Chapter 7

The Singular Value Decomposition (SVD)

7.1 Image Processing by Linear Algebra

1 Animage is a large matrix of grayscale values, one for eaxl pind color.
2 When nearby pixels are correlated (not random) the imagbeaompressed.
3 The SVD separates any mattkinto rank one pieceav™ = (column)(row).

4 The columns and rows are eigenvectors of symmetric matdc€s and AT A.

The singular value theorem for A is the eigenvalue theorem forAT A and AAT.

That is a quick preview of what you will see in this chaptér.hastwo sets of singular

vectors (the eigenvectors af” A and AAT). There isoneset of positive singular values
(becausedAT A has the same positive eigenvalues/4™). A is often rectangular, but
AT A andAA™T are square, symmetric, and positive semidefinite.

The Singular Value Decomposition (SVD) separates any matxiinto simple pieces

Each piece is a column vector times a row vector. /Ay n matrix hasm timesn en-
tries (a big number when the matrix represents an image).aBalumn and a row only
havern + n components far less thanm timesn. Those (column)(row) pieces are full
size matrices that can be processed with extreme speed-rekeyonlymn plusn numbers.

Unusually, this image processing application of the SVDaming before the ma-
trix algebra it depends on. | will start with simple imageattionly involve one or two
pieces. Right now | am thinking of an image as a large rectanguatrix. The entries;;
tell the grayscales of all the pixels in the image. Think ofxepas a small square steps
across ang steps up from the lower left corner. Its grayscale is a nuridféen a whole
number in the rangeé < a;; < 256 = 2%). An all-white pixel has:;; = 255 = 11111111.
That number has eights when the computer writexs5 in binary notation.
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You see how an image that hastimesn pixels, with each pixel using bits (0 or 1)
for its grayscale, becomes anby n matrix with 256 possible values for each entay; .

In short, an image is a large matrix. To copy it perfectly, veed8 (m)(n) bits of
information. High definition television typically hasa = 1080 andn = 1920. Often
there are24 frames each second and you probably like to watch in cgl@o(or scales).
This requires transmitting)(8)(48, 470, 400) bits per second. That is too expensive and
it is not done. The transmitter can’t keep up with the show.

When compression is well done, you can't see the differemom fthe original.
Edges in the imagésudden changes in the grayscale) are the hard parts to essapr

Major success in compression will be impossible if ewgryis an independent random
number. We totally depend on the fact thatirby pixels generally have similar grayscales
An edge produces a sudden jump when you cross over it. Cargrermore compressible
than real-world images, with edges everywhere.

For a video, the numbets; don’'t change much between frama&fe only transmit
the small changesThis isdifference codingn the H.264 video compression standard (on
this book’s website). We compress each change matrix bgiialgebra (and by nonlinear
“quantization” for an efficient step to integers in the congu

The natural images that we see every day are absolutely raadyopen for
compression—but that doesn’t make it easy to do.

Low Rank Images (Examples)

The easiest images to compress are all black or all whitelax ebnstant grayscale.
The matrix4 has the same numbgimn every entry a;; = g. Wheng = 1 andm = n = 6,
here is an extreme example of the central SVD dogma of imamgepsing :

Example 1 Don’tsendA = Send thisA = [111111]

e
e
e
e Sy Sy Y
e Sy Sy Y
e
e

36 numbers becom&2 numbers. With300 by 300 pixels, 90, 000 numbers becomé00.
And if we define the all-ones vectar in advance, we only have to seode number.
That number would be the constant grayseatleat multiplieszz™ to produce the matrix.

Of course this first example is extreme. But it makes an ingmdrpoint. If there
are special vectors like = onesthat can usefully be defined in advance, then image
processing can be extremely fast. The battle is betweeselected basegthe Fourier
basis allows speed-up from the FFT) aadhptive basedetermined by the image. The
SVD produces bases from the image itself—this is adaptiddatazan be expensive.

| am not saying that the SVD always or usually gives the mdstéfe algorithm in
practice. The purpose of these next examples is instruatidmot production.
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Example 2 e 1
“ace flag” e 1
French flagA Don'tsend A — Z Z Z Z z Z SendA = 1 [aaccec]
Italian flag A aaccee 1
T
German flagA aaccee 1

This flag has3 colors but it still has rank. We still have one column times one row.
The36 entries could even be all different, provided they keeprtiwak 1 pattern4 = wu; v7.
But when the rank moves up to= 2, we neeculvlT + uQvQT. Here is one choice:

Example 3 10, 1 1
Embedded square A_{ll]|sequaltoA_[1}[11}—{0][01]

The 1's and the0 in A could be blocks ofl’s and a block ofo’s. We would still
have rank2. We would still only need two terma;v{ andusvi. A 6 by 6 image
would be compressed int®4 numbers. AnN by N image (V2 numbers) would be
compressed intd N nhumbers from the four vectots, , v, us, vs.

Have | made the best choice for thé&s andwv’s ? This isnotthe choice from the SVD!
I notice thatu; = (1, 1) is notorthogonalta: = (1,0). Andv, = (1,1) is not orthogonal
to vo = (0,1). The theory says that orthogonality will produce a smalsosnd piece
cousvy. (The SVD chooses rank one pieces in order of importance.

If the rank of A is much higher thar2, as we expect for real images, thdnwill
add up many rank one pieces. We want the small ones to be salijl—they can be
discarded with no loss to visual quality. Image compres&iecomes lossy, but good
image compression is virtually undetectable by the humsmalisystem.

The question become®vhat are the orthogonal choices from the SVI?

Eigenvectors for the SVD

| want to introduce the use of eigenvectors. But the eigaiove®f most images are not
orthogonal. Furthermore the eigenvectoisx, give only one set of vectors, and we want
two sets {'s andv’s). The answer to both of those difficulties is the SVD idea:

Use the eigenvectors. of AAT and the eigenvectors of AT A.
SinceAA™ and AT A are automatically symmetric (but not usually equal!) e will be
one orthogonal set and the eigenvectossill be another orthogonal set. We can and will
make them all unit vectorsf|u;|| = 1 and||v;|| = 1. Then our rank matrix will be
A = oju1v] + ogugvi. The size of those numbewss ando, will decide whether they
can be ignored in compressioVe keep larges’s, we discard smalb’s.
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The w's from the SVD are calledeft singular vectors (unit eigenvectors oAAT).
The v’s areright singular vectors (unit eigenvectors ofAT 4). The ¢'s are singular
values square roots of the equal eigenvaluesiof™ and AT A :

Choices fromthe SVD AATw; = o?u; AT Av; = o?v;  Av; = oyu; (1)

In Example3 (the embedded square), here are the symmetric matfigg'sand AT A :

ar=[R][51]= 18] wa=[3][30]- 133

Their determinants arg soA; A2 = 1. Their traces (diagonal sums) a&e

-2 1 ] o 345 3-5
det{ 1 2_/\}_)\ —3\+1=0 gives )\ = 5 and A\ = 7
1 -1
The square roots of; and ), areo; = \/5;— andoy = \/52 with o1 09 = 1.

The nearest rank matrix to A will be oyu;vT. The error is only, ~ 0.6 = best possible
The orthonormal eigenvectors dfA™ and AT A are
=] ' ua=] | wi=| %] we=| L | alldividedby,/1+ 02 (2)
g1 -1 1 —01 1
Every reader understands that in real life those calculatare done by computers!

(Certainly not by unreliable professors. | corrected niyssing svd (A) in MATLAB.)
And we can check that the matrikis correctly recovered from, u; vy + cousvy :

T
01 i .
uq UQ] l ] [ T ] or more simplyA
g9 v

Important The key point is not that images tend to have low raNk.: Images mostly
have full rank. But they do havew effective rank. This means: Many singular values
are small and can be set to zeWge transmit a low rank approximation

A:

vy 92‘|—[01u1 azuz] ©))

[

Example4 Suppose the flag has two triangles of different colors. Thetdeft triangle
has1’s and the upper right triangle h&%s. The main diagonal is included with thés.
Here is the image matrix when= 4. It has full rankr = 4 so it is invertible :

1000 1 0 00
Triangular |1 10 0 4 | -1 1 00
flag matrix 111 0| @ AT=1
111 1 0 0 -1 1
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With full rank, A has a full set ofn singular valuess (all positive). The SVD will
producen piecess; u; v} of rank one. Perfect reproduction needsatiieces.

In compressiorsmall o’s can be discarded with no serious loss in image quality. We
want to understand and plot thés for n = 4 and also for large.. Notice that Examplé
was the special case= 2 of this triangular Examplé.

Working by hand, we begin witd A™ (a computer would proceed differently):

1111 2 -1 0 0
T |1 2 2 2 ool T a1 |12 =1 0
AAT =1 5 3 gl and@an) =@ h)tatt =" T o @
1 2 3 4 0 0 -1 1

That —1,2, —1 inverse matrix is included because its eigenvalues all Hheeform
2 — 2cosf. So we know the\'s for AA™ and theo’s for A:

1 1 1
© 2—2cosf  4sin®(0/2) 2sin(6/2)
The n different angle9 are equally spaced, which makes this example so exceptional

A

gives o =V\= (5)

oo 3 2n—-1)7
T+ 1U2n+1777 2n+41

(n = 4 includesd = %T with 2sing = 1) .

That special case gives = 1 as an eigenvalue ol AT whenn = 4. Soo = VA = 1
is a singular value ofl. You can check that the vectar= (1,1,0, —1) hasAA™u = u
(atruly special case).

The important point is to graph the singular values ofA. Those numbers drop off
(unlike the eigenvalues of, which are alll). But the dropoff is not steep. So the SVD
gives only moderate compression of this triangular fl@&eat compression for Hilbert
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Figure 7.1: Singular values of the triangle 16§ in Examples3-4 (not compressible) and
the evil Hilbert matrixH (i, j) = (i+j — 1)~! in Section8.3: compress it to work with it.
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Your faithful author has continued research on the ranksagkfl Quite a few are based on
horizontal or vertical stripes. Those haemk one—all rows or all columns are multiples
of the onesvector(1,1,...,1). Armenia, Austria, Belgium, Bulgaria, Chad, Colombia,
Ireland, Madagascar, Mali, Netherlands, Nigeria, RomaRigsia (and more) have three
stripes. Indonesia and Poland have two! Libya was the exdease in the Gadaffi years
1977 to 2011 (the whole flag was gregn

At the other extreme, many flags include diagonal lines. €loosild be long diagonals
as in the British flag. Or they could be short diagonals confiiam the edges of a star—
as in the US flag. The text example of a triangle of ones showsthose flag matrices
will have large rank. The rank increases to infinity as thepékzes get small.

Other flags have circles or crescents or various curved shapeir ranks are large and
also increasing to infinity. These are still compressiblae Tompressed image won't be
perfect but our eyes won't see the difference (with enoughser;u;v; from the SVD).
Those examples actually bring out the main purpose of imaggcession:

Visual quality can be preserved even with a big reduction inhe rank.

For fun | looked back at the flags with finite rank. They can hstvipes and they can
also have crosses—provided the edges of the cross are hi@lipo vertical. Some flags
have a thin outline around the cross. This artistic touchindrease the rank. Right now
my champion is the flag of Greece shown below, with a cross wdsiripes. Its rank is
four by my counting. | see no US State Flags of finite rank!!

The reader could google “national flags” to see the varietdesfigns and colors. |
would be glad to know any finite rank examples with rank. Good examples of all kinds
will go on the book’s websitenath.mit.edu/linearalgebra(and flags in full color).
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Problem Set 7.1

1 What are the ranks for these matrices with entriégimes; and: plusj ? Write A
andB as the sum of piecesuv™ of rank one. Not requiringf us = viwv, = 0.

1 2 3 4 2 3 4 5
2 4 6 8 3 4 5 6
A= 3 6 9 12 B = 4 5 6 7
4 8 12 16 5 6 7 8

2 We usually think that the identity matrik is as simple as possible. But why is
completely incompressibleDraw a rank5 flag with a cross

3 These flags have rark Write A and B in any way agu; vl + ugvs .

1 2 1 1
ASweden = AFinland = 2.2 2 2 BBenin - |: 1 g g ]
1 2 1 1

4 Now find the trace and determinant ofBBT™ and BTB in
Problem3. The singular values oB are close tor? = 28 — 1 ando3 = .
Is B compressible or not?

5 Use[U, S, V] = svd (A) to find two orthogonal piecesuv™ of Agweden-
6 Find the eigenvalues and the singular values of2Hig 2 matrix A.

121 . T, |20 10 T | 5 10
A_[4 2} with AA_[lo 5] and AA_[lo 20].

The eigenvector§l, 2) and(1, —2) of A are not orthogonal. How do you know the
eigenvectore;, v, of AT A are orthogonal? Notice thatT A and AAT have the
same eigenvalueg% and0).

7 How does the second fordV = UX in equation 8) follow from the first form
A = UXVT? That is the most famous form of the SVD.

8 The two columns oAV = UY areAv; = o1u; andAvs = oous. So we hope that

=1 8][ ] =o 0] e 3] ][]

The first needs; + 1 = o7 and the second needls- o; = —o5. Are those true?

9 The MATLAB commandsA = rand (20, 40) andB = randn (20, 40) produce0 by
40 random matrices. The entries dfare betweef and1 with uniform probability.
The entries ofB have a normal “bell-shaped” probability distribution. bigiansvd
command, find and graph their singular valaggo o4y. Why do they hav0 ¢'s ?



