
Chapter 7

The Singular Value Decomposition (SVD)

7.1 Image Processing by Linear Algebra
'

&

$

%

1 An image is a large matrix of grayscale values, one for each pixel and color.

2 When nearby pixels are correlated (not random) the image canbe compressed.

3 The SVD separates any matrixA into rank one piecesuvT = (column)(row).

4 The columns and rows are eigenvectors of symmetric matricesAAT andATA.

The singular value theorem forA is the eigenvalue theorem forATA and AAT.

That is a quick preview of what you will see in this chapter.A hastwo sets of singular
vectors (the eigenvectors ofATA andAAT). There isoneset of positive singular values
(becauseATA has the same positive eigenvalues asAAT). A is often rectangular, but
ATA andAAT are square, symmetric, and positive semidefinite.

The Singular Value Decomposition (SVD) separates any matrix into simple pieces.

Each piece is a column vector times a row vector. Anm by n matrix hasm timesn en-
tries (a big number when the matrix represents an image). Buta column and a row only
havem + n components, far less thanm timesn. Those (column)(row) pieces are full
size matrices that can be processed with extreme speed—theyneed onlym plusn numbers.

Unusually, this image processing application of the SVD is coming before the ma-
trix algebra it depends on. I will start with simple images that only involve one or two
pieces. Right now I am thinking of an image as a large rectangular matrix. The entriesaij
tell the grayscales of all the pixels in the image. Think of a pixel as a small square,i steps
across andj steps up from the lower left corner. Its grayscale is a number(often a whole
number in the range0 ≤ aij < 256 = 28). An all-white pixel hasaij = 255 = 11111111.
That number has eight1’s when the computer writes255 in binary notation.
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You see how an image that hasm timesn pixels, with each pixel using8 bits (0 or 1)
for its grayscale, becomes anm by n matrix with256 possible values for each entryaij .

In short, an image is a large matrix. To copy it perfectly, we need8 (m)(n) bits of
information. High definition television typically hasm = 1080 andn = 1920. Often
there are24 frames each second and you probably like to watch in color (3 color scales).
This requires transmitting(3)(8)(48, 470, 400) bits per second. That is too expensive and
it is not done. The transmitter can’t keep up with the show.

When compression is well done, you can’t see the difference from the original.
Edges in the image(sudden changes in the grayscale) are the hard parts to compress.

Major success in compression will be impossible if everyaij is an independent random
number. We totally depend on the fact thatnearby pixels generally have similar grayscales.
An edge produces a sudden jump when you cross over it. Cartoons are more compressible
than real-world images, with edges everywhere.

For a video, the numbersaij don’t change much between frames.We only transmit
the small changes. This isdifference codingin the H.264 video compression standard (on
this book’s website). We compress each change matrix by linear algebra (and by nonlinear
“quantization” for an efficient step to integers in the computer).

The natural images that we see every day are absolutely readyand open for
compression—but that doesn’t make it easy to do.

Low Rank Images (Examples)

The easiest images to compress are all black or all white or all a constant grayscaleg.
The matrixA has the same numberg in every entry :aij = g. Wheng = 1 andm = n = 6,
here is an extreme example of the central SVD dogma of image processing :

Example 1 Don’t sendA =

















1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

















Send thisA =

















1
1
1
1
1
1

















[

1 1 1 1 1 1
]

36 numbers become12 numbers. With300 by 300 pixels,90, 000 numbers become600.
And if we define the all-ones vectorx in advance, we only have to sendone number.
That number would be the constant grayscaleg that multipliesxxT to produce the matrix.

Of course this first example is extreme. But it makes an important point. If there
are special vectors likex = ones that can usefully be defined in advance, then image
processing can be extremely fast. The battle is betweenpreselected bases(the Fourier
basis allows speed-up from the FFT) andadaptive basesdetermined by the image. The
SVD produces bases from the image itself—this is adaptive and it can be expensive.

I am not saying that the SVD always or usually gives the most effective algorithm in
practice. The purpose of these next examples is instructionand not production.
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Example 2
“ace flag”
French flagA
Italian flagA
German flagAT

Don’t sendA =

















a a c c e e
a a c c e e
a a c c e e
a a c c e e
a a c c e e
a a c c e e

















SendA =

















1
1
1
1
1
1

















[

a a c c e e
]

This flag has3 colors but it still has rank1. We still have one column times one row.
The36 entries could even be all different, provided they keep thatrank1 patternA = u1v

T
1 .

But when the rank moves up tor = 2, we needu1v
T

1
+ u2v

T

2
. Here is one choice :

Example 3
Embedded square

A =

[

1 0
1 1

]

is equal toA =

[

1
1

]

[

1 1
]

−
[

1
0

]

[

0 1
]

The 1’s and the0 in A could be blocks of1’s and a block of0’s. We would still
have rank2. We would still only need two termsu1v

T

1
andu2v

T

2
. A 6 by 6 image

would be compressed into24 numbers. AnN by N image (N2 numbers) would be
compressed into4N numbers from the four vectorsu1,v1,u2,v2.

Have I made the best choice for theu’s andv’s ? This isnot the choice from the SVD!
I notice thatu1 = (1, 1) is not orthogonal tou2 = (1, 0). Andv1 = (1, 1) is not orthogonal
to v2 = (0, 1). The theory says that orthogonality will produce a smaller second piece
c2u2v

T

2
. (The SVD chooses rank one pieces in order of importance.)

If the rank ofA is much higher than2, as we expect for real images, thenA will
add up many rank one pieces. We want the small ones to be reallysmall—they can be
discarded with no loss to visual quality. Image compressionbecomes lossy, but good
image compression is virtually undetectable by the human visual system.

The question becomes:What are the orthogonal choices from the SVD?

Eigenvectors for the SVD

I want to introduce the use of eigenvectors. But the eigenvectors of most images are not
orthogonal. Furthermore the eigenvectorsx1,x2 give only one set of vectors, and we want
two sets (u’s andv’s). The answer to both of those difficulties is the SVD idea:

Use the eigenvectorsu of AAT and the eigenvectorsv of ATA.
SinceAAT andATA are automatically symmetric (but not usually equal!) theu’s will be
one orthogonal set and the eigenvectorsv will be another orthogonal set. We can and will
make them all unit vectors :||ui|| = 1 and ||vi|| = 1. Then our rank2 matrix will be
A = σ1u1v

T

1
+ σ2u2v

T

2
. The size of those numbersσ1 andσ2 will decide whether they

can be ignored in compression.We keep largerσ’s, we discard smallσ’s.
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Theu’s from the SVD are calledleft singular vectors (unit eigenvectors ofAAT).
The v’s are right singular vectors (unit eigenvectors ofATA). The σ’s are singular
values, square roots of the equal eigenvalues ofAAT andATA :

Choices from the SVD AAT
ui = σ2

iui ATAvi = σ2

i vi Avi = σiui
T (1)

In Example3 (the embedded square), here are the symmetric matricesAAT andATA :

AAT =

[

1 0
1 1

] [

1 1
0 1

]

=

[

1 1

1 2

]

ATA =

[

1 1
0 1

] [

1 0
1 1

]

=

[

2 1

1 1

]

.

Their determinants are1, soλ1λ2 = 1. Their traces (diagonal sums) are3:̇

det

[

1− λ 1
1 2− λ

]

= λ2 − 3λ+ 1 = 0 gives λ1 =
3 +

√
5

2
and λ2 =

3−
√
5

2
.

The square roots ofλ1 andλ2 areσ1 =

√
5 + 1

2
andσ2 =

√
5− 1

2
with σ1 σ2 = 1.

The nearest rank1 matrix toA will be σ1u1v
T
1
. The error is onlyσ2 ≈ 0.6 = best possible.

The orthonormal eigenvectors ofAAT andATA are

u1=

[

1
σ1

]

u2=

[

σ1

−1

]

v1=

[

σ1

1

]

v2=

[

1
−σ1

]

all divided by
√

1 + σ2

1
. (2)

Every reader understands that in real life those calculations are done by computers!
(Certainly not by unreliable professors. I corrected myself using svd (A) in MATLAB.)
And we can check that the matrixA is correctly recovered fromσ1u1v

T

1 + σ2u2v
T

2 :

A=

[

u1 u2

] [

σ1

σ2

] [

v
T

1

vT
2

]

or more simplyA

[

v1 v2

]

=

[

σ1 u1 σ2 u2

]

(3)

Important The key point is not that images tend to have low rank.No : Images mostly
have full rank. But they do havelow effective rank. This means : Many singular values
are small and can be set to zero.We transmit a low rank approximation.

Example4 Suppose the flag has two triangles of different colors. The lower left triangle
has1’s and the upper right triangle has0’s. The main diagonal is included with the1’s.
Here is the image matrix whenn = 4. It has full rankr = 4 so it is invertible :

Triangular
flag matrix

A =









1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1









and A−1 =









1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1








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With full rank, A has a full set ofn singular valuesσ (all positive). The SVD will
producen piecesσi ui v

T

i of rank one. Perfect reproduction needs alln pieces.
In compressionsmallσ’s can be discarded with no serious loss in image quality. We

want to understand and plot theσ’s for n = 4 and also for largen. Notice that Example3
was the special casen = 2 of this triangular Example4.

Working by hand, we begin withAAT (a computer would proceed differently) :

AAT =









1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4









and (AAT)−1 = (A−1)TA−1 =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1









. (4)

That −1, 2,−1 inverse matrix is included because its eigenvalues all havethe form
2− 2 cos θ. So we know theλ’s for AAT and theσ’s for A :

λ =
1

2− 2 cos θ
=

1

4 sin2(θ/2)
gives σ =

√
λ =

1

2 sin(θ/2)
. (5)

The n different anglesθ are equally spaced, which makes this example so exceptional:

θ =
π

2n+ 1
,

3π

2n+ 1
, . . . ,

(2n− 1)π

2n+ 1

(

n = 4 includesθ =
3π

9
with 2 sin

θ

2
= 1

)

.

That special case givesλ = 1 as an eigenvalue ofAAT whenn = 4. Soσ =
√
λ = 1

is a singular value ofA. You can check that the vectoru = (1, 1, 0,−1) hasAATu = u

(a truly special case).
The important point is to graph then singular values ofA. Those numbers drop off

(unlike the eigenvalues ofA, which are all1). But the dropoff is not steep. So the SVD
gives only moderate compression of this triangular flag.Great compression for Hilbert.
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Figure 7.1: Singular values of the triangle of1’s in Examples3-4 (not compressible) and
the evil Hilbert matrixH(i, j) = (i+ j− 1)−1 in Section8.3 : compress it to work with it.
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Your faithful author has continued research on the ranks of flags. Quite a few are based on
horizontal or vertical stripes. Those haverank one—all rows or all columns are multiples
of the onesvector(1, 1, . . . , 1). Armenia, Austria, Belgium, Bulgaria, Chad, Colombia,
Ireland, Madagascar, Mali, Netherlands, Nigeria, Romania, Russia (and more) have three
stripes. Indonesia and Poland have two ! Libya was the extreme case in the Gadaffi years
1977 to 2011 (the whole flag was green).

At the other extreme, many flags include diagonal lines. Those could be long diagonals
as in the British flag. Or they could be short diagonals comingfrom the edges of a star—
as in the US flag. The text example of a triangle of ones shows how those flag matrices
will have large rank. The rank increases to infinity as the pixel sizes get small.

Other flags have circles or crescents or various curved shapes. Their ranks are large and
also increasing to infinity. These are still compressible! The compressed image won’t be
perfect but our eyes won’t see the difference (with enough termsσiuiv

T

i from the SVD).
Those examples actually bring out the main purpose of image compression:

Visual quality can be preserved even with a big reduction in the rank.
For fun I looked back at the flags with finite rank. They can havestripes and they can

also have crosses—provided the edges of the cross are horizontal or vertical. Some flags
have a thin outline around the cross. This artistic touch will increase the rank. Right now
my champion is the flag of Greece shown below, with a cross and also stripes. Its rank is
four by my counting. I see no US State Flags of finite rank !

The reader could google “national flags” to see the variety ofdesigns and colors. I
would be glad to know any finite rank examples with rank> 4. Good examples of all kinds
will go on the book’s websitemath.mit.edu/linearalgebra (and flags in full color).

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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Problem Set 7.1

1 What are the ranksr for these matrices with entriesi timesj andi plusj ? WriteA
andB as the sum ofr piecesuvT of rank one. Not requiringuT

1
u2 = vT

1
v2 = 0.

A =









1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16









B =









2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8









2 We usually think that the identity matrixI is as simple as possible. But why isI
completely incompressible?Draw a rank5 flag with a cross.

3 These flags have rank2. WriteA andB in any way asu1v
T

1
+ u2v

T

2
.

ASweden = AFinland =





1 2 1 1
2 2 2 2
1 2 1 1



 BBenin =

[

1 2 2
1 3 3

]

4 Now find the trace and determinant ofBBT and BTB in
Problem3. The singular values ofB are close toσ2

1
= 28 − 1

14
andσ2

2
= 1

14
.

IsB compressible or not?

5 Use[U, S, V ] = svd (A) to find two orthogonal piecesσuvT of ASweden.

6 Find the eigenvalues and the singular values of this2 by 2 matrixA.

A =

[

2 1
4 2

]

with ATA =

[

20 10
10 5

]

and AAT =

[

5 10
10 20

]

.

The eigenvectors(1, 2) and(1,−2) of A are not orthogonal. How do you know the
eigenvectorsv1,v2 of ATA are orthogonal? Notice thatATA andAAT have the
same eigenvalues (25 and0).

7 How does the second formAV = UΣ in equation (3) follow from the first form
A = UΣV T ? That is the most famous form of the SVD.

8 The two columns ofAV = UΣ areAv1 = σ1u1 andAv2 = σ2u2. So we hope that

Av1 =

[

1 0
1 1

] [

σ1

1

]

= σ1

[

1
σ1

]

and

[

1 0
1 1

] [

1
−σ1

]

= σ2

[

σ1

−1

]

The first needsσ1 + 1 = σ2

1
and the second needs1− σ1 = −σ2. Are those true?

9 The MATLAB commandsA = rand (20, 40) andB = randn (20, 40) produce20 by
40 random matrices. The entries ofA are between0 and1 with uniform probability.
The entries ofB have a normal “bell-shaped” probability distribution. Using ansvd
command, find and graph their singular valuesσ1 to σ20. Why do they have20 σ’s ?


