
Chapter 10

Applications

10.1 Graphs and Networks

Over the years I have seen one model so often, and I found it so basic and useful, that I

always put it first. The model consists of nodes connected by edges. This is called a graph.

Graphs of the usual kind display functions f(x). Graphs of this node-edge kind lead

to matrices. This section is about the incidence matrix of a graph—which tells how the n
nodes are connected by the m edges. Normally m > n, there are more edges than nodes.

For any m by n matrix there are two fundamental subspaces in Rn and two in Rm. They

are the row spaces and nullspaces of A and AT. Their dimensions r, n − r and r,m − r
come from the most important theorem in linear algebra. The second part of that theorem

is the orthogonality of the row space and nullspace. Our goal is to show how examples

from graphs illuminate this Fundamental Theorem of Linear Algebra.

When I construct a graph and its incidence matrix, the subspace dimensions will be

easy to discover. But we want the subspaces themselves—and orthogonality helps. It

is essential to connect the subspaces to the graph they come from. By specializing to

incidence matrices, the laws of linear algebra become Kirchhoff’s laws. Please don’t be

put off by the words “current” and “voltage.” These rectangular matrices are the best.

Every entry of an incidence matrix is 0 or 1 or −1. This continues to hold during

elimination. All pivots and multipliers are ±1. Therefore both factors in A = LU also

contain 0, 1,−1. So do the nullspace matrices! All four subspaces have basis vectors with

these exceptionally simple components. The matrices are not concocted for a textbook,

they come from a model that is absolutely essential in pure and applied mathematics.

The Incidence Matrix

Figure 10.1 displays a graph with m = 6 edges and n = 4 nodes. The 6 by 4 matrix A
tells which nodes are connected by which edges. The first row −1, 1, 0, 0 shows that the

first edge goes from node 1 to node 2 (−1 for node 1 because the arrow goes out, +1 for

node 2 with arrow in).

Row numbers in A are edge numbers, column numbers 1, 2, 3, 4 are node numbers!

451



452 Chapter 10. Applications
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Figure 10.1: Complete graph with m=6 edges and n=4 nodes:6 by 4 incidence matrix A.

You can write down the matrix by looking at the graph. The second graph has the

same four nodes but only three edges. Its incidence matrix B is 3 by 4.
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B =



1 −1 0 0
0 1 −1 0
0 0 1 −1




1
2
3

edge

Figure 10.1∗: Tree with 3 edges and 4 nodes and no loops. Then B has independent rows.

The first graph is complete—every pair of nodes is connected by an edge. The second

graph is a tree—the graph has no closed loops. Those are the two extremes. The maximum

number of edges is 1
2n(n − 1) = 6 and the minimum to stay connected is n − 1 = 3.

Elimination reduces every graph to a tree. Loops produce dependent rows in A and

zero rows in the echelon forms U and R. Look at the large loop from edges 1, 2, 3 in the

first graph, which leads to a zero row in U :


−1 1 0 0
−1 0 1 0
0 −1 1 0


 −→



−1 1 0 0
0 −1 1 0
0 −1 1 0


 −→



−1 1 0 0
0 −1 1 0
0 0 0 0




Those steps are typical. When edges 1 and 2 share node 1, elimination produces the “short-

cut edge” without node 1. If the graph already has this shortcut edge making a loop, then

elimination gives a row of zeros. When the dust clears we have a tree.

An idea suggests itself: Rows are dependent when edges form a loop. Independent

rows come from trees. This is the key to the row space. We are assuming that the graph

is connected, and the arrows could go either way. On each edge, flow with the arrow is

“positive.” Flow in the opposite direction counts as negative. The flow might be a current

or a signal or a force—or even oil or gas or water.
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When x1, x2, x3, x4 are voltages at the nodes, Ax gives voltage differences:

Ax =




−1 1 0 0
−1 0 1 0
0 −1 1 0

−1 0 0 1
0 −1 0 1
0 0 −1 1







x1

x2

x3

x4


 =




x2 − x1

x3 − x1

x3 − x2

x4 − x1

x4 − x2

x4 − x3




. (1)

Let me say that again. The incidence matrix A is a difference matrix. The input vector

x gives voltages, the output vector Ax gives voltage differences (along edges 1 to 6). If the

voltages are equal, the differences are zero. This tells us the nullspace of A.

1 The nullspace contains the solutions to Ax = 0. All six voltage differences are zero.

This means: All four voltages are equal. Every x in the nullspace is a constant vector:

x = (c, c, c, c). The nullspace of A is a line in Rn—its dimension is n− r = 1.

The second incidence matrix B has the same nullspace. It contains (1, 1, 1, 1):

1−dimensional

nullspace: same

for the tree

Bx =



−1 1 0 0
0 −1 1 0
0 0 −1 1







1
1
1
1


 =



0
0
0


 .

We can raise or lower all voltages by the same amount c, without changing the differ-

ences. There is an “arbitrary constant” in the voltages. Compare this with the same state-

ment for functions. We can raise or lower a function by C, without changing its derivative.

Calculus adds “+C” to indefinite integrals. Graph theory adds (c, c, c, c) to the vectorx.

Linear algebra adds any vector xn in the nullspace to one particular solution of Ax = b.

The “+C” disappears in calculus when a definite integral starts at a known point.

Similarly the nullspace disappears when we fix x4 = 0. The unknown x4 is removed and

so are the fourth columns of A and B (those columns multiplied x4). Electrical engineers

would say that node 4 has been “grounded.”

2 The row space contains all combinations of the six rows. Its dimension is certainly not 6.

The equation r + (n − r) = n must be 3 + 1 = 4. The rank is r = 3, as we saw from

elimination. After 3 edges, we start forming loops! The new rows are not independent.

How can we tell if v = (v1, v2, v3, v4) is in the row space? The slow way is to combine

rows. The quick way is by orthogonality:

v is in the row space if and only if it is perpendicular to (1, 1, 1, 1) in the nullspace.

The vector v = (0, 1, 2, 3) fails this test—its components add to 6. The vector (−6, 1, 2, 3)
is in the row space: −6+1+2+3 = 0. That vector equals 6(row 1)+5(row 3)+3(row 6).

Each row of A adds to zero. This must be true for every vector in the row space.
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3 The column space contains all combinations of the four columns. We expect three

independent columns, since there were three independent rows. The first three columns

of A are independent (so are any three). But the four columns add to the zero vector, which

says again that (1, 1, 1, 1) is in the nullspace. How can we tell if a particular vector b
is in the column space of an incidence matrix?

First answer Try to solve Ax = b. That misses all the insight. As before, orthogonal-

ity gives a better answer. We are now coming to Kirchhoff’s two famous laws of circuit

theory—the voltage law and current law (KVL and KCL). Those are natural expressions

of “laws” of linear algebra. It is especially pleasant to see the key role of the left nullspace.

Second answer Ax is the vector of voltage differences xi − xj . If we add differences

around a closed loop in the graph, they cancel to leave zero. Around the big triangle

formed by edges 1, 3,−2 (the arrow goes backward on edge 2) the differences cancel:

Sum of differences is 0 (x2 − x1) + (x3 − x2)− (x3 − x1) = 0.

Kirchhoff’s Voltage Law: The components of Ax = b add to zero around every loop.

Around the big triangle: b1 + b3 − b2 = 0.

By testing each loop, the Voltage Law decides whether b is in the column space. Ax = b
can be solved exactly when the components of b satisfy all the same dependencies as the

rows of A. Then elimination leads to 0 = 0, and Ax = b is consistent.

4 The left nullspace contains the solutions to ATy = 0. Its dimension is m− r = 6− 3:

Current Law ATy =




−1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1







y1
y2
y3
y4
y5
y6



=




0
0
0
0


 . (2)

The true number of equations is r = 3 and not n = 4. Reason: The four equations add to

0 = 0. The fourth equation follows automatically from the first three.

What do the equations mean? The first equation says that −y1 − y2 − y4 = 0. The

net flow into node 1 is zero. The fourth equation says that y4 + y5 + y6 = 0. Flow into

node 4 minus flow out is zero. The equations ATy = 0 are famous and fundamental:

Kirchhoff’s Current Law:ATy = 0 Flow in equals flow out at each node.

This law deserves first place among the equations of applied mathematics. It expresses

“conservation” and “continuity” and “balance.” Nothing is lost, nothing is gained. When

currents or forces are balanced, the equation to solve is ATy = 0. Notice the beautiful fact

that the matrix in this balance equation is the transpose of the incidence matrix A.
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What are the actual solutions to ATy = 0? The currents must balance themselves.

The easiest way is to flow around a loop. If a unit of current goes around the big triangle

(forward on edge 1 and 3, backward on 2), the six currents are y = (1,−1, 1, 0, 0, 0).
This satisfies ATy = 0. Every loop current is a solution to the Current Law. Flow in

equals flow out at every node. A smaller loop goes forward on edge 1, forward on 5, back

on 4. Then y = (1, 0, 0,−1,1, 0) is also in the left nullspace.

We expect three independent y’s: m−r=6−3=3. The three small loops in the graph

are independent. The big triangle seems to give a fourth y, but that flow is the sum of flows

around the small loops. Flows around the 3 small loops are a basis for the left nullspace.

1

1

2

2

3
3

4

4

5 6

















1

0

0

−1

1

0

















+

















0

0

1

0

−1

1

















+

















0

−1

0

1

0

−1

















=

















1

−1

1

0

0

0

















3 small loops big loop

The incidence matrix A comes from a connected graph with n nodes and m edges. The

row space and column space have dimensions r = n − 1. The nullspaces of A
and AT have dimensions 1 and m− n+ 1:

N (A) The constant vectors (c, c, . . . , c) make up the nullspace of A : dim = 1.

C(AT) The edges of any tree give r independent rows of A : r = n− 1.

C(A) Voltage Law: The components of Ax add to zero around all loops: dim = n− 1.

N (AT) Current Law: ATy = (flow in)− (flow out) = 0 is solved by loop currents.

There are m − r = m− n + 1 independent small loops in the graph.

For every graph in a plane, linear algebra yields Euler’s formula: Theorem 1 in topology!

(number of nodes) − (number of edges) + (number of small loops) = 1.

This is (n)− (m) + (m− n+ 1) = 1. The graph in our example has 4− 6 + 3 = 1.

A single triangle has (3 nodes) − (3 edges) + (1 loop). On a 10-node tree with 9 edges

and no loops, Euler’s count is 10− 9 + 0. All planar graphs lead to the answer 1.

The next figure shows a network with a current source. Kirchhoff’s Current Law changes

from ATy = 0 to ATy = f , to balance the source f from outside. Flow into each node

still equals flow out. The six edges would have conductances c1, . . . , c6, and the current

source goes into node 1. The source comes out from node 4 to keep the overall balance

(in = out). The problem is: Find the currents y1, . . . , y6 on the six edges.

Flows in networks now lead us from the incidence matrix A to the Laplacian matrix ATA.
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Voltages and Currents and ATAx = f

We started with voltages x = (x1, . . . , xn) at the nodes. So far we have Ax to find voltage

differences xi − xj along edges. And we have the Current Law ATy = 0 to find edge

currents y = (y1, . . . ym). If all resistances in the network are 1, Ohm’s Law will match

y = Ax. Then ATy = ATAx = 0. We are close but not quite there.

Without any sources, the solution to ATAx = 0 will just be no flow: x = 0 and y = 0.

I can see three ways to produce x 6= 0 and y 6= 0.

1 Assign fixed voltages xi to one or more nodes.

2 Add batteries (voltage sources) in one or more edges.

3 Add current sources going into one or more nodes. See Figure 10.2

>

x2 x3
y3

x4

y4 y2y1

x1

y5 y6

S

Figure 10.2: The currents y1 to y6 in a network with a source S from node 4 to node 1.

Example Figure 10.2 includes a current source S from node 4 to node 1. That current

will trickle back through the network to node 4. Some current y4 will go directly on edge

4. Other current will go the long way from node 1 to 2 to 4, or 1 to 3 to 4. By symmetry

I expect no current (y3 = 0) from node 2 to node 3. Solving the network equations will

confirm this. The matrix in those equations is ATA, the graph Laplacian matrix:




−1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1







−1 1 0 0
−1 0 1 0
0 −1 1 0

−1 0 0 1
0 −1 0 1
0 0 −1 1



=




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3




ATA
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That Laplacian matrix is not invertible! We cannot solve for all four potentials because

(1, 1, 1, 1) is in the nullspace of A and ATA. One node has to be grounded. Setting x4 = 0
removes the fourth row and column, and this leaves a 3 by 3 invertible matrix. Now we

solve ATAx = f for the unknown potentials x1, x2, x3, with source S into node 1:

Voltages

ATAx = f




3 −1 −1
−1 3 −1
−1 −1 3





x1

x2

x3


 =



S
0
0


 gives



x1

x2

x3


 =



S/2
S/4
S/4


 .

Currents

y = −Ax




y1
y2
y3
y4
y5
y6



= −




−1 1 0 0
−1 0 1 0
0 −1 1 0

−1 0 0 1
0 −1 0 1
0 0 −1 1







S/2
S/4
S/4
0


 =




S/4
S/4
0

S/2
S/4
S/4



.

Half the current goes directly on edge 4. That is y4 = S/2. No current crosses from node

2 to node 3. Symmetry indicated y3 = 0 and now the solution proves it.

Admission of error I remembered that current flows from high voltage to low voltage.

That produces the minus sign in y = −Ax. And the correct form of Ohm’s Law will be

Ry = −Ax when the resistances on the edges are not all 1. Conductances are neater than

resistances: C = R−1 = diagonal matrix. We now present Ohm’s Law y = −CAx.

Networks and ATCA

In a real network, the current y along an edge is the product of two numbers. One number

is the difference between the potentials x at the ends of the edge. This voltage difference

is Ax and it drives the flow. The other number c is the “conductance”—which measures

how easily flow gets through.

In physics and engineering, c is decided by the material. For electrical currents, c
is high for metal and low for plastics. For a superconductor, c is nearly infinite. If we

consider elastic stretching, c might be low for metal and higher for plastics. In economics,

c measures the capacity of an edge or its cost.

To summarize, the graph is known from its incidence matrix A. This tells the node-

edge connections. A network goes further, and assigns a conductance c to each edge.

These numbers c1, . . . , cm go into the “conductance matrix” C—which is diagonal.

For a network of resistors, the conductance is c = 1/(resistance). In addition to Kirch-

hoff’s Laws for the whole system of currents, we have Ohm’s Law for each current.

Ohm’s Law connects the current y1 on edge 1 to the voltage difference x2 − x1:

Ohm’s Law: Current along edge = conductance times voltage difference.

Ohm’s Law for all m currents is y = −CAx. The vector Ax gives the potential differ-

ences, and C multiplies by the conductances. Combining Ohm’s Law with Kirchhoff’s
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Current Law ATy = 0, we get ATCAx = 0. This is almost the central equation for net-

work flows. The only thing wrong is the zero on the right side! The network needs power

from outside—a voltage source or a current source—to make something happen.

Note about signs In circuit theory we change from Ax to −Ax. The flow is from higher

potential to lower potential. There is (positive) current from node 1 to node 2 when x1−x2

is positive—whereas Ax was constructed to yield x2 − x1. The minus sign in physics and

electrical engineering is a plus sign in mechanical engineering and economics. Ax versus

−Ax is a general headache but unavoidable.

Note about applied mathematics Every new application has its own form of Ohm’s Law.

For springs it is Hooke’s Law. The stress y is (elasticity C) times (stretching Ax). For

heat conduction, Ax is a temperature gradient. For oil flows it is a pressure gradient. For

least squares regression in statistics (Chapter 12) C−1 is the covariance matrix.

My textbooks Introduction to Applied Mathematics and Computational Science and

Engineering (Wellesley-Cambridge Press) are practically built on ATCA. This is the key

to equilibrium in matrix equations and also in differential equations. Applied mathematics

is more organized than it looks! In new problems I have learned to watch for ATCA.

Problem Set 10.1

Problems 1–7 and 8–14 are about the incidence matrices for these graphs.

1

 edge 1  edge 2

 edge 3
2 3

3 4

5

42

1
1 2

3

1 Write down the 3 by 3 incidence matrix A for the triangle graph. The first row has

−1 in column 1 and +1 in column 2. What vectors (x1, x2, x3) are in its nullspace?

How do you know that (1, 0, 0) is not in its row space?

2 Write down AT for the triangle graph. Find a vector y in its nullspace. The compo-

nents of y are currents on the edges—how much current is going around the triangle?

3 Eliminate x1 and x2 from the third equation to find the echelon matrix U . What tree

corresponds to the two nonzero rows of U?

−x1 + x2 = b1

−x1 + x3 = b2

−x2 + x3 = b3.
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4 Choose a vector (b1, b2, b3) for which Ax = b can be solved, and another vector b
that allows no solution. How are those b’s related to y = (1,−1, 1)?

5 Choose a vector (f1, f2, f3) for which ATy = f can be solved, and a vector f
that allows no solution. How are those f ’s related to x = (1, 1, 1)? The equation

ATy = f is Kirchhoff’s law.

6 Multiply matrices to find ATA. Choose a vector f for which ATAx = f can be

solved, and solve for x. Put those potentials x and the currents y = −Ax and

current sources f onto the triangle graph. Conductances are 1 because C = I .

7 With conductances c1 = 1 and c2 = c3 = 2, multiply matrices to find ATCA. For

f = (1, 0,−1) find a solution to ATCAx = f . Write the potentials x and currents

y = −CAx on the triangle graph, when the current source f goes into node 1 and

out from node 3.

8 Write down the 5 by 4 incidence matrix A for the square graph with two loops. Find

one solution to Ax = 0 and two solutions to ATy = 0.

9 Find two requirements on the b’s for the five differences x2 − x1, x3 − x1, x3 − x2,
x4 − x2, x4 − x3 to equal b1, b2, b3, b4, b5. You have found Kirchhoff’s law

around the two in the graph.

10 Reduce A to its echelon form U . The three nonzero rows give the incidence matrix

for what graph? You found one tree in the square graph—find the other seven trees.

11 Multiply matrices to find ATA and guess how its entries come from the graph:

(a) The diagonal of ATA tells how many into each node.

(b) The off-diagonals −1 or 0 tell which pairs of nodes are .

12 Why is each statement true about ATA? Answer for ATA not A.

(a) Its nullspace contains (1, 1, 1, 1). Its rank is n− 1.

(b) It is positive semidefinite but not positive definite.

(c) Its four eigenvalues are real and their signs are .

13 With conductances c1 = c2 = 2 and c3 = c4 = c5 = 3, multiply the matrices

ATCA. Find a solution to ATCAx = f = (1, 0, 0,−1). Write these potentials x
and currents y = −CAx on the nodes and edges of the square graph.

14 The matrix ATCA is not invertible. What vectors x are in its nullspace? Why does

ATCAx = f have a solution if and only if f1 + f2 + f3 + f4 = 0?

15 A connected graph with 7 nodes and 7 edges has how many loops?

16 For the graph with 4 nodes, 6 edges, and 3 loops, add a new node. If you connect it

to one old node, Euler’s formula becomes ( )− ( ) + ( ) = 1. If you connect it

to two old nodes, Euler’s formula becomes ( )− ( ) + ( ) = 1.
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17 Suppose A is a 12 by 9 incidence matrix from a connected (but unknown) graph.

(a) How many columns of A are independent?

(b) What condition on f makes it possible to solve ATy = f?

(c) The diagonal entries of ATA give the number of edges into each node. What is

the sum of those diagonal entries?

18 Why does a complete graph with n = 6 nodes have m = 15 edges? A tree connect-

ing 6 nodes has edges.

Note The stoichiometric matrix in chemistry is an important “generalized” incidence

matrix. Its entries show how much of each chemical species (each column) goes into

each reaction (each row).




