
10.6. Computer Graphics 495

10.6 Computer Graphics

Computer graphics deals with images. The images are moved around. Their scale is changed.

Three dimensions are projected onto two dimensions. All the main operations are done by

matrices—but the shape of these matrices is surprising.

The transformations of three-dimensional space are done with 4 by 4 matrices. You

would expect 3 by 3. The reason for the change is that one of the four key operations

cannot be done with a 3 by 3 matrix multiplication. Here are the four operations:

Translation (shift the origin to another point P0 = (x0, y0, z0))

Rescaling (by c in all directions or by different factors c1, c2, c3)

Rotation (around an axis through the origin or an axis through P0)

Projection (onto a plane through the origin or a plane through P0).

Translation is the easiest—just add (x0, y0, z0) to every point. But this is not linear! No 3
by 3 matrix can move the origin. So we change the coordinates of the origin to (0, 0, 0, 1).
This is why the matrices are 4 by 4. The “homogeneous coordinates” of the point (x, y, z)
are (x, y, z, 1) and we now show how they work.

1. Translation Shift the whole three-dimensional space along the vector v0. The origin

moves to (x0, y0, z0). This vector v0 is added to every point v in R3. Using homogeneous

coordinates, the 4 by 4 matrix T shifts the whole space by v0 :

Translation matrix T =




1 0 0 0
0 1 0 0
0 0 1 0
x0 y0 z0 1


 .

Important: Computer graphics works with row vectors. We have row times matrix instead

of matrix times column. You can quickly check that [0 0 0 1]T = [x0 y0 z0 1].
To move the points (0, 0, 0) and (x, y, z) by v0, change to homogeneous coordinates

(0, 0, 0, 1) and (x, y, z, 1). Then multiply by T . A row vector times T gives a row vector.

Every v moves to v + v0: [x y z 1]T = [x+ x0 y + y0 z + z0 1].
The output tells where any v will move. (It goes to v+v0.) Translation is now achieved

by a matrix, which was impossible in R3.

2. Scaling To make a picture fit a page, we change its width and height. A copier

will rescale a figure by 90%. In linear algebra, we multiply by .9 times the identity matrix.

That matrix is normally 2 by 2 for a plane and 3 by 3 for a solid. In computer graphics,

with homogeneous coordinates, the matrix is one size larger:

Rescale the plane: S =



.9

.9
1


 Rescale a solid: S =




c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 1


 .

496 Chapter 10. Applications

Important: S is not cI . We keep the “1” in the lower corner. Then [x, y, 1] times S is the

correct answer in homogeneous coordinates. The origin stays in its normal position because

[0 0 1]S = [0 0 1].
If we change that 1 to c, the result is strange. The point (cx, cy, cz, c) is the same

as (x, y, z, 1). The special property of homogeneous coordinates is that multiplying by cI
does not move the point. The origin in R3 has homogeneous coordinates (0, 0, 0, 1) and

(0, 0, 0, c) for every nonzero c. This is the idea behind the word “homogeneous.”

Scaling can be different in different directions. To fit a full-page picture onto a half-

page, scale the y direction by 1
2 . To create a margin, scale the x direction by 3

4 . The

graphics matrix is diagonal but not 2 by 2. It is 3 by 3 to rescale a plane and 4 by 4 to

rescale a space:

Scaling matrices S =




3
4

1
2

1


 and S =




c1
c2

c3
1


 .

That last matrix S rescales the x, y, z directions by positive numbers c1, c2, c3. The extra

column in all these matrices leaves the extra 1 at the end of every vector.

Summary The scaling matrix S is the same size as the translation matrix T . They can

be multiplied. To translate and then rescale, multiply vTS. To rescale and then translate,

multiply vST . Are those different? Yes.

The point (x, y, z) in R3 has homogeneous coordinates (x, y, z, 1) in P3. This “pro-

jective space” is not the same as R4. It is still three-dimensional. To achieve such a thing,

(cx, cy, cz, c) is the same point as (x, y, z, 1). Those points of projective space P3 are really

lines through the origin in R4.

Computer graphics uses affine transformations, linear plus shift. An affine transforma-

tion T is executed on P3 by a 4 by 4 matrix with a special fourth column:

A =




a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
a41 a42 a43 1


 =




T (1, 0, 0) 0
T (0, 1, 0) 0
T (0, 0, 1) 0
T (0, 0, 0) 1


 .

The usual 3 by 3 matrix tells us three outputs, this tells four. The usual outputs come

from the inputs (1, 0, 0) and (0, 1, 0) and (0, 0, 1). When the transformation is linear, three

outputs reveal everything. When the transformation is affine, the matrix also contains the

output from (0, 0, 0). Then we know the shift.

3. Rotation A rotation in R2 or R3 is achieved by an orthogonal matrix Q. The determi-

nant is +1. (With determinant −1 we get an extra reflection through a mirror.) Include the

extra column when you use homogeneous coordinates!

Plane rotation Q =

[
cos θ − sin θ
sin θ cos θ

]
becomes R =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .

10.6. Computer Graphics 497

This matrix rotates the plane around the origin. How would we rotate around a

different point (4, 5)? The answer brings out the beauty of homogeneous coordinates.

Translate (4, 5) to (0, 0), then rotate by θ, then translate (0, 0) back to (4, 5):

v T−RT+ =
[
x y 1

]



1 0 0
0 1 0

−4 −5 1





cos θ − sin θ 0
sin θ cos θ 0
0 0 1





1 0 0
0 1 0
4 5 1


 .

I won’t multiply. The point is to apply the matrices one at a time: v translates to vT−, then

rotates to vT−R, and translates back to vT−RT+. Because each point
[
x y 1

]
is a row

vector, T− acts first. The center of rotation (4, 5)—otherwise known as (4, 5, 1)—moves

first to (0, 0, 1). Rotation doesn’t change it. Then T+ moves it back to (4, 5, 1). All as it

should be. The point (4, 6, 1) moves to (0, 1, 1), then turns by θ and moves back.

In three dimensions, every rotation Q turns around an axis. The axis doesn’t move—it

is a line of eigenvectors with λ = 1. Suppose the axis is in the z direction. The 1 in Q is to

leave the z axis alone, the extra 1 in R is to leave the origin alone:

Q =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 and R =




0
Q 0

0
0 0 0 1


 .

Now suppose the rotation is around the unit vector a = (a1, a2, a3). With this axis a, the

rotation matrix Q which fits into R has three parts:

Q = (cos θ)I + (1− cos θ)




a21 a1a2 a1a3
a1a2 a22 a2a3
a1a3 a2a3 a23


− sin θ




0 a3 −a2
−a3 0 a1
a2 −a1 0


 . (1)

The axis doesn’t move because aQ = a. When a = (0, 0, 1) is in the z direction, this Q
becomes the previous Q—for rotation around the z axis.

The linear transformation Q always goes in the upper left block of R. Below it we see

zeros, because rotation leaves the origin in place. When those are not zeros, the transfor-

mation is affine and the origin moves.

4. Projection In a linear algebra course, most planes go through the origin. In real life,

most don’t. A plane through the origin is a vector space. The other planes are affine spaces,

sometimes called “flats.” An affine space is what comes from translating a vector space.

We want to project three-dimensional vectors onto planes. Start with a plane through

the origin, whose unit normal vector is n. (We will keep n as a column vector.) The

vectors in the plane satisfy nTv = 0. The usual projection onto the plane is the matrix

I − nnT. To project a vector, multiply by this matrix. The vector n is projected to zero,

and the in-plane vectors v are projected onto themselves:

(I − nnT)n = n− n(nTn) = 0 and (I − nnT)v = v − n(nTv) = v.

498 Chapter 10. Applications

In homogeneous coordinates the projection matrix becomes 4 by 4 (but the origin doesn’t

move):

Projection onto the plane nTv = 0 P =




0
I − nnT 0

0
0 0 0 1


 .

Now project onto a plane nT(v − v0) = 0 that does not go through the origin. One point

on the plane is v0. This is an affine space (or a flat). It is like the solutions to Av = b
when the right side is not zero. One particular solution v0 is added to the nullspace—to

produce a flat.

The projection onto the flat has three steps. Translate v0 to the origin by T−. Project

along the n direction, and translate back along the row vector v0:

Projection onto a flat T−PT+ =

[
I 0

−v0 1

] [
I − nnT 0

0 1

] [
I 0
v0 1

]
.

I can’t help noticing that T− and T+ are inverse matrices: translate and translate back. They

are like the elementary matrices of Chapter 2.

The exercises will include reflection matrices, also known as mirror matrices. These

are the fifth type needed in computer graphics. A reflection moves each point twice as far

as a projection—the reflection goes through the plane and out the other side. So change

the projection I − nnT to I − 2nnT for a mirror matrix.

The matrix P gave a “parallel ” projection. All points move parallel to n, until they

reach the plane. The other choice in computer graphics is a “perspective ” projection. This

is more popular because it includes foreshortening. With perspective, an object looks larger

as it moves closer. Instead of staying parallel to n (and parallel to each other), the lines of

projection come toward the eye—the center of projection. This is how we perceive depth

in a two-dimensional photograph.

The basic problem of computer graphics starts with a scene and a viewing position. Ideally,

the image on the screen is what the viewer would see. The simplest image assigns just one

bit to every small picture element—called a pixel. It is light or dark. This gives a black

and white picture with no shading. You would not approve. In practice, we assign shading

levels between 0 and 28 for three colors like red, green, and blue. That means 8 × 3 = 24
bits for each pixel. Multiply by the number of pixels, and a lot of memory is needed!

Physically, a raster frame buffer directs the electron beam. It scans like a television

set. The quality is controlled by the number of pixels and the number of bits per pixel.

In this area, the standard text is Computer Graphics : Principles and Practice by Hughes,

Van Dam, McGuire, Skylar, Foley, Feiner, and Akeley (3rd edition, Addison-Wesley, 2014).

Notes by Ronald Goldman and by Tony DeRose were excellent references.

10.6. Computer Graphics 499

REVIEW OF THE KEY IDEAS

1. Computer graphics needs shift operations T (v) = v+v0 as well as linear operations

T (v) = Av.

2. A shift in Rn can be executed by a matrix of order n+ 1, using homogeneous coor-

dinates.

3. The extra component 1 in [x y z 1] is preserved when all matrices have the numbers

0, 0, 0, 1 as last column.

Problem Set 10.6

1 A typical point in R3 is xi+yj+zk. The coordinate vectors i, j, and k are (1, 0, 0),
(0, 1, 0), (0, 0, 1). The coordinates of the point are (x, y, z).

This point in computer graphics is xi+ yj + zk+ origin. Its homogeneous coordi-

nates are (, , ,). Other coordinates for the same point are (, , ,).

2 A linear transformation T is determined when we know T (i), T (j), T (k). For an

affine transformation we also need T (). The input point (x, y, z, 1) is trans-

formed to xT (i) + yT (j) + zT (k) + .

3 Multiply the 4 by 4 matrix T for translation along (1, 4, 3) and the matrix T1 for

translation along (0, 2, 5). The product TT1 is translation along .

4 Write down the 4 by 4 matrix S that scales by a constant c. Multiply ST and also

TS, where T is translation by (1, 4, 3). To blow up the picture around the center

point (1, 4, 3), would you use vST or vTS?

5 What scaling matrix S (in homogeneous coordinates, so 3 by 3) would produce a

1 by 1 square page from a standard 8.5 by 11 page?

6 What 4 by 4 matrix would move a corner of a cube to the origin and then multiply

all lengths by 2? The corner of the cube is originally at (1, 1, 2).

7 When the three matrices in equation 1 multiply the unit vector a, show that they give

(cos θ)a and (1− cos θ)a and 0. Addition gives aQ = a and the rotation axis is not

moved.

8 If b is perpendicular to a, multiply by the three matrices in 1 to get (cos θ)b and 0
and a vector perpendicular to b. So Qb makes an angle θ with b. This is rotation.

9 What is the 3 by 3 projection matrix I −nnT onto the plane 2
3x+

2
3y+

1
3z = 0? In

homogeneous coordinates add 0, 0, 0, 1 as an extra row and column in P .

500 Chapter 10. Applications

10 With the same 4 by 4 matrix P , multiply T−PT+ to find the projection matrix onto

the plane 2
3x+

2
3y+

1
3z = 1. The translation T− moves a point on that plane (choose

one) to (0, 0, 0, 1). The inverse matrix T+ moves it back.

11 Project (3, 3, 3) onto those planes. Use P in Problem 9 and T−PT+ in Problem 10.

12 If you project a square onto a plane, what shape do you get?

13 If you project a cube onto a plane, what is the outline of the projection? Make the

projection plane perpendicular to a diagonal of the cube.

14 The 3 by 3 mirror matrix that reflects through the plane nTv = 0 is M = I−2nnT.

Find the reflection of the point (3, 3, 3) in the plane 2
3x+ 2

3y + 1
3z = 0.

15 Find the reflection of (3, 3, 3) in the plane 2
3x + 2

3y + 1
3z = 1. Take three steps

T−MT+ using 4 by 4 matrices: translate by T− so the plane goes through the origin,

reflect the translated point (3, 3, 3, 1)T− in that plane, then translate back by T+.

16 The vector between the origin (0, 0, 0, 1) and the point (x, y, z, 1) is the difference

v = . In homogeneous coordinates, vectors end in . So we add a

to a point, not a point to a point.

17 If you multiply only the last coordinate of each point to get (x, y, z, c), you rescale

the whole space by the number . This is because the point (x, y, z, c) is the

same as (, , , 1).

