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12.3 Multivariate Gaussian and Weighted Least Squares

The normal probability density p(x) (the Gaussian) depends on only two numbers :

Mean m and variance σ2 p(x) =
1√
2π σ

e−(x − m)2/2σ2
. (1)

The graph of p(x) is a bell-shaped curve centered at x = m. The continuous variable x
can be anywhere between −∞ and ∞. With probability close to 2

3 , that random x will lie

between m − σ and m + σ (less than one standard deviation σ from its mean value m).

∞∫

−∞
p(x) dx = 1 and

m + σ∫

m − σ

p(x) dx =
1√
2π

1∫

−1

e−X2/2 dX ≈ 2

3
. (2)

That integral has a change of variables from x to X = (x − m)/σ. This simplifies the

exponent to −X2/2 and it simplifies the limits of integration to −1 and 1. Even the 1/σ
from p disappears outside the integral because dX equals dx/σ. Every Gaussian turns

into a standard Gaussian p(X) with mean m = 0 and variance σ2 = 1 . Just call it p(x) :

The standard normal distribution N(0, 1) has p(x) =
1√
2π

e−x2/2. (3)

Integrating p(x) from −∞ to x gives the cumulative distribution F (x) : the probability

that a random sample is below x. That probability will be F = 1
2 at x = 0 (the mean).

Two-dimensional Gaussians

Now we have M = 2 Gaussian random variables x and y. They have means m1 and m2.

They have variances σ2
1 and σ2

2 . If they are independent, then their probability density

p(x, y) is just p1(x) times p2(y). Multiply probabilities when variables are independent :

Independent x and y p(x, y) =
1

2πσ1σ2
e−(x−m1)

2/2σ2
1 e−(y −m2)

2/2σ2
2 (4)

The covariance of x and y will be σ12 = 0. The covariance matrix V will be diago-

nal. The variances σ2
1 and σ2

2 are always on the main diagonal of V . The exponent in

p(x, y) is just the sum of the x-exponent and the y-exponent. Good to notice that the two

exponents can be combined into − 1
2 (x−m)

T
V −1 (x−m) with V −1 in the middle :

− (x−m1)
2

2σ2
1

− (y −m2)
2

2σ2
2

= −1

2

[
x−m1 y −m2

] [
σ2
1 0
0 σ2

2

]−1 [
x−m1

y −m2

]
(5)
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Non-independent x and y

We are ready to give up independence. The exponent (5) with V −1 is still correct when V is

no longer a diagonal matrix. Now the Gaussian depends on a vector m and a matrix V .

When M = 2, the first variable x may give partial information about the second

variable y (and vice versa). Maybe part of y is decided by x and part is truly independent.

It is the M by M covariance matrix V that accounts for dependencies between the M
variables x = x1, . . . , xM . Its inverse V −1 goes into p(x) :

Multivariate Gaussian

probability distribution
p(x) =

1

(
√
2π)M

√
det V

e−(x−m)TV −1(x−m)/2(6)

The vectors x = (x1, . . . , xM ) and m = (m1, . . . ,mM ) contain the random variables and

their means. The M square roots of 2π and the determinant of V are included to make the

total probability equal to 1. Let me check that by linear algebra. I use the eigenvalues λ and

orthonormal eigenvectors q of the symmetric matrix V = QΛQT. So V −1 = QΛ−1QT :

X = x−m (x−m)TV −1(x−m) = XTQΛ−1QTX = Y TΛ−1Y

Notice! The combinations Y = QTX = QT(x − m) are statistically independent.

Their covariance matrix Λ is diagonal.

This step of diagonalizing V by its eigenvector matrix Q is the same as “uncorrelating”

the random variables. Covariances are zero for the new variables X1, . . .Xm. This is the

point where linear algebra helps calculus to compute multidimensional integrals.

The integral of p(x) is not changed when we center the variable x by subtracting m
to reach X , and rotate that variable to reach Y = QTX . The matrix Λ is diagonal !

So the integral we want splits into M separate one-dimensional integrals that we know :

∫
. . .

∫
e−Y TΛ−1Y /2 dY =




∞∫

−∞

e−y21/2λ1 dy1


 . . .




∞∫

−∞

e−y2M/2λM dyM




=
(√

2πλ1

)
. . .

(√
2πλM

)
=

(√
2π

)M √
detV . (7)

The determinant of V (also the determinant of Λ) is the product (λ1) . . . (λM ) of

the eigenvalues. Then (7) gives the correct number to divide by so that p(x1, . . . , xM )
in equation (6) has integral = 1 as desired.

The mean and variance of p(x) are also M -dimensional integrals. The same idea of

diagonalizing V by its eigenvectors and introducing Y = QTX will find those integrals :

Vector m of means

∫
. . .

∫
x p(x)dx = (m1,m2, . . .) = m (8)

Covariance matrix V

∫
. . .

∫
(x−m) p(x)(x−m)T dx = V . (9)

Conclusion : Formula (6) for the probability density p(x) has all the properties we want.
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Weighted Least Squares

In Chapter 4, least squares started from an unsolvable system Ax = b. We chose x̂ to

minimize the error ||b − Ax||2. That led us to the least squares equation ATAx̂ = ATb.

The best Ax̂ is the projection of b onto the column space of A. But is this squared

distance E = ||b−Ax||2 the right error measure to minimize ?

If the measurement errors in b are independent random variables, with mean m = 0
and variance σ2 = 1 and a normal distribution, Gauss would say yes : Use least squares.

If the errors are not independent or their variances are not equal. Gauss would say no :

Use weighted least squares. This section will show that the good measure of error is

E = (b−Ax)TV −1(b−Ax). The equation for the best x̂ uses the covariance matrix V :

Weighted least squares ATV −1Ax̂ = ATV −1b. (10)

The most important examples have m independent errors in b. Those errors have

variances σ2
1 , . . . , σ

2
m. By independence, V is a diagonal matrix. The good weights

1/σ2
1 , . . . , 1/σ

2
m come from V −1. We are weighting the errors in b to have variance = 1 :

Weighted least squares

Independent errors in b
Minimize E =

m∑
i=1

(b−Ax)2i
σ2
i

(11)

By weighting the errors, we are “whitening” the noise. White noise is a quick description

of independent errors based on the standard Gaussian N(0, 1) with mean zero and σ2 = 1.

Let me write down the steps to equations (10) and (11) for the best x̂ :

Start with Ax = b (m equations, n unknowns, m > n, no solution)

Each right side bi has mean zero and variance σ2
i . The bi are independent.

Divide the ith equation by σi to have variance = 1 for every bi/σi

That division turns Ax = b into V −1/2Ax = V −1/2b with V −1/2 = diag (1/σ1, . . . , 1/σm)

Ordinary least squares on those weighted equations has A → V −1/2A and b → V −1/2b

(V −1/2A)T(V −1/2A)x̂ = (V −1/2A)TV −1/2 b is ATV −1Ax̂ = ATV −1b. (12)

Because of 1/σ2 in V −1, more reliable equations (smaller σ) get heavier weights. This is

the main point of weighted least squares.

Those diagonal weightings (uncoupled equations) are the most frequent and the sim-

plest. They apply to independent errors in the bi. When these measurement errors are not

independent, V is no longer diagonal—but (12) is still the correct weighted equation.

In practice, finding all the covariances can be serious work. Diagonal V is simpler.
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The Variance in the Estimated x̂

One more point : Often the important question is not the best x̂ for one particular set of

measurements b. This is only one sample ! The real goal is to know the reliability of the

whole experiment. That is measured (as reliability always is) by the variance in the

estimate x̂. First, zero mean in b gives zero mean in x̂. Then the formula connecting

variance V in the inputs b to variance W in the outputs x̂ turns out to be beautiful :

Variance-covariance matrix W for x̂ E[(x̂− x)(x̂− x)T] = (ATV −1A)−1.(13)

That smallest possible variance comes from the best possible weighting, which is V −1.

This key formula is a perfect application of Section 12.2. If b has covariance matrix

V , then x̂ = Lb has covariance matrix LV LT. Equation (12) above tells us that L is

(ATV −1A)−1ATV −1. Now substitute this into LV LT and watch equation (13) appear :

LV LT = (ATV −1A)−1ATV −1 V V −1A (ATV −1A)−1 = (ATV −1A)−1.

This is the covariance W of the output, our best estimate x̂. It is time for examples.

Example 1 Suppose a doctor measures your heart rate x three times (m = 3, n = 1) :

x = b1
x = b2
x = b3

is Ax = b with A =




1
1
1


 and V =




σ2
1 0 0
0 σ2

2 0
0 0 σ2

3




The variances could be σ2
1 = 1/9 and σ2

2 = 1/4 and σ2
3 = 1. You are getting more nervous

as measurements are taken: b3 is less reliable than b2 and b1. All three measurements

contain some information, so they all go into the best (weighted) estimate x̂ :

V −1/2Ax̂ = V −1/2b is

3x = 3b1
2x = 2b2
1x = 1b3

leading to ATV −1Ax̂ = ATV −1b

[
1 1 1

] 


9
4

1






1
1
1


 x̂ =

[
1 1 1

]


9
4

1






b1
b2
b3




x̂ =
9b1 + 4b2 + b3

14
is a weighted average of b1, b2, b3
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Most weight is on b1 since its variance σ1 is smallest. The variance of x̂ has the beautiful

formula W = (ATV −1A)−1 = 1/14 :

Variance of x̂




[
1 1 1

] 


9
4

1






1
1
1






−1

=
1

14
is smaller than

1

9

The BLUE theorem of Gauss (proved on the website) says that our x̂ = Lb is the best

linear unbiased estimate of the solution to Ax = b. Any other unbiased choice x∗ = L∗b
has greater variance than x̂. All unbiased choices have L∗A = I so that an exact Ax = b
will produce the right answer x = L∗b = L∗Ax.

Note. I must add that there are reasons not to minimize squared errors in the first place.

One reason : This x̂ often has many small components. The squares of small numbers

are very small, and they appear when we minimize. It is easier to make sense of sparse

vectors—only a few nonzeros. Statisticians often prefer to minimize unsquared errors :

the sum of |(b − Ax)i|. This error measure is L1 instead of L2. Because of the

absolute values, the equation for x̂ becomes nonlinear (it is actually piecewise linear).

Fast new algorithms are computing a sparse x̂ quickly and the future may belong to L1.

The Kalman Filter

The “Kalman filter” is the great algorithm in dynamic least squares. That word dynamic

means that new measurements bk keep coming. So the best estimate x̂k keeps changing

(based on all of b0, . . . , bk). More than that, the matrix A is also changing. So x̂2 will be

our best least squares estimate of the latest solution xk to the whole history of observation

equations and update equations (state equations) up to time 2 :

A0x0 = b0 x1 = F0x0 A1x1 = b1 x2 = F1x1 A2x2 = b2 (14)

The Kalman idea is to introduce one equation at a time. There will be errors in each

equation. With every new equation, we update the best estimate x̂k for the current xk. But

history is not forgotten! This new estimate x̂k uses all the past observations b0 to bk−1 and

all the state equations xnew = Fold xold. A large and growing least squares problem.

One more important point. Each least squares equation is weighted using the

covariance matrix Vk for the error in bk. There is even a covariance matrix Ck for

errors in the update equations xk+1 = Fkxk. The best x̂2 then depends on b0, b1, b2 and

V0, V1, V2 and C1, C2. The good way to write x̂k is as an update to the previous x̂k−1.

Let me concentrate on a simplified problem, without the matrices Fk and the covari-

ances Ck . We are estimating the same true x at every step. How do we get x̂1 from x̂0 ?

OLD A0 x0 = b0 leads to the weighted equation AT
0 V −1

0 A0 x̂0 = AT
0 V −1

0 b0. (15)

NEW

[
A0

A1

]
x̂1=

[
b0
b1

]
leads to the following weighted equation for x̂1 :
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[
AT

0 AT
1

][
V −1
0

V −1
1

][
A0

A1

]
x̂1 =

[
AT

0 AT
1

][
V −1
0

V −1
1

][
b0
b1

]
. (16)

Yes, we could just solve that new problem and forget the old one. But the old solution x̂0

needed work that we hope to reuse in x̂1. What we look for is an update to x̂0 :

Kalman update gives x̂1 from x̂0 x̂1 = x̂0 +K1(b1 −A1 x̂0). (17)

The update correction is the mismatch b1−A1x̂0 between the old state x̂0 and the new

measurements b1—multiplied by the Kalman gain matrix K1. The formula for K1 comes

from comparing the solutions x̂1 and x̂0 to (15) and (16). And when we update x̂0 to x̂1

based on new data b1, we also update the covariance matrix W0 to W1. Remember

W0 = (AT
0 V −1

0 A0)
−1 from equation (13). Update its inverse to W−1

1 :

Covariance W1 of errors in x̂1 W−1
1 = W−1

0 + AT
1 V −1

1 A1 (18)

Kalman gain matrix K1 K1 = W1 A
T
1 V −1

1 (19)

This is the heart of the Kalman filter. Notice the importance of the Wk. Those matrices

measure the reliability of the whole process, where the vector x̂k estimates the current state

based on the particular measurements b0 to bk.

Whole chapters and whole books are written to explain the dynamic Kalman filter,

when the states xk are also changing (based on the matrices Fk). There is a prediction of

xk using F , followed by a correction using the new data b. Perhaps best to stop here.

This page was about recursive least squares : adding new data bk and updating both

x̂ and W : the best current estimate based on all the data, and its covariance matrix.

Problem Set 12.3

1 Two measurements of the same variable x give two equations x = b1 and x = b2.

Suppose the means are zero and the variances are σ2
1 and σ2

2 , with independent

errors : V is diagonal with entries σ2
1 and σ2

2 . Write the two equations as Ax = b
(A is 2 by 1). As in the text Example 1, find this best estimate x̂ based on b1 and b2 :

x̂ =
b1/σ

2
1 + b2/σ

2
2

1/σ2
1 + 1/σ2

2

E
[
x̂ x̂T

]
=

(
1

σ2
1

+
1

σ2
2

)−1

.

2 (a) In Problem 1, suppose the second measurement b2 becomes super-exact and its

variance σ2 → 0. What is the best estimate x̂ when σ2 reaches zero?

(b) The opposite case has σ2 → ∞ and no information in b2. What is now the best

estimate x̂ based on b1 and b2 ?
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3 If x and y are independent with probabilities p1(x) and p2(y), then p(x, y) =
p1(x) p2(y). By separating double integrals into products of single integrals

(−∞ to ∞) show that

∫∫
p(x, y) dx dy = 1 and

∫∫
(x+ y) p(x, y) dx dy = m1 + m2.

4 Continue Problem 3 for independent x, y to show that p(x, y) = p1(x) p2(y) has
∫∫

(x−m1)
2 p(x, y) dx dy = σ2

1

∫∫
(x−m1)(y −m2) p(x, y) dx dy = 0.

So the 2 by 2 covariance matrix V is diagonal and its entries are .

5 Show that the inverse of a 2 by 2 covariance matrix V is

V −1 =

[
σ2
1 σ12

σ12 σ2
2

]−1

=
1

1− ρ2

[
1/σ2

1 −ρ/σ1σ2

−ρ/σ1σ2 1/σ2
2

]
with correlation

ρ = σ12/σ1σ2.

This produces the exponent −(x−m)T V −1(x−m) in a 2-variable Gaussian.

6 Suppose x̂k is the average of b1, . . . , bk. A new measurement bk+1 arrives and we

want the new average x̂k+1. The Kalman update equation (17) is

New average x̂k+1 = x̂k +
1

k + 1
(bk+1 − x̂k) .

Verify that x̂k+1 is the correct average of b1 . . . , bk+1.

7 Also check the update equation (18) for the variance Wk+1 = σ2/(k + 1) of this

average x̂ assuming that Wk = σ2/k and bk+1 has variance V = σ2.

8 (Steady model) Problems 6–7 were static least squares. All the sample averages

x̂k were estimates of the same x. To make the Kalman filter dynamic, include also

a state equation xk+1 = Fxk with its own error variance s2. The dynamic least

squares problem allows x to “drift” as k increases :




1
−F 1

1




[
x0

x1

]
=




b0
0
b1


 with variances




σ2

s2

σ2


 .

With F = 1, divide both sides of those three equations by σ, s, and σ. Find x̂0

and x̂1 by least squares, which gives more weight to the recent b1. The Kalman

filter is developed in Algorithms for Global Positioning (Borre and Strang, Wellesley-

Cambridge Press).
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Change in A−1 from a Change in A

This final page connects the beginning of the book (inverses and rank one matrices) with

the end of the book (dynamic least squares and filters). Begin with this basic formula:

The inverse of M = I − uvT is M−1 = I +
uvT

1− vTu

The quickest proof is MM−1=I −uvT + (1−uvT)
uvT

1− vTu
= I − uvT + uvT=I.

M is not invertible if vTu = 1 (then Mu = 0). Here vT = uT =
[
1 1 1

]
:

Example The inverse of M = I −
[

1 1 1
1 1 1
1 1 1

]
is M−1 = I +

1

1 − 3

[
1 1 1
1 1 1
1 1 1

]

But we don’t always start from the identity matrix. Many applications need to invert

M = A − uvT. After we solve Ax = b we expect a rank one change to give My = b.

The division by 1− vTu above will become a division by c = 1− vTA−1u = 1− vTz.

Step 1 Solve Az = u and compute c = 1− vTz.

Step 2 If c 6= 0 then M−1b is y = x+
vTx

c
z.

Suppose A is easy to work with. A might already be factored into LU by elimination.

Then this Sherman-Woodbury-Morrison formula is the fast way to solve My = b.

Here are three problems to end the book !

9 Take Steps 1–2 to find y when A = I and uT = vT = [1 2 3] and bT = [2 1 4].

10 Step 2 in this “update formula” claims that My =
(
A− uvT

) (
x+

vTx

c
z

)
= b.

Simplify this to
uvTx

c
[1− c− vTz] = 0. This is true since c = 1− vTz.

11 When A has a new row vT, ATA in the least squares equation changes to M :

M =
[
AT v

] [ A

vT

]
= ATA+ vvT = rank one change in ATA.

Why is that multiplication correct ? The updated x̂new comes from Steps 1 and 2.

For reference here are four formulas for M−1. The first two were given above, when the

change was uvT. Formulas 3 and 4 go beyond rank one to allow matrices U, V,W .

1 M = I − uvT and M−1 = I + uvT/(1− vTu) (rank 1 change)
2 M = A− uvT and M−1 = A−1 +A−1uvTA−1/(1− vTA−1u)
3 M = I −UV and M−1 = In + U(Im − V U)−1V
4 M = A−UW−1V and M−1 = A−1 +A−1U(W − V A−1U)−1V A−1

Formula 4 is the “matrix inversion lemma” in engineering. Not seen until now !

The Kalman filter for solving block tridiagonal systems uses formula 4 at each step.




