
10.2. Matrices in Engineering 461

10.2 Matrices in Engineering

This section will show how engineering problems produce symmetric matrices K (often

K is positive definite). The “linear algebra reason” for symmetry and positive definiteness

is their form K = ATA and K = ATCA. The “physical reason” is that the expression
1
2u

TKu represents energy—and energy is never negative. The matrix C, often diagonal,

contains positive physical constants like conductance or stiffness or diffusivity.

Our best examples come from mechanical and civil and aeronautical engineering.

K is the stiffness matrix, and K−1f is the structure’s response to forces f from outside.

Section 10.1 turned to electrical engineering—the matrices came from networks and cir-

cuits. The exercises involve chemical engineering and I could go on! Economics and

management and engineering design come later in this chapter (the key is optimization).

Engineering leads to linear algebra in two ways, directly and indirectly:

Direct way The physical problem has only a finite number of pieces. The laws

connecting their position or velocity are linear (movement is not too big or too fast).

The laws are expressed by matrix equations.

Indirect way The physical system is “continuous”. Instead of individual masses, the

mass density and the forces and the velocities are functions of x or x, y or x, y, z.

The laws are expressed by differential equations. To find accurate solutions we

approximate by finite difference equations or finite element equations.

Both ways produce matrix equations and linear algebra. I really believe that you cannot

do modern engineering without matrices.

Here we present equilibrium equations Ku = f . With motion, Md2u/dt2 +Ku = f
becomes dynamic. Then we would use eigenvalues fromKx = λMx, or finite differences.

Differential Equation to Matrix Equation

Differential equations are continuous. Our basic example will be −d2u/dx2 = f(x).
Matrix equations are discrete. Our basic example will be K0u = f . By taking the step

from second derivatives to second differences, you will see the big picture in a very short

space. Start with fixed boundary conditions at both ends x = 0 and x = 1 :

Fixed-fixed

boundary value problem
−d2u

dx2
= 1 with u(0) = 0 and u(1) = 0. (1)

That differential equation is linear.A particular solution is up=− 1
2x

2(then d2u/dx2=−1).

We can add any function “in the nullspace”. Instead of solving Ax = 0 for a vector x,

we solve −d2u/dx2 = 0 for a function un(x). (Main point: The right side is zero.)

The nullspace solutions are un(x) = C + Dx (a 2-dimensional nullspace for a

second order differential equation). The complete solution is up + un :
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Complete

solution to
−d2u

dx2
= 1 u(x) = −1

2
x2 + C +Dx. (2)

Now find C and D from the two boundary conditions: Set x = 0 and then x = 1. At

x = 0, u(0) = 0 forces C = 0. At x = 1, u(1) = 0 forces − 1
2 +D = 0. Then D = 1

2
:

u(x) = −1

2
x2 +

1

2
x =

1

2
(x − x2) solves the fixed-fixed boundary value problem. (3)

Differences Replace Derivatives

To get matrices instead of derivatives, we have three basic choices—forward or backward

or centered differences. Start with first derivatives and first differences :

du

dx
≈ u(x+∆x)− u(x)

∆x
or

u(x)− u(x−∆x)

∆x
or

u(x+∆x)− u(x−∆x)

2∆x
.

Between x = 0 and x = 1, we divide the interval into n+ 1 equal pieces. The pieces have

width ∆x = 1/(n + 1). The values of u at the n breakpoints ∆x, 2∆x, . . . will be the

unknowns u1 to un in our matrix equation Ku = f :

Solution to compute: u = (u1, u2, . . . , un) ≈ (u(∆x), u(2∆x), . . . , u(n∆x)).
Zero values u0 = un+1 = 0 come from the boundary conditions u(0) = u(1) = 0.

Replace the derivatives in − d

dx

(
du

dx

)
= 1 by forward and backward differences :

1

(∆x)2




1 −1 0 0
0 1 −1 0
0 0 1 −1







1 0 0
−1 1 0
0 −1 −1
0 0 −1







u1

u2

u3


 =




1
1
1


 (4)

This is our matrix equation when n = 3 and ∆x = 1
4 . The two first differences

are transposes of each other! The equation is ATAu = (∆x)2f . When we multiply ATA,

we get the positive definite second difference matrix K0 :

K0 u =
(∆x)2f




2−1 0
−1 2−1
0−1 2





u1

u2

u3


 =

1

16



1
1
1


 gives



u1

u2

u3


 =

1

32



3
4
3


 . (5)
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The wonderful fact in this example is that those numbers u1, u2, u3 are exactly correct!

They agree with the true solution u = 1
2 (x − x2) at the three meshpoints x = 1

4 ,
2
4 ,

3
4 .

Figure 10.3 shows the true solution (continuous curve) and the approximations u1, u2, u3

(lying exactly on the curve). This curve is a parabola.

x = 0 ∆x 2∆x 3∆x 4∆x = 1

3

32

u1

4

32

u2

3

32

u3

u(x) =
1

2

(

x− x
2
)

Figure 10.3: Solutions to −d2u

dx2
= 1 and K0u = (∆x)2f with fixed-fixed boundaries.

How to explain this perfect answer, lying right on the graph of u(x)? In the matrix

equation, K0 = ATA is a “second difference matrix.” It gives a centered approximation

to −d2u/dx2. I included the minus sign because the first derivative is antisymmetric.

The second derivative by itself is negative:

The “transpose” of
d

dx
is − d

dx
. Then

(
− d

dx

)(
d

dx

)
is positive definite.

You can see that in the matrices A and AT. The transpose of A = forward difference is

AT =− backward difference. I don’t want to choose a centered u(x+∆x)−u(x−∆x).
Centered is the best for a first difference, but then the second difference ATA would

stretch from u(x+ 2∆x) to u(x− 2∆x): not good.

Now we can explain the perfect answers, exactly on the true curve u(x) = 1
2

(
x− x2

)
.

Second differences −1, 2,−1 are exactly correct for straight lines y = x and parabolas !

y = x −d2y

dx2
= 0 −(x+∆x) +2x −(x−∆x) = 0(∆x)2

y = x2 −d2y

dx2
= −2 −(x+∆x)2 +2x2 −(x−∆x)2 = −2(∆x)2

The miracle continues to y = x3. The correct −d2y/dx2 = −6x is produced by

second differences. But for y = x4 we return to earth. Second differences don’t exactly

match −y ′′ = −12x2. The approximations u1, u2, u3 won’t fall on the graph of u(x).
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Fixed End and Free End and Variable Coefficient c(x)

To see two new possibilities, I will change the equation and also one boundary condition:

− d

dx

(
(1 + x)

du

dx

)
= f(x) with u(0) = 0 and

du

dx
(1) = 0. (6)

The end x = 1 is now free. There is no support at that end. “A hanging bar is fixed

only at the top.” There is no force at the free end x = 1. That translates to du/dx = 0
instead of the fixed condition u = 0 at x = 1.

The other change is in the coefficient c(x) = 1 + x. The stiffness of the bar is

varying as you go from x = 0 to x = 1. Maybe its width is changing, or the material

changes. This coefficient 1 + x will bring a new matrix C into the difference equation.

Since u4 is no longer fixed at 0, it becomes a new unknown. The backward difference

A is 4 by 4. And the multiplication by c(x) = 1+ x becomes a diagonal matrix C—which

multiplies by 1 + ∆x, . . ., 1 + 4∆x at the meshpoints. Here are AT, C, and A:

ATCA =




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1







1.25
1.5

1.75
2.0







1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1


 . (7)

This matrix K = ATCA will be symmetric and positive definite! Symmetric because

(ATCA)T = ATCTATT = ATCA. Positive definite because it passes the energy test:

A has independent columns, so Ax 6= 0 when x 6= 0.

Energy = xTATCAx = (Ax)TC(Ax) > 0 for every x 6= 0, because Ax 6= 0.

When you multiply the matrices ATA and ATCA for this fixed-free combination, watch

how 1 replaces 2 in the last corner of ATA. That fourth equation has u4 − u3, a first

(not second) difference coming from the free boundary condition du/dx = 0.

Notice in ATCA how c1, c2, c3, c4 come from c(x) = 1+x in equation (7). Previously

the c’s were simply 1, 1, 1, 1. Here are the fixed-free matrices:

ATA =




2 −1
−1 2 −1

−1 2 −1
−1 1


 ATCA =




c1 + c2 −c2
−c2 c2 + c3 −c3

−c3 c3 + c4 −c4
−c4 c4


. (8)
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Free-free Boundary Conditions

Suppose both ends of the bar are free. Now du/dx = 0 at both x = 0 and x = 1.

Nothing is holding the bar in place! Physically it is unstable—it can move with no force.

Mathematically all constant functions like u=1 satisfy these free conditions. Algebraically

our matrices ATA and ATCA will not be invertible:

Free-free examples

Unknown u0, u1, u2

∆x = 0.5
ATA =




1 −1 0
−1 2 −1
0 −1 1


 ATCA =



c0 −c0
−c0 c0 + c1 −c1

−c1 c1


 .

The vector (1, 1, 1) is in both nullspaces. This matches u(x) = 1 in the continuous

problem. Free-free ATAu = f and ATCAu = f are generally unsolvable.

Before explaining more physical examples, may I write down six of the matrices? The

tridiagonal K0 appears many times in this textbook. Now we are seeing its applications.

These matrices are all symmetric, and the first four are positive definite:

K0 = AT
0 A0 =




2 −1
−1 2 −1

−1 2




Fixed-fixed

AT
0 C0A0 =



c1 + c2 −c2
−c2 c2 + c3 −c3

−c3 c3 + c4




Spring constants included

K1 = AT
1 A1 =




2 −1
−1 2 −1

−1 1




Fixed-free

AT
1 C1A1 =



c1 + c2 −c2
−c2 c2 + c3 −c3

−c3 c3




Spring constants included

K
singular

=




1 −1
−1 2 −1

−1 1




Free-free

K
circular

=




2 −1 −1
−1 2 −1
−1 −1 2




Periodic u(0) = u(1)

The matrices K0,K1,Ksingular, and Kcircular have C = I for simplicity. This means

that all the “spring constants” are ci = 1. We includedAT
0 C0A0 and AT

1 C1A1 to show how

the spring constants enter the matrix (without changing its positive definiteness).

Our next goal is to see these same stiffness matrices in other engineering problems.
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A Line of Springs and Masses

Figure 10.4 shows three masses m1, m2, m3 connected by a line of springs. The fixed-

fixed case has four springs, with top and bottom fixed. That leads to K0 and AT
0 C0A0. The

fixed-free case has only three springs; the lowest mass hangs freely. That will lead to K1

and AT
1 C1A1. A free-free problem produces Ksingular.

We want equations for the mass movements u and the spring tensions y:

u = (u1, u2, u3) = movements of the masses (down is positive)

y = (y1, y2, y3, y4) or (y1, y2, y3) = tensions in the springs

Figure 10.4: Lines of springs and masses: fixed-fixed and fixed-free ends.

When a mass moves downward, its displacement is positive (uj > 0). For the springs,

tension is positive and compression is negative (yi < 0). In tension, the spring is stretched

so it pulls the masses inward. Each spring is controlled by its own Hooke’s Law y = c e:

(stretching force y) = (spring constant c) times (stretching distance e).

Our job is to link these one-spring equations y = c e into a vector equation Ku = f
for the whole system. The force vector f comes from gravity. The gravitational constant

g will multiply each mass to produce downward forces f = (m1g,m2g,m3g).
The real problem is to find the stiffness matrix (fixed-fixed and fixed-free). The best

way to create K is in three steps, not one. Instead of connecting the movements uj directly

to the forces fi, it is much better to connect each vector to the next in this list:

u = Movements of n masses = (u1, . . . , un)
e = Elongations of m springs = (e1, . . . , em)
y = Internal forces in m springs = (y1, . . . , ym)
f = External forces on n masses = (f1, . . . , fn)

A great framework for applied mathematics connectsu to e to y to f . ThenATCAu = f :

u f e = Au A is m by n

A↓ ↑AT y = Ce C is m by m

e
C−→ y f = ATy AT is n by m
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We will write down the matrices A and C and AT for the two examples, first with fixed

ends and then with the lower end free. Forgive the simplicity of these matrices, it is their

form that is so important. Especially the appearance of A together with AT.

The elongation e is the stretching distance—how far the springs are extended. Orig-

inally there is no stretching—the system is lying on a table. When it becomes vertical

and upright, gravity acts. The masses move down by distances u1, u2, u3. Each spring is

stretched or compressed by ei = ui − ui−1, the difference in displacements of its ends:

Stretching of

each spring

First spring: e1 = u1 (the top is fixed so u0 = 0)

Second spring: e2 = u2 − u1

Third spring: e3 = u3 − u2

Fourth spring: e4 = − u3 (the bottom is fixed so u4 = 0)

If both ends move the same distance, that spring is not stretched: uj = uj−1 and

ej = 0. The matrix in those four equations is a 4 by 3 difference matrix A, and e = Au:

Stretching

distances

(elongations)

e = Au is




e1
e2
e3
e4


 =




1 0 0
−1 1 0
0 −1 1
0 0 −1







u1

u2

u3


 . (9)

The next equation y = Ce connects spring elongation e with spring tension y. This is

Hooke’s Law yi = ciei for each separate spring. It is the “constitutive law” that depends

on the material in the spring. A soft spring has small c, so a moderate force y can produce

a large stretching e. Hooke’s linear law is nearly exact for real springs, before they are

overstretched and the material becomes plastic.

Since each spring has its own law, the matrix in y = Ce is a diagonal matrix C:

Hooke’s

Law

y = Ce

y1 = c1e1
y2 = c2e2
y3 = c3e3
y4 = c4e4

is




y1
y2
y3
y4


 =




c1
c2

c3
c4







e1
e2
e3
e4


 (10)

Combining e = Au with y = Ce, the spring forces (tension forces) are y = CAu.

Finally comes the balance equation, the most fundamental law of applied math-

ematics. The internal forces from the springs balance the external forces on the masses.

Each mass is pulled or pushed by the spring force yj above it. From below it feels the

spring force yj+1 plus fj from gravity. Thus yj = yj+1 + fj or fj = yj − yj+1:

Force

balance

f = ATy

f1 = y1 − y2

f2 = y2 − y3

f3 = y3 − y4

is




f1
f2
f3


 =




1 −1 0 0
0 1 −1 0
0 0 1 −1







y1
y2
y3
y4


 (11)

That matrix is AT ! The equation for balance of forces is f = ATy. Nature transposes

the rows and columns of the e−u matrix to produce the f−y matrix. This is the beauty of

the framework, that AT appears along with A. The three equations combine into Ku = f .
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e = Au
y = Ce
f = ATy





combine into ATCAu = f or Ku = f
K = ATCA is the stiffness matrix (mechanics)

K = ATCA is the conductance matrix (networks)

Finite element programs spend major effort on assembling K = ATCA from thousands

of smaller pieces. We find K for four springs (fixed-fixed) by multiplying AT times CA:




1 −1 0 0
0 1 −1 0
0 0 1 −1







c1 0 0
−c2 c2 0

0 −c3 c3
0 0 −c4


 =




c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3 + c4




If all springs are identical, with c1 = c2 = c3 = c4 = 1, then C = I . The stiffness matrix

reduces to ATA. It becomes the special −1, 2,−1 matrix K0.

Note the difference between ATA from engineering and LU from linear algebra. The

matrix A from four springs is 4 by 3. The triangular matrices from elimination are square.

The stiffness matrix K is assembled from ATA, and then broken up into LU . One step

is applied mathematics, the other is computational mathematics. Each K is built from

rectangular matrices and factored into square matrices.

May I list some properties of K = ATCA? You know almost all of them:

1. K is tridiagonal, because mass 3 is not connected to mass 1.

2. K is symmetric, because C is symmetric and AT comes with A.

3. K is positive definite, because ci > 0 and A has independent columns.

4. K−1 is a full matrix (not sparse) with all positive entries.

Property 4 leads to an important fact about u = K−1f : If all forces act downwards

(fj > 0) then all movements are downwards (uj > 0). Notice that “positive” is

different from “positive definite”. K−1 is positive (K is not). Both are positive definite.

Example 1 Suppose all ci = c and mj = m. Find the movements u and tensions y.

All springs are the same and all masses are the same. But all movements and elonga-

tions and tensions will not be the same. K−1 includes 1

c
because ATCA includes c:

Movements u = K−1f =
1

4c




3 2 1
2 4 2
1 2 3






mg
mg
mg


 =

mg

c




3/2
2

3/2




The displacement u2, for the mass in the middle, is greater than u1 and u3. The units are

correct: the force mg divided by force per unit length c gives a length u. Then

Elongations e = Au =




1 0 0
−1 1 0
0 −1 1
0 0 −1



mg

c




3

2

2
3

2


 =

mg

c




3/2
1/2

−1/2
−3/2


 .
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Warning: Normally you cannot write K−1 = A−1C−1(AT)−1 .

The three matrices are mixed together by ATCA, and they cannot easily be untangled.

In general, ATy = f has many solutions. And four equations Au = e would usually

have no solution with three unknowns. But ATCA gives the correct solution to all three

equations in the framework. Only when m = n and the matrices are square can we go from

y = (AT)−1f to e = C−1y to u = A−1e. We will see that now.

Fixed End and Free End

Remove the fourth spring. All matrices become 3 by 3. The pattern does not change! The

matrix A loses its fourth row and (of course) AT loses its fourth column. The new stiffness

matrix K1 becomes a product of square matrices:

AT
1 C1A1 =




1 −1 0
0 1 −1
0 0 1






c1
c2

c3






1 0 0
−1 1 0
0 −1 1


 .

The missing column of AT and row of A multiplied the missing c4. So the quickest way to

find the new ATCA is to set c4 = 0 in the old one:

FIXED

FREE
AT

1 C1A1 =




c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3


 . (12)

Example 2 If c1 = c2 = c3 = 1 and C = I , this is the −1, 2, −1 tridiagonal matrix K1.

The last entry of K1 is 1 instead of 2 because the spring at the bottom is free. Suppose all

mj = m :

Fixed-free u = K−1
1 f =

1

c




1 1 1
1 2 2
1 2 3






mg
mg
mg


 =

mg

c




3
5
6


 .

Those movements are greater than the free-free case. The number 3 appears in u1 because

all three masses are pulling the first spring down. The next mass moves by that 3 plus an

additional 2 from the masses below it. The third mass drops even more (3 + 2 + 1 = 6).
The elongations e = Au in the springs display those numbers 3, 2, 1:

e =




1 0 0
−1 1 0
0 −1 1


 mg

c




3
5
6


 =

mg

c




3
2
1


 .



470 Chapter 10. Applications

Two Free Ends: K is Singular

Freedom at both ends means trouble. The whole line can move. A is 2 by 3 :

FREE-FREE

e = Au

[
e1
e2

]
=

[
u2 − u1

u3 − u2

]
=

[
−1 1 0
0 −1 1

]


u1

u2

u3


 . (13)

Now there is a nonzero solution to Au = 0. The masses can move with no stretching of

the springs. The whole line can shift by u = (1, 1, 1) and this leaves e = (0, 0) :

Au =

[
−1 1 0
0 −1 1

]


1
1
1


 =

[
0
0

]
= no stretching . (14)

Au = 0 certainly leads to ATCAu = 0. Then ATCA is only positive semidefinite,

without c1 and c4. The pivots will be c2 and c3 and no third pivot. The rank is only 2:




−1 0
1 −1
0 1



[

c2
c3

] [
−1 1 0
0 −1 1

]
=




c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3


 (15)

Two eigenvalues will be positive but x = (1, 1, 1) is an eigenvector for λ = 0. We can

solve ATCAu = f only for special vectors f . The forces have to add to f1+ f2+ f3 = 0,

or the whole line of springs (with both ends free) will take off like a rocket.

Circle of Springs

A third spring will complete the circle from mass 3 back to mass 1. This doesn’t make K
invertible—the stiffness matrix Kcircular matrix is still singular :

AT
circularAcircular =




1 −1 0
0 1 −1

−1 0 1






1 0 −1
−1 1 0
0 −1 1


 =




2 −1 −1
−1 2 −1
−1 −1 2


 . (16)

The only pivots are 2 and 3
2 . The eigenvalues are 3 and 3 and 0. The determinant is zero.

The nullspace still contains x = (1, 1, 1), when all the masses move together.

This movement vector (1, 1, 1) is in the nullspace of Acircular and Kcircular = ATCA.

May I summarize this section? I hope the example will help you connect calculus with

linear algebra, replacing differential equations by difference equations. If your step ∆x is

small enough, you will have a totally satisfactory solution.

The equation is − d

dx

(
c(x)

du

dx

)
= f(x) with u(0) = 0 and

[
u(1) or

du

dx
(1)

]
= 0

Divide the bar into N pieces of length ∆x. Replace du/dx by Au and −dy/dx by ATy.

Now A and AT include 1/∆x. The end conditions are u0 = 0 and [uN = 0 or yN = 0].
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The three steps −d/dx and c(x) and d/dx correspond to AT and C and A:

f = ATy and y = Ce and e = Au give ATCAu = f .

This is a fundamental example in computational science and engineering.

1. Model the problem by a differential equation

2. Discretize the differential equation to a difference equation

3. Understand and solve the difference equation (and boundary conditions!)

4. Interpret the solution; visualize it; redesign if needed.

Numerical simulation has become a third branch of science, beside experiment and deduc-

tion. Computer design of the Boeing 777 was much less expensive than a wind tunnel.

The two texts Introduction to Applied Mathematics and Computational Science and

Engineering (Wellesley-Cambridge Press) develop this whole subject further—see the

course page math.mit.edu/18085 with video lectures (The lectures are also on ocw.mit.edu

and YouTube). I hope this book helps you to see the framework behind the computations.

Problem Set 10.2

1 Show that detAT
0 C0A0 = c1c2c3+c1c3c4+c1c2c4+c2c3c4. Find also detAT

1 C1A1

in the fixed-free example.

2 Invert AT
1 C1A1 in the fixed-free example by multiplying A−1

1 C−1
1 (AT

1 )
−1.

3 In the free-free case when ATCA in equation (15) is singular, add the three equations

ATCAu = f to show that we need f1+f2+f3 = 0. Find a solution to ATCAu = f
when the forces f = (−1, 0, 1) balance themselves. Find all solutions!

4 Both end conditions for the free-free differential equation are du/dx = 0:

− d

dx

(
c(x)

du

dx

)
= f(x) with

du

dx
= 0 at both ends.

Integrate both sides to show that the force f(x) must balance itself,
∫
f(x) dx = 0,

or there is no solution. The complete solution is one particular solution u(x) plus

any constant. The constant corresponds to u = (1, 1, 1) in the nullspace of ATCA.

5 In the fixed-free problem, the matrixA is square and invertible. We can solveATy =
f separately from Au = e. Do the same for the differential equation:

Solve − dy

dx
= f(x) with y(1) = 0. Graph y(x) if f(x) = 1.
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6 The 3 by 3 matrix K1 = AT
1 C1A1 in equation (6) splits into three “element matrices”

c1E1 + c2E2 + c3E3. Write down those pieces, one for each c. Show how they

come from column times row multiplication of AT
1 C1A1. This is how finite element

stiffness matrices are actually assembled.

7 For five springs and four masses with both ends fixed, what are the matrices A and

C and K? With C = I solve Ku = ones(4).

8 Compare the solution u = (u1, u2, u3, u4) in Problem 7 to the solution of the con-

tinuous problem −u′′ = 1 with u(0) = 0 and u(1) = 0. The parabola u(x) should

correspond at x = 1
5 ,

2
5 ,

3
5 ,

4
5 to u—is there a (∆x)2 factor to account for?

9 Solve the fixed-free problem −u′′ = mg with u(0) = 0 and u′(1) = 0. Compare

u(x) at x = 1
3 ,

2
3 ,

3
3 with the vector u = (3mg, 5mg, 6mg) in Example 2.

10 Suppose c1 = c2 = c3 = c4 = 1, m1 = 2 and m2 = m3 = 1. Solve ATCAu =
(2, 1, 1) for this fixed-fixed line of springs. Which mass moves the most (largest u) ?

11 (MATLAB) Find the displacements u(1), . . . , u(100) of 100 masses connected by

springs all with c = 1. Each force is f(i) = .01. Print graphs of u with fixed-fixed

and fixed-free ends. Note that diag(ones(n, 1), d) is a matrix with n ones along

diagonal d. This print command will graph a vector u:

plot(u, ’+’); xlabel(’mass number’); ylabel(’movement’); print

12 (MATLAB) Chemical engineering has a first derivative du/dx from fluid velocity as

well as d2u/dx2 from diffusion. Replace du/dx by a forward difference, then a

centered difference, then a backward difference, with ∆x = 1
8 . Graph your three

numerical solutions of

−d2u

dx2
+ 10

du

dx
= 1 with u(0) = u(1) = 0.

This convection-diffusion equation appears everywhere. It transforms to the

Black-Scholes equation for option prices in mathematical finance.

Problem 12 is developed into the first MATLAB homework in my 18.085 course on

Computational Science and Engineering at MIT. Videos on ocw.mit.edu.




