1	$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ is a 3 by 2 matrix : $m = 3$ rows and $n = 2$ columns.	
2	$A\boldsymbol{x} = \begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} \text{ is a combination of the columns} \qquad A\boldsymbol{x} = x_1 \begin{bmatrix} 1\\ 3\\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2\\ 4\\ 6 \end{bmatrix}.$	•
3	The 3 components of Ax are dot products of the 3 rows of A with the vector x :	
	Row at a time $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 8 \\ 3 \cdot 7 + 4 \cdot 8 \\ 5 \cdot 7 + 6 \cdot 8 \end{bmatrix} = \begin{bmatrix} 23 \\ 53 \\ 83 \end{bmatrix}.$	•
4	Equations in matrix form $A\boldsymbol{x} = \boldsymbol{b}$: $\begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ replaces $\begin{array}{c} 2x_1 + 5x_2 = b_1 \\ 3x_1 + 7x_2 = b_2 \end{array}$.	
5	The solution to $Ax = b$ can be written as $x = A^{-1}b$. But some matrices don't allow A^{-1} .	

This section starts with three vectors u, v, w. I will combine them using *matrices*.

Three vectors	$oldsymbol{u} = \left[egin{array}{c} 1 \ -1 \ 0 \end{array} ight]$	$oldsymbol{v} = \left[egin{array}{c} 0 \ 1 \ -1 \end{array} ight]$	$oldsymbol{w} = \left[egin{array}{c} 0 \ 0 \ 1 \end{array} ight]$
			L [_] J

Their linear combinations in three-dimensional space are $x_1u + x_2v + x_3w$:

Combination
of the vectors
$$x_1 \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} x_1\\ x_2 - x_1\\ x_3 - x_2 \end{bmatrix}$$
. (1)

Now something important: *Rewrite that combination using a matrix*. The vectors u, v, w go into the columns of the matrix *A*. That matrix *"multiplies"* the vector (x_1, x_2, x_3) :

Matrix times vector Combination of columns	$A \boldsymbol{x} =$	$\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ -1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\left[\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right]$] =	$\left[\begin{array}{c} x_1 \\ x_2 - x_1 \\ x_3 - x_2 \end{array}\right]$] .	(2)
---	----------------------	--	---	--	--	-----	---	-----	-----

The numbers x_1, x_2, x_3 are the components of a vector \boldsymbol{x} . The matrix A times the vector \boldsymbol{x} is the same as the combination $x_1\boldsymbol{u} + x_2\boldsymbol{v} + x_3\boldsymbol{w}$ of the three columns in equation (1).

This is more than a definition of Ax, because the rewriting brings a crucial change in viewpoint. At first, the numbers x_1, x_2, x_3 were multiplying the vectors. Now the

matrix is multiplying those numbers. The matrix A acts on the vector x. The output Ax is a combination b of the columns of A.

To see that action, I will write b_1, b_2, b_3 for the components of Ax:

$$A\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{x_1} \\ \boldsymbol{x_2} - \boldsymbol{x_1} \\ \boldsymbol{x_3} - \boldsymbol{x_2} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \boldsymbol{b}.$$
(3)

The input is x and the output is b = Ax. This A is a "difference matrix" because b contains differences of the input vector x. The top difference is $x_1 - x_0 = x_1 - 0$.

Here is an example to show differences of x = (1, 4, 9): squares in x, odd numbers in b.

$$\boldsymbol{x} = \begin{bmatrix} 1\\ 4\\ 9 \end{bmatrix} = \text{squares} \qquad A\boldsymbol{x} = \begin{bmatrix} 1-0\\ 4-1\\ 9-4 \end{bmatrix} = \begin{bmatrix} 1\\ 3\\ 5 \end{bmatrix} = \boldsymbol{b}. \tag{4}$$

That pattern would continue for a 4 by 4 difference matrix. The next square would be $x_4 = 16$. The next difference would be $x_4 - x_3 = 16 - 9 = 7$ (the next odd number). The matrix finds all the differences 1, 3, 5, 7 at once.

Important Note: Multiplication a row at a time. You may already have learned about multiplying Ax, a matrix times a vector. Probably it was explained differently, using the rows instead of the columns. The usual way takes the dot product of each row with x:

$$\begin{array}{l} A\boldsymbol{x} \text{ is also} \\ \textbf{dot products} \quad A\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} (1, 0, 0) \cdot (x_1, x_2, x_3) \\ (-1, 1, 0) \cdot (x_1, x_2, x_3) \\ (0, -1, 1) \cdot (x_1, x_2, x_3) \end{bmatrix}.$$
(5)

Those dot products are the same x_1 and $x_2 - x_1$ and $x_3 - x_2$ that we wrote in equation (3). The new way is to work with Ax a column at a time. Linear combinations are the key to linear algebra, and the output Ax is a linear combination of the **columns** of A.

With numbers, you can multiply Ax by rows. With letters, columns are the good way. Chapter 2 will repeat these rules of matrix multiplication, and explain the ideas.

Linear Equations

One more change in viewpoint is crucial. Up to now, the numbers x_1, x_2, x_3 were known. The right hand side **b** was not known. We found that vector of differences by multiplying A times **x**. Now we think of **b** as known and we look for **x**.

Old question: Compute the linear combination $x_1u + x_2v + x_3w$ to find *b*. *New question*: Which combination of u, v, w produces a particular vector *b*?

This is the *inverse problem*—to find the input x that gives the desired output b = Ax. You have seen this before, as a system of linear equations for x_1, x_2, x_3 . The right hand sides of the equations are b_1, b_2, b_3 . I will now solve that system Ax = b to find x_1, x_2, x_3 :

Chapter 1. Introduction to Vectors

Equations $Ax = b$	x_1 $-x_1 + x_2$ $-x_2 +$	$= b_1$ $= b_2$ $= x_3 = b_3$	Solution $x = A^{-1}b$	$x_1 = b_1$ $x_2 = b_1 + b_2$ $x_3 = b_1 + b_2 + b_3.$	(6)
	~2 T	~J 0J		0.5 01 + 0.2 + 0.5	

Let me admit right away—most linear systems are not so easy to solve. In this example, the first equation decided $x_1 = b_1$. Then the second equation produced $x_2 = b_1 + b_2$. The equations can be solved in order (top to bottom) because A is a triangular matrix.

Look at two specific choices 0, 0, 0 and 1, 3, 5 of the right sides b_1, b_2, b_3 :

b =	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	gives $x =$		$\boldsymbol{b} =$	$\begin{bmatrix} 1\\ 3\\ 5 \end{bmatrix}$	gives $x =$	$\begin{bmatrix} 1 \\ 1+3 \\ 1+3+5 \end{bmatrix}$	=	$\begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix}$	•
	LVJ		Lv]		L° J			J	Lvj	

The first solution (all zeros) is more important than it looks. In words: *If the output is* b = 0, *then the input must be* x = 0. That statement is true for this matrix A. It is not true for all matrices. Our second example will show (for a different matrix C) how we can have Cx = 0 when $C \neq 0$ and $x \neq 0$.

This matrix A is "invertible". From b we can recover x. We write x as $A^{-1}b$.

The Inverse Matrix

Let me repeat the solution x in equation (6). A sum matrix will appear!

$$A\boldsymbol{x} = \boldsymbol{b} \text{ is solved by } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_1 + b_2 \\ b_1 + b_2 + b_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} .$$
(7)

If the differences of the x's are the b's, the sums of the b's are the x's. That was true for the odd numbers b = (1,3,5) and the squares x = (1,4,9). It is true for all vectors. The sum matrix in equation (7) is the inverse A^{-1} of the difference matrix A.

Example: The differences of $\mathbf{x} = (1, 2, 3)$ are $\mathbf{b} = (1, 1, 1)$. So $\mathbf{b} = A\mathbf{x}$ and $\mathbf{x} = A^{-1}\mathbf{b}$:

$$A\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} \qquad A^{-1}\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \end{bmatrix}$$

Equation (7) for the solution vector $\boldsymbol{x} = (x_1, x_2, x_3)$ tells us two important facts:

1. For every **b** there is one solution to Ax = b. **2.** The matrix A^{-1} produces $x = A^{-1}b$.

The next chapters ask about other equations Ax = b. Is there a solution? How to find it?

Note on calculus. Let me connect these special matrices to calculus. The vector x changes to a function x(t). The differences Ax become the *derivative* dx/dt = b(t). In the inverse direction, the sums $A^{-1}b$ become the *integral* of b(t). Sums of differences are like integrals of derivatives.

The Fundamental Theorem of Calculus says: integration is the inverse of differentiation.

$$Ax = b \text{ and } x = A^{-1}b$$
 $\frac{dx}{dt} = b \text{ and } x(t) = \int_0^t b \, dt.$ (8)

The differences of squares 0, 1, 4, 9 are odd numbers 1, 3, 5. The derivative of $x(t) = t^2$ is 2t. A perfect analogy would have produced the even numbers b = 2, 4, 6 at times t = 1, 2, 3. But differences are not the same as derivatives, and our matrix A produces not 2t but 2t - 1:

Backward
$$x(t) - x(t-1) = t^2 - (t-1)^2 = t^2 - (t^2 - 2t + 1) = 2t - 1.$$
 (9)

The Problem Set will follow up to show that "forward differences" produce 2t + 1. The best choice (not always seen in calculus courses) is a **centered difference** that uses x(t+1) - x(t-1). Divide that Δx by the distance Δt from t - 1 to t + 1, which is 2:

Centered difference of
$$x(t) = t^2$$
 $\frac{(t+1)^2 - (t-1)^2}{2} = 2t$ exactly. (10)

Difference matrices are great. Centered is the best. Our second example is not invertible.

Cyclic Differences

This example keeps the same columns u and v but changes w to a new vector w^* :

Second example $\boldsymbol{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ $\boldsymbol{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ $\boldsymbol{w}^* = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$	$oldsymbol{w}^* = egin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}.$	$\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$	$oldsymbol{v}=$	$\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$	u =	Second example
--	--	--	-----------------	--	-----	----------------

Now the linear combinations of u, v, w^* lead to a cyclic difference matrix C:

Cyclic
$$C\boldsymbol{x} = \begin{bmatrix} 1 & 0 & -\mathbf{1} \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \boldsymbol{b}.$$
 (11)

This matrix C is not triangular. It is not so simple to solve for x when we are given b. Actually it is impossible to find *the* solution to Cx = b, because the three equations either have **infinitely many solutions** (sometimes) or else **no solution** (usually):

$$\begin{array}{l} C\boldsymbol{x} = \boldsymbol{0} \\ \textbf{Infinitely} \\ \textbf{many } \boldsymbol{x} \end{array} \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ is solved by all vectors } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c \\ c \\ c \end{bmatrix}. \quad (12)$$

Every constant vector like $\mathbf{x} = (3, 3, 3)$ has zero differences when we go cyclically. The undetermined constant c is exactly like the +C that we add to integrals. The cyclic differences cycle around to $x_1 - x_3$ in the first component, instead of starting from $x_0 = 0$.

The more likely possibility for Cx = b is **no solution** x at all:

 $C\boldsymbol{x} = \boldsymbol{b} \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ Left sides add to 0 Right sides add to 9 No solution x_1, x_2, x_3 (13)

Look at this example geometrically. No combination of u, v, and w^* will produce the vector b = (1,3,5). The combinations don't fill the whole three-dimensional space. The right sides must have $b_1 + b_2 + b_3 = 0$ to allow a solution to Cx = b, because the left sides $x_1 - x_3, x_2 - x_1$, and $x_3 - x_2$ always add to zero. Put that in different words :

All linear combinations $x_1u + x_2v + x_3w^*$ lie on the plane given by $b_1 + b_2 + b_3 = 0$.

This subject is suddenly connecting algebra with geometry. Linear combinations can fill all of space, or only a plane. We need a picture to show the crucial difference between u, v, w (the first example) and u, v, w^* (all in the same plane).

Figure 1.10: Independent vectors u, v, w. Dependent vectors u, v, w^* in a plane.

Independence and Dependence

Figure 1.10 shows those column vectors, first of the matrix A and then of C. The first two columns u and v are the same in both pictures. If we only look at the combinations of those two vectors, we will get a two-dimensional plane. The key question is whether the third vector is in that plane:

Independence	w is not in the plane of u and v .
Dependence	w^* is in the plane of u and v .

The important point is that the new vector w^* is a linear combination of u and v:

$$\boldsymbol{u} + \boldsymbol{v} + \boldsymbol{w}^* = 0$$
 $\boldsymbol{w}^* = \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} = -\boldsymbol{u} - \boldsymbol{v}.$ (14)

All three vectors u, v, w^* have components adding to zero. Then all their combinations will have $b_1 + b_2 + b_3 = 0$ (as we saw above, by adding the three equations). This is the equation for the plane containing all combinations of u and v. By including w^* we get *no new vectors* because w^* is already on that plane.

The original w = (0, 0, 1) is not on the plane: $0 + 0 + 1 \neq 0$. The combinations of u, v, w fill the whole three-dimensional space. We know this already, because the solution $x = A^{-1}b$ in equation (6) gave the right combination to produce any b.

The two matrices A and C, with third columns w and w^* , allowed me to mention two key words of linear algebra: independence and dependence. The first half of the course will develop these ideas much further—I am happy if you see them early in the two examples:

u, v, w are independent. No combination except 0u + 0v + 0w = 0 gives b = 0.

 u, v, w^* are **dependent**. Other combinations like $u + v + w^*$ give b = 0.

You can picture this in three dimensions. The three vectors lie in a plane or they don't. Chapter 2 has n vectors in n-dimensional space. *Independence or dependence* is the key point. The vectors go into the columns of an n by n matrix:

Independent columns: Ax = 0 has one solution. A is an invertible matrix.

Dependent columns: Cx = 0 has many solutions. C is a singular matrix.

Eventually we will have *n* vectors in *m*-dimensional space. The matrix *A* with those *n* columns is now *rectangular* (*m* by *n*). Understanding Ax = b is the problem of Chapter 3.

REVIEW OF THE KEY IDEAS

- **1.** Matrix times vector: Ax =combination of the columns of A.
- 2. The solution to Ax = b is $x = A^{-1}b$, when A is an invertible matrix.
- 3. The cyclic matrix C has no inverse. Its three columns lie in the same plane. Those dependent columns add to the zero vector. Cx = 0 has many solutions.
- 4. This section is looking ahead to key ideas, not fully explained yet.

WORKED EXAMPLES

1.3 A Change the southwest entry a_{31} of A (row 3, column 1) to $a_{31} = 1$:

$$A\boldsymbol{x} = \boldsymbol{b} \qquad \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ \mathbf{1} & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_1 + x_2 \\ \mathbf{x}_1 - x_2 + x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Find the solution x for any b. From $x = A^{-1}b$ read off the inverse matrix A^{-1} .

Solution Solve the (linear triangular) system Ax = b from top to bottom:

first $x_1 = b_1$	[1	0	0	IΓ	b_1	1
then $x_2 = b_1 + b_2$ This says that $\boldsymbol{x} = A^{-1}\boldsymbol{b} =$	1	1	0		b_2	
then $x_3 = b_2 + b_3$	0	1	1		b_3	

This is good practice to see the columns of the inverse matrix multiplying b_1, b_2 , and b_3 . The first column of A^{-1} is the solution for $\mathbf{b} = (1, 0, 0)$. The second column is the solution for $\mathbf{b} = (0, 1, 0)$. The third column \mathbf{x} of A^{-1} is the solution for $A\mathbf{x} = \mathbf{b} = (0, 0, 1)$.

The three columns of A are still independent. They don't lie in a plane. The combinations of those three columns, using the right weights x_1, x_2, x_3 , can produce any threedimensional vector $\mathbf{b} = (b_1, b_2, b_3)$. Those weights come from $\mathbf{x} = A^{-1}\mathbf{b}$.

1.3 B This E is an elimination matrix. E has a subtraction and E^{-1} has an addition.

$$\boldsymbol{b} = E\boldsymbol{x} \qquad \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 - \ell x_1 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & 0 \\ -\boldsymbol{\ell} & \mathbf{1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \qquad E = \begin{bmatrix} \mathbf{1} & 0 \\ -\boldsymbol{\ell} & \mathbf{1} \end{bmatrix}$$

The first equation is $x_1 = b_1$. The second equation is $x_2 - \ell x_1 = b_2$. The inverse will *add* ℓb_1 to b_2 , because the elimination matrix *subtracted* :

$$\boldsymbol{x} = E^{-1}\boldsymbol{b} \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ \ell b_1 + b_2 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & 0 \\ \boldsymbol{\ell} & \mathbf{1} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \qquad E^{-1} = \begin{bmatrix} \mathbf{1} & 0 \\ \boldsymbol{\ell} & \mathbf{1} \end{bmatrix}$$

1.3 C Change C from a cyclic difference to a **centered difference** producing $x_3 - x_1$:

$$C\boldsymbol{x} = \boldsymbol{b} \qquad \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 - 0 \\ x_3 - x_1 \\ 0 - x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$
(15)

 $C\mathbf{x} = \mathbf{b}$ can only be solved when $b_1 + b_3 = x_2 - x_2 = 0$. That is a plane of vectors \mathbf{b} in three-dimensional space. Each column of C is in the plane, the matrix has no inverse. So this plane contains all combinations of those columns (which are all the vectors $C\mathbf{x}$).

I included the zeros so you could see that this C produces "centered differences". Row *i* of Cx is x_{i+1} (*right of center*) minus x_{i-1} (*left of center*). Here is 4 by 4:

$C \boldsymbol{x} = \boldsymbol{b}$ Centered differences	$\begin{bmatrix} 0\\ -1\\ 0\\ 0 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ -1 \end{array} $	0 0 1 0	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} =$	$\begin{bmatrix} x_2 - 0 \\ x_3 - x_1 \\ x_4 - x_2 \\ 0 - x_3 \end{bmatrix}$	=	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$	(16	5)
--	--	--	--	------------------	--	--	---	--	-----	----

Surprisingly this matrix is now invertible! The first and last rows tell you x_2 and x_3 . Then the middle rows give x_1 and x_4 . It is possible to write down the inverse matrix C^{-1} . But 5 by 5 will be singular (*not invertible*) again ...

28

Problem Set 1.3

1 Find the linear combination $3s_1 + 4s_2 + 5s_3 = b$. Then write b as a matrix-vector multiplication Sx, with 3, 4, 5 in x. Compute the three dot products (row of S) $\cdot x$:

$$s_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 $s_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$ $s_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ go into the columns of S.

2 Solve these equations Sy = b with s_1, s_2, s_3 in the columns of S:

$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$	0 1 1	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$	=	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$	and	$\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$	0 1 1	0 0 1		$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$	=	$\begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix}$	•
---	-------------	--	---	---	---	-----	---	-------------	-------------	--	---	---	---	---

S is a sum matrix. The sum of the first 5 odd numbers is _____.

3 Solve these three equations for y_1, y_2, y_3 in terms of c_1, c_2, c_3 :

$$S\boldsymbol{y} = \boldsymbol{c} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}.$$

Write the solution y as a matrix $A = S^{-1}$ times the vector c. Are the columns of S independent or dependent?

4 Find a combination $x_1w_1 + x_2w_2 + x_3w_3$ that gives the zero vector with $x_1 = 1$:

$$\boldsymbol{w}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 $\boldsymbol{w}_2 = \begin{bmatrix} 4\\5\\6 \end{bmatrix}$ $\boldsymbol{w}_3 = \begin{bmatrix} 7\\8\\9 \end{bmatrix}$.

Those vectors are (independent) (dependent). The three vectors lie in a _____. The matrix W with those three columns is *not invertible*.

5 The rows of that matrix W produce three vectors (*I write them as columns*):

$$m{r}_1 = egin{bmatrix} 1 \ 4 \ 7 \end{bmatrix}$$
 $m{r}_2 = egin{bmatrix} 2 \ 5 \ 8 \end{bmatrix}$ $m{r}_3 = egin{bmatrix} 3 \ 6 \ 9 \end{bmatrix}$.

Linear algebra says that these vectors must also lie in a plane. There must be many combinations with $y_1r_1 + y_2r_2 + y_3r_3 = 0$. Find two sets of y's.

6 Which numbers c give dependent columns so a combination of columns equals zero?

$$\begin{bmatrix} 1 & 1 & 0 \\ 3 & 2 & 1 \\ 7 & 4 & c \end{bmatrix} \begin{bmatrix} 1 & 0 & c \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} c & c & c \\ 2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix}$$
maybe
always
independent for $c \neq 0$?

7 If the columns combine into Ax = 0 then each of the rows has $r \cdot x = 0$:

$\left[\begin{array}{ccc} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \boldsymbol{a}_3 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$	$\mathbf{By rows} \begin{bmatrix} \boldsymbol{r}_1 \cdot \boldsymbol{x} \\ \boldsymbol{r}_2 \cdot \boldsymbol{x} \\ \boldsymbol{r}_3 \cdot \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$
--	---

The three rows also lie in a plane. Why is that plane perpendicular to x?

8 Moving to a 4 by 4 difference equation $A\mathbf{x} = \mathbf{b}$, find the four components x_1, x_2, x_3, x_4 . Then write this solution as $\mathbf{x} = A^{-1}\mathbf{b}$ to find the inverse matrix :

$$A\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \boldsymbol{b}.$$

- **9** What is the *cyclic* 4 by 4 difference matrix C? It will have 1 and -1 in each row and each column. Find all solutions $\mathbf{x} = (x_1, x_2, x_3, x_4)$ to $C\mathbf{x} = \mathbf{0}$. The four columns of C lie in a "three-dimensional hyperplane" inside four-dimensional space.
- **10** A *forward* difference matrix Δ is *upper* triangular:

$$\Delta \boldsymbol{z} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} z_2 - z_1 \\ z_3 - z_2 \\ 0 - z_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \boldsymbol{b}$$

Find z_1, z_2, z_3 from b_1, b_2, b_3 . What is the inverse matrix in $\boldsymbol{z} = \Delta^{-1} \boldsymbol{b}$?

- **11** Show that the forward differences $(t + 1)^2 t^2$ are 2t+1 = odd numbers. As in calculus, the difference $(t + 1)^n - t^n$ will begin with the derivative of t^n , which is _____.
- **12** The last lines of the Worked Example say that the 4 by 4 centered difference matrix in (16) *is* invertible. Solve $C\mathbf{x} = (b_1, b_2, b_3, b_4)$ to find its inverse in $\mathbf{x} = C^{-1} \mathbf{b}$.

Challenge Problems

- **13** The very last words say that the 5 by 5 centered difference matrix *is not* invertible. Write down the 5 equations Cx = b. Find a combination of left sides that gives zero. What combination of b_1, b_2, b_3, b_4, b_5 must be zero? (The 5 columns lie on a "4-dimensional hyperplane" in 5-dimensional space. *Hard to visualize.*)
- 14 If (a, b) is a multiple of (c, d) with $abcd \neq 0$, show that (a, c) is a multiple of (b, d). This is surprisingly important; two columns are falling on one line. You could use numbers first to see how a, b, c, d are related. The question will lead to:
 - If $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has dependent rows, then it also has dependent columns.

30