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1.3 Matrices
12 N
1 A=| 3 4 | isa3by2matrix: m = 3 rows andr = 2 columns.
5 6
1 2 . 1 2 ]
2Az=| 3 4 { ! } is acombination of the columns Ar=x1 | 3 | +x2 | 4
€2
5 6 5 6 |
3 The3 components oflx are dot products of th& rows of A with the vectorz :
1 2 7 1-7+2-8 23 |
Row at a time 3 4 [8]_ 3-7+4-8 | = | 53
5 6 5:-7+6-8 83 |
. . . . 2 5 T o bl 21’1 + 51’2 = bl
4 Equations in matrix formixz = b: { 3 7 ] [ s } = [ by ] replaces 321+ Tirg = by

&The solution toAz = b can be written ag = A~ 'b. But some matrices don’t allowt —*. /

This section starts with three vectarsv, w. | will combine them usingnatrices

1 0 0
Three vectors u= | —1 v = 1 w= |0
0 -1 1

Their linear combinations in three-dimensional spacerate+ zov + r3w:

Combination 1 0 0 7
of the vectors e e L +a3| 0] = 22—21 | . (1)
0 -1 1 T3 — T2

Now something importantkewrite that combination using a matriXhe vectorau, v, w
go into the columns of the matrit. That matrix ‘multiplies’ the vector(z1, z2, x3):

Matrix times vector . _i (1) 8 il _ zl _ 2)
Combination of columns r= 2T 2 ! '
0 -1 1 T3 r3 — T2

The numbers:;, z2, 23 are the components of a vector The matrixA times the vectox
is thesameas the combinatiom; v + x2v + 23w of the three columns in equation (1).

This is more than a definition afixz, because the rewriting brings a crucial change
in viewpoint. At first, the numbers, zo, x3 were multiplying the vectors. Now the
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matrix is multiplying those numbersThe matrix A acts on the vectorz. The output
Az is acombination b of the columns of A.
To see that action, | will writé,, b2, b3 for the components ofix :

1 00 x1 x b1
Az = | -1 1 0 To |l = | x—x1 | = | b | =Db. 3)
0 —1 1 T3 x3 — T b3

The input isz and the output id = Ax. This A is a “difference matrix” becauseb
contains differences of the input vecter The top difference is; — zo = 1 — 0.

Here is an example to show differenceswof= (1,4,9): squares ire, odd numbers itb.

1 1-0 1
x=|4| =squares Ax=|(4—-1|=|3| =0b. (4)
9 9—4 5

That pattern would continue for 4 by 4 difference matrix. The next square would be
x4 = 16. The next difference would he, — x5 = 16 — 9 = 7 (the next odd number).
The matrix finds all the differencds 3, 5, 7 at once.

Important Note: Multiplication a row at a time. You may already have learned about
multiplying Az, a matrix times a vector. Probably it was explained diffélsemising the
rows instead of the columns. The usual way takes the dot ptazfuieach row withe:

Ax is also 1 0 0 1 (1, O, O) . (xl,ZCQ, Ig)
dotproducts Az =| -1 1 0 ze | = | (=1,1,0) - (x1,22,23) | . (5)
with rows 0 -1 1 x3 (O, -1, 1) . (1‘1, X9, ,Tg)

Those dot products are the sameandzs — x; andxs — x5 that we wrote in equation (3).
The new way is to work wittda a column at a timeLinear combinations are the key to
linear algebra, and the outpdte is a linear combination of theolumnsof A.

With numbers, you can multiplylz by rows. With letters, columns are the good way.
Chapter 2 will repeat these rules of matrix multiplicatiand explain the ideas.

Linear Equations

One more change in viewpoint is crucial. Up to now, the nursberxs, x5 were known.
The right hand sidé was not known. We found that vector of differences by mufiimd
A timesz. Now we think of b as known and we look forz.

Old question Compute the linear combinatian u + zov + zsw to find b.
New questionWhich combination ok, v, w produces a particular vectb?

This is theinverse problem-to find the inputx that gives the desired outptit= Ax.
You have seen this before, as a system of linear equations fas, x3. The right hand
sides of the equations abg, b2, bs. | will now solve that systemla = b to findxq, a2, 3:
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X1 = bl xr, = bl
Equations Solution
Aq:I: _ b —X —|—$2 = b2 = Ailb T = bl + b2 (6)
—$2+I3:b3 I3:b1+b2+b3.

Let me admit right away—most linear systems are not so easglt@. In this example,

the first equation decided; = b;. Then the second equation produced= b; + bs.

The equations can be solved in orderp to bottomQecause is a triangular matrix
Look at two specific choice® 0,0 and1, 3, 5 of the right side$ , b, b3:

0 0 1 1 1
b=]0]| givesxz= |0 b= 13| givesz=|1+3 = |4
0 0 5 1+34+5 9

The first solution (all zeros) is more important than it looka words: If the output is
b = 0, then the input must be= 0. That statement is true for this mattik It is not true
for all matrices. Our second example will show (for a diffgrmatrixC) how we can have
Cx =0 whenC # 0 andz # 0.

This matrix A is “invertible”. From b we can recovet. We writex asA~ ! b.

The Inverse Matrix

Let me repeat the solutian in equation (6). A sum matrix will appear!

1 b1 1 0 0 b1
Ax =bissolvedby | x5 | = | by + b =11 1 0 ba | . (7)
T3 by + by + b3 1 1 1 bs

If the differences of the’s are theb’s, the sums of thé’s are thez’s. That was true for

the odd numberd = (1,3,5) and the squares = (1,4,9). Itis true for all vectors.

The sum matrix in equation (7) is the inverseA~! of the difference matrix A.
Example: The differences af= (1,2, 3) areb = (1,1,1). Sob = Az andx = A~ 'b:

1 00 1 1 1 0 0 1 1
Az=|-1 1 0 2 | =11 A'w=|1 1 0 1| =12
0 -1 1 3 1 11 1 1 3

Equation (7) for the solution vectar = (z1, z2, z3) tells us two important facts:
1. Forevenyb there is one solutiontdx = b. 2. The matrixA~! producese = A~ 1b.

The next chapters ask about other equatidms= b. Is there a solution? How to find it?

Note on calculus Letme connectthese special matrices to calculus. Thermechanges
to a functionz(t). The differencesdx become thelerivativedxz/dt = b(t). In the
inverse direction, the sumé~1b become théntegralof b(¢). Sums of differences are like
integrals of derivatives



1.3. Matrices 25

The Fundamental Theorem of Calculus saiygegration is the inverse of differentiation

t
Ax =bandx = A~ b (Cil—": =bandxz(t) = / bdt. (8)
0

The differences of squarési, 4, 9 are odd numberk, 3, 5. The derivative of:(¢) = ¢*
is 2t. A perfect analogy would have produced the even numbests 2,4,6 at times
t = 1,2, 3. But differences are not the same as derivatives, and ouxméproduces not
2t but2¢ — 1:

Backward  z(t) —z(t—1)=t>—(t—1)? =t> - (> -2t +1) =2t — 1. (9)

The Problem Set will follow up to show that “forward differess” produce2t + 1.
The best choice (not always seen in calculus coursespentered differencethat uses
z(t + 1) — z(t — 1). Divide thatAxz by the distancé\¢ from¢ — 1 to ¢ + 1, which is2:

(t+1)2—(t—1)?
2
Difference matrices are great. Centered is the best. Oonseexample isiot invertible

Centered difference of z(t) = t2 =2t exactly. (10)

Cyclic Differences

This example keeps the same colunsandv but changesv to a new vectokw™:

1 0 -1
Second example u=| —1 v = 1 w* = 0
0 -1 1

Now the linear combinations af, v, w* lead to acyclic difference matrix C:

1 0 -1 T T — T3
Cyclic Cx=| -1 1 0 To | = | 20 —x1 | =0. (11)
0 -1 1 I3 Tr3 — T2

This matrixC' is not triangular. It is not so simple to solve ferwhen we are giverb.
Actually it is impossible to findhe solution toCx = b, because the three equations either
haveinfinitely many solutions (sometimes) or elseo solution (usually) :

Cx=0 T — T3 0 z1 c
Infinitely xo—x1 | = | 0| issolvedbyallvectors| 22 | = | c|. (12)
many x T3 — To 0 T3 c

Every constant vector like = (3,3, 3) has zero differences when we go cyclically. The
undetermined constantis exactly like the+ C' that we add to integrals. The cyclic dif-
ferences cycle around to, — x3 in the first component, instead of starting fram = 0.
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The more likely possibility foC'z = b is no solution z at all:

T1 — T3 1 Left sides add td
Cx=b To—x1 | = | 3 Right sides add t6 (13)
xr3 — T 5 No SO'UtiOI’ITl ,L2,23

Look at this example geometrically. No combinationwafv, and w™* will produce the
vectorb = (1,3,5). The combinations don't fill the whole three-dimensionahsp
The right sides must havig + b, + b3 = 0 to allow a solution toCx = b, because
the left sidesc; — x3, x2 — x1, andxs — 2 always add to zero. Put that in different words :

All linear combinations x;u + xz2v 4+ zzw* lie on the plane given byb; + by + b3 = 0.
This subject is suddenly connecting algebra with geometngar combinations can fill all

of space, or only a plane. We need a picture to show the crdifiefence between, v, w
(the first example) and, v, w* (all in the same plane).

Figure 1.10: Independent vectarsv, w. Dependent vectors, v, w* in a plane.

Independence and Dependence

Figure 1.10 shows those column vectors, first of the matrand then ofC. The first two
columnsu andwv are the same in both pictures. If we only look at the combamestiof
those two vectors, we will get a two-dimensional plafike key question is whether the
third vector is in that plane:

Independence w is notin the plane of, andwv.
Dependence w* isinthe plane ofu andwv.

The important point is that the new vector is a linear combination o andv:

ut+v+w =0 w* = 0| =-u—w. (14)
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All three vectorsu, v, w* have components adding to zero. Then all their combinations
will have b, + b2 + b3 = 0 (as we saw above, by adding the three equations). This is the
equation for the plane containing all combinationsuwéndwv. By includingw* we get
no new vectorpecausav* is already on that plane.

The originalw = (0,0, 1) is not on the plane + 0 + 1 # 0. The combinations of
u, v, w fill the whole three-dimensional space. We know this alrebdgause the solution
x = A~1bin equation (6) gave the right combination to produce &ny

The two matricesA andC, with third columnsw andw*, allowed me to mention two
key words of linear algebra: independence and dependehedir$t half of the course will
develop these ideas much further—I am happy if you see theljiadhe two examples:

u, v, w areindependent No combination excefitu + Ov + 0w = 0 givesb = 0.
u, v, w* aredependent Other combinations like + v + w* giveb = 0.

You can picture this in three dimensions. The three vectersla plane or they don't.
Chapter 2 has vectors inn-dimensional spacdndependence or dependerisghe key
point. The vectors go into the columns of atby n matrix:

Independent columnsix = 0 has one solutiond is aninvertible matrix .
Dependent columng&”xz = 0 has many solutiong.' is asingular matrix .

Eventually we will haven vectors inm-dimensional space. The matrik with thosen
columns is nowectangular(m by n). Understandingla = b is the problem of Chapter 3.

B REVIEW OF THE KEY IDEAS =

1. Matrix times vector: Az = combination of the columns ofA.
2. The solution todx = bisx = A~1b, whenA is an invertible matrix.

3. The cyclic matrixC' has no inverse. Its three columns lie in the same plane.
Those dependent columns add to the zero ve€ter= 0 has many solutions.

4. This section is looking ahead to key ideas, not fully exdiget.

® \WORKED EXAMPLES =

1.3 A Change the southwest entry; of A (row 3, columnl) toaz; = 1:

1 00 T T by
Ax =0b -1 1 0 i) = —x1 + o = b2
1 -1 1 I3 1 — T2 + X3 b3

Find the solution = for any b. From « = A~'b read off the inverse matrix A~!.
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Solution Solve the (linear triangular) systedwr = b from top to bottom:

first r1 =by 1 0 0 by
then x5 = by + by Thissaysthat = A~ 'b=| 1 1 0 by
then z3 = ba + b3 0 1 1 b3

This is good practice to see the columns of the inverse mattiltiplying by, b2, andbs.
The first column ofdA~! is the solution fob = (1,0,0). The second column is the solution
for b = (0, 1,0). The third columnz of A~! is the solution forAz = b = (0,0, 1).

The three columns ofl are still independent. They don't lie in a plane. The combi-
nations of those three columns, using the right weightseo, x3, can produce any three-
dimensional vectob = (b1, b, b3). Those weights come from = A~1b.

1.3 B This E is anelimination matrix . £ has a subtraction anfl—! has an addition.

_ bi|_ g1 _ | 1 0ffm [ 10
N 1 o o B [ ] B I
The first equation is; = b;. The second equation is, — fx1 = bs. The inverse willadd
£bq to bo, because the elimination matrsibtracted:

_ -1 T _ | b _ | 1 0f|b .| 10
z=E"b [xg}_{fbl—i—bg}_{ ¢ 1][b2 e

1.3 C Change’ from a cyclic difference to aentered differenceproducingrs — x1:

0 1 0 T o — 0 bl
Cx=5» -1 0 1 X9 = Tr3 — I1 = b2 . (15)
0 -1 0 T3 0 —x b3

Cx = b can only be solved wheby + b3 = 2 — 22 = 0. That is a plane of vectors
in three-dimensional space. Each columrCois in the plane, the matrix has no inverse.
So this plane contains all combinations of those columnsdfware all the vector€'x).

| included the zeros so you could see that thigproduces “centered differences”.
Rowi of Cx is x;41 (right of cente) minusz;_, (left of cente). Here is4 by 4 :

Cx=b _(1) (1) (1) 8 1 ) : 0 lb71
Centered T | _ @3- x| _ | b2 (16)
differences 0 -1 01 3 T4 — X b3

0 0 -1 0| |4 0 — 5 by

Surprisingly this matrix is now invertible! The first and fasws tell youz, and zs.
Then the middle rows give, andz,. It is possible to write down the inverse matfix!.
But 5 by 5 will be singular ot invertiblg again. . .
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Problem Set 1.3

1 Find the linear combinatioBs; + 4s5 + 583 = b. Then writeb as a matrix-vector
multiplication Sz, with 3,4, 5 in . Compute the three dot products (rowSf- x:

1 0 0
s1= 1|1 So= 1|1 s3 = | 0 | gointothe columns of .
1 1 1

2 Solve these equatiorigy = b with s, so, s3 in the columns of5:

10 0] [wm 1 10 0] [wm 1
1 1 0||w|=|1]and|1 1 0| ]|y]|=]4
11 1|y 1 11 1|y 9

S is a sum matrix. The sum of the firStodd numbers is .

3 Solve these three equations igr, y2, y3 in terms ofcy, co, c3:

1 0 0 Y1 C1
Sy=c 1 10 yo | = | 2
1 1 1 Y3 C3

Write the solutiony as a matrix4 = S~! times the vectoe. Are the columns of
independent or dependent?

4 Find a combination:; w; + zows + x3ws3 that gives the zero vector withy = 1:

1 4 7
w1 = 2 wo = 5 ws = 8
3 6 9

Those vectors are (independent) (dependent). The thrdersde in a .
The matrixWW with those three columns ot invertible

5 The rows of that matri¥y” produce three vector$\yrite them as columns

1 2 3
T = 4 To = 5 rs = 6
7 8 9

Linear algebra says that these vectors must also lie in & plBinere must be many
combinations withy; 71 + yo7rs + y3rs = 0. Find two sets of/’s.

6 Which numberg give dependent columns so a combination of columns equai$®ze

1 10 1 0 ¢ ¢ ¢ c¢| maybe
3 2 1 1 1 0 2 1 5 always
7 4 ¢ 0 1 1 3 3 6| independentfoc#07?
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If the columns combine intdlxz = 0 then each of the rows has x = 0:

T 0 rLex 0

a; az as To = rows To X =
0 By 0
T3 0 r3-T 0

The three rows also lie in a plane. Why is that plane perperatito = ?

Moving to a4 by 4 difference equatiomlx = b, find the four components,, z,
x3, 4. Then write this solution a8 = A~1b to find the inverse matrix :

1 0 0 0 X1 bl
-1 1 00 T2 | | b2 | _
Ar=1 0 0 0 s | T b | Y
0 0 -1 1 Xrq b4

What is thecyclic4 by 4 difference matrixC ? It will havel and—1 in each row and
each column. Find all solutions = (x1, z2, 23, 24) to Cx = 0. The four columns
of C lie in a “three-dimensional hyperplane” inside four-dirsgmal space.

A forward difference matrixA is uppertriangular:

-1 1 0 21 29 — 21 by
Az = 0 -1 1 Z9 = Z3 — 22 = b2 =b.
0 0 -1 23 0— 23 bs

Find z1, 2o, 23 from by, b, bs. What is the inverse matrix is = A~! b?

Show that the forward differenceg + 1)> — > are 2¢+1 = odd numbers
As in calculus, the differenc& + 1)™ — t™ will begin with the derivative oft™,
which is .

The last lines of the Worked Example say that4hH®gy 4 centered difference matrix
in (16)is invertible. SolveC'x = (b1, ba, b3, by) to find its inverse inc = C~1 b.

Challenge Problems

The very last words say that tlieby 5 centered difference matris notinvertible.
Write down theb equationsgCxz = b. Find a combination of left sides that gives
zero. What combination dfy, bs, bs, by, bs must be zero? (The columns lie on a
“4-dimensional hyperplane” ia-dimensional spacédard to visualize)

If (a,b) is a multiple of(c, d) with abed # 0, show that(a, ¢) is a multiple of (b, d).
This is surprisingly important; two columns are falling oneoline. You could use
numbers first to see how b, ¢, d are related. The question will lead to:

If { Z Z ] has dependent rows, then it also has dependent columns.





