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3.5 Dimensions of the Four Subspaces'
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1 The column spaceC(A) and the row spaceC(AT) both havedimensionr (the rank ofA).

2 The nullspaceN(A) hasdimensionn− r. The left nullspaceN(AT) hasdimensionm− r.

3 Elimination produces bases for the row space and nullspace of A : They are the same as forR.

4 Elimination often changes the column space and left nullspace (but dimensions don’t change).

5 Rank one matrices: A = uvT = column times row :C(A) has basisu,C(AT) has basisv.

The main theorem in this chapter connectsrank anddimension. Therank of a matrix
is the number of pivots. Thedimensionof a subspace is the number of vectors in a basis.
We count pivots or we count basis vectors.The rank ofA reveals the dimensions of
all four fundamental subspaces.Here are the subspaces, including the new one.

Two subspaces come directly fromA, and the other two fromAT:

Four Fundamental Subspaces

1. Therow spaceisC(AT), a subspace ofRn.

2. Thecolumn spaceisC(A), a subspace ofRm.

3. ThenullspaceisN (A), a subspace ofRn.

4. The left nullspaceisN(AT), a subspace ofRm. This is our new space.

In this book the column space and nullspace came first. We knowC(A) andN (A) pretty
well. Now the other two subspaces come forward. The row spacecontains all combinations
of the rows.This row space ofA is the column space ofAT.

For the left nullspace we solveATy = 0—that system isn bym. This is the nullspace
of AT. The vectorsy go on theleft side ofA when the equation is writtenyTA = 0T.
The matricesA andAT are usually different. So are their column spaces and their nullspaces.
But those spaces are connected in an absolutely beautiful way.

Part 1 of the Fundamental Theorem finds the dimensions of the four subspaces. One fact
stands out:The row space and column space have the same dimensionr. This numberr
is therank of the matrix. The other important fact involves the two nullspaces:

N(A) andN(AT) have dimensionsn − r andm − r, to make up the fulln andm.

Part 2 of the Fundamental Theorem will describe how the four subspaces fit together
(two inRn and two inRm). That completes the “right way” to understand everyAx = b.
Stay with it—you are doing real mathematics.
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The Four Subspaces forR

SupposeA is reduced to its row echelon formR. For that special form, the four subspaces
are easy to identify. We will find a basis for each subspace andcheck its dimension. Then
we watch how the subspaces change (two of them don’t change!)as we look back atA.
The main point is thatthe four dimensions are the same forA andR.

As a specific3 by 5 example, look at the four subspaces for this echelon matrixR:

m = 3
n = 5
r = 2

R =



1 3 5 0 7
0 0 0 1 2
0 0 0 0 0




pivot rows 1 and 2

pivot columns1 and 4

The rank of this matrix isr = 2 (two pivots). Take the four subspaces in order.

1. Therow spaceof R has dimension2, matching the rank.

Reason: The first two rows are a basis. The row space contains combinations of all three
rows, but the third row (the zero row) adds nothing new. So rows 1 and2 span the row
spaceC(RT).

The pivot rows1 and2 are independent. That is obvious for this example, and it is
always true. If we look only at the pivot columns, we see ther by r identity matrix.
There is no way to combine its rows to give the zero row (exceptby the combination with
all coefficients zero). So ther pivot rows are a basis for the row space.

The dimension of the row space is the rankr. The nonzero rows ofR form a basis.

2. Thecolumn spaceof R also has dimensionr = 2.

Reason: The pivot columns1 and4 form a basis forC(R). They are independent because
they start with ther by r identity matrix. No combination of those pivot columns can give
the zero column (except the combination with all coefficients zero). And they also span the
column space. Every other (free) column is a combination of the pivot columns. Actually
the combinations we need are the three special solutions !

Column 2 is 3 (column 1). The special solution is(−3, 1, 0, 0, 0).
Column 3 is 5 (column 1). The special solution is(−5, 0, 1, 0, 0, ).
Column 5 is 7 (column 1)+ 2 (column 4). That solution is(−7, 0, 0,−2, 1).

The pivot columns are independent, and they span, so they area basis forC(R).

The dimension of the column space is the rankr. The pivot columns form a basis.
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3. Thenullspaceof R has dimensionn− r = 5− 2. There aren− r = 3 free variables.
Here x2, x3, x5 are free (no pivots in those columns). They yield the three special
solutions toRx = 0. Set a free variable to1, and solve forx1 andx4.

s2 =




−3
1
0
0
0




s3 =




−5
0
1
0
0




s5 =




−7
0
0

−2
1




Rx = 0 has the
complete solution
x = x2s2 + x3s3 + x5s5
The nullspace has dimension 3.

.

Reason:There is a special solution for each free variable. Withn variables andr pivots,
that leavesn−r free variables and special solutions. The special solutions are independent,
because they contain the identity matrix in rows2, 3, 5. SoN(R) has dimensionn − r.

The nullspace has dimensionn − r. The special solutions form a basis.

4. Thenullspace ofRT (left nullspace ofR) has dimensionm− r = 3− 2.

Reason: The equationRTy = 0 looks for combinations of the columns ofRT (the rows
ofR) that produce zero. This equationRTy = 0 or yTR = 0T is

Left nullspace
Combination
of rows is zero

y1 [ 1, 3, 5, 0, 7 ]
+y2 [ 0, 0, 0, 1, 2 ]
+y3 [ 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 0, 0 ]

(1)

The solutionsy1, y2, y3 are pretty clear. We needy1 = 0 andy2 = 0. The variabley3 is
free (it can be anything).The nullspace ofRT contains all vectorsy = (0, 0, y3).

In all casesR ends withm − r zero rows. Every combination of thesem − r rows
gives zero. These are theonly combinations of the rows ofR that give zero, because the
pivot rows are linearly independent. Soy in the left nullspace hasy1 = 0, . . . , yr = 0.

If A ism byn of rank r, its left nullspace has dimensionm − r.

Why is this a “left nullspace”? The reason is thatRTy = 0 can be transposed to
yTR = 0T. Now yT is a row vector to theleft of R. You see they’s in equation (1)
multiplying the rows. This subspace came fourth, and some linear algebra books omit
it—but that misses the beauty of the whole subject.

In Rn the row space and nullspace have dimensionsr andn− r (adding ton).
In Rm the column space and left nullspace have dimensionsr andm− r (totalm).
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The Four Subspaces forA

We have a job still to do. The subspace dimensions forA are the same as for R.
The job is to explain why.A is now any matrix that reduces toR = rref(A).

This A reduces toR A =




1 3 5 0 7
0 0 0 1 2
1 3 5 1 9


 NoticeC(A) 6= C(R) ! (2)

C(AT)
dim r

C(A)
dim r

Rn Rm

N(A)
dimensionn − r

N(AT)
dimensionm − r

row space
all ATy

column space
all Ax

nullspace
Ax = 0

left nullspace
ATy = 0

The big picture

Figure 3.5: The dimensions of the Four Fundamental Subspaces (forR and forA).

1 A has the same row space asR . Same dimensionr and same basis.

Reason: Every row ofA is a combination of the rows ofR. Also every row ofR is a
combination of the rows ofA. Elimination changes rows, but not rowspaces.

SinceA has the same row space asR, we can choose the firstr rows ofR as a basis.
Or we could chooser suitable rows of the originalA. They might not always be thefirst r
rows ofA, because those could be dependent. The goodr rows ofA are the ones that end
up as pivot rows inR.

2 The column space ofA has dimensionr. The column rank equals the row rank.

Rank Theorem:The number of independent columns=the number of independent rows.

Wrong reason: “A andR have the same column space.” This is false.The columns ofR
often end in zeros. The columns ofA don’t often end in zeros. ThenC(A) is notC(R).
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Right reason: Thesamecombinations of the columns are zero (or nonzero) forA andR.
Dependent inA⇔ dependent inR. Say that another way:Ax = 0 exactly whenRx = 0.
The column spaces are different, but theirdimensionsare the same—equal tor.

Conclusion Ther pivot columns ofA are a basis forits column spaceC(A).

3 A has the same nullspace asR. Same dimensionn − r and same basis.

Reason: The elimination steps don’t change the solutions. The special solutions are a ba-
sis for this nullspace (as we always knew). There aren− r free variables, so the dimension
of the nullspace isn− r. This is theCounting Theorem: r + (n− r) equalsn.

(dimension of column space) + (dimension of nullspace) = dimension ofRn.

4 The left nullspace ofA (the nullspace ofAT) has dimensionm − r.

Reason: AT is just as good a matrix asA. When we know the dimensions for everyA,
we also know them forAT. Its column space was proved to have dimensionr. SinceAT

is n by m, the “whole space” is nowRm. The counting rule forA wasr + (n − r) = n.
The counting rule forAT is r + (m− r) = m. We now have all details of a big theorem:

Fundamental Theorem of Linear Algebra,Part 1

The column space and row space both have dimensionr.

The nullspaces have dimensionsn − r and m − r.

By concentrating onspacesof vectors, not on individual numbers or vectors, we get these
clean rules. You will soon take them for granted—eventuallythey begin to look obvious.
But if you write down an11 by 17 matrix with 187 nonzero entries, I don’t think most
people would see why these facts are true:

Two key facts
dimension ofC(A) = dimension ofC(AT) = rank ofA
dimension ofC(A) + dimension ofN (A) = 17.

Example 1 A = [ 1 2 3 ] has m = 1 and n = 3 and rankr = 1.

The row space is a line inR3. The nullspace is the planeAx = x1 +2x2 + 3x3 = 0. This
plane has dimension 2 (which is3− 1). The dimensions add to1+ 2 = 3.

The columns of this 1 by 3 matrix are inR1! The column space is all ofR1. The left
nullspace contains only the zero vector. The only solution to ATy = 0 is y = 0, no other
multiple of [ 1 2 3 ] gives the zero row. ThusN(AT) is Z, the zero space with dimension
0 (which ism− r). In Rm the dimensions ofC(A) andN(AT) add to1+ 0 = 1.
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Example 2 A =

[
1 2 3
2 4 6

]
has m = 2 with n = 3 and rankr = 1.

The row space is the same line through(1, 2, 3). The nullspace must be the same plane
x1 + 2x2 + 3x3 = 0. The line and plane dimensions still add to1 + 2 = 3.

All columns are multiples of the first column(1, 2). Twice the first row minus the
second row is the zero row. ThereforeATy = 0 has the solutiony = (2,−1). The column
space and left nullspace areperpendicular lines in R2. Dimensions1 + 1 = 2.

Column space= line through

[
1
2

]
Left nullspace= line through

[
2
−1

]
.

If A has three equal rows, its rank is . What are two of they’s in its left nullspace?

They’s in the left nullspace combine the rows to give the zero row.

Example 3 You have nearly finished three chapters with made-up equations, and this
can’t continue forever. Here is a better example of five equations (one for every edge in
Figure3.6). The five equations have four unknowns (one for every node).The matrix in
Ax = b is anincidence matrix. This matrixA has1 and−1 on every row.

DifferencesAx = b
across edges1, 2, 3, 4, 5
between nodes1, 2, 3, 4

−x1 +x2 = b1
−x1 +x3 = b2

−x2 +x3 = b3
−x2 +x4 = b4

−x3 +x4 = b5

(3)

If you understand the four fundamental subspaces for this matrix (the column spaces and
the nullspaces forA andAT) you have captured the central ideas of linear algebra.

x2

x1

x3

x4

b1 b2

b3

b4 b5

edges

A =




−1 1
−1 1

−1 1
−1 1

−1 1




1
2
3
4
5

Figure 3.6: A “graph” with5 edges and4 nodes.A is its5 by 4 incidence matrix.

The nullspaceN(A) To find the nullspace we setb = 0. Then the first equation
saysx1 = x2. The second equation isx3 = x1. Equation4 is x2 = x4. All four unknowns
x1, x2, x3, x4 have the same valuec. The vectorsx = (c, c, c, c) fill the nullspace ofA.

That nullspace is a line inR4. The special solutionx = (1, 1, 1, 1) is a basis for
N(A). The dimension ofN (A) is 1 (one vector in the basis).The rank ofA must be3,
sincen− r = 4− 3 = 1. We now know the dimensions of all four subspaces.
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The column spaceC(A) There must ber = 3 independent columns. The fast way
is to look at the first3 columns. The systematic way is to findR = rref(A).

Columns
1, 2, 3
of A

−1 1 0
−1 0 1
0 −1 1
0 −1 0
0 0 −1

R =
reduced row
echelon form

=




1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0
0 0 0 0




FromR we see again the special solutionx = (1, 1, 1, 1). The first3 columns are basic,
the fourth column is free. To produce a basis forC(A) and notC(R), we go back to
columns1, 2, 3 of A. The column space has dimensionr = 3.

The row spaceC(AT) The dimension must again ber = 3. But the first3 rows of
A arenot independent: row 3 = row 2 − row 1. So row3 became zero in elimination,
and row3 was exchanged with row4. The first three independent rows are rows1, 2, 4.
Those three rows are a basis (one possible basis) for the row space.

I notice that edges1, 2, 3 form a loop in the picture: Dependent rows1, 2, 3.
Edges1, 2, 4 form a tree in the picture.Trees have no loops! Independent rows1, 2, 4.

The left nullspaceN(AT) Now we solveATy = 0. Combinations of the rows
give zero. We already noticed that row3 = row 2 − row 1, so one solution isy =
(1,−1, 1, 0, 0). I would say: Thaty comes from following the upper loop in the pic-
ture. Anothery comes from going around the lower loop and it isy = (0, 0,−1,1,1):
row 3 = row 4 + row 5. Those twoy’s are independent, they solveATy = 0, and the
dimension ofN(AT) is m− r = 5− 3 = 2. So we have a basis for the left nullspace.

You may ask how “loops” and “trees” got into this problem. That didn’t have to happen.
We could have used elimination to solveATy = 0. The4 by5 matrixAT would have three
pivot columns1, 2, 4 and two free columns3, 5. There are two special solutions and the
nullspace ofAT has dimension two:m − r = 5 − 3 = 2. But loopsand treesidentify
dependent rowsandindependent rowsin a beautiful way. We use them in Section10.1 for
every incidence matrix like thisA.

The equationsAx = b give “voltages”x1, x2, x3, x4 at the four nodes. The equations
ATy = 0 give “currents”y1, y2, y3, y4, y5 on the five edges. These two equations are
Kirchhoff’s Voltage Law andKirchhoff’s Current Law . Those words apply to an elec-
trical network. But the ideas behind the words apply all overengineering and science and
economics and business.

Graphs arethe most important model in discrete applied mathematics. You see graphs
everywhere: roads, pipelines, blood flow, the brain, the Web, the economy of a country or
the world. We can understand their matricesA andAT.
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Rank One Matrices (Review)

Suppose every row is a multiple of the first row. Here is a typical example:



2 3 7 8
2a 3a 7a 8a
2b 3b 7b 8b


 =



1
a
b


 [

2 3 7 8
]
= uvT

On the left is a matrix with three rows. But its rowspaceonly has dimension= 1.
The row vectorvT =

[
2 3 7 8

]
tells us a basis for that row space.The row rank is1.

Now look at the columns. “The column rank equals the row rank which is 1.”
All columns of the matrix must be multiples of one column. Do you see that this key
rule of linear algebra is true? The column vectoru = (1, a, b) is multiplied by2, 3, 7, 8.
That nonzero vectoru is a basis for the column space.The column rank is also1.

Every rank one matrix is one column times one row A = uvT

Rank Two Matrices = Rank One plus Rank One

Here is a matrixA of rank r = 2. We can’t seer immediately fromA. So we reduce
the matrix by row operations toR = rref(A). Some elimination matrixE simplifiesA to
EA = R. Then the inverse matrixC = E−1 connectsR back toA = CR.

You know the main point already:R has the same row space asA.

Rank
two

A =




1 0 3
1 1 7
4 2 20


 =




1 0 0
1 1 0
4 2 1






1 0 3
0 1 4
0 0 0


 = CR. (4)

The row space ofR clearly has two basis vectorsvT
1 =

[
1 0 3

]
andvT

2 =
[
0 1 4

]
.

So the (same!) row space ofA also has this basis:row rank= 2. Multiplying C timesR
says that row3 of A is 4vT

1 + 2vT
2 .

Now look at columns. The pivot columns ofR are clearly(1, 0, 0) and (0, 1, 0).
Then the pivot columns ofA are also in columns1 and2: u1 = (1, 1, 4) andu2 = (0, 1, 2).
Notice thatC has those same first two columns! That was guaranteed since multiplying
by two columns of the identity matrix (inR) won’t change the pivot columnsu1 andu2.

When you put in letters for the columns and rows, you seerank 2 = rank 1 + rank 1.

Matrix A
Rank two

A =


 u1 u2 u3







vT
1

vT
2

zero row


 = u1v

T
1 +u2v

T
2 = (rank1)+(rank1).

Did you see that last step? I multiplied the matrices usingcolumns times rows.
That was perfect for this problem.Every rankr matrix is a sum ofr rank one matrices:
Pivot columns ofA times nonzero rows ofR. The row

[
0 0 0

]
simply disappeared.

The pivot columnsu1 andu2 are a basis for the column space, which you knew.
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REVIEW OF THE KEY IDEAS

1. Ther pivot rows ofR are a basis for the row spaces ofR andA (same space).

2. Ther pivot columns ofA (!) are a basis for its column spaceC(A).

3. Then− r special solutions are a basis for the nullspaces ofA andR (same space).

4. If EA = R, the lastm− r rows ofE are a basis for the left nullspace ofA.

Note about the four subspacesThe Fundamental Theorem looks like pure algebra, but
it has very important applications. My favorites are the networks in Chapter 10 (often
I go to 10.1 for my next lecture). The equation fory in the left nullspace isATy = 0:

Flow into a node equals flow out. Kirchhoff’s Current Law is the “balance equation”.

This must be the most important equation in applied mathematics. All models in science
and engineering and economics involve a balance—of force orheat flow or charge or mo-
mentum or money. That balance equation, plus Hooke’s Law or Ohm’s Law or some
law connecting “potentials” to “flows”, gives a clear framework for applied mathematics.

My textbook onComputational Science and Engineeringdevelops that framework,
together with algorithms to solve the equations: Finite differences, finite elements,
spectral methods, iterative methods, and multigrid.

WORKED EXAMPLES

3.5 A Put four1’s into a5 by 6 matrix of zeros, keeping the dimension of itsrow space
as small as possible. Describe all the ways to make the dimension of its column spaceas
small as possible. Describe all the ways to make the dimension of itsnullspaceas small as
possible. How to make thesum of the dimensions of all four subspaces small?

Solution The rank is1 if the four 1’s go into the same row, or into the same column.
They can also go intotwo rows and two columns(so aii = aij = aji = ajj = 1).
Since the column space and row space always have the same dimensions, this answers the
first two questions: Dimension1.

The nullspace has its smallest possible dimension6 − 4 = 2 when the rank isr = 4.
To achieve rank4, the1’s must go into four different rows and four different columns.

You can’t do anything about the sumr+(n− r)+ r+(m− r) = n + m. It will be
6 + 5 = 11 no matter how the1’s are placed. The sum is11 even if there aren’t any1’s...

If all the other entries ofA are2’s instead of0’s, how do these answers change?
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3.5 B Fact: All the rows ofAB are combinations of the rows ofB. So the row space of
AB is contained in (possibly equal to) the row space ofB. Rank (AB) ≤ rank (B).

All columns ofAB are combinations of the columns ofA. So the column space of
AB is contained in (possibly equal to) the column space ofA. Rank (AB) ≤ rank (A).

If we multiply by an invertiblematrix, the rank will not change. The rank can’t drop,
because when we multiply by the inverse matrix the rank can’tjump back.

Problem Set 3.5

1 (a) If a 7 by 9 matrix has rank 5, what are the dimensions of the four subspaces?
What is the sum of all four dimensions?

(b) If a 3 by 4 matrix has rank 3, what are its column space and left nullspace?

2 Find bases and dimensions for the four subspaces associatedwith A andB:

A =

[
1 2 4
2 4 8

]
and B =

[
1 2 4
2 5 8

]
.

3 Find a basis for each of the four subspaces associated withA:

A =



0 1 2 3 4
0 1 2 4 6
0 0 0 1 2


 =



1 0 0
1 1 0
0 1 1





0 1 2 3 4
0 0 0 1 2
0 0 0 0 0


 .

4 Construct a matrix with the required property or explain whythis is impossible:

(a) Column space contains
[
1
1
0

]
,
[
0
0
1

]
, row space contains

[
1
2

]
,
[
2
5

]
.

(b) Column space has basis
[
1
1
3

]
, nullspace has basis

[
3
1
1

]
.

(c) Dimension of nullspace= 1 + dimension of left nullspace.

(d) Nullspace contains
[
1
3

]
, column space contains

[
3
1

]
.

(e) Row space= column space, nullspace6= left nullspace.

5 If V is the subspace spanned by(1, 1, 1) and (2, 1, 0), find a matrixA that has
V as its row space. Find a matrixB that hasV as its nullspace. MultiplyAB.

6 Without using elimination, find dimensions and bases for thefour subspaces for

A =



0 3 3 3
0 0 0 0
0 1 0 1


 and B =



1
4
5


 .

7 Suppose the 3 by 3 matrixA is invertible. Write down bases for the four subspaces
for A, and also for the 3 by 6 matrixB = [A A ]. (The basis forZ is empty.)
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8 What are the dimensions of the four subspaces forA,B, andC, if I is the 3 by 3
identity matrix and 0 is the 3 by 2 zero matrix?

A =
[
I 0

]
and B =

[
I I
0T 0T

]
and C =

[
0
]
.

9 Which subspaces are the same for these matrices of differentsizes?

(a) [A ] and

[
A
A

]
(b)

[
A
A

]
and

[
A A
A A

]
.

Prove that all three of those matrices have thesame rankr.

10 If the entries of a 3 by 3 matrix are chosen randomly between 0 and 1, what are the
most likely dimensions of the four subspaces? What if the random matrix is 3 by 5?

11 (Important)A is anm by n matrix of rankr. Suppose there are right sidesb for
whichAx = b hasno solution.

(a) What are all inequalities (< or≤) that must be true betweenm,n, andr?

(b) How do you know thatATy = 0 has solutions other thany = 0?

12 Construct a matrix with(1, 0, 1) and (1, 2, 0) as a basis for its row space and its
column space. Why can’t this be a basis for the row space and nullspace?

13 True or false (with a reason or a counterexample):

(a) If m = n then the row space ofA equals the column space.

(b) The matricesA and−A share the same four subspaces.

(c) If A andB share the same four subspaces thenA is a multiple ofB.

14 Without computingA, find bases for its four fundamental subspaces:

A =



1 0 0
6 1 0
9 8 1





1 2 3 4
0 1 2 3
0 0 1 2


 .

15 If you exchange the first two rows ofA, which of the four subspaces stay the same?
If v = (1, 2, 3, 4) is in the left nullspace ofA, write down a vector in the left nullspace
of the new matrix after the row exchange.

16 Explain whyv = (1, 0,−1) cannot be a row ofA and also in the nullspace.

17 Describe the four subspaces ofR3 associated with

A =



0 1 0
0 0 1
0 0 0


 and I +A =



1 1 0
0 1 1
0 0 1


 .
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18 (Left nullspace) Add the extra columnb and reduceA to echelon form:

[
A b

]
=



1 2 3 b1
4 5 6 b2
7 8 9 b3


 →



1 2 3 b1
0 −3 −6 b2 − 4b1
0 0 0 b3 − 2b2 + b1


 .

A combination of the rows ofA has produced the zero row. What combination is it?
(Look atb3 − 2b2 + b1 on the right side.) Which vectors are in the nullspace ofAT

and which vectors are in the nullspace ofA?

19 Following the method of Problem 18, reduceA to echelon form and look at zero
rows. Theb column tells which combinations you have taken of the rows:

(a)



1 2 b1
3 4 b2
4 6 b3


 (b)




1 2 b1
2 3 b2
2 4 b3
2 5 b4




From theb column after elimination, read offm−r basis vectors in the left nullspace.
Thosey’s are combinations of rows that give zero rows in the echelonform.

20 (a) Check that the solutions toAx = 0 are perpendicular to the rows ofA:

A =



1 0 0
2 1 0
3 4 1





4 2 0 1
0 0 1 3
0 0 0 0


 = ER.

(b) How many independent solutions toATy = 0? Why doesyT= row3 of E−1?

21 SupposeA is the sum of two matrices of rank one:A = uvT +wzT.

(a) Which vectors span the column space ofA?

(b) Which vectors span the row space ofA?

(c) The rank is less than 2 if or if .

(d) ComputeA and its rank ifu = z = (1, 0, 0) andv = w = (0, 0, 1).

22 ConstructA = uvT + wzT whose column space has basis(1, 2, 4), (2, 2, 1) and
whose row space has basis(1, 0), (1, 1). WriteA as (3 by 2) times (2 by 2).

23 Without multiplying matrices, find bases for the row and column spaces ofA:

A =



1 2
4 5
2 7



[
3 0 3
1 1 2

]
.

How do you know from these shapes thatA cannot be invertible?

24 (Important)ATy = d is solvable whend is in which of the four subspaces? The
solutiony is unique when the contains only the zero vector.
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25 True or false (with a reason or a counterexample):

(a) A andAT have the same number of pivots.

(b) A andAT have the same left nullspace.

(c) If the row space equals the column space thenAT = A.

(d) If AT = −A then the row space ofA equals the column space.

26 If a, b, c are given witha 6= 0, how would you choosed so that
[
a b
c d

]
has rank 1?

Find a basis for the row space and nullspace. Show they are perpendicular!

27 Find the ranks of the 8 by 8 checkerboard matrixB and the chess matrixC:

B =




1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
· · · · · · · ·
0 1 0 1 0 1 0 1




and C =




r n b q k b n r
p p p p p p p p

four zero rows
p p p p p p p p
r n b q k b n r




The numbersr, n, b, q, k, p are all different. Find bases for the row space and left
nullspace ofB andC. Challenge problem: Find a basis for the nullspace ofC.

28 Can tic-tac-toe be completed (5 ones and4 zeros inA) so that rank(A) = 2 but
neither side passed up a winning move?

Challenge Problems

29 If A = uvT is a2 by 2 matrix of rank1, redraw Figure 3.5 to show clearly the Four
Fundamental Subspaces. IfB produces those same four subspaces, what is the exact
relation ofB toA?

30 M is the space of3 by 3 matrices. Multiply every matrixX in M by

A =




1 0 −1
−1 1 0
0 −1 1


 . Notice:A



1
1
1


 =



0
0
0


 .

(a) Which matricesX lead toAX = zero matrix?

(b) Which matrices have the formAX for some matrixX?

(a) finds the “nullspace” of that operationAX and (b) finds the “column space”.
What are the dimensions of those two subspaces ofM? Why do the dimensions add
to (n− r) + r = 9?

31 Suppose them by n matricesA andB havethe same four subspaces. If they are
both in row reduced echelon form, prove thatF must equalG:

A =

[
I F
0 0

]
B =

[
I G
0 0

]
.




