Six Great Theorems of Linear Algebra

Dimension Theorem All bases for a vector space have the same number of vectors. **Counting Theorem** Dimension of column space + dimension of nullspace = number of columns. **Rank Theorem** Dimension of column space = dimension of row space. This is the rank. **Fundamental Theorem** The row space and nullspace of *A* are orthogonal complements in \mathbb{R}^n . **SVD** There are orthonormal bases (*v*'s and *u*'s for the row and column spaces) so that $Av_i = \sigma_i u_i$. **Spectral Theorem** If $A^T = A$ there are orthonormal *q*'s so that $Aq_i = \lambda_i q_i$ and $A = Q\Lambda Q^T$.

LINEAR ALGEBRA IN A NUTSHELL

((The matrix A is n by n))

Nonsingular

A is invertible The columns are independent The rows are independent The determinant is not zero Ax = 0 has one solution x = 0 Ax = b has one solution $x = A^{-1}b$ A has n (nonzero) pivots A has full rank r = nThe reduced row echelon form is R = IThe column space is all of \mathbb{R}^n The row space is all of \mathbb{R}^n All eigenvalues are nonzero $A^T A$ is symmetric positive definite A has n (positive) singular values

Singular

A is not invertible The columns are dependent The rows are dependent The determinant is zero Ax = 0 has infinitely many solutions Ax = b has no solution or infinitely many A has r < n pivots A has rank r < nR has at least one zero row The column space has dimension r < nThe row space has dimension r < nZero is an eigenvalue of A $A^{T}A$ is only semidefinite A has r < n singular values