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1.3 Matrices'

&

$

%

1 A =




1 2
3 4
5 6


 is a3 by 2 matrix : m = 3 rows andn = 2 columns.

2 Ax =




1 2
3 4
5 6



[

x1

x2

]
is acombination of the columns Ax = x1




1
3
5


+x2




2
4
6


.

3 The3 components ofAx are dot products of the3 rows ofA with the vectorx :

Row at a time




1 2
3 4
5 6



[

7
8

]
=




1 · 7 + 2 · 8
3 · 7 + 4 · 8
5 · 7 + 6 · 8


 =




23
53
83


.

4 Equations in matrix formAx = b :

[
2 5
3 7

] [
x1

x2

]
=

[
b1
b2

]
replaces

2x1 + 5x2 = b1
3x1 + 7x2 = b2

.

5 The solution toAx = b can be written asx = A−1b. But some matrices don’t allowA−1.

This section starts with three vectorsu,v,w. I will combine them usingmatrices.

Three vectors u =




1
−1
0


 v =




0
1
−1


 w =




0
0
1


 .

Their linear combinations in three-dimensional space arex1u+ x2v + x3w:

Combination
of the vectors

x1




1
−1
0


 + x2




0
1
−1


 + x3




0
0
1


 =




x1

x2 − x1

x3 − x2


 . (1)

Now something important:Rewrite that combination using a matrix. The vectorsu,v,w
go into the columns of the matrixA. That matrix “multiplies” the vector(x1, x2, x3) :

Matrix times vector
Combination of columns

Ax =




1 0 0
−1 1 0
0 −1 1






x1

x2

x3


 =




x1

x2 − x1

x3 − x2


 . (2)

The numbersx1, x2, x3 are the components of a vectorx. The matrixA times the vectorx
is thesameas the combinationx1u+ x2v + x3w of the three columns in equation (1).

This is more than a definition ofAx, because the rewriting brings a crucial change
in viewpoint. At first, the numbersx1, x2, x3 were multiplying the vectors. Now the
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matrix is multiplying those numbers.The matrix A acts on the vectorx. The output
Ax is acombination b of the columns ofA.

To see that action, I will writeb1, b2, b3 for the components ofAx :

Ax =




1 0 0
−1 1 0
0 −1 1





x1

x2

x3


 =



x1
x2 − x1
x3 − x2


 =



b1
b2
b3


 = b . (3)

The input isx and the output isb = Ax. This A is a “difference matrix” becauseb
contains differences of the input vectorx. The top difference isx1 − x0 = x1 − 0.

Here is an example to show differences ofx = (1, 4, 9) : squares inx, odd numbers inb.

x =



1
4
9


 = squares Ax =



1− 0
4− 1
9− 4


 =



1
3
5


 = b . (4)

That pattern would continue for a4 by 4 difference matrix. The next square would be
x4 = 16. The next difference would bex4 − x3 = 16 − 9 = 7 (the next odd number).
The matrix finds all the differences1, 3, 5, 7 at once.

Important Note: Multiplication a row at a time. You may already have learned about
multiplying Ax, a matrix times a vector. Probably it was explained differently, using the
rows instead of the columns. The usual way takes the dot product of each row withx:

Ax is also
dot products
with rows

Ax =




1 0 0
−1 1 0
0 −1 1





x1

x2

x3


 =



(1, 0, 0) · (x1, x2, x3)
(−1, 1, 0) · (x1, x2, x3)
(0,−1, 1) · (x1, x2, x3)


 . (5)

Those dot products are the samex1 andx2−x1 andx3−x2 that we wrote in equation (3).
The new way is to work withAx a column at a time. Linear combinations are the key to
linear algebra, and the outputAx is a linear combination of thecolumnsof A.

With numbers, you can multiplyAx by rows. With letters, columns are the good way.
Chapter 2 will repeat these rules of matrix multiplication,and explain the ideas.

Linear Equations

One more change in viewpoint is crucial. Up to now, the numbersx1, x2, x3 were known.
The right hand sideb was not known. We found that vector of differences by multiplying
A timesx. Now we think of b as known and we look forx.

Old question: Compute the linear combinationx1u+ x2v + x3w to findb.
New question: Which combination ofu,v,w produces a particular vectorb?

This is theinverse problem—to find the inputx that gives the desired outputb = Ax.
You have seen this before, as a system of linear equations forx1, x2, x3. The right hand
sides of the equations areb1, b2, b3. I will now solve that systemAx = b to findx1, x2, x3:
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Equations
Ax = b

x1 = b1

−x1 + x2 = b2

− x2 + x3 = b3

Solution
x = A−1b

x1 = b1

x2 = b1 + b2

x3 = b1 + b2 + b3.

(6)

Let me admit right away—most linear systems are not so easy tosolve. In this example,
the first equation decidedx1 = b1. Then the second equation producedx2 = b1 + b2.
The equations can be solved in order(top to bottom)becauseA is a triangular matrix.

Look at two specific choices0, 0, 0 and1, 3, 5 of the right sidesb1, b2, b3:

b =



0
0
0


 gives x =



0
0
0


 b =



1
3
5


 gives x =



1
1 + 3
1 + 3 + 5


 =



1
4
9


 .

The first solution (all zeros) is more important than it looks. In words: If the output is
b = 0, then the input must bex = 0. That statement is true for this matrixA. It is not true
for all matrices. Our second example will show (for a different matrixC) how we can have
Cx = 0 whenC 6= 0 andx 6= 0.

This matrixA is “invertible ”. From b we can recoverx. We writex asA−1 b.

The Inverse Matrix

Let me repeat the solutionx in equation (6). A sum matrix will appear!

Ax = b is solved by



x1

x2

x3


 =



b1
b1 + b2
b1 + b2 + b3


 =



1 0 0
1 1 0
1 1 1





b1
b2
b3


 . (7)

If the differences of thex’s are theb’s, the sums of theb’s are thex’s. That was true for
the odd numbersb = (1, 3, 5) and the squaresx = (1, 4, 9). It is true for all vectors.
The sum matrix in equation (7) is the inverseA−1 of the difference matrix A.

Example: The differences ofx= (1, 2, 3) areb = (1, 1, 1). Sob = Ax andx = A−1b:

Ax =




1 0 0
−1 1 0
0 −1 1






1
2
3


 =




1
1
1


 A−1b =




1 0 0
1 1 0
1 1 1






1
1
1


 =




1
2
3




Equation (7) for the solution vectorx = (x1, x2, x3) tells us two important facts:

1. For everyb there is one solution toAx = b. 2. The matrixA−1 producesx=A−1b.

The next chapters ask about other equationsAx = b. Is there a solution? How to find it?

Note on calculus. Let me connect these special matrices to calculus. The vectorx changes
to a functionx(t). The differencesAx become thederivativedx/dt = b(t). In the
inverse direction, the sumsA−1b become theintegralof b(t). Sums of differences are like
integrals of derivatives.
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The Fundamental Theorem of Calculus says :integration is the inverse of differentiation.

Ax = b and x = A−1b
dx

dt
= b andx(t) =

∫ t

0
b dt. (8)

The differences of squares0, 1, 4, 9 are odd numbers1, 3, 5. The derivative ofx(t) = t2

is 2t. A perfect analogy would have produced the even numbersb = 2, 4, 6 at times
t = 1, 2, 3. But differences are not the same as derivatives, and our matrix A produces not
2t but2t− 1 :

Backward x(t)− x(t− 1) = t2 − (t− 1)2 = t2 − (t2 − 2t+ 1) = 2t− 1. (9)

The Problem Set will follow up to show that “forward differences” produce2t + 1.
The best choice (not always seen in calculus courses) is acentered differencethat uses
x(t + 1) − x(t − 1). Divide that∆x by the distance∆t from t − 1 to t + 1, which is2:

Centered difference of x(t) = t2
(t+ 1)2 − (t− 1)2

2
= 2t exactly. (10)

Difference matrices are great. Centered is the best. Our second example isnot invertible.

Cyclic Differences

This example keeps the same columnsu andv but changesw to a new vectorw∗:

Second example u =




1
−1
0


 v =




0
1
−1


 w∗ =



−1
0
1


 .

Now the linear combinations ofu, v, w∗ lead to acyclic difference matrix C:

Cyclic Cx =




1 0 −1
−1 1 0
0 −1 1





x1

x2

x3


 =



x1 − x3

x2 − x1

x3 − x2


 = b. (11)

This matrixC is not triangular. It is not so simple to solve forx when we are givenb.
Actually it is impossible to findthesolution toCx = b, because the three equations either
haveinfinitely many solutions (sometimes) or elseno solution (usually) :

Cx = 0
Infinitely
manyx



x1 − x3

x2 − x1

x3 − x2


 =



0
0
0


 is solved by all vectors



x1

x2

x3


 =



c
c
c


 . (12)

Every constant vector likex = (3, 3, 3) has zero differences when we go cyclically. The
undetermined constantc is exactly like the+C that we add to integrals. The cyclic dif-
ferences cycle around tox1 − x3 in the first component, instead of starting fromx0 = 0.
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The more likely possibility forCx = b is no solutionx at all:

Cx = b



x1 − x3

x2 − x1

x3 − x2


 =



1
3
5




Left sides add to0
Right sides add to9
No solutionx1, x2, x3

(13)

Look at this example geometrically. No combination ofu,v, andw∗ will produce the
vector b = (1, 3, 5). The combinations don’t fill the whole three-dimensional space.
The right sides must haveb1 + b2 + b3 = 0 to allow a solution toCx = b, because
the left sidesx1−x3, x2−x1, andx3−x2 always add to zero. Put that in different words :

All linear combinations x1u+ x2v + x3w
∗ lie on the plane given byb1 + b2 + b3 = 0.

This subject is suddenly connecting algebra with geometry.Linear combinations can fill all
of space, or only a plane. We need a picture to show the crucialdifference betweenu,v,w
(the first example) andu,v,w∗ (all in the same plane).

Figure 1.10: Independent vectorsu,v,w. Dependent vectorsu,v,w∗ in a plane.

Independence and Dependence

Figure 1.10 shows those column vectors, first of the matrixA and then ofC. The first two
columnsu andv are the same in both pictures. If we only look at the combinations of
those two vectors, we will get a two-dimensional plane.The key question is whether the
third vector is in that plane :

Independence w is not in the plane ofu andv.
Dependence w∗ is in the plane ofu andv.

The important point is that the new vectorw∗ is a linear combination ofu andv:

u+ v +w∗ = 0 w∗ =



−1
0
1


 = −u− v. (14)
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All three vectorsu,v,w∗ have components adding to zero. Then all their combinations
will have b1 + b2 + b3 = 0 (as we saw above, by adding the three equations). This is the
equation for the plane containing all combinations ofu andv. By includingw∗ we get
no new vectorsbecausew∗ is already on that plane.

The originalw = (0, 0, 1) is not on the plane:0 + 0 + 1 6= 0. The combinations of
u,v,w fill the whole three-dimensional space. We know this already, because the solution
x = A−1b in equation (6) gave the right combination to produce anyb.

The two matricesA andC, with third columnsw andw∗, allowed me to mention two
key words of linear algebra: independence and dependence. The first half of the course will
develop these ideas much further—I am happy if you see them early in the two examples:

u,v,w areindependent. No combination except0u+ 0v + 0w = 0 givesb = 0.

u,v,w∗ aredependent. Other combinations likeu+ v +w∗ giveb = 0.

You can picture this in three dimensions. The three vectors lie in a plane or they don’t.
Chapter 2 hasn vectors inn-dimensional space.Independence or dependenceis the key
point. The vectors go into the columns of ann by n matrix:

Independent columns:Ax = 0 has one solution.A is aninvertible matrix .

Dependent columns:Cx = 0 has many solutions.C is asingular matrix .

Eventually we will haven vectors inm-dimensional space. The matrixA with thosen
columns is nowrectangular(m byn). UnderstandingAx = b is the problem of Chapter 3.

REVIEW OF THE KEY IDEAS

1. Matrix times vector: Ax = combination of the columns ofA.

2. The solution toAx = b isx = A−1b, whenA is an invertible matrix.

3. The cyclic matrixC has no inverse. Its three columns lie in the same plane.
Those dependent columns add to the zero vector.Cx = 0 has many solutions.

4. This section is looking ahead to key ideas, not fully explained yet.

WORKED EXAMPLES

1.3 A Change the southwest entrya31 of A (row 3, column1) to a31 = 1:

Ax = b




1 0 0
−1 1 0
1 −1 1






x1

x2

x3


 =




x1

−x1 + x2

x1 − x2 + x3


 =



b1
b2
b3


 .

Find the solutionx for any b. From x = A−1b read off the inverse matrixA−1.
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Solution Solve the (linear triangular) systemAx = b from top to bottom:

first x1 = b1
then x2 = b1 + b2
then x3 = b2 + b3

This says thatx = A−1b =




1 0 0
1 1 0
0 1 1






b1
b2
b3




This is good practice to see the columns of the inverse matrixmultiplying b1, b2, andb3.
The first column ofA−1 is the solution forb = (1, 0, 0). The second column is the solution
for b = (0, 1, 0). The third columnx of A−1 is the solution forAx = b = (0, 0, 1).

The three columns ofA are still independent. They don’t lie in a plane. The combi-
nations of those three columns, using the right weightsx1, x2, x3, can produce any three-
dimensional vectorb = (b1, b2, b3). Those weights come fromx = A−1b.

1.3 B ThisE is anelimination matrix . E has a subtraction andE−1 has an addition.

b = Ex

[
b1
b2

]
=

[
x1

x2 − ℓ x1

]
=

[
1 0
−ℓ 1

][
x1

x2

]
E =

[
1 0
−ℓ 1

]

The first equation isx1 = b1. The second equation isx2 − ℓx1 = b2. The inverse willadd
ℓb1 to b2, because the elimination matrixsubtracted:

x = E−1b

[
x1

x2

]
=

[
b1
ℓb1 + b2

]
=

[
−1 0
ℓ 1

][
b1
b2

]
E−1 =

[
−1 0
ℓ 1

]

1.3 C ChangeC from a cyclic difference to acentered differenceproducingx3 − x1:

Cx = b




0 1 0
−1 0 1
0 −1 0






x1

x2

x3


 =



x2 − 0
x3 − x1

0 − x2


 =




b1
b2
b3


 . (15)

Cx = b can only be solved whenb1 + b3 = x2 − x2 = 0. That is a plane of vectorsb
in three-dimensional space. Each column ofC is in the plane, the matrix has no inverse.
So this plane contains all combinations of those columns (which are all the vectorsCx).

I included the zeros so you could see that thisC produces “centered differences”.
Row i of Cx is xi+1 (right of center) minusxi−1 (left of center). Here is4 by 4 :

Cx = b
Centered
differences




0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0







x1

x2

x3

x4


 =




x2 − 0
x3 − x1

x4 − x2

0 − x3


 =




b1
b2
b3
b4


 (16)

Surprisingly this matrix is now invertible! The first and last rows tell youx2 andx3.
Then the middle rows givex1 andx4. It is possible to write down the inverse matrixC−1.
But 5 by 5 will be singular (not invertible) again. . .
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Problem Set 1.3

1 Find the linear combination3s1 + 4s2 + 5s3 = b. Then writeb as a matrix-vector
multiplicationSx, with 3, 4, 5 in x. Compute the three dot products (row ofS) ·x:

s1 =



1
1
1


 s2 =



0
1
1


 s3 =



0
0
1


 go into the columns ofS .

2 Solve these equationsSy = b with s1, s2, s3 in the columns ofS:


1 0 0
1 1 0
1 1 1





y1
y2
y3


 =



1
1
1


 and



1 0 0
1 1 0
1 1 1





y1
y2
y3


 =



1
4
9


 .

S is a sum matrix. The sum of the first5 odd numbers is .

3 Solve these three equations fory1, y2, y3 in terms ofc1, c2, c3:

Sy = c



1 0 0
1 1 0
1 1 1





y1
y2
y3


 =



c1
c2
c3


 .

Write the solutiony as a matrixA = S−1 times the vectorc. Are the columns ofS
independent or dependent?

4 Find a combinationx1w1 + x2w2 + x3w3 that gives the zero vector withx1 = 1 :

w1 =



1
2
3


 w2 =



4
5
6


 w3 =



7
8
9


 .

Those vectors are (independent) (dependent). The three vectors lie in a .
The matrixW with those three columns isnot invertible.

5 The rows of that matrixW produce three vectors (I write them as columns):

r1 =



1
4
7


 r2 =



2
5
8


 r3 =



3
6
9


 .

Linear algebra says that these vectors must also lie in a plane. There must be many
combinations withy1r1 + y2r2 + y3r3 = 0. Find two sets ofy’s.

6 Which numbersc give dependent columns so a combination of columns equals zero ?


1 1 0
3 2 1
7 4 c






1 0 c
1 1 0
0 1 1







c c c
2 1 5
3 3 6




maybe
always
independent forc 6= 0?
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7 If the columns combine intoAx = 0 then each of the rows hasr · x = 0:

 a1 a2 a3





x1

x2

x3


 =



0
0
0


 By rows



r1 · x
r2 · x
r3 · x


 =



0
0
0


 .

The three rows also lie in a plane. Why is that plane perpendicular tox?

8 Moving to a4 by 4 difference equationAx = b, find the four componentsx1, x2,
x3, x4. Then write this solution asx = A−1b to find the inverse matrix :

Ax =




1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1







x1

x2

x3

x4


 =




b1
b2
b3
b4


 = b.

9 What is thecyclic4 by 4 difference matrixC ? It will have1 and−1 in each row and
each column. Find all solutionsx = (x1, x2, x3, x4) to Cx = 0. The four columns
of C lie in a “three-dimensional hyperplane” inside four-dimensional space.

10 A forward difference matrix∆ is uppertriangular:

∆z =



−1 1 0
0 −1 1
0 0 −1





z1
z2
z3


 =



z2 − z1
z3 − z2
0 − z3


 =



b1
b2
b3


 = b.

Findz1, z2, z3 from b1, b2, b3. What is the inverse matrix inz = ∆−1 b?

11 Show that the forward differences(t + 1)2 − t2 are 2 t+1 = odd numbers.
As in calculus, the difference(t + 1)n − tn will begin with the derivative oftn,
which is .

12 The last lines of the Worked Example say that the4 by 4 centered difference matrix
in (16) is invertible. SolveCx = (b1, b2, b3, b4) to find its inverse inx = C−1 b.

Challenge Problems

13 The very last words say that the5 by 5 centered difference matrixis not invertible.
Write down the5 equationsCx = b. Find a combination of left sides that gives
zero. What combination ofb1, b2, b3, b4, b5 must be zero? (The5 columns lie on a
“4-dimensional hyperplane” in5-dimensional space.Hard to visualize.)

14 If (a, b) is a multiple of(c, d) with abcd 6= 0, show that(a, c) is a multiple of(b, d).
This is surprisingly important; two columns are falling on one line. You could use
numbers first to see howa, b, c, d are related. The question will lead to:

If

[
a b
c d

]
has dependent rows, then it also has dependent columns.




