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11.2 Norms and Condition Numbers

How do we measure the size of a matrix? For a vector, the length is ‖x‖. For a matrix,

the norm is ‖A‖. This word “norm” is sometimes used for vectors, instead of length. It

is always used for matrices, and there are many ways to measure ‖A‖. We look at the

requirements on all “matrix norms” and then choose one.

Frobenius squared all the |aij |2 and added; his norm ‖A‖F is the square root. This

treats A like a long vector with n2 components: sometimes useful, but not the choice here.

I prefer to start with a vector norm. The triangle inequality says that ‖x + y‖ is not

greater than ‖x‖ + ‖y‖. The length of 2x or −2x is doubled to 2‖x‖. The same rules

will apply to matrix norms:

‖A+B‖ ≤ ‖A‖+ ‖B‖ and ‖cA‖ = |c| ‖A‖. (1)

The second requirements for a matrix norm are new, because matrices multiply. The

norm ‖A‖ controls the growth from x to Ax, and from B to AB:

Growth factor ‖A‖ ‖Ax‖ ≤ ‖A‖ ‖x‖ and ‖AB‖ ≤ ‖A‖ ‖B‖. (2)

This leads to a natural way to define ‖A‖, the norm of a matrix:

The norm of A is the largest ratio ‖Ax‖/‖x‖: ‖A‖ = max
x 6=0

‖Ax‖
‖x‖ . (3)

‖Ax‖/‖x‖ is never larger than ‖A‖ (its maximum). This says that ‖Ax‖ ≤ ‖A‖ ‖x‖.

Example 1 If A is the identity matrix I , the ratios are ‖x‖/‖x‖. Therefore ‖I‖ = 1. If

A is an orthogonal matrix Q, lengths are again preserved: ‖Qx‖ = ‖x‖. The ratios still

give ‖Q‖ = 1. An orthogonal Q is good to compute with: errors don’t grow.

Example 2 The norm of a diagonal matrix is its largest entry (using absolute values):

A =

[
2 0
0 3

]
has norm ‖A‖ = 3. The eigenvector x =

[
0
1

]
has Ax = 3x.

The eigenvalue is 3. For this A (but not all A), the largest eigenvalue equals the norm.

For a positive definite symmetric matrix the norm is ‖A‖ = λmax(A).

Choose x to be the eigenvector with maximum eigenvalue. Then ‖Ax‖/‖x‖ equals λmax.

The point is that no other x can make the ratio larger. The matrix is A = QΛQT, and the

orthogonal matrices Q and QT leave lengths unchanged. So the ratio to maximize is really

‖Λx‖/‖x‖. The norm is the largest eigenvalue in the diagonal Λ.
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Symmetric matrices Suppose A is symmetric but not positive definite. A = QΛQT is

still true. Then the norm is the largest of |λ1|, |λ2|, . . ., |λn|. We take absolute values,

because the norm is only concerned with length. For an eigenvector ‖Ax‖ = ‖λx‖ = |λ|
times ‖x‖. The x that gives the maximum ratio is the eigenvector for the maximum |λ|.

Unsymmetric matrices If A is not symmetric, its eigenvalues may not measure its true

size. The norm can be larger than any eigenvalue. A very unsymmetric example has

λ1 = λ2 = 0 but its norm is not zero:

‖A‖ > λmax A =

[
0 2
0 0

]
has norm ‖A‖ = max

x 6=0

‖Ax‖
‖x‖ = 2.

The vector x = (0, 1) gives Ax = (2, 0). The ratio of lengths is 2/1. This is the maximum

ratio ‖A‖, even though x is not an eigenvector.

It is the symmetric matrix ATA, not the unsymmetric A, that has eigenvector

x = (0, 1). The norm is really decided by the largest eigenvalue of ATA:

The norm of A (symmetric or not) is the square root of λmax(A
TA):

‖A‖2 = max
x6=0

‖Ax‖2
‖x‖2 = max

x 6=0

xTATAx

xTx
= λmax(A

TA) . (4)

The unsymmetric example with λmax(A) = 0 has λmax(A
TA) = 4:

A =

[
0 2
0 0

]
leads to ATA =

[
0 0
0 4

]
with λmax = 4. So the norm is ‖A‖ =

√
4.

For any A Choose x to be the eigenvector of ATA with largest eigenvalue λmax. The

ratio in equation (4) is xTATAx = xT(λmax)x divided by xTx. This is λmax.

No x can give a larger ratio. The symmetric matrix ATA has eigenvalues λ1, . . . , λn

and orthonormal eigenvectors q1, q2, . . ., qn. Every x is a combination of those vectors.

Try this combination in the ratio and remember that qT
i qj = 0:

xTATAx

xTx
=

(c1q1 + · · ·+ cnqn)
T(c1λ1q1 + · · ·+ cnλnqn)

(c1q1 + · · ·+ cnqn)
T(c1q1 + · · ·+ cnqn)

=
c21λ1 + · · ·+ c2nλn

c21 + · · ·+ c2n
.

The maximum ratio λmax is when all c’s are zero, except the one that multiplies λmax.

Note 1 The ratio in equation (4) is the Rayleigh quotient for the symmetric matrix ATA.

Its maximum is the largest eigenvalue λmax(A
TA). The minimum ratio is λmin(A

TA).
If you substitute any vector x into the Rayleigh quotient xTATAx/xTx, you are guaran-

teed to get a number between λmin(A
TA) and λmax(A

TA).



11.2. Norms and Condition Numbers 519

Note 2 The norm ‖A‖ equals the largest singular value σmax of A. The singular values

σ1, . . ., σr are the square roots of the positive eigenvalues of ATA. So certainly

σmax = (λmax)
1/2. Since U and V are orthogonal in A = UΣV T, the norm is ‖A‖ =

σmax.

The Condition Number of A

Section 9.1 showed that roundoff error can be serious. Some systems are sensitive, others

are not so sensitive. The sensitivity to error is measured by the condition number. This

is the first chapter in the book which intentionally introduces errors. We want to estimate

how much they change x.

The original equation is Ax = b. Suppose the right side is changed to b + ∆b
because of roundoff or measurement error. The solution is then changed to x +∆x. Our

goal is to estimate the change ∆x in the solution from the change ∆b in the equation.

Subtraction gives the error equation A(∆x) = ∆b:

Subtract Ax = b from A(x+∆x) = b+∆b to find A(∆x) = ∆b. (5)

The error is ∆x = A−1∆b. It is large when A−1 is large (then A is nearly singular). The

error ∆x is especially large when ∆b points in the worst direction—which is amplified

most by A−1. The worst error has ‖∆x‖ = ‖A−1‖ ‖∆b‖.

This error bound ‖A−1‖ has one serious drawback. If we multiply A by 1000, then

A−1 is divided by 1000. The matrix looks a thousand times better. But a simple rescaling

cannot change the reality of the problem. It is true that ∆x will be divided by 1000, but so

will the exact solution x = A−1b. The relative error ‖∆x‖/‖x‖ will stay the same. It is

this relative change in x that should be compared to the relative change in b.

Comparing relative errors will now lead to the “condition number” c = ‖A‖ ‖A−1‖.

Multiplying A by 1000 does not change this number, because A−1 is divided by 1000 and

the condition number c stays the same. It measures the sensitivity of Ax = b.

The solution error is less than c = ‖A‖ ‖A−1‖ times the problem error:

Condition number c
‖∆x‖
‖x‖ ≤ c

‖∆b‖
‖b‖ . (6)

If the problem error is ∆A (error in A instead of b), still c controls ∆x:

Error ∆A in A
‖∆x‖

‖x+∆x‖ ≤ c
‖∆A‖
‖A‖ . (7)
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Proof The original equation is b = Ax. The error equation (5) is ∆x = A−1∆b.

Apply the key property ‖Ax‖ ≤ ‖A‖‖x‖ of matrix norms:

‖b‖ ≤ ‖A‖ ‖x‖ and ‖∆x‖ ≤ ‖A−1‖ ‖∆b‖.

Multiply the left sides to get ‖b‖ ‖∆x‖, and multiply the right sides to get c‖x‖ ‖∆b‖.

Divide both sides by ‖b‖ ‖x‖. The left side is now the relative error ‖∆x‖/‖x‖. The

right side is now the upper bound in equation (6).

The same condition number c = ‖A‖ ‖A−1‖ appears when the error is in the matrix.

We have ∆A instead of ∆b in the error equation:

Subtract Ax = b from (A+∆A)(x+∆x) = b to find A(∆x) = −(∆A)(x+∆x).

Multiply the last equation by A−1 and take norms to reach equation (7):

‖∆x‖ ≤ ‖A−1‖ ‖∆A‖ ‖x+∆x‖ or
‖∆x‖

‖x+∆x‖ ≤ ‖A‖ ‖A−1‖‖∆A‖
‖A‖ .

Conclusion Errors enter in two ways. They begin with an error ∆A or ∆b—a wrong

matrix or a wrong b. This problem error is amplified (a lot or a little) into the solution error

∆x. That error is bounded, relative to x itself, by the condition number c.

The error ∆b depends on computer roundoff and on the original measurements of b.

The error ∆A also depends on the elimination steps. Small pivots tend to produce large

errors in L and U . Then L+∆L times U+∆U equals A+∆A. When ∆A or the condition

number is very large, the error ∆x can be unacceptable.

Example 3 When A is symmetric, c = ‖A‖ ‖A−1‖ comes from the eigenvalues:

A =

[
6 0
0 2

]
has norm 6. A−1 =

[
1
6 0
0 1

2

]
has norm 1

2 .

This A is symmetric positive definite. Its norm is λmax = 6. The norm of A−1 is

1/λmin = 1
2 . Multiplying norms gives the condition number ‖A‖ ‖A−1‖ = λmax/λmin:

Condition number for positive definite A c =
λmax

λmin
=

6

2
= 3.

Example 4 Keep the same A, with eigenvalues 6 and 2. To make x small, choose b along

the first eigenvector (1, 0). To make ∆x large, choose ∆b along the second eigenvector

(0, 1). Then x = 1
6b and ∆x = 1

2∆b. The ratio ‖∆x‖/‖x‖ is exactly c = 3 times the

ratio ‖∆b‖/‖b‖.

This shows that the worst error allowed by the condition number ‖A‖ ‖A−1‖ can

actually happen. Here is a useful rule of thumb, experimentally verified for Gaussian

elimination: The computer can lose log c decimal places to roundoff error.
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Problem Set 11.2

1 Find the norms ‖A‖ = λmax and condition numbers c = λmax/λmin of these posi-

tive definite matrices:
[

.5 0
0 2

] [
2 1
1 2

] [
3 1
1 1

]
.

2 Find the norms and condition numbers from the square roots of λmax(A
TA) and

λmin(A
TA). Without positive definiteness in A, we go to ATA !

[
−2 0
0 2

] [
1 1
0 0

] [
1 1

−1 1

]
.

3 Explain these two inequalities from the definitions (3) of ‖A‖ and ‖B‖:

‖ABx‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖.

From the ratio of ‖ABx‖ to ‖x‖, deduce that ‖AB‖ ≤ ‖A‖ ‖B‖. This is the key to

using matrix norms. The norm of An is never larger than ‖A‖n.

4 Use ‖AA−1‖ ≤ ‖A‖ ‖A−1‖ to prove that the condition number is at least 1.

5 Why is I the only symmetric positive definite matrix that has λmax = λmin = 1?

Then the only other matrices with ‖A‖ = 1 and ‖A−1‖ = 1 must have ATA = I .

Those are matrices: perfectly conditioned.

6 Orthogonal matrices have norm ‖Q‖ = 1. If A = QR show that ‖A‖ ≤ ‖R‖ and

also ‖R‖ ≤ ‖A‖. Then ‖A‖ = ‖Q‖ ‖R‖. Find an example of A = LU with

‖A‖ < ‖L‖‖U‖.

7 (a) Which famous inequality gives ‖(A+B)x‖ ≤ ‖Ax‖+ ‖Bx‖ for every x?

(b) Why does the definition (3) of matrix norms lead to ‖A+B‖ ≤ ‖A‖+ ‖B‖?

8 Show that if λ is any eigenvalue of A, then |λ| ≤ ‖A‖. Start from Ax = λx.

9 The “spectral radius” ρ(A) = |λmax| is the largest absolute value of the eigenvalues.

Show with 2 by 2 examples that ρ(A+B) ≤ ρ(A)+ρ(B) and ρ(AB) ≤ ρ(A)ρ(B)
can both be false. The spectral radius is not acceptable as a norm.

10 (a) Explain why A and A−1 have the same condition number.

(b) Explain why A and AT have the same norm, based on λ(ATA) and λ(AAT).

11 Estimate the condition number of the ill-conditioned matrix A =
[
1 1
1 1.0001

]
.

12 Why is the determinant of A no good as a norm? Why is it no good as a condition

number?
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13 (Suggested by C. Moler and C. Van Loan.) Compute b−Ay and b−Az when

b =

[
.217
.254

]
A =

[
.780 .563
.913 .659

]
y =

[
.341

−.087

]
z =

[
.999

−1.0

]
.

Is y closer than z to solving Ax = b? Answer in two ways: Compare the residual

b − Ay to b − Az. Then compare y and z to the true x = (1,−1). Both answers

can be right. Sometimes we want a small residual, sometimes a small ∆x.

14 (a) Compute the determinant of A in Problem 13. Compute A−1.

(b) If possible compute ‖A‖ and ‖A−1‖ and show that c > 106.

Problems 15–19 are about vector norms other than the usual ‖x‖ =
√
x · x.

15 The “ℓ1 norm” and the “ℓ∞ norm” of x = (x1, . . ., xn) are

‖x‖1 = |x1|+ · · ·+ |xn| and ‖x‖∞ = max
1≤i≤n

|xi|.

Compute the norms ‖x‖ and ‖x‖1 and ‖x‖∞ of these two vectors in R5:

x = (1, 1, 1, 1, 1) x = (.1, .7, .3, .4, .5).

16 Prove that ‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1. Show from the Schwarz inequality that the ratios

‖x‖/‖x‖∞ and ‖x‖1/‖x‖ are never larger than
√
n. Which vector (x1, . . ., xn)

gives ratios equal to
√
n?

17 All vector norms must satisfy the triangle inequality. Prove that

‖x+ y‖∞ ≤ ‖x‖∞ + ‖y‖∞ and ‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1.

18 Vector norms must also satisfy ‖cx‖ = |c| ‖x‖. The norm must be positive except

when x = 0. Which of these are norms for vectors (x1, x2) in R2?

‖x‖A = |x1|+ 2|x2| ‖x‖B = min (|x1|, |x2|)
‖x‖C = ‖x‖+ ‖x‖∞ ‖x‖D = ‖Ax‖ (this answer depends on A).

Challenge Problems

19 Show that xTy ≤ ‖x‖1 ‖y‖∞ by choosing components yi = ±1 to make xTy as

large as possible.

20 The eigenvalues of the −1, 2,−1 difference matrix K are λ = 2− 2 cos (jπ/n+1).
Estimate λmin and λmax and c = cond(K) = λmax/λmin as n increases: c ≈ Cn2

with what constant C?

Test this estimate with eig(K) and cond(K) for n = 10, 100, 1000.




