on the space $V=\mathbb{R}^{m \times n}$ is a function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ which satisfies the following conditions for all $A, B \in V$ and $r \in R$,
- (1) $f(A) \geq 0$ and $f(A)=0$ if and only if $A=0$.
(2) $f(A+B) \leq f(A)+f(B)$
(3) $f(r A)=|r| f(A)$.
- Matrix norms are constructed using vector norms. If $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ then the p norm of v is defined as

$$
\|v\|_{p}=\sqrt[p]{\left|v_{1}\right|^{p}+\cdots+\left|v_{n}\right|^{p}} .
$$

- The infinity norm is defined as $\|v\|_{\infty}=\max \left\{\left|v_{1}\right|,\left|v_{2}\right|, \ldots,\left|v_{n}\right|\right\}$.
- Example. (1) The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is defined as

$$
\|A\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}
$$

- One can show that $\|A\|_{F}=\sqrt{\operatorname{Tr}\left(A A^{t}\right)}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}}$.
- (2) Let p be a positive integer. Then $\|A\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}$.
- We shall denote the 2 -norm of A simply by $\|A\|$.

Low rank approximations

- Theorem. [Eckhart-Young, 1936] Let $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=r$. Let $A=U \Sigma V^{t}$ be a singular value decomposition of A with singular values

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0
$$

- Let $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{t}$. Then $\min _{\operatorname{rank}(B)=k}\|A-B\|=\left\|A-A_{k}\right\|=\sigma_{k+1}$.
- Proof. Since $A_{k}=U \operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, 0, \ldots, 0\right) V^{t}, \operatorname{rank}\left(A_{k}\right)=k$.
- Note that $U^{t} A V-U^{t} A_{k} V=\operatorname{diag}\left(0, \ldots, 0, \sigma_{k+1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)$.
- Hence $\left\|A-A_{k}\right\|=\left\|U^{t}\left(A-A_{k}\right) V\right\|=\sigma_{k+1}$.
- Let $B \in \mathbb{R}^{m \times n}$ be a rank k matrix. Since $\operatorname{dim} N(B)=n-k$,
- We can choose an orthonormal basis $\left\{x_{1}, x_{2}, \ldots, x_{n-k}\right\}$ of $N(B)$.
- Therefore $W=L\left(v_{1}, v_{2}, \ldots, v_{k+1}\right) \cap N(B) \neq 0$.
- Let z be a unit vector in $W \cap N(B)$. Then $B z=0$ and

$$
A z=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t} z=\sum_{i=1}^{k+1} \sigma_{i}\left(v_{i}^{t} z\right) u_{i}
$$

- Hence $\|A-B\|^{2} \geq\|A z-B z\|^{2}=\|A z\|^{2}=\sum_{i=1}^{k+1} \sigma_{i}^{2}\left(v_{i}^{t} z\right)^{2} \geq \sigma_{k+1}^{2}$.
- Thus A_{k} is closest to A among rank k matrices.

References

(1) S. Axler, Linear algebra done right, III edition, Springer, 2015.
(2) Gilbert Strang, Linear Algebra and its Applications. Indian edition, 2020.

- G. W. Stewart, On the early history of the singular value decomposition, SIAM Review 35 (1993),551-566.

