
11.3. Iterative Methods and Preconditioners 523

11.3 Iterative Methods and Preconditioners

Up to now, our approach to Ax = b has been direct. We accepted A as it came. We

attacked it by elimination with row exchanges. We now look at iterative methods, which

replace A by a simpler matrix S. The difference T = S − A is moved over to the right

side of the equation. The problem becomes easier to solve, with S instead of A. But there

is a price—the simpler system has to be solved over and over.

An iterative method is easy to invent. Just split A (carefully) into S − T .

Rewrite Ax = b Sx = Tx+ b. (1)

The novelty is to solve (1) iteratively. Each guess xk leads to the next xk+1:

Pure iteration Sxk+1 = Txk + b. (2)

Start with any x0. Then solve Sx1 = Tx0 + b. Continue to Sx2 = Tx1 + b. A hundred

iterations are very common—often more. Stop when (and if!) xk+1 is sufficiently close

to xk—or when the residual rk = b − Axk is near zero. Our hope is to get near the true

solution, more quickly than by elimination. When the xk converge, their limit x∞ does

solve equation (1): Sx∞ = Tx∞ + b means Ax∞ = b.

The two goals of the splitting A = S − T are speed per step and fast convergence.

The speed of each step depends on S and the speed of convergence depends on S−1T :

1 Equation (2) should be easy to solve for xk+1. The “preconditioner” S could be the

diagonal or triangular part of A. A fast way uses S = L0U0, where those factors

have many zeros compared to the exact A = LU . This is “incomplete LU”.

2 The difference x − xk (this is the error ek) should go quickly to zero. Subtracting

equation (2) from (1) cancels b, and it leaves the equation for the error ek:

Error equation Sek+1 = Tek which means ek+1 = S−1Tek. (3)

At every step the error is multiplied by S−1T . If S−1T is small, its powers go quickly to

zero. But what is “small”?

The extreme splitting is S = A and T = 0. Then the first step of the iteration is the

original Ax = b. Convergence is perfect and S−1T is zero. But the cost of that step is

what we wanted to avoid. The choice of S is a battle between speed per step (a simple S)
and fast convergence (S close to A). Here are some choices of S:

J S = diagonal part of A (the iteration is called Jacobi’s method)

GS S = lower triangular part of A including the diagonal (Gauss-Seidel method)

ILU S = approximate L times approximate U (incomplete LU method).

524 Chapter 11. Numerical Linear Algebra

Our first question is pure linear algebra: When do the xk’s converge to x? The

answer uncovers the number |λ|max that controls convergence. In examples of Jacobi and

Gauss-Seidel, we will compute this “spectral radius” |λ|max. It is the largest eigenvalue of

the iteration matrix B = S−1T .

The Spectral Radius ρ(B) Controls Convergence

Equation (3) is ek+1 = S−1Tek. Every iteration step multiplies the error by the same

matrix B = S−1T . The error after k steps is ek = Bke0. The error approaches zero if

the powers of B = S−1T approach zero. It is beautiful to see how the eigenvalues of

B—the largest eigenvalue in particular—control the matrix powers Bk.

The powers Bk approach zero if and only if every eigenvalue of B has |λ| < 1.

The rate of convergence is controlled by the spectral radius of B: ρ = max |λ(B)|.

The test for convergence is |λ|max < 1. Real eigenvalues must lie between −1 and 1.

Complex eigenvalues λ = a+ ib must have |λ|2 = a2 + b2 < 1. The spectral radius “rho”

is the largest distance from 0 to the eigenvalues of B = S−1T . This is ρ = |λ|max.

To see why |λ|max < 1 is necessary, suppose the starting error e0 happens to be an

eigenvector of B. After one step the error is Be0 = λe0. After k steps the error is Bke0 =
λke0. If we start with an eigenvector, we continue with that eigenvector—and the factor

λk only goes to zero when |λ| < 1. This condition is required of every eigenvalue.

To see why |λ|max < 1 is sufficient for the error to approach zero, suppose e0 is a

combination of eigenvectors:

e0 = c1x1 + · · ·+ cnxn leads to ek = c1(λ1)
kx1 + · · ·+ cn(λn)

kxn. (4)

This is the point of eigenvectors! When we multiply byB, each eigenvectorxi is multiplied

by λi. If all |λi| < 1 then equation (4) ensures that ek goes to zero.

Example 1 B =

[
.6 .5
.6 .5

]
has λmax = 1.1 B′ =

[
.6 1.1
0 .5

]
has λmax = .6

B2 is 1.1 times B. Then B3 is (1.1)2 times B. The powers of B will blow up.

Contrast with the powers of B′. The matrix (B′)k has (.6)k and (.5)k on its diagonal.

The off-diagonal entries also involve ρk = (.6)k, which sets the speed of convergence.

Note When there are too few eigenvectors, equation (4) is not correct. We turn to the

Jordan form when eigenvectors are missing and the matrix B can’t be diagonalized:

Jordan form J B = MJM−1 and Bk = MJkM−1. (5)

Section 8.3 shows how J and Jk are made of “blocks” with one repeated eigenvalue:

The powers of a 2 by 2 block in J are

[
λ 1
0 λ

]k
=

[
λk kλk−1

0 λk

]
.

11.3. Iterative Methods and Preconditioners 525

If |λ| < 1 then these powers approach zero. The extra factor k from a double eigenvalue is

overwhelmed by the decreasing factor λk−1. This applies to every block:

Diagonalizable or not: ConvergenceBk → 0 and its speed depend onρ = |λ|max < 1.

Jacobi versus Gauss-Seidel

We now solve a specific 2 by 2 problem by splitting A. Watch for that number |λ|max.

Ax = b
2u− v = 4
−u+ 2v = −2

has the solution

[
u
v

]
=

[
2
0

]
. (6)

The first splitting is Jacobi’s method. Keep the diagonal of A on the left side (this is S).

Move the off-diagonal part of A to the right side (this is T). Then iterate:

Jacobi iteration Sxk+1 = Txk + b
2uk+1 = vk + 4
2vk+1 = uk − 2.

Start from u0 = v0 = 0. The first step finds u1 = 2 and v1 = −1. Keep going:
[
0
0

] [
2

−1

] [
3/2
0

] [
2

−1/4

] [
15/8

0

] [
2

−1/16

]
approaches

[
2
0

]
.

This shows convergence. At steps 1, 3, 5 the second component is −1, −1/4, −1/16.

Those drop by 4 in each two steps. The error equation is Sek+1 = Tek:

Error equation

[
2 0
0 2

]
ek+1 =

[
0 1
1 0

]
ek or ek+1 =

[
0 1

2
1

2
0

]
ek. (7)

That last matrix S−1T has eigenvalues 1
2 and − 1

2 . So its spectral radius is ρ(B) = 1
2 :

B = S−1T =

[
0 1

2
1
2 0

]
has |λ|max = 1

2 and

[
0 1

2
1
2 0

]2
=

[
1
4 0
0 1

4

]
.

Two steps multiply the error by 1
4 exactly, in this special example. The important message

is this: Jacobi’s method works well when the main diagonal of A is large compared to the

off-diagonal part. The diagonal part is S, the rest is −T . We want the diagonal to dominate.

The eigenvalue λ = 1
2 is unusually small. Ten iterations reduce the error by

210 = 1024. More typical and more expensive is |λ|max = .99 or .999.

The Gauss-Seidel method keeps the whole lower triangular part of A as S:

Gauss-Seidel
2uk+1 = vk + 4
−uk+1 + 2vk+1 = − 2

or
uk+1 =

1
2vk + 2

vk+1 =
1
2uk+1 − 1.

(8)

Notice the change. The new uk+1 from the first equation is used immediately in the second

equation. With Jacobi, we saved the old uk until the whole step was complete. With Gauss-

Seidel, the new values enter right away and the old uk is destroyed. This cuts the storage in

half. It also speeds up the iteration (usually). And it costs no more than the Jacobi method.

526 Chapter 11. Numerical Linear Algebra

Test the iteration starting from another start u0 = 0 and v0 = −1:

[
0

−1

] [
3/2

−1/4

] [
15/8

−1/16

] [
63/32
−1/64

]
approaches

[
2
0

]
.

The errors in the first component are 2, 1/2, 1/8, 1/32. The errors in the second component

are −1, −1/4, −1/16, −1/32. We divide by 4 in one step not two steps. Gauss-Seidel is

twice as fast as Jacobi. We have ρGS = (ρJ)
2 when A is positive definite tridiagonal:

S =

[
2 0

−1 2

]
and T =

[
0 1
0 0

]
and S−1T =

[
0 1

2

0 1
4

]
.

The Gauss-Seidel eigenvalues are 0 and 1
4 . Compare with 1

2 and − 1
2 for Jacobi.

With a small push we can describe the successive overrelaxation method (SOR).

The new idea is to introduce a parameter ω (omega) into the iteration. Then choose this

number ω to make the spectral radius of S−1T as small as possible.

Rewrite Ax = b as ωAx = ωb. The matrix S in SOR has the diagonal of the origi-

nal A, but below the diagonal we use ωA. On the right side T is S − ωA:

SOR
2uk+1 = (2− 2ω)uk + ωvk + 4ω
−ωuk+1 + 2vk+1 = (2− 2ω)vk − 2ω.

(9)

This looks more complicated to us, but the computer goes as fast as ever. SOR is like

Gauss-Seidel, with an adjustable number ω. The best ω makes it faster.

I will put on record the most valuable test matrix of order n. It is our favorite −1, 2,

−1 tridiagonal matrix K . The diagonal is 2I . Below and above are −1’s. Our example had

n = 2, which leads to cos π
3 = 1

2 as the Jacobi eigenvalue found above. Notice especially

that this |λ|max is squared for Gauss-Seidel:

The splittings of the −1, 2, −1 matrix K of order n yield these eigenvalues of B:

Jacobi (S = 0, 2, 0 matrix): S−1T has |λ|max = cos
π

n+ 1

Gauss-Seidel (S = −1, 2, 0 matrix): S−1T has |λ|max =
(
cos

π

n+ 1

)2

SOR (with the best ω): S−1T has |λ|max =
(
cos

π

n+ 1

)2/(
1 + sin

π

n+ 1

)2

.

Let me be clear: For the −1, 2, −1 matrix you should not use any of these iterations!

Elimination on a tridiagonal matrix is very fast (exact LU). Iterations are intended for a

large sparse matrix that has nonzeros far from the central diagonal. Those create many

more nonzeros in the exact L and U . This fill-in is why elimination becomes expensive.

11.3. Iterative Methods and Preconditioners 527

We mention one more splitting. The idea of “incomplete LU” is to set the small nonze-

ros in L and U back to zero. This leaves triangular matrices L0 and U0 which are again

sparse. The splitting has S = L0U0 on the left side. Each step is quick:

Incomplete LU L0U0xk+1 = (L0U0 −A)xk + b.

On the right side we do sparse matrix-vector multiplications. Don’t multiply L0 times U0,

those are matrices. Multiply xk by U0 and then multiply that vector by L0. On the left side

we do forward and back substitutions. If L0U0 is close to A, then |λ|max is small. A few

iterations will give a close answer.

Multigrid and Conjugate Gradients

I cannot leave the impression that Jacobi and Gauss-Seidel are great methods. Generally the

“low-frequency” part of the error decays very slowly, and many iterations are needed. Here

are two important ideas that bring tremendous improvement. Multigrid can solve problems

of size n in O(n) steps. With a good preconditioner, conjugate gradients becomes one of

the most popular and powerful algorithms in numerical linear algebra.

Multigrid Solve smaller problems with coarser grids. Each iteration will be cheaper and

faster. Then interpolate between the coarse grid values to get a quick headstart on the

full-size problem. Multigrid might go 4 levels down and back.

Conjugate gradients An ordinary iteration like xk+1 = xk − Axk + b involves mul-

tiplication by A at each step. If A is sparse, this is not too expensive: Axk is what we

are willing to do. It adds one more basis vector to the growing “Krylov spaces” that con-

tain our approximations. But xk+1 is not the best combination of x0, Ax0, . . . , A
kx0.

The ordinary iterations are simple but far from optimal.

The conjugate gradient method chooses the best combination xk at every step. The

extra cost (beyond one multiplication by A) is not great. We will give the CG iteration,

emphasizing that this method was created for a symmetric positive definite matrix. When

A is not symmetric, one good choice is GMRES. When A = AT is not positive definite,

there is MINRES. A world of high-powered iterative methods has been created around the

idea of making optimal choices of each successive xk.

My textbook Computational Science and Engineering describes multigrid and CG in

much more detail. Among books on numerical linear algebra, Trefethen-Bau is deservedly

popular (others are terrific too). Golub-Van Loan is a level up.

The Problem Set reproduces the five steps in each conjugate gradient cycle from xk−1

to xk. We compute that new approximation xk, the new residual rk = b − Axk, and the

new search direction dk to look for the next xk+1.

I wrote those steps for the original matrix A. But a preconditioner S can make con-

vergence much faster. Our original equation is Ax = b. The preconditioned equation is

S−1Ax = S−1b. Small changes in the code give the preconditioned conjugate gradient

method—the leading iterative method to solve positive definite systems.

528 Chapter 11. Numerical Linear Algebra

The biggest competition is direct elimination, with the equations reordered to take max-

imum advantage of the zeros in A. It is not easy to outperform Gauss.

Iterative Methods for Eigenvalues

We move from Ax = b to Ax = λx. Iterations are an option for linear equations. They

are a necessity for eigenvalue problems. The eigenvalues of an n by n matrix are the roots

of an nth degree polynomial. The determinant of A − λI starts with (−λ)n. This book

must not leave the impression that eigenvalues should be computed that way! Working

from det(A− λI) = 0 is a very poor approach—except when n is small.

For n > 4 there is no formula to solve det(A − λI) = 0. Worse than that, the λ’s

can be very unstable and sensitive. It is much better to work with A itself, gradually mak-

ing it diagonal or triangular. (Then the eigenvalues appear on the diagonal.) Good computer

codes are available in the LAPACK library—individual routines are free on

www.netlib.org/lapack. This library combines the earlier LINPACK and EISPACK, with

many improvements (to use matrix-matrix operations in the Level 3 BLAS). It is a collec-

tion of Fortran 77 programs for linear algebra on high-performance computers. For your

computer and mine, a high quality matrix package is all we need. For supercomputers with

parallel processing, move to ScaLAPACK and block elimination.

We will briefly discuss the power method and the QR method (chosen by LAPACK)

for computing eigenvalues. It makes no sense to give full details of the codes.

1 Power methods and inverse power methods. Start with any vector u0. Multiply by

A to find u1. Multiply by A again to find u2. If u0 is a combination of the eigenvectors,

then A multiplies each eigenvector xi by λi. After k steps we have (λi)
k:

uk = Aku0 = c1(λ1)
kx1 + · · ·+ cn(λn)

kxn. (10)

As the power method continues, the largest eigenvalue begins to dominate. The vectors

uk point toward that dominant eigenvector x1. We saw this for Markov matrices:

A =

[
.9 .3
.1 .7

]
has λmax = 1 with eigenvector

[
.75
.25

]
.

Start with u0 and multiply at every step by A:

u0 =

[
1
0

]
, u1 =

[
.9
.1

]
, u2 =

[
.84
.16

]
is approaching u∞ =

[
.75
.25

]
.

The speed of convergence depends on the ratio of the second largest eigenvalue λ2 to the

largest λ1. We don’t want λ1 to be small, we want λ2/λ1 to be small. Here λ2 = .6 and

λ1 = 1, giving good speed. For large matrices it often happens that |λ2/λ1| is very close

to 1. Then the power method is too slow.

Is there a way to find the smallest eigenvalue—which is often the most important in

applications? Yes, by the inverse power method: Multiply u0 by A−1 instead of A. Since

we never want to compute A−1, we actually solve Au1 = u0. By saving the LU factors,

the next step Au2 = u1 is fast. Step k has Auk = uk−1:

11.3. Iterative Methods and Preconditioners 529

Inverse power method uk = A−ku0 =
c1x1

(λ1)k
+ · · ·+ cnxn

(λn)k
. (11)

Now the smallest eigenvalue λmin is in control. When it is very small, the factor 1/λk
min

is large. For high speed, we make λmin even smaller by shifting the matrix to A− λ∗I .

That shift doesn’t change the eigenvectors. (λ∗ might come from the diagonal of A,

even better is a Rayleigh quotient xTAx/xTx). If λ∗ is close to λmin then (A − λ∗I)−1

has the very large eigenvalue (λmin − λ∗)−1. Each shifted inverse power step multiplies

the eigenvector by this big number, and that eigenvector quickly dominates.

2 The QR Method This is a major achievement in numerical linear algebra. Sixty years

ago, eigenvalue computations were slow and inaccurate. We didn’t even realize that solving

det(A − λI) = 0 was a terrible method. Jacobi had suggested earlier that A should

gradually be made triangular—then the eigenvalues appear automatically on the diagonal.

He used 2 by 2 rotations to produce off-diagonal zeros. (Unfortunately the previous zeros

can become nonzero again. But Jacobi’s method made a partial comeback with parallel

computers.) The QR method is now a leader in eigenvalue computations.

The basic step is to factor A, whose eigenvalues we want, into QR. Remember from

Gram-Schmidt (Section 4.4) that Q has orthonormal columns and R is triangular. For

eigenvalues the key idea is: Reverse Q and R. The new matrix (same λ’s) is A1 = RQ.

The eigenvalues are not changed in RQ because A = QR is similar to A1 = Q−1AQ:

A1 = RQ has the same λ QRx = λx gives RQ(Q−1x) = λ(Q−1x). (12)

This process continues. Factor the new matrix A1 into Q1R1. Then reverse the factors

to R1Q1. This is the similar matrix A2 and again no change in the eigenvalues. Amazingly,

those eigenvalues begin to show up on the diagonal. Soon the last entry of A4 holds an

accurate eigenvalue. In that case we remove the last row and column and continue with a

smaller matrix to find the next eigenvalue.

Two extra ideas make this method a success. One is to shift the matrix by a multiple of

I , before factoring into QR. Then RQ is shifted back to give Ak+1:

Factor Ak − ckI into QkRk. The next matrix is Ak+1 = RkQk + ckI.

Ak+1 has the same eigenvalues as Ak, and the same as the original A0 = A. A good shift

chooses c near an (unknown) eigenvalue. That eigenvalue appears more accurately on the

diagonal of Ak+1—which tells us a better c for the next step to Ak+2.

The second idea is to obtain off-diagonal zeros before the QR method starts. An elim-

ination step E will do it, or a Givens rotation, but don’t forget E−1 (or λ will change):

EAE−1 =

1

1
−1 1

1 2 3
1 4 5
1 6 7

1

1
1 1

 =

1 5 3
1 9 5
0 4 2

 . Same λ’s.

We must leave those nonzeros 1 and 4 along one subdiagonal. More E’s could remove

them, but E−1 would fill them in again. This is a “Hessenberg matrix” (one nonzero

530 Chapter 11. Numerical Linear Algebra

subdiagonal). The zeros in the lower left corner will stay zero through the QR method.

The operation count for each QR factorization drops from O(n3) to O(n2).
Golub and Van Loan give this example of one shifted QR step on a Hessenberg matrix.

The shift is 7I , taking 7 from all diagonal entries of A (then shifting back for A1):

A =

1 2 3
4 5 6
0 .001 7

 leads to A1 =

−.54 1.69 0.835
.31 6.53 −6.656
0 .00002 7.012

 .

Factoring A−7I into QR producedA1 = RQ+7I . Notice the very small number .00002.

The diagonal entry 7.012 is almost an exact eigenvalue of A1, and therefore of A. Another

QR step on A1 with shift by 7.012I would give terrific accuracy.

For a few eigenvalues of a large sparse matrix I would look to ARPACK.

Problems 25–27 describe the Arnoldi iteration that orthogonalizes the basis—each step

has only three terms when A is symmetric. The matrix becomes tridiagonal: a wonderful

start for computing eigenvalues.

Problem Set 11.3

Problems 1–12 are about iterative methods for Ax = b.

1 Change Ax = b to x = (I − A)x + b. What are S and T for this splitting? What

matrix S−1T controls the convergence of xk+1 = (I −A)xk + b?

2 If λ is an eigenvalue of A, then is an eigenvalue of B = I − A. The real

eigenvalues of B have absolute value less than 1 if the real eigenvalues of A lie

between and .

3 Show why the iteration xk+1 = (I−A)xk+b does not converge for A =
[

2 −1
−1 2

]
.

4 Why is the norm of Bk never larger than ‖B‖k? Then ‖B‖ < 1 guarantees that the

powers Bk approach zero (convergence). No surprise since |λ|max is below ‖B‖.

5 If A is singular then all splittings A = S − T must fail. From Ax = 0 show that

S−1Tx = x. So this matrix B = S−1T has λ = 1 and fails.

6 Change the 2’s to 3’s and find the eigenvalues of S−1T for Jacobi’s method:

Sxk+1 = Txk + b is

[
3 0
0 3

]
xk+1 =

[
0 1
1 0

]
xk + b.

7 Find the eigenvalues of S−1T for the Gauss-Seidel method applied to Problem 6:
[

3 0
−1 3

]
xk+1 =

[
0 1
0 0

]
xk + b.

Does |λ|max for Gauss-Seidel equal |λ|2max for Jacobi?

11.3. Iterative Methods and Preconditioners 531

8 For any 2 by 2 matrix
[
a b
c d

]
show that |λ|max equals |bc/ad| for Gauss-Seidel and

|bc/ad|1/2 for Jacobi. We need ad 6= 0 for the matrix S to be invertible.

9 Write a computer code (MATLAB or other) for the Gauss-Seidel method. You can

define S and T from A, or set up the iteration loop directly from the entries aij . Test

it on the −1, 2, −1 matrices A of order 10, 20, 50 with b = (1, 0, . . ., 0).

10 The Gauss-Seidel iteration at component i uses earlier parts of xnew:

Gauss-Seidel xnew
i = xold

i +
1

aii

(
bi −

i−1∑

j=1

aijx
new
j −

n∑

j=i

aijx
old
j

)
.

If every xnew
i = xold

i how does this show that the solution x is correct? How does

the formula change for Jacobi’s method? For SOR insert ω outside the parentheses.

11 Divide equation (10) by λk
1 and explain why |λ2/λ1| controls the convergence of the

power method. Construct a matrix A for which this method does not converge.

12 The Markov matrix A =
[
.9 .3
.1 .7

]
has λ = 1 and .6, and the power method uk =

Aku0 converges to
[
.75
.25

]
. Find the eigenvectors of A−1. What does the inverse

power method u−k = A−ku0 converge to (after you multiply by .6k)?

13 The tridiagonal matrix of size n − 1 with diagonals −1, 2,−1 has eigenvalues

λj = 2 − 2 cos(jπ/n). Why are the smallest eigenvalues approximately (jπ/n)2?

The inverse power method converges at the speed λ1/λ2 ≈ 1/4.

14 For A =
[

2 −1
−1 2

]
apply the power method uk+1 = Auk three times starting with

u0 =
[
1
0

]
. What eigenvector is the power method converging to?

15 For A = −1, 2,−1 matrix, apply the inverse power method uk+1 = A−1uk three

times with the same u0. What eigenvector are the uk’s approaching?

16 In the QR method for eigenvalues when A is shifted to make A22 = 0, show that the

2, 1 entry drops from sin θ in A = QR to − sin3 θ in RQ. (Compute R and RQ.)

This “cubic convergence” makes the method a success:

A =

[
cos θ sin θ
sin θ 0

]
= QR =

[
cos θ − sin θ
sin θ cos θ

] [
1 ?
0 ?

]
.

17 If A is an orthogonal matrix, its QR factorization has Q = and R = .

Therefore RQ = . These are among the rare examples when the QR method

goes nowhere.

18 The shifted QR method factors A − cI into QR. Show that the next matrix A1 =
RQ+ cI equals Q−1AQ. Therefore A1 has the eigenvalues as A (but A1 is

closer to triangular).

532 Chapter 11. Numerical Linear Algebra

19 When A = AT, the “Lanczos method” finds a’s and b’s and orthonormal q’s so that

Aqj = bj−1qj−1 + ajqj + bjqj+1 (with q0 = 0). Multiply by qT
j to find a formula

for aj . The equation says that AQ = QT where T is a tridiagonal matrix.

20 The equation in Problem 19 develops from this loop with b0 = 1 and r0 = any q1:

qj+1 = rj/bj; j = j+1; aj = qT
j Aqj ; rj = Aqj−bj−1qj−1−ajqj ; bj = ‖rj‖.

Write a code and test it on the −1, 2, −1 matrix A. QTQ should be I .

21 Suppose A is tridiagonal and symmetric in the QR method. From A1 = Q−1AQ
show that A1 is symmetric. Write A1 = RAR−1 to show that A1 is also tridiagonal.

(If the lower part of A1 is proved tridiagonal then by symmetry the upper part is too.)

Symmetric tridiagonal matrices are the best way to start in the QR method.

Problems 22–25 present two fundamental iterations. Each step involves Aq or Ad.

The key point for large matrices is that matrix-vector multiplication is much faster

than matrix-matrix multiplication. A crucial construction starts with a vector b. Re-

peated multiplication will produce Ab, A2b, . . . but those vectors are far from orthogonal.

The “Arnoldi iteration” creates an orthonormal basis q1, q2, . . . for the same space by the

Gram-Schmidt idea: orthogonalize each new Aqn against the previous q1, . . . , qn−1. The

“Krylov space” spanned by b, Ab, . . . , An−1b then has a much better basis q1, . . . , qn.

Here in pseudocode are two of the most important algorithms in numerical linear

algebra: Arnoldi gives a good basis and CG gives a good approximation to x = A−1b.

Arnoldi Iteration Conjugate Gradient Iteration for Positive Definite A
q1 = b/‖b‖ x0 = 0, r0 = b,d0 = r0

for n = 1 to N − 1 for n = 1 to N

v = Aqn αn = (rTn−1rn−1)/(d
T
n−1Adn−1) step length xn−1 to xn

for j = 1 to n xn = xn−1 + αndn−1 approximate solution

hjn = qT
j v rn = rn−1 − αnAdn−1 new residual b−Axn

v = v − hjnqj βn = (rT
nrn)/(r

T
n−1rn−1) improvement this step

hn+1,n = ‖v‖ dn = rn + βndn−1 next search direction

qn+1 = v/hn+1,n % Notice: only 1 matrix-vector multiplication Aq and Ad

For conjugate gradients, the residuals rn are orthogonal and the search directions are A-

orthogonal: all dT
j Adk = 0. The iteration solves Ax = b by minimizing the error eTAe

over all vectors in the Krylov space = span of b, Ab, . . . , An−1b. It is a fantastic algorithm.

22 For the diagonal matrix A = diag([1 2 3 4]) and the vector b = (1, 1, 1, 1),
go through one Arnoldi step to find the orthonormal vectors q1 and q2.

11.3. Iterative Methods and Preconditioners 533

23 Arnoldi’s method is finding Q so that AQ = QH (column by column):

AQ =

Aq1 · · · AqN

 =

q1 · · · qN

h11 h12 · h1N

h21 h22 · h2N

0 h32 · ·
0 0 · hNN

 = QH

H is a “Hessenberg matrix” with one nonzero subdiagonal. Here is the crucial fact

when A is symmetric: The Hessenberg matrix H = Q−1AQ = QTAQ is

symmetric and therefore it is tridiagonal. Explain that sentence.

24 This tridiagonal H (when A is symmetric) gives the Lanczos iteration:

Three terms only qj+1 = (Aqj − hj,jqj − hj−1,jqj−1)/hj+1,j

From H = Q−1AQ, why are the eigenvalues of H the same as the eigenvalues

of A? For large matrices, the “Lanczos method” computes the leading eigenvalues

by stopping at a smaller tridiagonal matrix Hk. The QR method in the text is applied

to compute the eigenvalues of Hk.

25 Apply the conjugate gradient method to solve Ax = b = ones(100, 1), where A is

the −1, 2,−1 second difference matrix A = toeplitz([2 − 1 zeros(1, 98)]). Graph

x10 and x20 from CG, along with the exact solution x. (Its 100 components are

xi = (ih− i2h2)/2 with h = 1/101. “plot(i, x(i))” should produce a parabola.)

26 For unsymmetric matrices, the spectral radius ρ = max |λi| is not a norm.

But still ‖An‖ grows or decays like ρn for large n. Compare those numbers for

A = [1 1; 0 1.1] using the command norm.

An → 0 if and only if ρ < 1. When A = S−1T , this is the key to convergence.

