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In this note, I provide more detail for the proof of Schur’s Theorem found in Strang’s
Introduction to Linear Algebra[l]

Theorem 1. If A is a square real matrix with real eigenvalues, then there is an orthogonal

matriz Q and an upper triangular matriz T such that A = QTQ".
Proof. Note that A = QTQ" & AQ = QT. Let g, be an eigenvector of norm 1,

with eigenvalue A;. Let go,...,q, be any orthonormal vectors orthogonal to q.
Let Q, = [q;,-..,q,]. Then Q1 Q, = I, and
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Now I claim that A, has eigenvalues Ao, ..., \,. This is true because

det(A — M) = det QT det(A — M) det Q, = det(QT (A — A\I)Q,)
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(2) et(Qp AQ, Q: Q) e< 0 (As — A
= (/\1 — /\) det(Ag — )\I)
So As has real eigenvalues, namely Ao,...,A,. Now we proceed by induction. Suppose

we have proved the theorem for n = k. Then we use this fact to prove the theorem is true
for n = k 4+ 1. Note that the theorem is trivial if n = 1.

So for n = k+ 1, we proceed as above and then apply the known theorem to Ao, which
is k x k. We find that As = QQTQQ; Now this is the hard part. Let Q, and Ay be as
above, and let
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where T is upper triangular. So AQ = QT, or A = QTQ". O

That’s all, folks!
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