
A5 Matrix Factorizations

1. A = CR = (basis for column space of A) (basis for row space of A)

Requirements: C is m by r and R is r by n. Columns of A go into C if they
are not combinations of earlier columns of A. R contains the nonzero rows of the
reduced row echelon form R0 = rref(A). Those rows begin with an r by r identity
matrix, so R equals

[
I F

]
times a column permutation P .

2. A=CMR∗
(
C = first r
independent columns

)(
W = first r by r
invertible submatrix

)−1(
R∗ = first r
independent rows

)

Requirements : C and R∗ come directly from A. Those columns and rows meet in
the r by r matrix W = M−1 (Section 3.2) : M = mixing matrix. The first r by r in-
vertible submatrix W is the intersection of the r columns of C with the r rows of R∗.

3. A = LU =

(
lower triangular L
1’s on the diagonal

)(
upper triangular U

pivots on the diagonal

)

Requirements: No row exchanges as Gaussian elimination reduces square A to U .

4. A = LDU =

(
lower triangular L
1’s on the diagonal

)(
pivot matrix
D is diagonal

)(
upper triangular U
1’s on the diagonal

)

Requirements: No row exchanges. The pivots in D are divided out from rows of U
to leave 1’s on the diagonal of U . If A is symmetric then U is LT and A = LDLT.

5. PA = LU (permutation matrix P to avoid zeros in the pivot positions).

Requirements: A is invertible. Then P,L, U are invertible. P does all of the
row exchanges on A in advance, to allow normal LU . Alternative: A = L1P1U1.

6. S = CTC = (lower triangular) (upper triangular) with
√
D on both diagonals

Requirements: S is symmetric and positive definite (all n pivots in D are positive).
This Cholesky factorization C = chol(S) has CT = L

√
D, so S = CTC = LDLT.

7. A = QR = (orthonormal columns in Q) (upper triangular matrix R).

Requirements: A has independent columns. Those are orthogonalized in Q by the
Gram-Schmidt or Householder process. If A is square then Q−1 = QT.

8. A = XΛX−1 = (eigenvectors in X) (eigenvalues in Λ) (left eigenvectors in X−1).

Requirements: A must have n linearly independent eigenvectors.

9. S = QΛQT = (orthogonal matrix Q) (real eigenvalue matrix Λ) (QT is Q−1).

Requirements: S is real and symmetric: ST = S. This is the Spectral Theorem.
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10. A = BJB−1 = (generalized eigenvectors in B) (Jordan blocks in J) (B−1).

Requirements: A is any square matrix. This Jordan form J has a block for each
linearly independent eigenvector of A. Every block has only one eigenvalue.

11. A = UΣV T =

(
orthogonal
U is m×m

)(
m× n singular value matrix
σ1, . . . , σr on its diagonal

)(
orthogonal
V is n× n

)
.

Requirements: None. This Singular Value Decomposition (SVD) has the eigenvec-
tors of AAT in U and eigenvectors of ATA in V ; σi =

√
λi(ATA) =

√
λi(AAT).

Those singular values are σ1 ≥ σ2 ≥ · · · ≥ σr > 0. By column-row multiplication

A = UΣV T = σ1u1v
T
1 + · · ·+ σrurv

T
r .

If S is symmetric positive definite then U = V = Q and Σ = Λ and S = QΛQT.

12. A+ = V Σ+UT =

(
orthogonal
n× n

)(
n×m pseudoinverse of Σ
1/σ1, . . . , 1/σr on diagonal

)(
orthogonal
m×m

)
.

Requirements: None. The pseudoinverseA+ has A+A = projection onto row space
of A and AA+ = projection onto column space. A+ = A−1 if A is invertible. The
shortest least-squares solution to Ax = b is x+=A+b. This solves ATAx+=ATb.

13. A = QS = (orthogonal matrix Q) (symmetric positive definite matrix S).

Requirements: A is invertible. This polar decomposition has S2 = ATA. The
factor S is semidefinite if A is singular. The reverse polar decomposition A = KQ
has K2 = AAT. Both have Q = UV T from the SVD.

14. A = UΛU−1 = (unitary U ) (eigenvalue matrix Λ) (U−1 which is UH = U
T

).

Requirements: A is normal: AHA = AAH. Its orthonormal (and possibly complex)
eigenvectors are the columns of U . Complex λ’s unless S = SH: Hermitian case.

15. A = QTQ−1 = (unitary Q) (triangular T with λ’s on diagonal) (Q−1 = QH).

Requirements: Schur triangularization of any square A. There is a matrix Q with
orthonormal columns that makes Q−1AQ triangular: Section 6.3.

16. Fn =

[
I D
I −D

] [
Fn/2

Fn/2

] [
even-odd

permutation

]
= one step of the recursive FFT.

Requirements: Fn = Fourier matrix with entries wjk where wn = 1: FnFn = nI .
D has 1, w, . . . , wn/2− 1 on its diagonal. For n = 2ℓ the Fast Fourier Transform

will compute Fnx with only 1
2nℓ =

1
2n log2 n multiplications from ℓ stages of D’s.




