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3.5 Dimensions of the Four Subspaces

1 The column spac€'(A) and the row spac€(AT) both havedimension- (the rank ofA).

2 The nullspaceVN (A) hasdimensiom — r. The left nullspaceV (A™) hasdimensionn — r.
3 Elimination produces bases for the row space and nullspfade dhey are the same as fé.
4 Elimination often changes the column space and left nutlisgbut dimensions don’t chang

5 Rank one matrices A = uv™ = column times row C(A) has basia:, C(AT) has basiw.

The main theorem in this chapter conneetsk anddimension Therank of a matrix
is the number of pivots. Théimensionof a subspace is the number of vectors in a basis.
We count pivots or we count basis vector§he rank ofA reveals the dimensions of
all four fundamental subspacedere are the subspaces, including the new one.

Two subspaces come directly fray and the other two fromi™:

Four Fundamental Subspaces
. Therow spacds C(A™), a subspace dR".

. Thecolumn spaces C(A), a subspace dR™.

. Thenullspaceis N (A), a subspace dR™.
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. Theleft nullspaceis N (AT), a subspace @&™. This is our new space.

In this book the column space and nullspace came first. We kei@d) and NV (A) pretty
well. Now the other two subspaces come forward. The row spactins all combinations
of the rows.This row space ofl is the column space ofT.

For the left nullspace we solvé™y = 0—that system i, by m. This is the nullspace
of AT. The vectorsy go on theleft side of A when the equation is writtep™ A = 07.
The matricest andA™ are usually different. So are their column spaces and thdispaces.
But those spaces are connected in an absolutely beautiful wa

Part 1 of the Fundamental Theorem finds the dimensions obtlvestibspaces. One fact
stands outThe row space and column space have the same dimensgiorhis number-
is therank of the matrix. The other important fact involves the two splces:

N(A) and N(A™") have dimensiong: — r andm — r, to make up the fulln and m.

Part 2 of the Fundamental Theorem will describe how the fabspaces fit together
(two in R™ and two inR™). That completes the “right way” to understand evdey = b.
Stay with it—you are doing real mathematics.
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The Four Subspaces forR

Supposed is reduced to its row echelon fori. For that special form, the four subspaces
are easy to identify. We will find a basis for each subspacechrdk its dimension. Then
we watch how the subspaces change (two of them don’t charagelje look back atl.
The main point is thathe four dimensions are the same fband R.

As a specific3 by 5 example, look at the four subspaces for this echelon matrix

m =3 1 3 5 07 pivot rows 1 and 2
n=>5 R=|0 0 0 1 2
r=2 0 00 0O pivot columns 1 and 4

The rank of this matrix is = 2 (two pivot3. Take the four subspaces in order.
1. Therow spaceof R has dimensiof, matching the rank.

Reason: The first two rows are a basis. The row space contains conitisatf all three
rows, but the third row (the zero row) adds nothing new. Sosrbwand?2 span the row
spaceC(RT).

The pivot rowsl and2 are independent. That is obvious for this example, and it is
always true. If we look only at the pivot columns, we see thiey » identity matrix.
There is no way to combine its rows to give the zero row (exbgphe combination with
all coefficients zero). So thepivot rows are a basis for the row space.

The dimension of the row space is the rank The nonzero rows of? form a basis.

2. Thecolumn spaceof R also has dimension= 2.

Reason: The pivot columnd and4 form a basis folC'(R). They are independent because
they start with the- by r identity matrix. No combination of those pivot columns caveg
the zero column (except the combination with all coefficser@ro). And they also span the
column space. Every other (free) column is a combinatiomefaivot columns. Actually
the combinations we need are the three special solutions!

Column 2is 3 (column 1). The special solutior(is3, 1,0, 0, 0).
Column 3is 5 (column 1). The special solutior{is5, 0, 1,0, 0, ).
Column 5 is 7 (column 14 2 (column 4). That solution is(—7,0,0,—2,1).

The pivot columns are independent, and they span, so theylasis foilC'(R).

The dimension of the column space is the ramk The pivot columns form a basis.
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3. Thenullspaceof R has dimensiom — r = 5 — 2. There arev — r = 3 free variables.
Here zo, 23, x5 are free (no pivots in those columns). They yield the threecisp
solutions toRx = 0. Set a free variable tb, and solve for; andzy.

— —5 -7
i’ 0 0 Rx = 0 has the
complete solution
S9 = 0 83 = 1 85 = 0
T = T282 + X383 + I5S85
0 0 —2 . .
0 0 1 The nullspace has dimension 3

Reason: There is a special solution for each free variable. Wittariables and pivots,
that leaves: —r free variables and special solutions. The special solstoaindependent,
because they contain the identity matrix in rotys3, 5. SoN(R) has dimensiom — r.

The nullspace has dimension — r. The special solutions form a basis.

4. Thenullspace ofRT (left nullspace ofR) has dimensiom: — r = 3 — 2.

Reason: The equatiorRTy = 0 looks for combinations of the columns &T (the rows
of R) that produce zero. This equati®Ty =0ory™R =0T is

Left nullspace 7

[ , 3, 0, 0,7
Combination +y2 |

[

[

1

0, 0, 0, 1,
0, 0, 0, 0,
0, 0, 0, 0

)

of rows is zero +ys

|
] 1)
]

[en) Rl N}

The solutiongy, y», y3 are pretty clear. We neegd = 0 andy, = 0. The variableys is
free (it can be anything)lhe nullspace of RT contains all vectorsy = (0,0, y3).

In all casesk ends withm — r zero rows. Every combination of these — r rows
gives zero. These are tlomly combinations of the rows aR that give zero, because the
pivot rows are linearly independent. $oin the left nullspace hag, = 0,...,y, = 0.

If Aism byn of rank =, its left nullspace has dimensiom — r.

Why is this a ‘left nullspace”? The reason is th&"y = 0 can be transposed to
yT"R = 0T. Now yT is a row vector to théeft of R. You see they’s in equation (1)
multiplying the rows. This subspace came fourth, and someali algebra books omit
it—but that misses the beauty of the whole subject.

In R™ the row space and nullspace have dimensionandn — r (adding ton).
In R™ the column space and left nullspace have dimensionandm — r (totalm).
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The Four Subspaces forA

We have a job still to do. The subspace dimensions foA are the same as for R.
The job is to explain whyA is now any matrix that reduces o = rref (A).

This A reduces toR A= [

=
w o w
ot O Ot

0
1
1

© N

] NoticeC(A) # C(R)! (2)

C(AT) C(A)

dim»

row space
all ATy

The big picture

left nullspace
ATy =0

N(AT)

dimensionnn — r dimensionm — r

Figure 3.5: The dimensions of the Four Fundamental Subsgémek and for A).

1 A has the same row space d&. Same dimensionr and same basis

Reason Every row of A is a combination of the rows aR. Also every row ofR is a
combination of the rows ofl. Elimination changes rows, but not r@epaces

Since A has the same row space Aswe can choose the firstrows of R as a basis.
Or we could choose suitable rows of the original. They might not always be tHest »
rows of A, because those could be dependent. The gaows of A are the ones that end
up as pivot rows inR.

2 The column space ofA has dimensionr. The column rank equals the row rank.

Rank Theorem: The number of independent columashe number of independent rows.

Wrong reason: “ A andR have the same column space.” This is falBee columns of?
often end in zeros. The columns dfdon’t often end in zeros. The®(A) is notC(R).
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Right reason: Thesamecombinations of the columns are zero (or nonzerof@ndR.
Dependent i < dependent irk. Say that another waydx = 0 exactly wherRx = 0.
The column spaces are different, but trdiinensionsre the same—equal 1o

Conclusion Ther pivot columns ofA are a basis foits column space&”(A).

3 A has the same nullspace aB. Same dimensionn — r and same basis

Reason: The elimination steps don’t change the solutions. The gpeolutions are a ba-
sis for this nullspace (as we always knew). Thererarer free variables, so the dimension
of the nullspace is — r. This is theCounting Theorem: r + (n — r) equalsn.

(dimension of column spacg -+ (dimension of nullspace = dimension of R".

4 The left nullspace ofA (the nullspace ofiT) has dimensionm — r.

Reason: AT is just as good a matrix ag. When we know the dimensions for evefy
we also know them for™. Its column space was proved to have dimensioBinceAT
is n by m, the “whole space” is nodR™. The counting rule fod wasr + (n — r) = n.
The counting rule fo™ isr + (m — r) = m. We now have all details of a big theorem:

Fundamental Theorem of Linear AlgebraPart 1

The column space and row space both have dimension

The nullspaces have dimensionga — r» and m — r.

By concentrating ospacesf vectors, not on individual numbers or vectors, we getéhes
clean rules. You will soon take them for granted—eventuidlgy begin to look obvious.
But if you write down anl1 by 17 matrix with 187 nonzero entries, | don’t think most
people would see why these facts are true:

dimension ofC(A) = dimension ofC(AT) = rank of A

Two key facts dimension ofC(A) + dimension ofV (A) = 17.

Examplel A=][1 2 3] hasm =1 andn =3 andrankr = 1.

The row space is a line iR3. The nullspace is the plangér = x1 + 225 + 323 = 0. This
plane has dimension 2 (which3s— 1). The dimensions add tb+ 2 = 3.

The columns of this 1 by 3 matrix are R'! The column space is all ®'. The left
nullspace contains only the zero vector. The only solutioAty = 0 is y = 0, no other
multiple of [1 2 3] gives the zero row. Thud/(AT) is Z, the zero space with dimension
0 (which ism — r). In R™ the dimensions of(A) and N (AT) add to1 + 0 = 1.
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1 2 3
2 4 6

The row space is the same line through2, 3). The nullspace must be the same plane
1 + 2x9 + 323 = 0. The line and plane dimensions still addite- 2 = 3.

All columns are multiples of the first colum(fi, 2). Twice the first row minus the
second row is the zero row. Therefotéy = 0 has the solutioy = (2, —1). The column
space and left nullspace goerpendicular linesin R?. Dimensionsl + 1 = 2.

Example2 A= [ ] has m = 2 with n =3 and rankr = 1.

Column space= line through B] Left nullspace= line through [_ﬂ .

If A has three equal rows, its rankis . What are two of the’s in its left nullspace?
The y’s in the left nullspace combine the rows to give the zero row

Example 3 You have nearly finished three chapters with made-up equstand this
can't continue forever. Here is a better example of five éqnat(one for every edge in
Figure3.6). The five equations have four unknowns (one for every notdlbg matrix in
Az = bis anincidence matrix. This matrixA hasl and—1 on every row.

—xr1 49 =b

DifferencesAxz = b -1 +x3 = by
across edged,2,3,4,5 —x9 T3 =bs 3)

between noded, 2, 3,4 —T9 4+x4 =by

—x3 +x4 =bs

If you understand the four fundamental subspaces for thisixr{@he column spaces and
the nullspaces forl and AT) you have captured the central ideas of linear algebra.

1 edges
-1 1 1
b b2 -1 1 2
To I3 A= -1 1 3
) —1 1 4
4 bs -1 1 5
T4

Figure 3.6: A “graph” with5 edges and nodes.A is its 5 by 4 incidence matrix.

The nullspace N(A) To find the nullspace we sét = 0. Then the first equation
saysr; = xo. The second equationig = x;. Equationd is zo = 4. All four unknowns
x1, %2, x3, x4 have the same value The vectorse = (¢, ¢, ¢, ¢) fill the nullspace ofA.

That nullspace is a line iR*. The special solutiom: = (1,1,1,1) is a basis for

N(A). The dimension ofV (A4) is 1 (one vector in the basis)'he rank of A must be3,
sincen —r = 4 — 3 = 1. We now know the dimensions of all four subspaces.
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The column spaceC(A) There must be = 3 independent columns. The fast way
is to look at the firs8 columns. The systematic way is to fifitl= rref(A).

-1 1 0 1 0 0 -1

Columns -1 0 1 reduced row 01 0 -1
1,2,3 0 -1 1 R= ochelonform = | 0 0 1 —1
of A 0 -1 0 0 0 0 0

0 0 -1 0 0 0 0

From R we see again the special solutisn= (1, 1,1, 1). The first3 columns are basic,

the fourth column is free. To produce a basis @A) and notC(R), we go back to
columnsl, 2, 3 of A. The column space has dimensiog- 3.

The row spaceC(AT) The dimension must again be= 3. But the first3 rows of
A arenot independentrow 3 = row 2 — row 1. So row3 became zero in elimination,
and row3 was exchanged with row. The first three independent rows are ro®, 4.
Those three rows are a basis (one possible basis) for thepave s

I notice that edgedl, 2,3 form a loop in the picture: Dependent rows, 2, 3.
Edgesl, 2,4 form atree in the picture.Trees have no loopk Independent rows, 2, 4.

The left nullspace N(AT) Now we solveATy = 0. Combinations of the rows
give zero. We already noticed that r&v= row 2 — row 1, so one solution iy =
(1,-1,1,0,0). | would say: Thaty comes from following the upper loop in the pic-
ture. Anothery comes from going around the lower loop and itjis= (0,0, —1,1,1):
row 3 = row 4 + row 5. Those twoy’s are independent, they solvE'y = 0, and the
dimension of N (AT)ism — r = 5 — 3 = 2. So we have a basis for the left nullspace.

You may ask how “loops” and “trees” got into this problem. THi&n’t have to happen.
We could have used elimination to sold€ y = 0. The4 by 5 matrix AT would have three
pivot columnsl, 2, 4 and two free column8, 5. There are two special solutions and the
nullspace ofA™ has dimension twom — r = 5 — 3 = 2. Butloopsandtreesidentify
dependent rowandindependent rowi a beautiful way. We use them in Sectibir 1 for
every incidence matrix like thid.

The equationsixz = b give “voltages’zy, x2, x5, x4 at the four nodes. The equations
ATy = 0 give “currents’y;, y2,y3, y4, ys on the five edges. These two equations are
Kirchhoff’s Voltage Law andKirchhoff’s Current Law . Those words apply to an elec-
trical network. But the ideas behind the words apply all amgineering and science and
economics and business.

Graphs arghe most important model in discrete applied mathematfcs see graphs
everywhere: roads, pipelines, blood flow, the brain, the Wedeconomy of a country or
the world. We can understand their matriceand A™.
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Rank One Matrices (Review)

Suppose every row is a multiple of the first row. Here is a tgpéxample:

2 3 7 8 1
2a 3a Ta 8a|=|a|[2 37 8]=uv"
2 3b b 8b b

On the left is a matrix with three rows. But its rogpaceonly has dimensiorn= 1.
The row vectowT = [2 37 8] tells us a basis for that row spacEhe row rank isl.

Now look at the columns. “The column rank equals the row rarictv is 1.”
All columns of the matrix must be multiples of one column. Dauysee that this key
rule of linear algebra is true? The column vecioe= (1, a,b) is multiplied by2,3,7, 8.
That nonzero vectow is a basis for the column spackhe column rank is alsb.

Every rank one matrix is one column times one row A = uv™

Rank Two Matrices = Rank One plus Rank One

Here is a matrix4 of rankr = 2. We can’t see- immediately fromA. So we reduce
the matrix by row operations t& = rref(A). Some elimination matri¥’ simplifies A to
EA = R. Then the inverse matrik = E~! connectsk back toA = CR.

You know the main point already? has the same row space ad.

Rank 3
7 —
two

0

N
N = O
_= o o

1 1 0 3
A= |1 0 1 4 |=CR (4)
4 0 0 0

N = O
[\~

The row space of? clearly has two basis vectot§” = [1 0 3] andv] = [0 1 4].
So the (same!) row space dfalso has this basisow rank = 2. Multiplying C timesR
says that rows of A is 4vT + 2v7.

Now look at columns The pivot columns ofR are clearly(1,0,0) and (0, 1,0).
Then the pivot columns ofl are also in columnsand2: u; = (1,1, 4) andus = (0, 1,2).
Notice thatC' has those same first two columns! That was guaranteed sinitiplying
by two columns of the identity matrix (i) won't change the pivot columns; andu..

When you put in letters for the columns and rows, yoursek 2 = rank 1 + rank 1.

T
. vl
Matrix A
Ranktwo A= | wr uz us vy = uyv] +usvy = (rank1)+(rank1).
Z€ero row

Did you see that last step? | multiplied the matrices ustedumns times rows

That was perfect for this problentvery rankr matrix is a sum of rank one matrices

Pivot columns of4 times nonzero rows aR. The row[o 0 O] simply disappeared.
The pivot columnae; andus are a basis for the column space, which you knew.
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B REVIEW OF THE KEY IDEAS =

1. Ther pivot rows of R are a basis for the row spacesifind A (same space).
2. Ther pivot columns ofA (1) are a basis for its column spac& A).
3. Then — r special solutions are a basis for the nullspaced4 ahd R (same space).

4. If FA = R, the lastm — r rows of E are a basis for the left nullspace 4f

Note about the four subspacesThe Fundamental Theorem looks like pure algebra, but
it has very important applications. My favorites are thewwgks in Chapter 10 (often
I go to 10.1 for my next lecture). The equation fpin the left nullspace isiTy = 0:

Flow into a node equals flow out. Kirchhoff’s Current Law is #"“balance equatiof

This must be the most important equation in applied mathiemiafll models in science
and engineering and economics involve a balance—of foréeat flow or charge or mo-
mentum or money. That balance equation, plus Hooke’s Law lon'® Law or some
law connecting “potentials” to “flows”, gives a clear framank for applied mathematics.

My textbook onComputational Science and Engineeridgvelops that framework,
together with algorithms to solve the equations: Finitefedénces, finite elements,
spectral methods, iterative methods, and multigrid.

® WORKED EXAMPLES =

3.5A Putfourl'sinto ab by 6 matrix of zeros, keeping the dimension ofritsv space
as small as possible. Describe all the ways to make the dipren§its column spaces

small as possible. Describe all the ways to make the dimemdiiis nullspaceas small as
possible. How to make theum of the dimensions of all four subspaces spnall

Solution  The rank isl if the four 1's go into the same row, or into the same column.
They can also go intdwo rows and two column&o a;; = a;; = aj = a;; = 1).
Since the column space and row space always have the samasiimg this answers the
first two questions: Dimensioh

The nullspace has its smallest possible dimensiend = 2 when the rank is: = 4.
To achieve rankd, the1’s must go into four different rows and four different colusan

You can’t do anything about the sumr + (n —r)+7+ (m—r) = n + m. It will be
6 + 5 = 11 no matter how thé'’s are placed. The sum id even if there aren’'t any’s...

If all the other entries ofl are2’s instead of)’s, how do these answers change?
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3.5B Fact: All the rows ofA B are combinations of the rows &f. So the row space of
AB is contained in (possibly equal to) the row spacéBoRank (AB) < rank (B).

All columns of AB are combinations of the columns df. So the column space of
AB is contained in (possibly equal to) the column spacd oRank (AB) < rank (A).

If we multiply by aninvertible matrix, the rank will not change. The rank can’t drop,
because when we multiply by the inverse matrix the rank gamip back.

Problem Set 3.5

1 (a) If a 7 by 9 matrix has rank 5, what are the dimensions of tlue $ubspaces?
What is the sum of all four dimensions?

(b) If a 3 by 4 matrix has rank 3, what are its column space aftdildispace?

2 Find bases and dimensions for the four subspaces assowitited and B:

1 2 4 1 2 4
A:[z 4 8} and 32[2 5 8]'

3 Find a basis for each of the four subspaces associatedAwith

01 2 3 4 1 0 0f|0 1 2 3 4
A=10 1 2 4 6]=|(1 1 00 0 0 1 2f.
00 0 1 2 01 110 0 0 0 O

4 Construct a matrix with the required property or explain \tiig is impossible:
(@) Column space contair[%] , [g} , row space containg} |, [2].

(b) Column space has bas{i%] , nullspace has bas[si;’] .

(c) Dimension of nullspace: 1 + dimension of left nullspace.
(d) Nullspace containf} |, column space contairs |.
(e) Row space- column space, nullspace left nullspace.

5 If V is the subspace spanned bl 1,1) and (2, 1,0), find a matrix A that has
V as its row space. Find a matrix that hasV as its nullspace. Multiplyl B.

6 Without using elimination, find dimensions and bases forftlue subspaces for

0 3 3 3 1
0 0 0 O and B= [4].
01 0 1 5

7 Suppose the 3 by 3 matriA is invertible. Write down bases for the four subspaces
for A, and also for the 3 by 6 matri® = [A A]. (The basis foiZ is empty.)

A:
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8

10

11

12

13

14

15

16

17

What are the dimensions of the four subspacesAfoB, andC, if I is the 3 by 3
identity matrix and O is the 3 by 2 zero matrix?

I I

] and C'=1[0].
Which subspaces are the same for these matrices of diffeimast?

A A A A
(@ [A] and {A] (b) {A] and [A A] .
Prove that all three of those matrices haveshme rank: .

If the entries of a 3 by 3 matrix are chosen randomly betweemdOla what are the
most likely dimensions of the four subspaces? What if thedoammatrix is 3 by 5?

(Important) A is anm by n matrix of rankr. Suppose there are right sidedor
which Az = b hasno solution

(&) What are all inequalities{ or <) that must be true between, n, andr?
(b) How do you know that1Ty = 0 has solutions other thap= 0?

Construct a matrix with(1,0,1) and(1,2,0) as a basis for its row space and its
column space. Why can't this be a basis for the row space altspaoe?

True or false (with a reason or a counterexample):

(a) If m = nthen the row space of equals the column space.
(b) The matricesA and— A share the same four subspaces.
(c) If AandB share the same four subspaces tHda a multiple of B.

Without computingA, find bases for its four fundamental subspaces:

1 0 0|1 2 3 4
A=16 1 0| |0 1 2 3f.
9 8 11(0 0 1 2

If you exchange the first two rows of, which of the four subspaces stay the same?
If v = (1,2,3,4)isinthe left nullspace ofl, write down a vector in the left nullspace
of the new matrix after the row exchange.

Explain whyv = (1,0, —1) cannot be a row ofd and also in the nullspace

0
1].
1

Describe the four subspacesRf associated with

0 1 0
A=10 0 1
0 0 O

1 1
and I+A=1|0 1
0 0
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18

19

20

21

22

23

24

Chapter 3. Vector Spaces and Subspaces

(Left nullspace) Add the extra coluntnand reduced to echelon form:

1 2 3 b 1 2 3 b
[Ab]=14 5 6 by| — [0 =3 —6 by—4b
7 8 9 by 0 0 0 b3—2by+by

A combination of the rows ofl has produced the zero row. What combination is it?
(Look atbs — 2b, + by on the right side.) Which vectors are in the nullspacel éf
and which vectors are in the nullspace4s?

Following the method of Problem 18, redudeto echelon form and look at zero
rows. Theb column tells which combinations you have taken of the rows:

1 2 b ;gzl
@ [3 4 b (b) °
L6 b 2 4 by
3 2 5 by

From theb column after elimination, read o, —r basis vectors in the left nullspace.
Thosey’s are combinations of rows that give zero rows in the echéom.

(a) Check that the solutions téx = 0 are perpendicular to the rows df

4

1 00 2 01
A=12 1 0|0 0 1 3|=EFER.
34 110 0 0 O

(b) How many independent solutionsAd y = 0? Why doegy™ =row 3 of E~1?

Supposed is the sum of two matrices of rank oné:= uv™ + wz".

(a) Which vectors span the column spacel@f

(b) Which vectors span the row space4f

(c) Therankis less than 2 if orif

(d) ComputeA and its rank ifu = z = (1,0,0) andv = w = (0,0, 1).

Constructd = uv™ 4+ wzT whose column space has bagis2,4), (2,2,1) and
whose row space has basis0), (1,1). Write A as @ by 2) times @ by 2).

Without multiplying matrices, find bases for the row and coluspaces ofi:

1 2
aslas| 209,
27

How do you know from these shapes tiatannot be invertible?

(Important)ATy = d is solvable wherd is in which of the four subspaces? The
solutiony is unique when the contains only the zero vector.
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25

26

27

28

29

30

31

True or false (with a reason or a counterexample):

(@) AandA™ have the same number of pivots.

(b) AandAT have the same left nullspace.

(c) If the row space equals the column space tHén= A.

(d) If AT = — A then the row space of equals the column space.

If a, b, c are given witha £ 0, how would you choosé so that CCL 3} has rank 1?
Find a basis for the row space and nullspace. Show they apepaicular!

Find the ranks of the 8 by 8 checkerboard mafiand the chess matriX:

10101010 rndb gk b nr

01 010101 pp P P D PP P
B=|1 0101010 and C = four zero rows

. . . . . . . . p p p p p p p p

01010101 rndb gk b nr

The numbers, n, b, q, k, p are all different. Find bases for the row space and left
nullspace ofB andC. Challenge problem: Find a basis for the nullspacé€ of

Can tic-tac-toe be completed pnes andi zeros inA) so that rankA) = 2 but
neither side passed up a winning move?

Challenge Problems

If A=wuvT isa2 by?2 matrix of rankl, redraw Figure 3.5 to show clearly the Four
Fundamental Subspaces Afproduces those same four subspaces, what is the exact
relation of B to A?

M is the space a by 3 matrices. Multiply every matriX’ in M by

1 0 -1 1 0
A=| -1 1 0 |. Notice:A|1]| =10
0 -1 1 1 0

(@) Which matricesX lead toAX = zero matrix?
(b) Which matrices have the forghX for some matrixX ?

(a) finds the “nullspace” of that operatiohX and (b) finds the “column space”.
What are the dimensions of those two subspac@d8fWhy do the dimensions add
to(n—r)+r=9?

Suppose then by n matricesA and B havethe same four subspaceH they are
both in row reduced echelon form, prove tiiamust equats:

chool =l d)





