
Chapter 11

Numerical Linear Algebra

'

&

$

%

1 The goals of numerical linear algebra are speed and accuracy and stability : n > 103 or 106.

2 Matrices can be full or sparse or banded or structured : special algorithms for each.

3 Accuracy of elimination is controlled by the condition number ||A|| ||A−1||.

4 Gram-Schmidt is often computed by using Householder reflections H = I − 2uuT to find Q.

5 Eigenvalues use QR iterations A0 = Q0R0 → R0Q0 = A1 = Q1R1 → → An.

6 Shifted QR is even better : Shift to Ak − ckI = QkRk, shift back Ak+1 = RkQk + ckI .

7 Iteration Sxk+1 = b− Txk solves (S + T)x = b if all eigenvalues of S−1T have |λ| < 1.

8 Iterative methods often use preconditioners P . Change Ax = b to PAx = Pb with PA ≈ I .

9 Conjugate gradients and GMRES are Krylov methods; see Trefethen-Bau (and other texts).

11.1 Gaussian Elimination in Practice

Numerical linear algebra is a struggle for quick solutions and also accurate solutions. We

need efficiency but we have to avoid instability. In Gaussian elimination, the main freedom

(always available) is to exchange equations. This section explains when to exchange rows

for the sake of speed, and when to do it for the sake of accuracy.

The key to accuracy is to avoid unnecessarily large numbers. Often that requires us to

avoid small numbers! A small pivot generally means large multipliers (since we divide by

the pivot). A good plan is “partial pivoting”, to choose the largest available pivot in each

new column. We will see why this pivoting strategy is built into computer programs.

Other row exchanges are done to save elimination steps. In practice, most large matrices

are sparse—almost all entries are zeros. Elimination is fastest when the equations are

507

508 Chapter 11. Numerical Linear Algebra

ordered to produce a narrow band of nonzeros. Zeros inside the band “fill in” during

elimination—those zeros are destroyed and don’t save computing time.

Section 11.2 is about instability that can’t be avoided. It is built into the problem,

and this sensitivity is measured by the “condition number”. Then Section 11.3 describes

how to solve Ax = b by iterations. Instead of direct elimination, the computer solves

an easier equation many times. Each answer xk leads to the next guess xk+1. For good

iterations (the conjugate gradient method is extremely good), the xk converge quickly to

x = A−1b.

The Fastest Supercomputer

A new supercomputing record was announced by IBM and Los Alamos on May 20, 2008.

The Roadrunner was the first to achieve a quadrillion (1015) floating-point operations per

second: a petaflop machine. The benchmark for this world record was a large dense linear

system Ax = b: computer speed is tested by linear algebra.

That machine was shut down in 2013! The TOP500 project ranks the 500 most powerful

computer systems in the world. As I write this page in October 2015, the first four are from

NUDT in China, Cray and IBM in the US, and Fujitsu in Japan. They all use a LINUX-

based system. And all vector processors have fallen out of the top 500.

Looking ahead, the Summit is expected to take first place with 150-300 petaflops.

President Obama has just ordered the development of an exascale system (1000 petaflops).

Up to now we are following Moore’s Law of doubling every 14 months.

The LAPACK software does elimination with partial pivoting. The biggest difference

from this book is to organize the steps to use large submatrices and never single numbers.

And graphics processing units (GPU’s) are now almost required for success. The market for

video games dwarfs scientific computing and led to astonishing acceleration in the chips.

Before IBM’s BlueGene, a key issue was to count the standard quad-core processors

that a petaflop machine would need: 32,000. The new architecture uses much less power,

but its hybrid design has a price: a code needs three separate compilers and explicit instruc-

tions to move all the data. Please see the excellent article in SIAM News (siam.org, July

2008) and the update on www.lanl.gov/roadrunner.

Our thinking about matrix calculations is reflected in the highly optimized BLAS

(Basic Linear Algebra Subroutines). They come at levels 1, 2, and 3:

Level 1 Linear combinations of vectors au+ v: O(n) work

Level 2 Matrix-vector multiplications Au+ v: O(n2) work

Level 3 Matrix-matrix multiplications AB + C: O(n3) work

Level 1 is an elimination step (multiply row j by ℓij and subtract from row i). Level 2

can eliminate a whole column at once. A high performance solver is rich in Level 3 BLAS

(AB has 2n3 flops and 2n2 data, a good ratio of work to talk).

It is data passing and storage retrieval that limit the speed of parallel processing. The

high-velocity cache between main memory and floating-point computation has to be fully

used! Top speed demands a block matrix approach to elimination.

The big change, coming now, is parallel processing at the chip level.

11.1. Gaussian Elimination in Practice 509

Roundoff Error and Partial Pivoting

Up to now, any pivot (nonzero of course) was accepted. In practice a small pivot is danger-

ous. A catastrophe can occur when numbers of different sizes are added. Computers keep a

fixed number of significant digits (say three decimals, for a very weak machine). The sum

10,000 + 1 is rounded off to 10,000. The “1” is completely lost. Watch how that changes

the solution to this problem:

.0001u+ v = 1
−u+ v = 0

starts with coefficient matrix A =

[
.0001 1

−1 1

]
.

If we accept .0001 as the pivot, elimination adds 10,000 times row 1 to row 2. Roundoff

leaves

10,000v = 10,000 instead of 10,001v = 10,000.

The computed answer v = 1 is near the true v = .9999. But then back substitution puts the

wrong v = 1 into the equation for u:

.0001 u+ 1 = 1 instead of .0001 u+ .9999 = 1.

The first equation gives u = 0. The correct answer (look at the second equation) is u =
1.000. By losing the “1” in the matrix, we have lost the solution. The small change from

10,001 to 10,000 has changed the answer from u = 1 to u = 0 (100% error!).

If we exchange rows, even this weak computer finds an answer that is correct to 3 places:

−u+ v = 0
.0001u+ v = 1

−→ −u+ v = 0
v = 1

−→ u = 1
v = 1.

The original pivots were .0001 and 10,000—badly scaled. After a row exchange the exact

pivots are −1 and 1.0001—well scaled. The computed pivots −1 and 1 come close to the

exact values. Small pivots bring numerical instability, and the remedy is partial pivoting.

Here is our strategy when we reach and search column k for the best available pivot:

Choose the largest number in row k or below. Exchange its row with row k.

The strategy of complete pivoting looks also in later columns for the largest pivot. It ex-

changes columns as well as rows. This expense is seldom justified, and all major codes

use partial pivoting. Multiplying a row or column by a scaling constant can also be very

worthwhile. If the first equation above is u + 10,000v = 10,000 and we don’t rescale,

then 1 looks like a good pivot and we would miss the essential row exchange.

For positive definite matrices, row exchanges are not required. It is safe to accept

the pivots as they appear. Small pivots can occur, but the matrix is not improved by row

exchanges. When its condition number is high, the problem is in the matrix and not in the

code. In this case the output is unavoidably sensitive to the input.

The reader now understands how a computer actually solves Ax = b—by elimination

with partial pivoting. Compared with the theoretical description—find A−1 and multiply

A−1b—the details took time. But in computer time, elimination is much faster. I believe

that elimination is also the best approach to the algebra of row spaces and nullspaces.

510 Chapter 11. Numerical Linear Algebra

Operation Counts: Full Matrices

Here is a practical question about cost. How many separate operations are needed to solve

Ax = b by elimination? This decides how large a problem we can afford.

Look first at A, which changes gradually into U . When a multiple of row 1 is subtracted

from row 2, we do n operations. The first is a division by the pivot, to find the multiplier ℓ.
For the other n− 1 entries along the row, the operation is a “multiply-subtract”. For conve-

nience, we count this as a single operation. If you regard multiplying by ℓ and subtracting

from the existing entry as two separate operations, multiply all our counts by 2.

The matrix A is n by n. The operation count applies to all n− 1 rows below the first.

Thus it requires n times n− 1 operations, or n2 −n, to produce zeros below the first pivot.

Check: All n2 entries are changed, except the n entries in the first row.

When elimination is down to k equations, the rows are shorter. We need only k2 − k
operations (instead of n2 − n) to clear out the column below the pivot. This is true for

1 ≤ k ≤ n. The last step requires no operations (12 − 1 = 0); forward elimination is

complete. The total count to reach U is the sum of k2 − k over all values of k from 1 to n:

(12 + · · ·+ n2)− (1 + · · ·+ n) =
n(n+ 1)(2n+ 1)

6
− n(n+ 1)

2
=

n3 − n

3
.

Those are known formulas for the sum of the first n numbers and their squares. Substituting

n = 100 gives a million minus a hundred—then divide by 3. (That translates into one

second on a workstation.) We will ignore n in comparison with n3, to reach our main

conclusion:

The multiply-subtract count is 1

3
n3 for forward elimination (A to U , producing L).

That means 1
3n

3 multiplications and subtractions. Doubling n increases this cost by eight

(because n is cubed). 100 equations are easy, 1000 are more expensive,10000 dense equa-

tions are close to impossible. We need a faster computer or a lot of zeros or a new idea.

On the right side of the equations, the steps go much faster. We operate on single

numbers, not whole rows. Each right side needs exactly n2 operations. Down and back

up we are solving two triangular systems, Lc = b forward and Ux = c backward. In back

substitution, the last unknown needs only division by the last pivot. The equation above

it needs two operations—substituting xn and dividing by its pivot. The kth step needs k
multiply-subtract operations, and the total for back substitution is

1 + 2 + · · ·+ n =
n(n+ 1)

2
≈ 1

2n
2 operations.

The forward part is similar. The n2 total exactly equals the count for multiplying A−1b!

This leaves Gaussian elimination with two big advantages over A−1b:

1 Elimination requires 1
3n

3 multiply-subtracts, compared to n3 for A−1.

2 If A is banded so are L and U : by comparison A−1 is full of nonzeros.

11.1. Gaussian Elimination in Practice 511

Band Matrices

These counts are improved when A has “good zeros”. A good zero is an entry that remains

zero in L and U . The best zeros are at the beginning of a row. They require no elimination

steps (the multipliers are zero). So we also find those same good zeros in L. That is

especially clear for this tridiagonal matrix A (and for band matrices in Figure 11.1):

Tridiagonal

Bidiagonal

times

bidiagonal




1 −1
−1 2 −1

−1 2 −1
−1 2


 =




1
−1 1

−1 1
−1 1







1 −1
1 −1

1 −1
1


 .

w

w

w w
= LUA = =

Figure 11.1: A = LU for a band matrix. Good zeros in A stay zero in L and U .

These zeros lead to a complete change in the operation count, for “half-bandwidth” w:

A band matrix has aij = 0 when |i− j| > w.

Thus w = 1 for a diagonal matrix, w = 2 for tridiagonal, w = n for dense. The length of

the pivot row is at most w. There are no more than w − 1 nonzeros below any pivot. Each

stage of elimination is complete after w(w−1) operations, and the band structure survives.

There are n columns to clear out. Therefore:

Elimination on a band matrix (A to L and U) needs less than w2n operations.

For a band matrix, the count is proportional to n instead of n3. It is also proportional to w2.

A full matrix has w = n and we are back to n3. For an exact count, remember that the

bandwidth drops below w in the lower right corner (not enough space):

Band
w(w − 1)(3n− 2w + 1)

3
Dense

n(n− 1)(n+ 1)

3
=

n3 − n

3

On the right side of Ax = b, to find x from b, the cost is about 2wn (compared to the

usual n2). Main point: For a band matrix the operation counts are proportional to n.

This is extremely fast. A tridiagonal matrix of order 10,000 is very cheap, provided

we don’t compute A−1. That inverse matrix has no zeros at all:

A =




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


 has A−1 = U−1L−1 =




4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1


 .

We are actually worse off knowing A−1 than knowing L and U . Multiplication by A−1

needs the full n2 steps. Solving Lc = b and Ux = c needs only 2wn.

512 Chapter 11. Numerical Linear Algebra

A band structure is very common in practice, when the matrix reflects connections

between near neighbors: a13 = 0 and a14 = 0 because 1 is not a neighbor of 3 and 4.

We close with counts for Gauss-Jordan and Gram-Schmidt-Householder:

A−1 costs n3 multiply-subtract steps. QR costs 2
3
n3 steps.

In AA−1 = I , the jth column of A−1 solves Axj = jth column of I . The left side costs
1
3n

3 as usual. (This is a one-time cost! L andU are not repeated.) The special saving for the

jth column of I comes from its first j− 1 zeros. No work is required on the right side until

elimination reaches row j. The forward cost is 1
2 (n − j)2 instead of 1

2n
2. Summing over

j, the total for forward elimination on the n right sides is 1
6n

3. The final multiply-subtract

count for A−1 is n3 if we actually want the inverse:

ForA−1 n3

3
(L and U) +

n3

6
(forward) + n

(
n2

2

)
(back substitutions) = n3. (1)

Orthogonalization (A to Q): The key difference from elimination is that each multiplier

is decided by a dot product. That takes n operations, where elimination just divides by

the pivot. Then there are n “multiply-subtract” operations to remove from column k its

projection along column j < k (see Section 4.4). The combined cost is 2n where for

elimination it is n. This factor 2 is the price of orthogonality. We are changing a dot

product to zero where elimination changes an entry to zero.

Caution To judge a numerical algorithm, it is not enough to count the operations. Beyond

“flop counting” is a study of stability (Householder wins) and the flow of data.

Reordering Sparse Matrices

For band matrices with constant width w, the row ordering is optimal. But for most sparse

matrices in real computations, the width of the band is not constant and there are many

zeros inside the band. Those zeros can fill in as elimination proceeds—they are lost. We

need to renumber the equations to reduce fill-in, and thereby speed up elimination.

Generally speaking, we want to move zeros to early rows and columns. Later rows

and columns are shorter anyway. The “approximate minimum degree” algorithm in sparse

MATLAB is greedy—it chooses the row to eliminate without counting all the consequences.

We may reach a nearly full matrix near the end, but the total operation count to reach LU
is still much smaller. To find the absolute minimum of nonzeros in L and U is an NP-hard

problem, much too expensive, and amd is a good compromise.

Fill-in is famous when each point on a square grid is connected to its four nearest

neighbors. It is impossible to number all the gridpoints so that neighbors stay together! If

we number by rows of the grid, there is a long wait to come around to the gridpoint above.

11.1. Gaussian Elimination in Practice 513

j
i
k




1 1 1
−2 1 0
−2 0 2


 −→




1 1 1
0 3 2
0 2 4


 j = 1

i = 2

k = 3
−→ 1

2

3

a32 = 0 a32 = 2 a32 = 0 before a32 6= 0 after

We only need the positions of the nonzeros, not their exact values. Think of the graph

of nonzeros: Node i is connected to node j if aij 6= 0. Watch to see how elimination can

create nonzeros (new edges), which we are trying to avoid.

The command nnz(L) counts the nonzero multipliers in the lower triangular L, find

(L) will list them, and spy(L) shows them all.

The goal of colamd and symamd is a better ordering (permutation P) that reduces

fill-in for AP and PTAP—by choosing the pivot with the fewest nonzeros below it.

Fast Orthogonalization

There are three ways to reach the important factorization A = QR. Gram-Schmidt works

to find the orthonormal vectors in Q. Then R is upper triangular because of the order of

Gram-Schmidt steps. Now we look at better methods (Householder and Givens), which

use a product of specially simple Q’s that we know are orthogonal.

Elimination gives A = LU , orthogonalization gives A = QR. We don’t want a

triangular L, we want an orthogonal Q. L is a product of E’s from elimination, with

1’s on the diagonal and the multiplier ℓij below. Q will be a product of orthogonal matrices.

There are two simple orthogonal matrices to take the place of the E’s. The reflection

matrices I − 2uuT are named after Householder. The plane rotation matrices are named

after Givens. The simple matrix that rotates the xy plane by θ is Q21:

Givens rotation

in the 1-2 plane
Q21 =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .

Use Q21 the way you used E21, to produce a zero in the (2, 1) position. That determines

the angle θ. Bill Hager gives this example in Applied Numerical Linear Algebra:

Q21A =




.6 .8 0

−.8 .6 0

0 0 1







90 −153 114

120 −79 −223

200 −40 395


 =




150 −155 −110

0 75 −225

200 −40 395


 .

The zero came from −.8(90) + .6(120). No need to find θ, what we needed was cos θ:

cos θ =
90√

902 + 1202
and sin θ =

−120√
902 + 1202

. (2)

514 Chapter 11. Numerical Linear Algebra

Now we attack the (3, 1) entry. The rotation will be in rows and columns 3 and 1. The

numbers cos θ and sin θ are determined from 150 and 200, instead of 90 and 120.

Q31Q21A =




.6 0 .8
0 1 0

−.8 0 .6







150 · ·
0 · ·

200 · ·


 =



250 −125 250
0 75 −225

0 100 325


 .

One more step to R. The (3, 2) entry has to go. The numbers cos θ and sin θ now come

from 75 and 100. The rotation is now in rows and columns 2 and 3:

Q32Q31Q21A =



1 0 0
0 .6 .8

0 −.8 .6






250 −125 ·
0 75 ·
0 100 ·


 =



250 −125 250
0 125 125

0 0 375


 .

We have reached the upper triangular R. What is Q? Move the plane rotations Qij to the

other side to find A = QR—just as you moved the elimination matrices Eij to the other

side to find A = LU :

Q32Q31Q21A = R means A = (Q−1
21 Q

−1
31 Q

−1
32)R = QR. (3)

The inverse of each Qij is QT
ij (rotation through −θ). The inverse of Eij was not an

orthogonal matrix! LU and QR are similar but L and Q are not the same.

Householder reflections are faster than rotations because each one clears out a whole

column below the diagonal. Watch how the first column a1 of A becomes column r1 of R:

Reflection by H1

H1 = I − 2u1u
T
1

H1 a1 =




‖a1‖
0
·
0


 or




−‖a1‖
0
·
0


 = r1 . (4)

The length was not changed, and u1 is in the direction of a1 − r1. We have n − 1 entries

in the unit vector u1 to get n− 1 zeros in r1. (Rotations had one angle θ to get one zero.)

When we reach column k, we have n − k available choices in the unit vector uk.

This leads to n − k zeros in rk. We just store the u’s and r’s to know the final Q and R:

Inverse of Hi is Hi (Hn−1 . . . H1)A = R means A = (H1 . . . Hn−1)R = QR. (5)

This is how LAPACK improves on 19th century Gram-Schmidt. Q is exactly orthogonal.

Section 11.3 explains how A = QR is used in the other big computation of linear

algebra—the eigenvalue problem. The factors QR are reversed to give A1 = RQ which is

Q−1AQ. Since A1 is similar to A, the eigenvalues are unchanged. Then A1 is factored into

Q1R1, and reversing the factors gives A2. Amazingly, the entries below the diagonal get

smaller in A1, A2, A3, . . . and we can identify the eigenvalues. This is the “QR method”

for Ax = λx, a big success of numerical linear algebra.

11.1. Gaussian Elimination in Practice 515

Problem Set 11.1

1 Find the two pivots with and without row exchange to maximize the pivot:

A =

[
.001 0
1 1000

]
.

With row exchanges to maximize pivots, why are no entries of L larger than 1?

Find a 3 by 3 matrix A with all |aij | ≤ 1 and |ℓij | ≤ 1 but third pivot = 4.

2 Compute the exact inverse of the Hilbert matrix A by elimination. Then compute

A−1 again by rounding all numbers to three figures:

Ill-conditioned matrix A = hilb(3) =



1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5


 .

3 For the same A compute b = Ax for x = (1, 1, 1) and x = (0, 6,−3.6). A small

change ∆b produces a large change ∆x.

4 Find the eigenvalues (by computer) of the 8 by 8 Hilbert matrix aij = 1/(i+ j− 1).
In the equation Ax = b with ‖b‖ = 1, how large can ‖x‖ be? If b has roundoff error

less than 10−16, how large an error can this cause in x? See Section 9.2.

5 For back substitution with a band matrix (width w), show that the number of multi-

plications to solve Ux = c is approximately wn.

6 If you know L and U and Q and R, is it faster to solve LUx = b or QRx = b?

7 Show that the number of multiplications to invert an upper triangular n by n matrix

is about 1
6n

3. Use back substitution on the columns of I , upward from 1’s.

8 Choosing the largest available pivot in each column (partial pivoting), factor each A
into PA = LU :

A =

[
1 0
2 2

]
and A =



1 0 1
2 2 0
0 2 0


 .

9 Put 1’s on the three central diagonals of a 4 by 4 tridiagonal matrix. Find the cofac-

tors of the six zero entries. Those entries are nonzero in A−1.

10 (Suggested by C. Van Loan.) Find the LU factorization and solve by elimination

when ε = 10−3, 10−6, 10−9, 10−12, 10−15:
[
ε 1
1 1

] [
x1

x2

]
=

[
1 + ε
2

]
.

The true x is (1, 1). Make a table to show the error for each ε. Exchange the two

equations and solve again—the errors should almost disappear.

516 Chapter 11. Numerical Linear Algebra

11 (a) Choose sin θ and cos θ to triangularize A, and find R:

Givens rotation Q21A =

[
cos θ − sin θ
sin θ cos θ

] [
1 −1
3 5

]
=

[
∗ ∗
0 ∗

]
= R.

(b) Choose sin θ and cos θ to make QAQ−1 triangular. What are the eigenvalues?

12 When A is multiplied by a plane rotation Qij , which entries of A are changed?

When QijA is multiplied on the right by Q−1
ij , which entries are changed now?

13 How many multiplications and how many additions are used to compute QijA?

Careful organization of the whole sequence of rotations gives 2
3n

3 multiplications

and 2
3n

3 additions—the same as for QR by reflectors and twice as many as for LU .

Challenge Problems

14 (Turning a robot hand) The robot produces any 3 by 3 rotation A from plane rota-

tions around the x, y, z axes. Then Q32Q31Q21A = R, where A is orthogonal so R
is I! The three robot turns are in A = Q−1

21 Q
−1
31 Q

−1
32 . The three angles are “Euler

angles” and detQ = 1 to avoid reflection. Start by choosing cos θ and sin θ so that

Q21A =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 1

3



−1 2 2
2 −1 2
2 2 −1


 is zero in the (2, 1) position.

15 Create the 10 by 10 second difference matrix K = toeplitz([2 − 1 zeros(1, 8)]).
Permute rows and columns randomly byKK = K(randperm(10), randperm(10)).
Factor by [L,U] = lu(K) and [LL,UU] = lu(KK), and count nonzeros by nnz(L)
and nnz(LL). In this case L is in perfect tridiagonal order, but not LL.

16 Another ordering for this matrix K colors the meshpoints alternately red and black.

This permutation P changes the normal 1, . . . , 10 to 1, 3, 5, 7, 9, 2, 4, 6, 8, 10:

Red-black ordering PKPT =

[
2I D
DT 2I

]
. Find the matrix D.

So many interesting experiments are possible. If you send good ideas they can

go on the linear algebra website math.mit.edu/linearalgebra. I also recommend

learning the command B = sparse(A), after which find(B) will list the nonzero

entries and ℓu(B) will factor B using that sparse format for L and U . Only the

nonzeros are computed, where ordinary (dense)MATLAB computes all the zeros too.

17 Jeff Stuart has created a student activity that brilliantly demonstrates ill-conditioning:
[
1 1.0001
1 1.0000

] [
x
y

]
=

[
3.0001 + e
3.0000 +E

]
With errors

e and E
x=2− 10000(e−E)
y =1 + 10000(e−E)

When those equations are shown by nearly parallel long sticks, a small shake gives

a big jump in the crossing point (x, y). Errors e and E are amplified by 10000.

