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12.2 Covariance Matrices and Joint Probabilities

Linear algebra enters when we run M different experiments at once. We might measure

age and height and weight (M = 3 measurements of N people). Each experiment

has its own mean value. So we have a vector m = (m1,m2,m3) containing the M
mean values. Those could be sample means of age and height and weight. Or m1,m2,m3

could be expected values of age, height, weight based on known probabilities.

A matrix becomes involved when we look at variances. Each experiment will have a

sample variance S2
i or an expected σ2

i = E
[
(xi −mi)

2
]

based on the squared distance

from its mean. Those M numbers σ2
1 , . . . , σ

2
M will go on the main diagonal of the matrix.

So far we have made no connection between the M parallel experiments. They measure

M different random variables, but the experiments are not necessarily independent!

If we measure age and height and weight (a, h, w) for children, the results will be

strongly correlated. Older children are generally taller and heavier. Suppose the means

ma,mh,mw are known. Then σ2
a, σ

2
h, σ

2
w are the separate variances in age, height, weight.

The new numbers are the covariances like σah, where age multiplies height.

Covariance σah = E [(age − mean age) (height − mean height)]. (1)

This definition needs a close look. To compute σah, it is not enough to know the

probability of each age and the probability of each height. We have to know the joint

probability of each pair (age and height). This is because age is connected to height.

pah = probability that a random child has age = a and height = h: both at once

pij = probability that experiment 1 produces xi and experiment 2 produces yj

Suppose experiment 1 (age) has mean m1. Experiment 2 (height) has mean m2. The

covariance in (1) between experiments 1 and 2 looks at all pairs of ages xi, heights yj :

Covariance σ12 =
∑
all

∑
i, j

pij(xi − m1)(yj − m2) (2)

To capture this idea of “joint probability pij” we begin with two small examples.

Example 1 Flip two coins separately. With 1 for heads and 0 for tails, the results can be

(1, 1) or (1, 0) or (0, 1) or (0, 0). Those four outcomes all have probability p11 = p10 =
p01= p00=

1

4
. Independent experiments have Prob of (i, j)= (Prob of i) (Prob of j).

Example 2 Glue the coins together, facing the same way. The only possibilities are

(1, 1) and (0, 0). Those have probabilities 1
2 and 1

2 . The probabilities p10 and p01 are zero.

(1, 0) and (0, 1) won’t happen because the coins stick together : both heads or both tails.

Probability matrices

for Examples 1 and 2
P =

[
p11 p12
p21 p22

]
=

[
1

4

1

4

1

4

1

4

]
P =

[
1

2
0

0 1

2

]
.
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Let me stay longer with P , to show it in good matrix notation. The matrix shows the prob-

ability pij of each pair (xi, yj)—starting with (x1, y1) = (heads, heads) and (x1, y2) =
(heads, tails). Notice the row sums pi and column sums Pj and the total sum = 1.

Probability matrix P =

[
p11 p12
p21 p22

]
p11 + p12 = p1

p21 + p22 = p2

(
first

coin

)

(second coin) column sums P1 P2 4 entries add to 1

Those numbers p1, p2 and P1, P2 are called the marginals of the matrix P :

p1 = p11 + p12 = chance of heads from coin 1 (coin 2 can be heads or tails)

P1 = p11 + p21 = chance of heads from coin 2 (coin 1 can be heads or tails)

Example 1 showed independent variables. Every probability pij equals pi times pj(
1
2 times 1

2 gave pij = 1
4 in that example

)
. In this case the covariance σ12 will be zero.

Heads or tails from the first coin gave no information about the second coin.

Zero covariance σ12

for independent trials
V =

[
σ2
1 0
0 σ2

2

]
= diagonal covariance matrix.

Independent experiments have σ12 = 0 because every pij = (pi)(pj) in equation (2):

σ12=
∑

i

∑

j

(pi)(pj)(xi−m1)(yj−m2)=[
∑

i

(pi)(xi−m1)][
∑

j

(pj)(yj−m2)]=[0][0].

The glued coins show perfect correlation. Heads on one means heads on the other.

The covariance σ12 moves from 0 to σ1σ2 = 1
4—this is the largest possible value of σ12 :

Means =
1

2
σ12 =

1

2

(
1− 1

2

)(
1− 1

2

)
+ 0 + 0 +

1

2

(
0− 1

2

)(
0− 1

2

)
=

1

4

Heads or tails from coin 1 gives complete information about heads or tails from coin 2 :

Glued coins give largest possible covariances

Singular covariance matrix: determinant = 0
Vglue =

[
σ2
1 σ1σ2

σ1σ2 σ2
2

]

Always σ2
1σ

2
2 ≥ σ2

12. Thus σ12 is between −σ1σ2 and σ1σ2. The covariance matrix V
is positive definite (or in this singular case of glued coins, V is positive semidefinite).

That is an important fact about M by M covariance matrices for M experiments.

Note that the sample covariance matrix S from N trials is certainly semidefinite.

Every new sample X = (age, height, weight) contributes to the sample mean X and to S.

Each term (Xi −X)(Xi −X)T is positive semidefinite and we just add to reach S:

X =
X1 + · · ·+XN

N
S =

(X1 −X)(X1 −X)T + · · ·+ (XN −X)(XN −X)T

N − 1
(3)
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The Covariance Matrix V is Positive Semidefinite

Come back to the expected covariance σ12 between two experiments 1 and 2 (two coins) :

σ12 = expected value of [(output 1− mean 1) times (output 2− mean 2)]

=
∑
all

∑
i, j

pij (xi − m1) (yj − m2). (4)

pij ≥ 0 is the probability of seeing output xi in experiment 1 and yj in experiment 2.

Some pair of outputs must appear. Therefore the N2 probabilities pij add to 1.

Total probability (all pairs) is 1
∑

all

∑

i, j

pij = 1. (5)

Here is another fact we need. Fix on one particular output xi in experiment 1. Allow

all outputs yj in experiment 2. Add the probabilities of (xi, y1), (xi, y2), . . . , (xi, yn) :

Row sum pi of P
n∑

j=1
pij = probability pi of xi in experiment 1. (6)

Some yj must happen in experiment 2 ! Whether the two coins are completely separate or

glued together, we still get 1
2 for the probability pH = pHH + pHT that coin 1 is heads:

(separate) PHH + PHT =
1

4
+

1

4
=

1

2
(glued) PHH + PHT =

1

2
+ 0 =

1

2
.

That basic reasoning allows us to write one matrix formula that includes the covariance

σ12 along with the separate variances σ2
1 and σ2

2 for experiment 1 and experiment 2.

We get the whole covariance matrix V by adding the matrices Vij for each pair (i, j) :

Covariance matrix

V = ΣΣVij
V =

∑
all

∑
i, j

pij

[
(xi −m1)

2 (xi −m1)(yj −m2)
(xi −m1)(yj −m2) (yj −m2)

2

]
(7)

Off the diagonal, this is equation (2) for the covariance σ12. On the diagonal, we are

getting the ordinary variances σ2
1 and σ2

2 . I will show in detail how we get V11 = σ2
1 by

using equation (6). Allowing all j just leaves the probability pi of xi in experiment 1 :

V11 =
∑

all

∑

i, j

pij(xi −m1)
2 =

∑

all i

(probability of xi) (xi −m1)
2 = σ2

1 . (8)

Please look at that twice. It is the key to producing the whole covariance matrix by

one formula (7). The beauty of that formula is that it combines 2 by 2 matrices Vij .

And the matrix Vij in (7) for each pair of outcomes i, j is positive semidefinite :

Vij has diagonal entries pij(xi−m1)
2 ≥ 0 and pij(yj−m2)

2 ≥ 0 and det(Vij) = 0.
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That matrix Vij has rank 1. Equation (7) multiplies pij times column U times row UT:

[
(xi −m1)

2 (xi −m1)(yj −m2)
(xi −m1)(yj −m2) (yj −m2)

2

]
=

[
xi− m1

yj− m2

] [
xi −m1 yj −m2

]
(9)

Every matrix UUT is positive semidefinite. So the whole matrix V (combining these

matrices UUT with weights pij ≥ 0) is at least semidefinite—and probably V is definite.

The covariance matrix V is positive definite unless the experiments are dependent.

Now we move from two variables x and y to M variables like age-height-weight.

The output from each trial is a vector X with M components. (Each child has an age-

height-weight vector with 3 components.) The covariance matrix V is now M by M .

V is created from the output vectors X and their average X = E [X] :

Covariance matrix V = E
[(
X −X

) (
X −X

)T]
(10)

Remember that XXT and X X
T
= (column) (row) are M by M matrices.

For M = 1 (one variable) you see that X is the mean m and V is σ2 (Section 12.1).

For M = 2 (two coins) you see that X is (m1,m2) and V matches equation (10). The

expectation E always adds up outputs times their probabilities. For age-height-weight

the output could be X = (5 years, 31 inches, 48 pounds) and its probability is p5,31,48 .

Now comes a new idea. Take any linear combination cTX = c1X1 + · · · + cMXM .

With c = (6, 2, 5) this would be cTX = 6 (age) + 2 (height) + 5 (weight). By linearity

we know that its expected value E [cTX] is cTE [X] = cTX :

E [cTX] = cTE [X] = 6 (expected age) + 2 (expected height) + 5 (expected weight).

More than that, we also know the variance σ2 of that number cTX:

Variance of cTX = E
[(
cTX − cTX

) (
cTX − cTX

)T]

= cTE
[(
X −X

) (
X −X

)T]
c = cT V c !

(11)

Now the key point: The variance of cTX can never be negative. So cTV c ≥ 0.

The covariance matrix V is therefore positive semidefinite by the energy test cTV c ≥ 0.

Covariance matrices V open up the link between probability and linear algebra:

V equals QΛQT with eigenvalues λi ≥ 0 and orthonormal eigenvectors q1 to qM .

Diagonalizing the covariance matrix means finding M independent

experiments as combinations of the original M experiments.
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Confession I am not entirely happy with that proof based on cTV c ≥ 0. The expectation

symbol E is burying the key idea of joint probability. Allow me to show directly that V is

positive semidefinite (at least for the age-height-weight example). The proof is simply that

V is the sum of the joint probability pahw of each combination (age, height, weight)

times the positive semidefinite matrix UUT. Here U is X −X :

V =
∑

all a,h,w

pahw U UT with U =




age

height

weight


−




mean age

mean height

mean weight


 . (12)

This is exactly like the 2 by 2 coin flip matrix V in equation (7). Now M = 3.

The value of the expectation symbol E is that it also allows pdf ’s (probability density

functions like p(x, y, z) for continuous random variables x and y and z). If we allow all

numbers as ages and heights and weights, instead of age i = 0, 1, 2, 3 . . . , then we need

p(x, y, z) instead of pijk . The sums in this section of the book would all change to integrals.

But we still have V = E [UUT] :

Covariance matrix V =

∫∫∫
p(x, y, z)UUT dx dy dz with U =



x− x
y − y
z − z


 . (13)

Always
∫∫∫

p=1. Examples 1–2 emphasized how p can give diagonal V or singular V :

Independent variables x,y, z p(x, y, z) = p1(x) p2(y) p3(z).

Dependent variables x,y, z p(x, y, z) = 0 except when cx+ dy + ez = 0.

The Mean and Variance of z = x + y

Start with the sample mean. We have N samples of x. Their mean (= average) is mx.

We also have N samples of y and their mean is my . The sample mean of z = x+ y
is clearly mz = mx + my :

Mean of sum = Sum of means
1

N

N∑

1

(xi + yi) =
1

N

N∑

1

xi +
1

N

N∑

1

yi. (14)

Nice to see something that simple. The expected mean of z = x + y doesn’t look so

simple, but it must come out as E[z] = E[x]+ E[y]. Here is one way to see this.

The joint probability of the pair (xi, yj) is pij . Its value depends on whether the exper-

iments are independent, which we don’t know. But for the mean of the sum z = x + y,
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dependence or independence of x and y doesn’t matter. Expected values still add :

E[x + y] =
∑

i

∑

j

pij(xi + yj) =
∑

i

∑

j

pijxi +
∑

i

∑

j

pijyj . (15)

All the sums go from 1 to N . We can add in any order. For the first term on the right side,

add the pij along row i of the probability matrix P to get pi. That double sum gives E[x] :
∑

i

∑

j

pijxi =
∑

i

(pi1 + · · ·+ piN )xi =
∑

i

pixi = E[x].

For the last term, add pij down column j of the matrix to get the probability Pj of yj .

Those pairs (x1, yj) and (x2, yj) and . . . and (xN , yj) are all the ways to produce yj :
∑

i

∑

j

pijyj =
∑

j

(p1j + · · ·+ pNj)yj =
∑

j

Pjyj = E[y].

Now equation (15) says that E[x + y] = E[x] + E[y].

What about the variance of z = x + y ? The joint probabilities pij and the covariance

σxy will be involved. Let me separate the variance of x+ y into three simple pieces :

σ2
z =

∑∑
pij(xi + yj −mx −my)

2

=
∑∑

pij(xi −mx)
2 +

∑∑
pij(yj −my)

2 + 2
∑∑

pij(xi −mx)(yj −my)

The first piece is σ2
x. The second piece is σ2

y . The last piece is 2σxy.

The variance of z = x + y is σ2
z = σ2

x + σ2
y + 2σxy. (16)

The Covariance Matrix for Z = AX

Here is a good way to see σ2
z when z = x + y. Think of (x, y) as a column vector X .

Think of the 1 by 2 matrix A =
[
1 1

]
multiplying that vector X . Then AX is the sum

z = x+ y. The variance σ2
z in equation (16) goes into matrix notation as

σ2
z =

[
1 1

] [ σ2
x σxy

σxy σ2
y

] [
1
1

]
which is σ2

z = AV AT. (17)

You can see that σ2
z = AV AT in (17) agrees with σ2

x + σ2
y + 2σxy in (16).

Now for the main point. The vector X could have M components coming from M
experiments (instead of only 2). Those experiments will have an M by M covariance

matrix VX . The matrix A could be K by M . Then AX is a vector with K combinations

of the M outputs (instead of 1 combination x+ y of 2 outputs).

That vector Z = AX of length K has a K by K covariance matrix VZ . Then the

great rule for covariance matrices—of which equation (17) was only a 1 by 2 example—

is this beautiful formula : Covariance matrix of AX is A (covariance matrix of X) AT :

The covariance matrix of Z = AX is VZ = AVXAT (18)

To me, this neat formula shows the beauty of matrix multiplication. I won’t prove this

formula, just admire it. It is constantly used in applications—coming in Section 12.3.
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The Correlation ρ

Correlation ρxy is closely related to covariance σxy . They both measure dependence or

independence. Start by rescaling or “standardizing” the random variables x and y
The new X = x/σx and Y = y/σy have variance σ2

X = σ2
Y = 1. This is just like

dividing a vector v by its length to produce a unit vector v/||v|| of length 1.

The correlation of x and y is the covariance of X and Y . If the original covariance

of x and y was σxy , then rescaling to X and Y will divide by σx and σy :

Correlation ρxy =
σxy

σxσy

= covariance of
x

σx

and
y

σy

Always −1 ≤ ρxy ≤ 1

Zero covariance gives zero correlation. Independent random variables produce ρxy = 0.

We know that always σ2
xy ≤ σ2

xσ
2
y (the covariance matrix V is at least positive

semidefinite). Then ρ2
xy ≤ 1. Correlation near ρ = +1 means strong dependence in

the same direction : often voting the same. Negative correlation means that y tends to be

below its mean when x is above its mean : Voting in opposite directions.

Example 3 Suppose that y is just −x. A coin flip has outputs x = 0 or 1. The same flip

has outputs y = 0 or −1. The mean mx is 1
2 for a fair coin, and my is − 1

2 . The covariance

is σxy = −σxσy . The correlation divides by σxσy to get ρxy = −1. In this case the

correlation matrix R has determinant zero (singular and only semidefinite) :

Correlation matrix R =

[
1 ρxy

ρxy 1

]
R =

[
1 −1

−1 1

]
when y = −x

R always has 1’s on the diagonal because we normalized to σX = σY = 1. R is the

correlation matrix for x and y, and the covariance matrix for X = x/σx and Y = y/σy .

That number ρxy is also called the Pearson coefficient.

Example 4 Suppose the random variables x, y, z are independent. What matrix is R ?

Answer R is the identity matrix. All three correlations ρxx, ρyy, ρzz are 1 by definition.

All three cross-correlations ρxy, ρxz, ρyz are zero by independence.

The correlation matrix R comes from the covariance matrix V , when we rescale every

row and every column. Divide each row i and column i by the ith standard deviation σi.

(a) R = DVD for the diagonal matrix D = diag [1/σ1, . . . , 1/σM ].

(b) If covariance V is positive definite, correlation R = DVD is also positive definite.
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WORKED EXAMPLES

12.2 A Suppose x and y are independent random variables with mean 0 and variance 1.

Then the covariance matrix VX for X = (x, y) is the 2 by 2 identity matrix. What are the

mean mZ and the covariance matrix VZ for the 3-component vector Z = (x, y, ax+ by) ?

Solution

Z is connected to X by A Z =




x
y

ax+ by


 =




1 0
0 1
a b



[

x
y

]
= AX.

The vector mX contains the means of the M components of X . The vector mZ contains

the means of the K components of Z = AX . The matrix connection between the means

of X and Z has to be linear : mZ = AmX . The mean of ax+ by is amx + bmy.

The covariance matrix for Z is VZ = AAT, when VX is the 2 by 2 identity matrix :

VZ =
covariance matrix for

Z = (x, y, ax + by)
=




1 0
0 1
a b



[

1 0 a
0 1 b

]
=




1 0 a
0 1 b
a b a2 + b2


 .

Interpretation : x and y are independent so σxy = 0. Then the covariance of x with

ax + by is a and the covariance of y with ax + by is b. Those just come from the two

independent parts of ax+ by. Finally, equation (18) gives the variance of ax+ by :

Use VZ = AVXAT σ2
ax+by = σ2

ax + σ2
by + 2σax,by = a2 + b2 + 0.

The 3 by 3 matrix VZ is singular. Its determinant is a2 + b2 − a2 − b2 = 0. The third

component z = ax+ by is completely dependent on x and y. The rank of VZ is only 2.

GPS Example The signal from a GPS satellite includes its departure time. The receiver

clock gives the arrival time. The receiver multiplies the travel time by the speed of light.

Then it knows the distance from that satellite. Distances from four or more satellites

pinpoint the receiver position (using least squares !).

One problem : The speed of light changes in the ionosphere. But the correction

will be almost the same for all nearby receivers. If one receiver stays in a known position,

we can take differences from that position. Differential GPS reduces the error variance :

Difference matrix Covariance matrix

A = [ 1 − 1 ] VZ = AVXAT VZ =
[
1 −1

][ σ2
1 σ12

σ12 σ2
2

][
1

−1

]

= σ2
1 − 2σ12 + σ2

2

Errors in the speed of light are gone. Then centimeter positioning accuracy is achievable.

(The key ideas are on page 320 of Algorithms for Global Positioning by Borre and Strang.)

The GPS world is all about time and space and amazing accuracy.
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Problem Set 12.2

1 (a) Compute the variance σ2 when the coin flip probabilities are p and 1 − p
(tails = 0, heads = 1).

(b) The sum of N independent flips (0 or 1) is the count of heads after N tries.

The rule (16-17-18) for the variance of a sum gives σ2 = .

2 What is the covariance σkl between the results x1, . . . , xn of Experiment 3 and the

results y1, . . . , yn of Experiment 5 ? Your formula will look like σ12 in equation (2).

Then the (3, 5) and (5, 3) entries of the covariance matrix V are σ35 = σ53.

3 For M = 3 experiments, the variance-covariance matrix V will be 3 by 3. There

will be a probability pijk that the three outputs are xi and yj and zk. Write down a

formula like equation (7) for the matrix V .

4 What is the covariance matrix V for M = 3 independent experiments with means

m1,m2,m3 and variances σ2
1 , σ

2
2 , σ

2
3 ?

Problems 5–9 are about the conditional probability thatY =yj when we knowX=xi.

Notation: Prob (Y = yj|X = xi) = probability of the outcome yj given that X = xi.

Example 1 Coin 1 is glued to coin 2. Then Prob (Y = heads when X = heads) is 1.

Example 2 Independent coin flips : X gives no information about Y . Useless to know X .

Then Prob (Y = heads |X = heads) is the same as Prob (Y = heads).

5 Explain the sum rule of conditional probability :

Prob (Y = yj) = sum over all outputs xi of Prob (Y = yj |X = xi).

6 The n by n matrix P contains joint probabilities pij = Prob (X=xi and Y = yj).

Explain why the conditional Prob (Y = yj |X = xi) equals
pij

pi1 + · · ·+ pin
=

pij
pi

.

7 For this joint probability matrix with Prob (x1, y2)=0.3, find Prob (y2|x1) and Prob (x1).

P =

[
p11 p12
p21 p22

]
=

[
0.1 0.3
0.2 0.4

]
The entries pij add to 1.
Some i, j must happen.

8 Explain the product rule of conditional probability:

pij = Prob (X = xi and Y = yj) equals Prob (Y = yj |X = xi) times Prob (X = xi).

9 Derive this Bayes Theorem for pij from the product rule in Problem 8:

Prob (Y = yj and X = xi) =
Prob (X = xi|Y = yj) Prob (Y = yj)

Prob (X = xi)

“Bayesians” use prior information. “Frequentists” only use sampling information.




