A5 Matrix Factorizations

1. $\boldsymbol{A}=\boldsymbol{C R}=($ basis for column space of $A)$ (basis for row space of A)

Requirements: C is m by r and R is r by n. Columns of A go into C if they are not combinations of earlier columns of $A . R$ contains the nonzero rows of the reduced row echelon form $\boldsymbol{R}_{\mathbf{0}}=\boldsymbol{\operatorname { r r e f }}(\boldsymbol{A})$. Those rows begin with an r by r identity matrix, so R equals [$\left.\begin{array}{ll}I & F\end{array}\right]$ times a column permutation P.
2. $\quad \boldsymbol{A}=\boldsymbol{C} \boldsymbol{M} \boldsymbol{R}^{*}\binom{C=$ first $r}{$ independent columns }$\binom{W=\text { first } r \text { by } r}{\text { invertible submatrix }}^{\boldsymbol{1}}\binom{R^{*}=$ first $r}{$ independent rows }

Requirements : C and R^{*} come directly from A. Those columns and rows meet in the r by r matrix $W=M^{-1}$ (Section 3.2) : $M=$ mixing matrix. The first r by r invertible submatrix W is the intersection of the r columns of C with the r rows of R^{*}.
3. $\quad \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}=\binom{$ lower triangular $L}{$ 1's on the diagonal }$\binom{$ upper triangular $U}{$ pivots on the diagonal }

Requirements: No row exchanges as Gaussian elimination reduces square A to U.
4. $\quad \boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}=\binom{$ lower triangular $L}{$ 1's on the diagonal }$\binom{$ pivot matrix }{D is diagonal }$\binom{$ upper triangular $U}{1$'s on the diagonal }

Requirements: No row exchanges. The pivots in D are divided out from rows of U to leave 1 's on the diagonal of U. If A is symmetric then U is L^{T} and $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{\mathbf{T}}$.
5. $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ (permutation matrix P to avoid zeros in the pivot positions).

Requirements: A is invertible. Then P, L, U are invertible. P does all of the row exchanges on A in advance, to allow normal $L U$. Alternative: $A=L_{1} P_{1} U_{1}$.
6. $\boldsymbol{S}=\boldsymbol{C}^{\mathbf{T}} \boldsymbol{C}=$ (lower triangular) (upper triangular) with \sqrt{D} on both diagonals

Requirements: S is symmetric and positive definite (all n pivots in D are positive). This Cholesky factorization $C=\operatorname{chol}(S)$ has $C^{\mathrm{T}}=L \sqrt{D}$, so $S=C^{\mathrm{T}} C=L D L^{\mathrm{T}}$.
7. $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}=$ (orthonormal columns in Q) (upper triangular matrix R).

Requirements: A has independent columns. Those are orthogonalized in Q by the Gram-Schmidt or Householder process. If A is square then $Q^{-1}=Q^{\mathrm{T}}$.
8. $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{X}^{-1}=($ eigenvectors in $X)($ eigenvalues in $\Lambda)\left(\right.$ left eigenvectors in $\left.X^{-1}\right)$.

Requirements: A must have n linearly independent eigenvectors.
9. $\boldsymbol{S}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathbf{T}}=($ orthogonal matrix $Q)($ real eigenvalue matrix $\Lambda)\left(Q^{\mathrm{T}}\right.$ is $\left.Q^{-1}\right)$.

Requirements: S is real and symmetric: $S^{\mathrm{T}}=S$. This is the Spectral Theorem.
10. $\boldsymbol{A}=\boldsymbol{B} \boldsymbol{J} \boldsymbol{B}^{\boldsymbol{- 1}}=($ generalized eigenvectors in $B)($ Jordan blocks in $J)\left(B^{-1}\right)$.

Requirements: A is any square matrix. This Jordan form J has a block for each linearly independent eigenvector of A. Every block has only one eigenvalue.
11. $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}=\binom{$ orthogonal }{U is $m \times m}\binom{m \times n$ singular value matrix }{$\sigma_{1}, \ldots, \sigma_{r}$ on its diagonal }$\binom{$ orthogonal }{V is $n \times n}$.

Requirements: None. This Singular Value Decomposition (SVD) has the eigenvectors of $A A^{\mathrm{T}}$ in U and eigenvectors of $A^{\mathrm{T}} A$ in $V ; \sigma_{i}=\sqrt{\lambda_{i}\left(A^{\mathrm{T}} A\right)}=\sqrt{\lambda_{i}\left(A A^{\mathrm{T}}\right)}$. Those singular values are $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$. By column-row multiplication

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\cdots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{\mathrm{T}}
$$

If S is symmetric positive definite then $U=V=Q$ and $\Sigma=\Lambda$ and $S=Q \Lambda Q^{\mathrm{T}}$.
12. $\boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{\mathbf{T}}=\binom{$ orthogonal }{$n \times n}\binom{n \times m$ pseudoinverse of $\Sigma}{1 / \sigma_{1}, \ldots, 1 / \sigma_{r}$ on diagonal }$\binom{$ orthogonal }{$m \times m}$.

Requirements: None. The pseudoinverse A^{+}has $A^{+} A=$ projection onto row space of A and $A A^{+}=$projection onto column space. $A^{+}=A^{-1}$ if A is invertible. The shortest least-squares solution to $A \boldsymbol{x}=\boldsymbol{b}$ is $\boldsymbol{x}^{+}=A^{+} \boldsymbol{b}$. This solves $A^{\mathrm{T}} A \boldsymbol{x}^{+}=A^{\mathrm{T}} \boldsymbol{b}$.
13. $\boldsymbol{A}=\boldsymbol{Q S}=($ orthogonal matrix Q) (symmetric positive definite matrix S).

Requirements: A is invertible. This polar decomposition has $S^{2}=A^{\mathrm{T}} A$. The factor S is semidefinite if A is singular. The reverse polar decomposition $A=K Q$ has $K^{2}=A A^{\mathrm{T}}$. Both have $Q=U V^{\mathrm{T}}$ from the SVD.
14. $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{-1}=($ unitary $U)$ (eigenvalue matrix $\left.\Lambda\right)\left(U^{-1}\right.$ which is $\left.U^{\mathrm{H}}=\bar{U}^{\mathrm{T}}\right)$.

Requirements: A is normal: $A^{\mathrm{H}} A=A A^{\mathrm{H}}$. Its orthonormal (and possibly complex) eigenvectors are the columns of U. Complex λ 's unless $S=S^{\mathrm{H}}$: Hermitian case.
15. $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{T} \boldsymbol{Q}^{-\mathbf{1}}=($ unitary $Q)$ (triangular T with λ 's on diagonal) $\left(Q^{-1}=Q^{\mathrm{H}}\right)$.

Requirements: Schur triangularization of any square A. There is a matrix Q with orthonormal columns that makes $Q^{-1} A Q$ triangular: Section 6.3.
16. $\boldsymbol{F}_{\boldsymbol{n}}=\left[\begin{array}{rr}I & D \\ I & -D\end{array}\right]\left[\begin{array}{ll}\boldsymbol{F}_{\boldsymbol{n} / \mathbf{2}} & \\ & \boldsymbol{F}_{\boldsymbol{n} / \mathbf{2}}\end{array}\right]\left[\begin{array}{c}\text { even-odd } \\ \text { permutation }\end{array}\right]=$ one step of the recursive FFT.

Requirements: $F_{n}=$ Fourier matrix with entries $w^{j k}$ where $w^{n}=1: F_{n} \bar{F}_{n}=n I$. D has $1, w, \ldots, w^{n / 2-1}$ on its diagonal. For $n=2^{\ell}$ the Fast Fourier Transform will compute $F_{n} \boldsymbol{x}$ with only $\frac{1}{2} n \ell=\frac{1}{2} n \log _{2} n$ multiplications from ℓ stages of D 's.

