10.3 Markov Matrices, Population, and Economics

This section is about positive matrices: every $a_{i j}>0$. The key fact is quick to state: The largest eigenvalue is real and positive and so is its eigenvector. In economics and ecology and population dynamics and random walks, that fact leads a long way:

Markov $\quad \lambda_{\max }=1 \quad$ Population $\quad \lambda_{\max }>1 \quad$ Consumption $\quad \lambda_{\max }<1$

$\lambda_{\max }$ controls the powers of A. We will see this first for $\lambda_{\max }=1$.

Markov Matrices

Multiply a positive vector \boldsymbol{u}_{0} again and again by this matrix A :
$\begin{array}{lll}\text { Markov } \\ \text { matrix }\end{array} \quad A=\left[\begin{array}{cc}.8 & .3 \\ .2 & .7\end{array}\right] \quad \boldsymbol{u}_{1}=A \boldsymbol{u}_{0} \quad \boldsymbol{u}_{2}=A \boldsymbol{u}_{1}=A^{2} \boldsymbol{u}_{0}$
After k steps we have $A^{k} \boldsymbol{u}_{0}$. The vectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}, \ldots$ will approach a "steady state" $\boldsymbol{u}_{\infty}=(.6, .4)$. This final outcome does not depend on the starting vector \boldsymbol{u}_{0}. For every $\boldsymbol{u}_{0}=(a, 1-a)$ we converge to the same $\boldsymbol{u}_{\infty(.6,4)}$. The question is why.

The steady state equation $A \boldsymbol{u}_{\infty}=\boldsymbol{u}_{\infty}$ makes \boldsymbol{u}_{∞} an eigenvector with eigenvalue 1:

$$
\text { Steady state } \quad\left[\begin{array}{cc}
.8 & .3 \\
.2 & .7
\end{array}\right]\left[\begin{array}{l}
.6 \\
.4
\end{array}\right]=\left[\begin{array}{l}
.6 \\
.4
\end{array}\right]=\boldsymbol{u}_{\infty}
$$

Multiplying by A does not change \boldsymbol{u}_{∞}. But this does not explain why so many vectors \boldsymbol{u}_{0} lead to \boldsymbol{u}_{∞}. Other examples might have a steady state, but it is not necessarily attractive:

$$
\text { Not Markov } \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad \text { has the unattractive steady state } \quad B\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

In this case, the starting vector $\boldsymbol{u}_{0}=(0,1)$ will give $\boldsymbol{u}_{1}=(0,2)$ and $\boldsymbol{u}_{2}=(0,4)$. The second components are doubled. In the language of eigenvalues, B has $\lambda=1$ but also $\lambda=2$ - this produces instability. The component of \boldsymbol{u} along that unstable eigenvector is multiplied by λ, and $|\lambda|>1$ means blowup.

This section is about two special properties of A that guarantee a stable steady state. These properties define a positive Markov matrix, and A above is one particular example:

Markov matrix

1. Every entry of A is positive: $a_{i j}>0$.
2. Every column of A adds to 1 .

Column 2 of B adds to 2 , not 1 . When A is a Markov matrix, two facts are immediate: Because of 1: Multiplying $\boldsymbol{u}_{0} \geq 0$ by A produces a nonnegative $\boldsymbol{u}_{1}=A \boldsymbol{u}_{0} \geq 0$.
Because of 2: If the components of \boldsymbol{u}_{0} add to 1 , so do the components of $\boldsymbol{u}_{1}=A \boldsymbol{u}_{0}$.

Reason: The components of \boldsymbol{u}_{0} add to 1 when $\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right] \boldsymbol{u}_{0}=1$. This is true for each column of A by Property 2 . Then by matrix multiplication $\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right] A=\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right]$:

$$
\text { Components of } A u_{0} \text { add to } 1 \quad\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right] A u_{0}=\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right] u_{0}=1
$$

The same facts apply to $\boldsymbol{u}_{2}=A \boldsymbol{u}_{1}$ and $\boldsymbol{u}_{3}=A \boldsymbol{u}_{2}$. Every vector $A^{k} \boldsymbol{u}_{0}$ is nonnegative with components adding to 1 . These are "probability vectors." The limit \boldsymbol{u}_{∞} is also a probability vector-but we have to prove that there is a limit. We will show that $\lambda_{\max }=1$ for a positive Markov matrix.
Example 1 The fraction of rental cars in Denver starts at $\frac{1}{50}=.02$. The fraction outside Denver is .98. Every month, 80% of the Denver cars stay in Denver (and 20% leave). Also 5% of the outside cars come in (95% stay outside). This means that the fractions $\boldsymbol{u}_{0}=(.02, .98)$ are multiplied by A :

$$
\text { First month } \quad A=\left[\begin{array}{ll}
.80 & .05 \\
.20 & .95
\end{array}\right] \quad \text { leads to } \quad \boldsymbol{u}_{1}=A \boldsymbol{u}_{0}=A\left[\begin{array}{l}
.02 \\
.98
\end{array}\right]=\left[\begin{array}{l}
.065 \\
.935
\end{array}\right]
$$

Notice that $.065+.935=1$. All cars are accounted for. Each step multiplies by A :
Next month $\quad \boldsymbol{u}_{2}=A \boldsymbol{u}_{1}=(.09875, .90125)$. This is $A^{2} \boldsymbol{u}_{0}$.
All these vectors are positive because A is positive. Each vector \boldsymbol{u}_{k} will have its components adding to 1 . The first component has grown from . 02 and cars are moving toward Denver. What happens in the long run?

This section involves powers of matrices. The understanding of A^{k} was our first and best application of diagonalization. Where A^{k} can be complicated, the diagonal matrix Λ^{k} is simple. The eigenvector matrix X connects them: A^{k} equals $X \Lambda^{k} X^{-1}$. The new application to Markov matrices uses the eigenvalues (in Λ) and the eigenvectors (in X). We will show that \boldsymbol{u}_{∞} is an eigenvector of \boldsymbol{A} corresponding to $\lambda=1$.

Since every column of A adds to 1 , nothing is lost or gained. We are moving rental cars or populations, and no cars or people suddenly appear (or disappear). The fractions add to 1 and the matrix A keeps them that way. The question is how they are distributed after k time periods-which leads us to A^{k}.
Solution $A^{k} \boldsymbol{u}_{0}$ gives the fractions in and out of Denver after k steps. We diagonalize A to understand A^{k}. The eigenvalues are $\lambda=\mathbf{1}$ and. $\mathbf{7 5}$ (the trace is 1.75).

$$
A x=\lambda x \quad A\left[\begin{array}{l}
.2 \\
.8
\end{array}\right]=1\left[\begin{array}{l}
.2 \\
.8
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=.75\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
$$

The starting vector \boldsymbol{u}_{0} combines \boldsymbol{x}_{1} and \boldsymbol{x}_{2}, in this case with coefficients 1 and .18:

$$
\text { Combination of eigenvectors } \quad \boldsymbol{u}_{0}=\left[\begin{array}{l}
.02 \\
.98
\end{array}\right]=\left[\begin{array}{l}
.2 \\
.8
\end{array}\right]+.18\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
$$

Now multiply by A to find \boldsymbol{u}_{1}. The eigenvectors are multiplied by $\lambda_{1}=1$ and $\lambda_{2}=.75$:
Each x is multiplied by λ

$$
\boldsymbol{u}_{1}=1\left[\begin{array}{l}
.2 \\
.8
\end{array}\right]+(.75)(.18)\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Every month, another $\lambda=.75$ multiplies the vector \boldsymbol{x}_{2}. The eigenvector \boldsymbol{x}_{1} is unchanged:
After k steps

$$
\boldsymbol{u}_{k}=A^{k} \boldsymbol{u}_{0}=1^{k}\left[\begin{array}{l}
.2 \\
.8
\end{array}\right]+(.75)^{k}(.18)\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
$$

This equation reveals what happens. The eigenvector x_{1} with $\lambda=1$ is the steady state. The other eigenvector \boldsymbol{x}_{2} disappears because $|\lambda|<1$. The more steps we take, the closer we come to $\boldsymbol{u}_{\infty}=(.2, .8)$. In the limit, $\frac{2}{10}$ of the cars are in Denver and $\frac{8}{10}$ are outside. This is the pattern for Markov chains, even starting from $\boldsymbol{u}_{0}=(0,1)$:

If A is a positive Markov matrix (entries $a_{i j}>0$, each column adds to $\mathbf{1}$), then $\lambda_{1}=1$ is larger than any other eigenvalue. The eigenvector \boldsymbol{x}_{1} is the steady state:

$$
u_{k}=x_{1}+c_{2}\left(\lambda_{2}\right)^{k} x_{2}+\cdots+c_{n}\left(\lambda_{n}\right)^{k} x_{n} \quad \text { always approaches } \quad u_{\infty}=x_{1} .
$$

The first point is to see that $\lambda=1$ is an eigenvalue of A. Reason: Every column of $A-I$ adds to $1-1=0$. The rows of $A-I$ add up to the zero row. Those rows are linearly dependent, so $A-I$ is singular. Its determinant is zero and $\lambda=1$ is an eigenvalue.

The second point is that no eigenvalue can have $|\lambda|>1$. With such an eigenvalue, the powers A^{k} would grow. But A^{k} is also a Markov matrix! A^{k} has positive entries still adding to 1 -and that leaves no room to get large.

A lot of attention is paid to the possibility that another eigenvalue has $|\lambda|=1$.
Example $2 A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ has no steady state because $\lambda_{2}=-1$.
This matrix sends all cars from inside Denver to outside, and vice versa. The powers A^{k} alternate between A and I. The second eigenvector $\boldsymbol{x}_{2}=(-1,1)$ will be multiplied by $\lambda_{2}=-1$ at every step-and does not become smaller: No steady state.

Suppose the entries of A or any power of A are all positive-zero is not allowed. In this "regular" or "primitive" case, $\lambda=1$ is strictly larger than any other eigenvalue. The powers A^{k} approach the rank one matrix that has the steady state in every column.
Example 3 ("Everybody moves") Start with three groups. At each time step, half of group 1 goes to group 2 and the other half goes to group 3. The other groups also split in half and move. Take one step from the starting populations p_{1}, p_{2}, p_{3} :

New populations

$$
\boldsymbol{u}_{1}=A \boldsymbol{u}_{0}=\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} p_{2}+\frac{1}{2} p_{3} \\
\frac{1}{2} p_{1}+\frac{1}{2} p_{3} \\
\frac{1}{2} p_{1}+\frac{1}{2} p_{2}
\end{array}\right] .
$$

A is a Markov matrix. Nobody is born or lost. A contains zeros, which gave trouble in Example 2. But after two steps in this new example, the zeros disappear from A^{2} :
Two-step matrix $\quad \boldsymbol{u}_{2}=A^{2} \boldsymbol{u}_{0}=\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2}\end{array}\right]\left[\begin{array}{c}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]$.

The eigenvalues of A are $\lambda_{1}=1$ (because A is Markov) and $\lambda_{2}=\lambda_{3}=-\frac{1}{2}$. For $\lambda=1$, the eigenvector $\boldsymbol{x}_{1}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ will be the steady state. When three equal populations split in half and move, the populations are again equal. Starting from $\boldsymbol{u}_{0}=(8,16,32)$, the Markov chain approaches its steady state:

$$
\boldsymbol{u}_{0}=\left[\begin{array}{r}
8 \\
16 \\
32
\end{array}\right] \quad \boldsymbol{u}_{1}=\left[\begin{array}{c}
24 \\
20 \\
12
\end{array}\right] \quad \boldsymbol{u}_{2}=\left[\begin{array}{c}
16 \\
18 \\
22
\end{array}\right] \quad \boldsymbol{u}_{3}=\left[\begin{array}{c}
20 \\
19 \\
17
\end{array}\right] .
$$

The step to \boldsymbol{u}_{4} will split some people in half. This cannot be helped. The total population is $8+16+32=56$ at every step. The steady state is 56 times $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. You can see the three populations approaching, but never reaching, their final limits $56 / 3$.

Challenge Problem 6.7.16 created a Markov matrix A from the number of links between websites. The steady state \boldsymbol{u} will give the Google rankings. Google finds \boldsymbol{u}_{∞} by a random walk that follows links (random surfing). That eigenvector comes from counting the fraction of visits to each website-a quick way to compute the steady state.

The size $\left|\lambda_{2}\right|$ of the second eigenvalue controls the speed of convergence to steady state.

Perron-Frobenius Theorem

One matrix theorem dominates this subject. The Perron-Frobenius Theorem applies when all $a_{i j} \geq 0$. There is no requirement that columns add to 1 . We prove the neatest form, when all $a_{i j}>0$: any positive matrix A (not necessarily positive definite!).

Perron-Frobenius for $\boldsymbol{A}>0 \quad$ All numbers in $A x=\lambda_{\max } x$ are strictly positive.

Proof The key idea is to look at all numbers t such that $A \boldsymbol{x} \geq t \boldsymbol{x}$ for some nonnegative vector \boldsymbol{x} (other than $\boldsymbol{x}=\mathbf{0}$). We are allowing inequality in $A \boldsymbol{x} \geq t \boldsymbol{x}$ in order to have many small positive candidates t. For the largest value $t_{\text {max }}$ (which is attained), we will show that equality holds: $A \boldsymbol{x}=t_{\max } \boldsymbol{x}$.

Otherwise, if $A x \geq t_{\max } x$ is not an equality, multiply by A. Because A is positive that produces a strict inequality $A^{2} \boldsymbol{x}>t_{\max } A \boldsymbol{x}$. Therefore the positive vector $\boldsymbol{y}=A \boldsymbol{x}$ satisfies $A \boldsymbol{y}>t_{\max } \boldsymbol{y}$, and $t_{\text {max }}$ could be increased. This contradiction forces the equality $A \boldsymbol{x}=t_{\max } \boldsymbol{x}$, and we have an eigenvalue. Its eigenvector \boldsymbol{x} is positive because on the left side of that equality, $A \boldsymbol{x}$ is sure to be positive.

To see that no eigenvalue can be larger than $t_{\text {max }}$, suppose $A \boldsymbol{z}=\lambda \boldsymbol{z}$. Since λ and \boldsymbol{z} may involve negative or complex numbers, we take absolute values: $|\lambda||\boldsymbol{z}|=|A \boldsymbol{z}| \leq A|\boldsymbol{z}|$ by the "triangle inequality." This $|\boldsymbol{z}|$ is a nonnegative vector, so this $|\lambda|$ is one of the possible candidates t. Therefore $|\lambda|$ cannot exceed $t_{\text {max }}$ —which must be $\lambda_{\max }$.

Population Growth

Divide the population into three age groups: age <20, age 20 to 39 , and age 40 to 59 . At year T the sizes of those groups are n_{1}, n_{2}, n_{3}. Twenty years later, the sizes have changed for three reasons: births, deaths, and getting older.

1. Reproduction $n_{1}^{\text {new }}=F_{1} n_{1}+F_{2} n_{2}+F_{3} n_{3}$ gives a new generation
2. Survival $n_{2}^{\text {new }}=P_{1} n_{1}$ and $n_{3}^{\text {new }}=P_{2} n_{2}$ gives the older generations

The fertility rates are F_{1}, F_{2}, F_{3} (F_{2} largest). The Leslie matrix A might look like this:

$$
\left[\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right]^{\text {new }}=\left[\begin{array}{ccc}
F_{1} & F_{2} & F_{3} \\
P_{1} & 0 & 0 \\
0 & P_{2} & 0
\end{array}\right]\left[\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right]=\left[\begin{array}{ccc}
.04 & \mathbf{1 . 1} & .01 \\
.98 & 0 & 0 \\
0 & . \mathbf{9 2} & 0
\end{array}\right]\left[\begin{array}{l}
n_{1} \\
\boldsymbol{n}_{2} \\
n_{3}
\end{array}\right]
$$

This is population projection in its simplest form, the same matrix A at every step. In a realistic model, A will change with time (from the environment or internal factors). Professors may want to include a fourth group, age ≥ 60, but we don't allow it.

The matrix has $A \geq 0$ but not $A>0$. The Perron-Frobenius theorem still applies because $A^{3}>0$. The largest eigenvalue is $\lambda_{\max } \approx 1.06$. You can watch the generations move, starting from $n_{2}=1$ in the middle generation:

$$
\mathbf{e i g}(A)=\begin{array}{r}
\mathbf{1 . 0 6} \\
-1.01 \\
-0.01
\end{array} \quad A^{2}=\left[\begin{array}{ccc}
1.08 & \mathbf{0 . 0 5} & .00 \\
0.04 & \mathbf{1 . 0 8} & .01 \\
0.90 & 0 & 0
\end{array}\right] \quad A^{3}=\left[\begin{array}{lll}
0.10 & \mathbf{1 . 1 9} & .01 \\
0.06 & \mathbf{0 . 0 5} & .00 \\
0.04 & \mathbf{0 . 9 9} & .01
\end{array}\right] .
$$

A fast start would come from $\boldsymbol{u}_{0}=(0,1,0)$. That middle group will reproduce 1.1 and also survive .92 . The newest and oldest generations are in $\boldsymbol{u}_{1}=(1.1,0, .92)=$ column 2 of A. Then $\boldsymbol{u}_{2}=A \boldsymbol{u}_{1}=A^{2} \boldsymbol{u}_{0}$ is the second column of A^{2}. The early numbers (transients) depend a lot on u_{0}, but the asymptotic growth rate $\lambda_{\max }$ is the same from every start. Its eigenvector $\boldsymbol{x}=(.63, .58, .51)$ shows all three groups growing steadily together.

Caswell's book on Matrix Population Models emphasizes sensitivity analysis. The model is never exactly right. If the F 's or P 's in the matrix change by 10%, does $\lambda_{\max }$ go below 1 (which means extinction)? Problem 19 will show that a matrix change ΔA produces an eigenvalue change $\Delta \lambda=\boldsymbol{y}^{\mathrm{T}}(\Delta A) \boldsymbol{x}$. Here \boldsymbol{x} and $\boldsymbol{y}^{\mathrm{T}}$ are the right and left eigenvectors of A, with $A \boldsymbol{x}=d \boldsymbol{x}$ and $A^{\mathrm{T}} \boldsymbol{y}=\lambda \boldsymbol{y}$.

Linear Algebra in Economics: The Consumption Matrix

A long essay about linear algebra in economics would be out of place here. A short note about one matrix seems reasonable. The consumption matrix tells how much of each input goes into a unit of output. This describes the manufacturing side of the economy.

Consumption matrix We have n industries like chemicals, food, and oil. To produce a unit of chemicals may require .2 units of chemicals, .3 units of food, and .4 units of oil. Those numbers go into row 1 of the consumption matrix A :

$$
\left[\begin{array}{c}
\text { chemical output } \\
\text { food output } \\
\text { oil output }
\end{array}\right]=\left[\begin{array}{ccc}
.2 & .3 & .4 \\
.4 & .4 & .1 \\
.5 & .1 & .3
\end{array}\right]\left[\begin{array}{c}
\text { chemical input } \\
\text { food input } \\
\text { oil input }
\end{array}\right] .
$$

Row 2 shows the inputs to produce food-a heavy use of chemicals and food, not so much oil. Row 3 of A shows the inputs consumed to refine a unit of oil. The real consumption matrix for the United States in 1958 contained 83 industries. The models in the 1990's are much larger and more precise. We chose a consumption matrix that has a convenient eigenvector.

Now comes the question: Can this economy meet demands y_{1}, y_{2}, y_{3} for chemicals, food, and oil? To do that, the inputs p_{1}, p_{2}, p_{3} will have to be higher-because part of \boldsymbol{p} is consumed in producing \boldsymbol{y}. The input is \boldsymbol{p} and the consumption is $\boldsymbol{A} \boldsymbol{p}$, which leaves the output $\boldsymbol{p}-A \boldsymbol{p}$. This net production is what meets the demand \boldsymbol{y} :

Problem Find a vector \boldsymbol{p} such that $\quad \boldsymbol{p}-A \boldsymbol{p}=\boldsymbol{y} \quad$ or $\quad \boldsymbol{p}=(I-A)^{-1} \boldsymbol{y}$.

Apparently the linear algebra question is whether $I-A$ is invertible. But there is more to the problem. The vector \boldsymbol{y} of required outputs is nonnegative, and so is A. The production levels in $\boldsymbol{p}=(I-A)^{-1} \boldsymbol{y}$ must also be nonnegative. The real question is:

$$
\text { When is }(I-A)^{-1} \text { a nonnegative matrix? }
$$

This is the test on $(I-A)^{-1}$ for a productive economy, which can meet any demand. If A is small compared to I, then $A \boldsymbol{p}$ is small compared to \boldsymbol{p}. There is plenty of output. If A is too large, then production consumes too much and the demand \boldsymbol{y} cannot be met.
"Small" or "large" is decided by the largest eigenvalue λ_{1} of A (which is positive):

If $\lambda_{1}>1$	then	$(I-A)^{-1}$ has negative entries
If $\lambda_{1}=1$	then	$(I-A)^{-1}$ fails to exist
If $\lambda_{1}<1$	then	$(I-A)^{-1}$ is nonnegative as desired.

The main point is that last one. The reasoning uses a nice formula for $(I-A)^{-1}$, which we give now. The most important infinite series in mathematics is the geometric series $1+x+x^{2}+\cdots$. This series adds up to $1 /(1-x)$ provided x lies between -1 and 1 . When $x=1$ the series is $1+1+1+\cdots=\infty$. When $|x| \geq 1$ the terms x^{n} don't go to zero and the series has no chance to converge.

The nice formula for $(I-A)^{-1}$ is the geometric series of matrices:

$$
\text { Geometric series } \quad(I-A)^{-1}=I+A+A^{2}+A^{3}+\cdots .
$$

If you multiply the series $S=I+A+A^{2}+\cdots$ by A, you get the same series except for I. Therefore $S-A S=I$, which is $(I-A) S=I$. The series adds to $S=(I-A)^{-1}$ if it converges. And it converges if all eigenvalues of A have $|\lambda|<1$.

In our case $A \geq 0$. All terms of the series are nonnegative. Its sum is $(I-A)^{-1} \geq 0$.
Example $4 \quad A=\left[\begin{array}{lll}.2 & .3 & .4 \\ .4 & .4 & .1 \\ .5 & .1 & .3\end{array}\right]$ has $\lambda_{\max }=.9$ and $(I-A)^{-1}=\frac{1}{93}\left[\begin{array}{lll}41 & 25 & 27 \\ 33 & 36 & 24 \\ 34 & 23 & 36\end{array}\right]$.
This economy is productive. A is small compared to I, because $\lambda_{\max }$ is .9 . To meet the demand \boldsymbol{y}, start from $\boldsymbol{p}=(I-A)^{-1} \boldsymbol{y}$. Then $A \boldsymbol{p}$ is consumed in production, leaving $\boldsymbol{p}-A \boldsymbol{p}$. This is $(I-A) \boldsymbol{p}=\boldsymbol{y}$, and the demand is met.
Example $5 \quad A=\left[\begin{array}{ll}0 & 4 \\ 1 & 0\end{array}\right]$ has $\lambda_{\max }=\mathbf{2}$ and $(I-A)^{-1}=-\frac{1}{3}\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right]$.
This consumption matrix A is too large. Demands can't be met, because production consumes more than it yields. The series $I+A+A^{2}+\ldots$ does not converge to $(I-A)^{-1}$ because $\lambda_{\max }>1$. The series is growing while $(I-A)^{-1}$ is actually negative.

In the same way $1+2+4+\cdots$ is not really $1 /(1-2)=-1$. But not entirely false !

Problem Set 10.3

Questions 1-12 are about Markov matrices and their eigenvalues and powers.
1 Find the eigenvalues of this Markov matrix (their sum is the trace):

$$
A=\left[\begin{array}{ll}
.90 & .15 \\
.10 & .85
\end{array}\right]
$$

What is the steady state eigenvector for the eigenvalue $\lambda_{1}=1$?
2 Diagonalize the Markov matrix in Problem 1 to $A=X \Lambda X^{-1}$ by finding its other eigenvector:

$$
A=\left[\begin{array}{ll}
&
\end{array}\right]\left[\begin{array}{ll}
1 & \\
& .75
\end{array}\right]\left[\begin{array}{l}
\\
\end{array}\right.
$$

What is the limit of $A^{k}=X \Lambda^{k} X^{-1}$ when $\Lambda^{k}=\left[\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & .75^{\mathrm{k}}\end{array}\right]$ approaches $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$?
3 What are the eigenvalues and steady state eigenvectors for these Markov matrices?

$$
A=\left[\begin{array}{ll}
1 & .2 \\
0 & .8
\end{array}\right] \quad A=\left[\begin{array}{ll}
.2 & 1 \\
.8 & 0
\end{array}\right] \quad A=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right]
$$

4 For every 4 by 4 Markov matrix, what eigenvector of A^{T} corresponds to the (known) eigenvalue $\lambda=1$?

5 Every year 2% of young people become old and 3% of old people become dead. (No births.) Find the steady state for

$$
\left[\begin{array}{c}
\text { young } \\
\text { old } \\
\text { dead }
\end{array}\right]_{k+1}=\left[\begin{array}{lll}
.98 & .00 & 0 \\
.02 & .97 & 0 \\
.00 & .03 & 1
\end{array}\right]\left[\begin{array}{c}
\text { young } \\
\text { old } \\
\text { dead }
\end{array}\right]_{k} .
$$

6 For a Markov matrix, the sum of the components of \boldsymbol{x} equals the sum of the components of $A \boldsymbol{x}$. If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ with $\lambda \neq 1$, prove that the components of this non-steady eigenvector \boldsymbol{x} add to zero.

7 Find the eigenvalues and eigenvectors of A. Explain why A^{k} approaches A^{∞} :

$$
A=\left[\begin{array}{ll}
.8 & .3 \\
.2 & .7
\end{array}\right] \quad A^{\infty}=\left[\begin{array}{ll}
.6 & .6 \\
.4 & .4
\end{array}\right]
$$

Challenge problem: Which Markov matrices produce that steady state (.6, .4)?
8 The steady state eigenvector of a permutation matrix is $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. This is not approached when $\boldsymbol{u}_{0}=(0,0,0,1)$. What are \boldsymbol{u}_{1} and \boldsymbol{u}_{2} and \boldsymbol{u}_{3} and \boldsymbol{u}_{4} ? What are the four eigenvalues of P, which solve $\lambda^{4}=1$?

$$
\text { Permutation matrix }=\text { Markov matrix } \quad P=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

9 Prove that the square of a Markov matrix is also a Markov matrix.
10 If $A=\left[\begin{array}{ll}\mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d}\end{array}\right]$ is a Markov matrix, its eigenvalues are 1 and ___. The steady state eigenvector is $\boldsymbol{x}_{1}=$ \qquad -.

11 Complete A to a Markov matrix and find the steady state eigenvector. When A is a symmetric Markov matrix, why is $\boldsymbol{x}_{1}=(1, \ldots, 1)$ its steady state?

$$
A=\left[\begin{array}{ccc}
.7 & .1 & .2 \\
.1 & .6 & .3 \\
- & - & -
\end{array}\right]
$$

12 A Markov differential equation is not $d \boldsymbol{u} / d t=A \boldsymbol{u}$ but $d \boldsymbol{u} / d t=(A-I) \boldsymbol{u}$. The diagonal is negative, the rest of $A-I$ is positive. The columns add to zero, not 1 .

Find λ_{1} and λ_{2} for $B=A-I=\left[\begin{array}{rr}-.2 & .3 \\ .2 & -.3\end{array}\right]$. Why does $A-I$ have $\lambda_{1}=0$?
When $e^{\lambda_{1} t}$ and $e^{\lambda_{2} t}$ multiply \boldsymbol{x}_{1} and \boldsymbol{x}_{2}, what is the steady state as $t \rightarrow \infty$?

Questions 13-15 are about linear algebra in economics.

13 Each row of the consumption matrix in Example 4 adds to .9. Why does that make $\lambda=.9$ an eigenvalue, and what is the eigenvector?

14 Multiply $I+A+A^{2}+A^{3}+\cdots$ by $I-A$ to get I. The series adds to $(I-A)^{-1}$. For $A=\left[\begin{array}{ll}0 & \frac{1}{2} \\ 1 & 0\end{array}\right]$, find A^{2} and A^{3} and use the pattern to add up the series.

15 For which of these matrices does $I+A+A^{2}+\cdots$ yield a nonnegative matrix $(I-A)^{-1}$? Then the economy can meet any demand:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad A=\left[\begin{array}{cc}
0 & 4 \\
.2 & 0
\end{array}\right] \quad A=\left[\begin{array}{cc}
.5 & 1 \\
.5 & 0
\end{array}\right]
$$

If the demands are $\boldsymbol{y}=(2,6)$, what are the vectors $\boldsymbol{p}=(I-A)^{-1} \boldsymbol{y}$?
16 (Markov again) This matrix has zero determinant. What are its eigenvalues?

$$
A=\left[\begin{array}{lll}
.4 & .2 & .3 \\
.2 & .4 & .3 \\
.4 & .4 & .4
\end{array}\right]
$$

Find the limits of $A^{k} \boldsymbol{u}_{0}$ starting from $\boldsymbol{u}_{0}=(1,0,0)$ and then $\boldsymbol{u}_{0}=(100,0,0)$.
17 If A is a Markov matrix, why doesn't $I+A+A^{2}+\cdots$ add up to $(I-A)^{-1}$?
18 For the Leslie matrix show that $\operatorname{det}(A-\lambda I)=0$ gives $F_{1} \lambda^{2}+F_{2} P_{1} \lambda+F_{3} P_{1} P_{2}=$ λ^{3}. The right side λ^{3} is larger as $\lambda \longrightarrow \infty$. The left side is larger at $\lambda=1$ if $F_{1}+F_{2} P_{1}+F_{3} P_{1} P_{2}>1$. In that case the two sides are equal at an eigenvalue $\lambda_{\text {max }}>1$: growth .

19 Sensitivity of eigenvalues: A matrix change ΔA produces eigenvalue changes $\Delta \Lambda$. Those changes $\Delta \lambda_{1}, \ldots, \Delta \lambda_{n}$ are on the diagonal of $\left(X^{-1} \Delta A X\right)$. Challenge:
Start from $A X=X \Lambda$. The eigenvectors and eigenvalues change by ΔX and $\Delta \Lambda$:

$$
(A+\Delta A)(X+\Delta X)=(X+\Delta X)(\Lambda+\Delta \Lambda) \text { becomes } A(\Delta X)+(\Delta A) X=X(\Delta \Lambda)+(\Delta X) \Lambda .
$$

Small terms $(\Delta A)(\Delta X)$ and $(\Delta X)(\Delta \Lambda)$ are ignored. Multiply the last equation by X^{-1}. From the inner terms, the diagonal part of $X^{-1}(\Delta A) X$ gives $\Delta \Lambda$ as we want. Why do the outer terms $X^{-1} A \Delta X$ and $X^{-1} \Delta X \Lambda$ cancel on the diagonal?

$$
\text { Explain } X^{-1} A=\Lambda X^{-1} \text { and then } \quad \operatorname{diag}\left(\Lambda X^{-1} \Delta X\right)=\boldsymbol{\operatorname { d i a g }}\left(X^{-1} \Delta X \Lambda\right)
$$

20 Suppose $B>A>0$, meaning that each $b_{i j}>a_{i j}>0$. How does the PerronFrobenius discussion show that $\lambda_{\max }(B)>\lambda_{\max }(A)$?

