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1 Codes can use finite fields as alphabets: letters in the message become numbers 0, 1, . . . , p− 1.

2 The numbers are added and multiplied (mod p). Divide by p, keep the remainder.

3 A Hill Cipher multiplies blocks of the message by a secret matrix E (mod p).

4 To decode, multiply each block by the inverse matrix D (mod p). Not a very secure cipher!

Cryptography is about encoding and decoding messages. Banks do this all the time

with financial information. Amazingly, modern algorithms can involve extremely deep

mathematics. “Elliptic curves” play a part in cryptography, as they did in the sensational

proof by Andrew Wiles of Fermat’s Last Theorem.

This section will not go that far! But it will be our first experience with finite fields and

finite vector spaces. The field for Rn contains all real numbers. The field for “modular

arithmetic” contains only p integers 0, 1, . . . , p− 1. There were infinitely many vectors in

Rn—now there will only be pn messages of length n in message space. The alphabet from

A to Z is finite (as in p = 26).

The codes in this section will be easily breakable—they are much too simple for prac-

tical security. The power of computers demands more complex cryptography, because that

power would quickly detect a small encoding matrix. But a matrix code (the Hill Cipher)

will allow us to see linear algebra at work in a new way.

All our calculations in encoding and decoding will be “mod p”. But the central con-

cepts of linear independence and bases and inverse matrices and determinants survive this

change. We will be doing “linear algebra with finite fields”. Here is the meaning of mod p :

27 ≡ 2 (mod 5) means that 27 − 2 is divisible by 5

y ≡ x (mod p) means that y − x is divisible by p

Dividing y by 5 produces one of the five possible remainders x = 0, 1, 2, 3, 4. All the num-

bers 5,−5, 10,−10, . . . with no remainder are congruent to zero (mod 5). The numbers

y = 6,−4, 11,−9, . . . are all congruent to x = 1(mod 5).
We use the word congruent for the symbol ≡ and we call this “modular arithmetic”.

Every integer y produces one of the values x = 0, 1, 2, . . . , p− 1.

The theory is best if p is a prime number. With p = 26 letters from A to Z , we

unfortunately don’t start with a prime p. Cryptography can deal with this problem.
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Modular Arithmetic

Linear algebra is based on linear combinations of vectors. Now our vectors (x1, . . . , xn)

are strings of integers limited to x = 0, 1, . . . , p−1. All calculations produce these integers

when we work “mod p”. This means: Every integer y outside that range is divided by p
and x is the remainder:

y = q p + x y ≡ x (mod p) y divided by p has remainder x

Addition mod 3 10 ≡ 1 (mod 3) and 16 ≡ 1 (mod 3) and 10 + 16 ≡ 1 + 1 (mod 3)

I could add 10 + 16 and divide 26 by 3 to get the remainder 2.

Or I can just add remainders 1 + 1 to reach the same answer 2.

Addition mod 2 11 ≡ 1 (mod 2) and 17 ≡ 1 (mod 2) and 11 + 17 = 28 ≡ 0 (mod 2)

The remainders added to 1 + 1 but this is not 2. The final step was 2 ≡ 0 (mod 2).

Addition mod p is completely reasonable. So is multiplication mod p. Here p = 3 :

10 ≡ 1 (mod 3) times 16 ≡ 1 (mod 3) gives 1 times 1 ≡ 1 160 ≡ 1 (mod 3)

5 ≡ 2 (mod 3) times 8 ≡ 2 (mod 3) gives 2 times 2 ≡ 1 40 ≡ 1 (mod 3)

Conclusion: We can safely add and multiply modulo p. So we can take linear combinations.

This is the key operation in linear algebra. But can we divide ?

In the real number field, the inverse is 1/y (for any number except y = 0). This means:

We found another real number z so that yz = 1. Invertibility is a requirement for a field.

Is inversion always possible mod p ? For every number y = 1, . . . , p − 1 can we find

another number z = 1, . . . , p− 1 so that yz ≡ 1 mod p ?

The examples 3−1 ≡ 4 (mod 11) and 2−1 ≡ 6 (mod 11) and 5−1 ≡ 9 (mod 11) all

succeed. Can you solve 7z ≡ 1 (mod 11) ? Inverting numbers will be the key to inverting

matrices.

Let me show that inversion mod p has a problem when p is not a prime number. The

example p = 26 factors into 2 times 13. Then y = 2 cannot have an inverse z (mod 26).

The requirement 2z ≡ 1 (mod 26) is impossible to satisfy because 2z and 26 are even.

Similarly 5 has no inverse z when p is 25. We can’t solve 5z ≡ 1 (mod 25). The

number 5z − 1 is never going to be a multiple of 5, so it can’t be a multiple of 25.

Inversion of every y (0 < y < p) will be possible if and only if p is prime.

Inversion needs y, 2y, 3y, . . . , py to have different remainders when divided by p.

If my and ny had the same remainder x then (m− n)y would be divisible by p.

The prime number p would have to divide either m− n or y. Both are impossible.

So y, . . . , py have different remainders: One of those remainders must be x = 1.
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The Enigma Machine and the Hill Cipher

Lester Hill published his cipher (his system for encoding and decoding) in the American

Mathematical Monthly (1929). The idea was simple, but in some way it started the transi-

tion of cryptography from linguistics to mathematics. Codes up to that time mainly mixed

up alphabets and rearranged messages. The Enigma code used by the German Navy in

World War II was a giant advance—using machines that look to us like primitive comput-

ers. The English set up Bletchley Park to break Enigma. They hired puzzle solvers and

language majors. And by good luck they also happened to get Alan Turing.

I don’t know if you have seen the movie about him: The Imitation Game. A lot of

it is unrealistic (like Good Will Hunting and A Beautiful Mind at MIT). But the core idea

of breaking the Enigma code was correct, using human weaknesses in the encoding and

broadcasting. The German naval command openly sent out their coded orders—knowing

that the codes were too complicated to break (if it hadn’t been for those weaknesses).

The codebreaking required English electronics to undo the German electronics. It also

required genius.

Alan Turing was surely a genius—England’s most exceptional mathematician. His

life was ultimately tragic and he ended it in 1954. The biography by Andrew Hodges

is excellent. Turing arrived at Bletchley Park the day after Poland was invaded. It is to

Winston Churchill’s credit that he gave fast and full support when his support was needed.

The Enigma Machine had gears and wheels. The Hill Cipher only needs a matrix. That

is the code to be explained now, using linear algebra. You will see how decoding involved

inverse matrices. All steps use modular arithmetic, multiplying and inverting mod p.

I will follow the neat exposition of Professor Spickler of Salisbury State University,

which he made available on the Web: facultyfp.salisbury.edu/despickler/personal/index.asp

Modular Arithmetic with Matrices

Addition, subtraction, and multiplication are all we need for Ax (matrix times vector).

To multiply mod p we can multiply the integers in A times the integers in x as usual—

and then replace every entry of Ax by its value mod p.

Key questions: When can we solve Ax ≡ b (mod p) ? Do we still have the four subspaces

C(A),N (A),C(AT),N (AT) ? Are they still orthogonal in pairs? Is there still an in-

verse matrix mod p whenever the determinant of A is nonzero mod p ? I am happy to say

that the last three answers are yes (but the inverse question requires p to be a prime number).

We can find A−1 (mod p) by Gauss-Jordan elimination, reducing [A I] to [I A−1]
as in Section 2.5. Or we can use determinants and the cofactor matrix C in the formula

A−1 = (detA)−1 CT. I will work mod 3 with a 2 by 2 integer matrix A :

[
A I

]
=

[
2 0 1 0

2 1 0 1

]
→

[
2 0 1 0

0 1 2 1

]
→

multiply row 1

by 2−1 ≡ 2
→

[
1 0 2 0

0 1 2 1

]
=

[
I A−1

]
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By pure chance A−1 ≡ A ! Multiplying A times A mod 3 does give the identity matrix:

A2 = AA−1 =

[
2 0
2 1

] [
2 0
2 1

]
=

[
4 0
6 1

]
≡

[
1 0
0 1

]
(mod 3).

The determinant of A is 2, and the cofactor formula from Section 5.3 also gives A−1 ≡ A :

[
2 0
2 1

]−1

= 2−1

[
1 −0

−2 2

]
≡ 2

[
1 −0

−2 2

]
≡

[
2 0
2 1

]
(mod 3).

Theorem. A−1 exists mod p if and only if (detA)−1 exists mod p.

The requirement is: detA and p have no common factors.

Encryption with the Hill Cipher

The original cipher used the letters A to Z with p = 26. Hill chose an n by n encryption

matrix E so that detE is not divisible by 2 or 13. Then the number detE has an inverse

mod 26 and so does the matrix E. The inverse matrix E−1 ≡ D (mod 26) will be the

decryption matrix that decodes the message.

Now convert each letter of the message into a number from 0 to 25. The obvious choice

from A = 0 to Z = 25 is acceptable because the matrix will make this cipher stronger.

Ignore spaces and divide the message into blocks v1,v2, . . . of size n.

Then multiply each message block (mod p) by the encryption matrix E.

The coded message is Ev1, Ev2, . . . and you know what the decoder will do.

Spikler’s example has D = E−1 =
detE = 583 ≡ 11 (mod 26)



2 3 15
5 8 12
1 13 4



−1

≡



10 19 16
4 23 7
17 5 19


 (mod 26).

Of course a codebreaker will not know E or D. And the block size n is generally

unknown too. For the matrices Hill had in mind n would not be very large and a computer

could quickly discover E and D.

I am not sure if Hill’s Cipher could become seriously difficulty to break by choosing

very large matrices and a large prime number p. And by encoding the coded message a

second time, using a different block size n2 and large matrix E2 and large prime p2.

Finite Fields and Finite Vector Spaces

In algebra, a field F is a set of scalars that can be added and multiplied and inverted

(except 0 can’t be inverted). Familiar examples are the real numbers R and the complex

numbers C and the rational numbers Q (containing every ratio p/q of integers). From a

field you build vectors v = (f1, f2, . . . , fn). From linear combinations of vectors you

build vector spaces. So linear algebra begins with a field F.

I taught for ten years from a textbook that started with fields. On the way to Rn, we

lost a lot of students. That was a signal—the emphasis was misplaced if we wanted the
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course to be useful. I believe the right way is to understand Rn and its subspaces first,

as you do. Then you can look at other fields and vector spaces with a natural question

in mind: What is new when the field is not R ?

These pages are asking that question for finite fields. The possibilities become more

limited but also highly interesting. The starting point (and not quite the ending point) is

the finite field Fp. It contains only the numbers 0, 1, . . . , p − 1 and p is a prime number.

I will focus first on the field F2 with only 2 members “0” and “1”. You could think of 0
and 1 as “even” and “odd” because the rules to add and multiply are obeyed by the even

numbers and odd numbers: even+++ odd = odd and even××× odd = even.

0 1 0 1
Addition 0 0 1 Multiplication 0 0 0

table 1 1 0 table 1 0 1

This is addition and multiplication “mod 2”.

From this field F2 we can build vectors like v = (0, 0, 1) and w = (1, 0, 1). There are

three components with two choices each: a total of 23 = 8 different vectors in the vector

space (F2)
3. You know the requirements on a subspace and the possibilities it opens up:

a) The zero-dimensional subspace containing only 0 = (0, 0, 0).

b) One-dimensional subspaces containing 0 and a vector like v. Notice v + v = 0 !

c) Two-dimensional subspaces with a basis like v and w and 4 vectors 0, v, w, v + w.

d) The full three-dimensional subspace (F2)
3 with 8 vectors.

What are the possible bases for (F2)
3 ? The standard basis contains (1, 0, 0) and (0, 1, 0)

and (0, 0, 1). Those vectors are linearly independent and they span (F2)
3. Their eight

combinations with coefficients 0 and 1 fill all of (F2)
3.

What about matrices that multiply those vectors? The matrices will be 1 by 3, or 2 by

3, or 3 by 3. When they are 3 by 3 we can ask if they are invertible. Their determinants

can only be 0 (singular matrix) or 1 (invertible matrix). Let me leave you the pleasure of

deciding whether these matrices are invertible. And how would you find the inverse ?

A =




1 0 0
1 1 0
1 1 1


 B =




1 1 0
0 1 1
1 0 1


 C =




1 1 1
0 0 1
1 0 0




Out of 29 possible matrices over F2, I will guess that most are singular.

To conclude this discussion of F2, I mention a field with 22 = 4 members. It will not

come from multiplication (mod 4), because 4 is not prime. The multiplication 2 times 2
will give 0 (and 2 has no inverse): not a field. But we can start with the numbers 0 and 1
in F2 and invent two more numbers a and 1 + a—provided they follow these two rules:

(a + a = 0) and (a × a = 1 + a). Then a and 1 + a are inverses. Not obvious !
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Add 0 1 a 1 + a Multiply 0 1 a 1 + a
0 0 1 a 1 + a 0 0 0 0 0

1 1 0 1 + a a 1 0 1 a 1 + a
a a 1 + a 0 1 a 0 a 1 + a 1

1 + a 1 + a a 1 0 1 + a 0 1 + a 1 a

Beyond p = 2, we have the fields Fp for all prime numbers p. They use addition and

multiplication mod p. They are alphabets for codes. They provide the components for

vectors v = (f1, . . . , fn) in the space (Fp)
n. They provide the entries for matrices that

multiply those vectors. These fields Fp are the most frequently used finite fields.

The only other finite fields have pk members. The example above of 0, 1, a, 1 + a
had 22 = 4 members. We will leave it there and get back safely to R.

Problem Set 10.7

1 If you multiply n whole numbers (even or odd) when is the answer odd? Translate

into multiplication (mod 2) : If you multiply 0’s and 1’s when is the answer 1 ?

2 If you add n whole numbers (even or odd) when is the sum of the numbers odd?

Translate into adding 0’s and 1’s (mod 2). When do they add to 1 ?

3 (a) If y1 ≡ x1 and y2 ≡ x2, why is y1 + y2 ≡ x1 + x2 ? All are mod p.

Suggestion: y1 = p q1 + x1 and y2 = p q2 + x2. Now add y1 + y2.

(b) Can you be sure that x1 + x2 is smaller than p ? No. Give an example where

there is a smaller x with (y1 + y2) = x (mod p).

4 p = 39 is not prime. Find a number a that has no inverse z (mod 39). This means

that az ≡ 1 (mod 39) has no solution. Then find a 2 by 2 matrix A that has no

inverse matrix Z (mod 39). This means that AZ ≡ I (mod 39) has no solution.

5 Show that y ≡ x (mod p) leads to −y ≡ −x (mod p).

6 Find a matrix that has independent columns in R2 but dependent columns (mod 5).

7 What are all the 2 by 2 matrices of 0’s and 1’s that are invertible (mod 2) ?

8 Is the row space ofA still orthogonal to the nullspace in modular arithmetic (mod 11) ?

Are bases for those subspaces still bases (mod 11) ?

9 (Hill’s Cipher) Separate the message THISWHOLEBOOKISINCODE into blocks

of 3 letters. Replace each letter by a number from 1 to 26 (normal order). Multiply

each block by the 3 by 3 matrix L with 1’s on and below the diagonal. What is the

coded message (in numbers) and how would you decode it?

10 Suppose you know the original message (the plaintext). Suppose you also see the

coded message. How would you start to discover the matrix in Hill’s Cipher ? For a

very long message do you expect success ?




