Six Great Theorems of Linear Algebra

Dimension Theorem All bases for a vector space have the same number of vectors.
Counting Theorem Dimension of column space + dimension of nullspace $=$ number of columns.
Rank Theorem Dimension of column space $=$ dimension of row space. This is the rank.
Fundamental Theorem The row space and nullspace of A are orthogonal complements in $\mathbf{R}^{\boldsymbol{n}}$.
SVID There are orthonormal bases (\boldsymbol{v} 's and \boldsymbol{u} 's for the row and column spaces) so that $A \boldsymbol{v}_{i}=\boldsymbol{\sigma}_{i} \boldsymbol{u}_{\boldsymbol{i}}$.
Spectral Theorem If $A^{\mathrm{T}}=A$ there are orthonormal \boldsymbol{q} 's so that $\boldsymbol{A} \boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{\lambda}_{\boldsymbol{i}} \boldsymbol{q}_{\boldsymbol{i}}$ and $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathrm{T}}$.

LINEAR ALGEBRA IN A NUTSHELL

((The matrix A is n by $n)$)

Nonsingular
A is invertible
The columns are independent
The rows are independent
The determinant is not zero
$A \boldsymbol{x}=\mathbf{0}$ has one solution $\boldsymbol{x}=\mathbf{0}$
$A \boldsymbol{x}=\boldsymbol{b}$ has one solution $\boldsymbol{x}=A^{-1} \boldsymbol{b}$
A has n (nonzero) pivots
A has full rank $r=n$
The reduced row echelon form is $R=I$
The column space is all of \mathbf{R}^{n}
The row space is all of \mathbf{R}^{n}
All eigenvalues are nonzero
$A^{\mathrm{T}} A$ is symmetric positive definite
A has n (positive) singular values

Singular

A is not invertible
The columns are dependent
The rows are dependent
The determinant is zero
$A \boldsymbol{x}=\mathbf{0}$ has infinitely many solutions
$A \boldsymbol{x}=\boldsymbol{b}$ has no solution or infinitely many
A has $r<n$ pivots
A has rank $r<n$
R has at least one zero row
The column space has dimension $r<n$
The row space has dimension $r<n$
Zero is an eigenvalue of A
$A^{\mathrm{T}} A$ is only semidefinite
A has $r<n$ singular values

