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10.3 Markov Matrices, Population, and Economics

This section is about positive matrices: every aij > 0. The key fact is quick to state:

The largest eigenvalue is real and positive and so is its eigenvector. In economics

and ecology and population dynamics and random walks, that fact leads a long way:

Markov λmax = 1 Population λmax > 1 Consumption λmax < 1

λmax controls the powers of A. We will see this first for λmax = 1.

Markov Matrices

Multiply a positive vector u0 again and again by this matrix A :

Markov

matrix
A =

[
.8 .3
.2 .7

]
u1 = Au0 u2 = Au1 = A2u0

After k steps we have Aku0. The vectors u1,u2,u3, . . . will approach a “steady state”

u∞ = (.6, .4). This final outcome does not depend on the starting vector u0. For every

u0 = (a, 1 − a) we converge to the same u∞(.6,.4). The question is why.

The steady state equation Au∞ = u∞ makes u∞ an eigenvector with eigenvalue 1:

Steady state

[
.8 .3
.2 .7

] [
.6
.4

]
=

[
.6
.4

]
= u∞.

Multiplying by A does not change u∞. But this does not explain why so many vectors u0

lead to u∞. Other examples might have a steady state, but it is not necessarily attractive:

Not Markov B =

[
1 0
0 2

]
has the unattractive steady state B

[
1
0

]
=

[
1
0

]
.

In this case, the starting vector u0 = (0, 1) will give u1 = (0, 2) and u2 = (0, 4). The

second components are doubled. In the language of eigenvalues, B has λ = 1 but also

λ = 2— this produces instability. The component of u along that unstable eigenvector is

multiplied by λ, and |λ| > 1 means blowup.

This section is about two special properties of A that guarantee a stable steady state.

These properties define a positive Markov matrix, and A above is one particular example:

Markov matrix
1. Every entry of A is positive: aij > 0.

2. Every column of A adds to 1.

Column 2 of B adds to 2, not 1. When A is a Markov matrix, two facts are immediate:

Because of 1: Multiplying u0 ≥ 0 by A produces a nonnegative u1 = Au0 ≥ 0.

Because of 2: If the components of u0 add to 1, so do the components of u1 = Au0.
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Reason: The components of u0 add to 1 when
[
1 . . . 1

]
u0 = 1. This is true for each

column of A by Property 2. Then by matrix multiplication [ 1 . . . 1 ]A = [ 1 . . . 1 ]:

Components of Au0 add to 1 [1 . . . 1]Au0 = [1 . . . 1]u0 = 1.

The same facts apply to u2 = Au1 and u3 = Au2. Every vector Aku0 is nonnegative

with components adding to 1. These are “probability vectors.” The limit u∞ is also a

probability vector—but we have to prove that there is a limit. We will show that λmax = 1
for a positive Markov matrix.

Example 1 The fraction of rental cars in Denver starts at 1
50 = .02. The fraction outside

Denver is .98. Every month, 80% of the Denver cars stay in Denver (and 20% leave).

Also 5% of the outside cars come in (95% stay outside). This means that the fractions

u0 = (.02, .98) are multiplied by A:

First month A =

[
.80 .05
.20 .95

]
leads to u1 = Au0 = A

[
.02
.98

]
=

[
.065
.935

]
.

Notice that .065 + .935 = 1. All cars are accounted for. Each step multiplies by A:

Next month u2 = Au1 = (.09875, .90125). This is A2u0.

All these vectors are positive because A is positive. Each vector uk will have its compo-

nents adding to 1. The first component has grown from .02 and cars are moving toward

Denver. What happens in the long run?

This section involves powers of matrices. The understanding of Ak was our first and

best application of diagonalization. Where Ak can be complicated, the diagonal matrix Λk

is simple. The eigenvector matrix X connects them: Ak equals XΛkX−1. The new ap-

plication to Markov matrices uses the eigenvalues (in Λ) and the eigenvectors (in X). We

will show that u∞ is an eigenvector of A corresponding to λ = 1.

Since every column of A adds to 1, nothing is lost or gained. We are moving rental cars

or populations, and no cars or people suddenly appear (or disappear). The fractions add to

1 and the matrix A keeps them that way. The question is how they are distributed after k
time periods—which leads us to Ak.

Solution Aku0 gives the fractions in and out of Denver after k steps. We diagonalize A to

understand Ak. The eigenvalues are λ = 1 and .75 (the trace is 1.75).

Ax = λx A

[
.2
.8

]
= 1

[
.2
.8

]
and A

[
−1
1

]
= .75

[
−1
1

]
.

The starting vector u0 combines x1 and x2, in this case with coefficients 1 and .18:

Combination of eigenvectors u0 =

[
.02
.98

]
=

[
.2
.8

]
+ .18

[
−1
1

]
.

Now multiply by A to find u1. The eigenvectors are multiplied by λ1 = 1 and λ2 = .75:

Each x is multiplied by λ u1 = 1

[
.2
.8

]
+ (.75)(.18)

[
−1
1

]
.
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Every month, another λ = .75 multiplies the vector x2. The eigenvector x1 is unchanged:

After k steps uk = Aku0 = 1k
[
.2
.8

]
+ (.75)k(.18)

[
−1
1

]
.

This equation reveals what happens. The eigenvector x1 with λ = 1 is the steady state.

The other eigenvector x2 disappears because |λ| < 1. The more steps we take, the closer

we come to u∞ = (.2, .8). In the limit, 2
10 of the cars are in Denver and 8

10 are outside.

This is the pattern for Markov chains, even starting from u0 = (0, 1):

If A is a positive Markov matrix (entries aij > 0, each column adds to 1), then

λ1 = 1 is larger than any other eigenvalue. The eigenvector x1 is the steady state:

uk = x1 + c2(λ2)
kx2 + · · ·+ cn(λn)

kxn always approaches u∞ = x1.

The first point is to see that λ = 1 is an eigenvalue of A. Reason: Every column of

A− I adds to 1−1 = 0. The rows of A− I add up to the zero row. Those rows are linearly

dependent, so A− I is singular. Its determinant is zero and λ = 1 is an eigenvalue.

The second point is that no eigenvalue can have |λ| > 1. With such an eigenvalue,

the powers Ak would grow. But Ak is also a Markov matrix! Ak has positive entries

still adding to 1—and that leaves no room to get large.

A lot of attention is paid to the possibility that another eigenvalue has |λ| = 1.

Example 2 A =
[
0 1
1 0

]
has no steady state because λ2 = −1.

This matrix sends all cars from inside Denver to outside, and vice versa.

The powers Ak alternate between A and I . The second eigenvector x2 = (−1, 1) will be

multiplied by λ2 = −1 at every step—and does not become smaller: No steady state.

Suppose the entries of A or any power of A are all positive—zero is not allowed.

In this “regular” or “primitive” case, λ = 1 is strictly larger than any other eigenvalue.

The powers Ak approach the rank one matrix that has the steady state in every column.

Example 3 (“Everybody moves”) Start with three groups. At each time step, half of

group 1 goes to group 2 and the other half goes to group 3. The other groups also split in

half and move. Take one step from the starting populations p1, p2, p3:

New populations u1 = Au0 =



0 1

2
1
2

1
2 0 1

2
1
2

1
2 0






p1
p2
p3


 =




1
2p2 +

1
2p3

1
2p1 +

1
2p3

1
2p1 +

1
2p2


 .

A is a Markov matrix. Nobody is born or lost. A contains zeros, which gave trouble in

Example 2. But after two steps in this new example, the zeros disappear from A2:

Two-step matrix u2 = A2u0 =




1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2






p1
p2
p3


 .
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The eigenvalues of A are λ1 = 1 (because A is Markov) and λ2 = λ3 = − 1
2 . For λ = 1,

the eigenvector x1 = (13 ,
1
3 ,

1
3 ) will be the steady state. When three equal populations

split in half and move, the populations are again equal. Starting from u0 = (8, 16, 32),
the Markov chain approaches its steady state:

u0 =




8
16
32


 u1 =



24
20
12


 u2 =



16
18
22


 u3 =



20
19
17


 .

The step to u4 will split some people in half. This cannot be helped. The total population

is 8 + 16 + 32 = 56 at every step. The steady state is 56 times (13 ,
1
3 ,

1
3 ). You can see the

three populations approaching, but never reaching, their final limits 56/3.

Challenge Problem 6.7.16 created a Markov matrix A from the number of links be-

tween websites. The steady state u will give the Google rankings. Google finds u∞ by a

random walk that follows links (random surfing). That eigenvector comes from counting

the fraction of visits to each website—a quick way to compute the steady state.

The size |λ2| of the second eigenvalue controls the speed of convergence to steady state.

Perron-Frobenius Theorem

One matrix theorem dominates this subject. The Perron-Frobenius Theorem applies when

all aij ≥ 0. There is no requirement that columns add to 1. We prove the neatest form,

when all aij > 0 : any positive matrix A (not necessarily positive definite!).

Perron-Frobenius for A > 0 All numbers in Ax = λmaxx are strictly positive.

Proof The key idea is to look at all numbers t such that Ax ≥ tx for some nonnegative

vector x (other than x = 0). We are allowing inequality in Ax ≥ tx in order to have many

small positive candidates t. For the largest value tmax (which is attained), we will show

that equality holds: Ax = tmaxx.

Otherwise, if Ax ≥ tmaxx is not an equality, multiply by A. Because A is positive

that produces a strict inequality A2x > tmaxAx. Therefore the positive vector y = Ax
satisfies Ay > tmaxy, and tmax could be increased. This contradiction forces the equality

Ax = tmaxx, and we have an eigenvalue. Its eigenvector x is positive because on the left

side of that equality, Ax is sure to be positive.

To see that no eigenvalue can be larger than tmax, suppose Az = λz. Since λ and z
may involve negative or complex numbers, we take absolute values: |λ||z| = |Az| ≤ A|z|
by the “triangle inequality.” This |z| is a nonnegative vector, so this |λ| is one of the

possible candidates t. Therefore |λ| cannot exceed tmax—which must be λmax.
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Population Growth

Divide the population into three age groups: age < 20, age 20 to 39, and age 40 to 59.

At year T the sizes of those groups are n1, n2, n3. Twenty years later, the sizes have

changed for three reasons: births, deaths, and getting older.

1. Reproduction nnew
1 = F1 n1 + F2 n2 + F3 n3 gives a new generation

2. Survival nnew
2 = P1n1 and nnew

3 = P2n2 gives the older generations

The fertility rates are F1, F2, F3 (F2 largest). The Leslie matrix A might look like this:




n1

n2

n3




new

=




F1 F2 F3

P1 0 0
0 P2 0






n1

n2

n3


 =




.04 1.1 .01

.98 0 0
0 .92 0






n1

n2

n3


 .

This is population projection in its simplest form, the same matrix A at every step. In

a realistic model, A will change with time (from the environment or internal factors).

Professors may want to include a fourth group, age ≥ 60, but we don’t allow it.

The matrix has A ≥ 0 but not A > 0. The Perron-Frobenius theorem still applies

because A3 > 0. The largest eigenvalue is λmax ≈ 1.06. You can watch the generations

move, starting from n2 = 1 in the middle generation:

eig(A) =
1.06

−1.01
−0.01

A2 =




1.08 0.05 .00
0.04 1.08 .01
0.90 0 0


 A3 =




0.10 1.19 .01
0.06 0.05 .00
0.04 0.99 .01


 .

A fast start would come from u0 = (0, 1, 0). That middle group will reproduce 1.1 and

also survive .92. The newest and oldest generations are in u1 = (1.1, 0, .92) = column 2 of

A. Then u2 = Au1 = A2u0 is the second column of A2. The early numbers (transients)

depend a lot on u0, but the asymptotic growth rate λmax is the same from every start.

Its eigenvector x = (.63, .58, .51) shows all three groups growing steadily together.

Caswell’s book on Matrix Population Models emphasizes sensitivity analysis. The

model is never exactly right. If the F ’s or P ’s in the matrix change by 10%, does λmax
go below 1 (which means extinction)? Problem 19 will show that a matrix change ∆A
produces an eigenvalue change ∆λ = yT(∆A)x. Here x and yT are the right and left

eigenvectors of A, with Ax = dx and ATy = λy.

Linear Algebra in Economics: The Consumption Matrix

A long essay about linear algebra in economics would be out of place here. A short note

about one matrix seems reasonable. The consumption matrix tells how much of each input

goes into a unit of output. This describes the manufacturing side of the economy.
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Consumption matrix We have n industries like chemicals, food, and oil. To produce a

unit of chemicals may require .2 units of chemicals, .3 units of food, and .4 units of oil.

Those numbers go into row 1 of the consumption matrix A:



chemical output

food output

oil output


 =



.2 .3 .4
.4 .4 .1
.5 .1 .3






chemical input

food input

oil input


 .

Row 2 shows the inputs to produce food—a heavy use of chemicals and food, not so much

oil. Row 3 of A shows the inputs consumed to refine a unit of oil. The real consumption

matrix for the United States in 1958 contained 83 industries. The models in the 1990’s

are much larger and more precise. We chose a consumption matrix that has a convenient

eigenvector.

Now comes the question: Can this economy meet demands y1, y2, y3 for chemicals,

food, and oil? To do that, the inputs p1, p2, p3 will have to be higher—because part of p
is consumed in producing y. The input is p and the consumption is Ap, which leaves the

output p−Ap. This net production is what meets the demand y:

Problem Find a vector p such that p−Ap = y or p = (I −A)−1y.

Apparently the linear algebra question is whether I − A is invertible. But there is

more to the problem. The vector y of required outputs is nonnegative, and so is A. The

production levels in p = (I −A)−1y must also be nonnegative. The real question is:

When is (I − A)−1 a nonnegative matrix?

This is the test on (I − A)−1 for a productive economy, which can meet any demand.

If A is small compared to I , then Ap is small compared to p. There is plenty of output.

If A is too large, then production consumes too much and the demand y cannot be met.

“Small” or “large” is decided by the largest eigenvalue λ1 of A (which is positive):

If λ1 > 1 then (I −A)−1 has negative entries

If λ1 = 1 then (I −A)−1 fails to exist

If λ1 < 1 then (I −A)−1 is nonnegative as desired.

The main point is that last one. The reasoning uses a nice formula for (I − A)−1, which

we give now. The most important infinite series in mathematics is the geometric series

1 + x + x2 + · · · . This series adds up to 1/(1 − x) provided x lies between −1 and 1.

When x = 1 the series is 1 + 1 + 1 + · · · = ∞. When |x| ≥ 1 the terms xn don’t go to

zero and the series has no chance to converge.

The nice formula for (I −A)−1 is the geometric series of matrices:

Geometric series (I −A)−1 = I +A+A2 +A3 + · · · .
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If you multiply the series S = I + A + A2 + · · · by A, you get the same series except

for I . Therefore S −AS = I , which is (I −A)S = I . The series adds to S = (I −A)−1

if it converges. And it converges if all eigenvalues of A have |λ| < 1.

In our case A ≥ 0. All terms of the series are nonnegative. Its sum is (I −A)−1 ≥ 0.

Example 4 A =



.2 .3 .4
.4 .4 .1
.5 .1 .3


 has λmax = .9 and (I −A)−1 = 1

93



41 25 27
33 36 24
34 23 36


.

This economy is productive. A is small compared to I , because λmax is .9. To meet the

demand y, start from p = (I − A)−1y. Then Ap is consumed in production, leaving

p−Ap. This is (I −A)p = y, and the demand is met.

Example 5 A =

[
0 4
1 0

]
has λmax = 2 and (I −A)−1 = − 1

3

[
1 4
1 1

]
.

This consumption matrix A is too large. Demands can’t be met, because production con-

sumes more than it yields. The series I + A + A2 + . . . does not converge to (I − A)−1

because λmax > 1. The series is growing while (I −A)−1 is actually negative.

In the same way 1 + 2 + 4 + · · · is not really 1/(1− 2) = −1. But not entirely false !

Problem Set 10.3

Questions 1–12 are about Markov matrices and their eigenvalues and powers.

1 Find the eigenvalues of this Markov matrix (their sum is the trace):

A =

[
.90 .15
.10 .85

]
.

What is the steady state eigenvector for the eigenvalue λ1 = 1?

2 Diagonalize the Markov matrix in Problem 1 to A = XΛX−1 by finding its other

eigenvector:

A =

[ ] [
1

.75

] [ ]
.

What is the limit of Ak = XΛkX−1 when Λk =
[
1 0

0 .75k

]
approaches

[
1 0
0 0

]
?

3 What are the eigenvalues and steady state eigenvectors for these Markov matrices?

A =

[
1 .2
0 .8

]
A =

[
.2 1
.8 0

]
A =




1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2


 .

4 For every 4 by 4 Markov matrix, what eigenvector of AT corresponds to the (known)

eigenvalue λ = 1?
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5 Every year 2% of young people become old and 3% of old people become dead.

(No births.) Find the steady state for




young

old

dead



k+1

=



.98 .00 0
.02 .97 0
.00 .03 1






young

old

dead



k

.

6 For a Markov matrix, the sum of the components of x equals the sum of the compo-

nents of Ax. If Ax = λx with λ 6= 1, prove that the components of this non-steady

eigenvector x add to zero.

7 Find the eigenvalues and eigenvectors of A. Explain why Ak approaches A∞:

A =

[
.8 .3
.2 .7

]
A∞ =

[
.6 .6
.4 .4

]
.

Challenge problem: Which Markov matrices produce that steady state (.6, .4)?

8 The steady state eigenvector of a permutation matrix is (14 ,
1
4 ,

1
4 ,

1
4 ). This is not

approached when u0 = (0, 0, 0, 1). What are u1 and u2 and u3 and u4? What are

the four eigenvalues of P , which solve λ4 = 1?

Permutation matrix = Markov matrix P =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

9 Prove that the square of a Markov matrix is also a Markov matrix.

10 If A =
[
a b
c d

]
is a Markov matrix, its eigenvalues are 1 and . The steady state

eigenvector is x1 = .

11 Complete A to a Markov matrix and find the steady state eigenvector. When A is a

symmetric Markov matrix, why is x1 = (1, . . . , 1) its steady state?

A =



.7 .1 .2
.1 .6 .3


 .

12 A Markov differential equation is not du/dt = Au but du/dt = (A − I)u. The

diagonal is negative, the rest of A− I is positive. The columns add to zero, not 1.

Find λ1 and λ2 for B = A− I =

[
−.2 .3
.2 −.3

]
. Why does A− I have λ1 = 0?

When eλ1t and eλ2t multiply x1 and x2, what is the steady state as t → ∞?
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Questions 13–15 are about linear algebra in economics.

13 Each row of the consumption matrix in Example 4 adds to .9. Why does that make

λ = .9 an eigenvalue, and what is the eigenvector?

14 Multiply I + A+A2 +A3 + · · · by I − A to get I . The series adds to (I − A)−1.

For A =
[
0 1

2

1 0

]
, find A2 and A3 and use the pattern to add up the series.

15 For which of these matrices does I + A + A2 + · · · yield a nonnegative matrix

(I −A)−1? Then the economy can meet any demand:

A =

[
0 1
0 0

]
A =

[
0 4
.2 0

]
A =

[
.5 1
.5 0

]
.

If the demands are y = (2, 6), what are the vectors p = (I −A)−1y?

16 (Markov again) This matrix has zero determinant. What are its eigenvalues?

A =



.4 .2 .3
.2 .4 .3
.4 .4 .4


 .

Find the limits of Aku0 starting from u0 = (1, 0, 0) and then u0 = (100, 0, 0).

17 If A is a Markov matrix, why doesn’t I +A+A2 + · · · add up to (I −A)−1?

18 For the Leslie matrix show that det(A−λI) = 0 gives F1λ
2 +F2P1λ+F3P1P2 =

λ3. The right side λ3 is larger as λ −→ ∞. The left side is larger at λ = 1 if

F1 + F2P1 + F3P1P2 > 1. In that case the two sides are equal at an eigenvalue

λmax > 1: growth.

19 Sensitivity of eigenvalues: A matrix change ∆A produces eigenvalue changes ∆Λ.

Those changes ∆λ1, . . . ,∆λn are on the diagonal of (X−1∆AX). Challenge:

Start from AX = XΛ. The eigenvectors and eigenvalues change by ∆X and ∆Λ:

(A+∆A)(X+∆X)=(X+∆X)(Λ+∆Λ) becomes A(∆X)+(∆A)X=X(∆Λ)+(∆X)Λ.

Small terms (∆A)(∆X) and (∆X)(∆Λ) are ignored. Multiply the last equation by

X−1. From the inner terms, the diagonal part of X−1(∆A)X gives ∆Λ as we want.

Why do the outer terms X−1A∆X and X−1∆X Λ cancel on the diagonal?

Explain X−1A = ΛX−1 and then diag(ΛX−1∆X) = diag(X−1 ∆X Λ).

20 Suppose B > A > 0, meaning that each bij > aij > 0. How does the Perron-

Frobenius discussion show that λmax(B) > λmax(A) ?




