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Solutions to Exercises 177

Problem Set 12.1, page 544

1 When 7 is added to every output, the mean increases by 7 and the variance does not

change (because new variance comes from (distance)2 to the new mean).

New sample mean and new expected mean : Add 7. New variance : No change.

2 If we add 1
3 to 1

7 (fraction of integers divisible by 3 plus fraction divisible by 7) we

have double counted the integers divisible by both 3 and 7. This is a fraction 1
21 of all

integers (because these double counted numbers are multiples of 21). So the fraction

divisible by 3 or 7 or both is
1

3
+

1

7
− 1

21
=

7

21
+

3

21
− 1

21
=

9

21
=

3

7
.

3 In the numbers from 1 to 1000, each group of ten numbers will contain each possible

ending x = 1, 2, 3, . . . , 0. So those endings all have the same probability pi = 1
10

.

Expected mean of that last digit x :

m = E [x] =Σ pi xi =
1

10

9∑

i=0

i =
45

10
= 4.5

The best way to find the variance σ2 = 8.25 is in the last line below and in problem

12.1.7. The slower way to find σ2 is

σ2 = E [(x− 4.5)2] =

9∑

i=0

pi(xi − 4.5)2 =
1

10

9∑

i=0

(i− 4.5)2

We can separate
(
i− 4.5

)2
into

(
i2 − 9i+ (4.5)2

)
and add from i = 0 to i = 9 :

1

10

(
9∑

0

i2 − 9

9∑

0

i+

9∑

0

(4.5)2

)
=

1

10

(
285− 9(45) + 10(4.5)2

)

=
1

10
(285− 405 + 202.5) =

82.5

10
= 8.25 =

33

4
.

Notice that 202.5 is half of 405—like Nm2 and 2Nm2 in equation (4), page 536.

I should have extended equation (4) to its best form :

σ2 = E [(x − m)2] = E [x2] − m2

That quickly gives 285
10 − (4.5)2 = 8.25 = same answer.
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4 For numbers ending in 0, 1, 2, . . . , 9 the squares end in x = 0, 1, 4, 9, 6, 5, 6, 9, 4, 1. So

the probabilities of x = 0 and 5 are p = 1
10

and the probabilities of x = 1, 4, 6, 9 are

p = 1
5
. The mean is

m =Σ pi xi =
0

0
+

5

10
+

1

5
(1 + 4 + 6 + 9) = 4.5 = same as before.

The variance using the improvement of equation (4) is

σ2 = E [x2]−m2 =
1

10
02 +

1

10
52 +

1

5
(12 + 42 + 62 + 92)−m2

=
25

10
+

134

5
− 20.25 = 9.05

5 For numbers from 1 to 1000, the first digit is x = 1 for 1000 and 100-199 and 10-19

and 1 (112 times). The first digit is x = 2 for 200-299 and 20-29 and 2 (111 times).

The other first digits x = 3 to 9 also happen (111 times). Total (1000 times) is correct.

The average first digit is the mean, close to 1
9

(
1 + 2 + · · ·+ 9

)
= 5 :

m=Σpi xi=
112

1000
(1)+

111

1000
(2+3+· · ·+9)=

112 + 111(44)

1000
=

4996

1000
=4.996 ≈ 5.

The variance is

σ2 = E [(x−m)2] = E [x2]−m2 =
112

1000
(12) +

111

1000
(22 + · · ·+ 92)−m2

=
112 + 111(284)

1000
−m2 ≈ 31635

1000
− 52 = 6.635.

6 The first digits of 1572, 3122, 6962, and 6022 are 2,9,4,3, The sample mean is

1
4
(2 + 9 + 4 + 3) = 18

4
= 4.5. The sample variance with N − 1 = 3 is

S2 =
1

3

[
(−2.5)2 + (4.5)2 + (−.5)2 + (−1.5)2

]
=

1

3

[
29
]
.

7 This question is about the fast way to compute σ2 using m2. The mean m is probably

already computed :

σ2 =
∑

pi (xi −m)2 =
∑

pi (x
2
i − 2mxi +m2)

=
∑

pix
2
i − 2m

∑
pixi +m2

∑
pi

=
∑

pix
2
i − 2m2 +m2 =

∑
pix

2

i − m2 = E [x2] − m2.
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8 For N = 24 samples, all equal to x = 20,

µ =
1

N

∑
xi =

24

24
(20) = 20 and S2 =

1

N − 1

∑
(xi − µ)2 = 0

.For 12 samples of x = 20 and 12 samples of x = 21,

µ =
12(20) + 12(21)

24
= 20.5 and S2=

1

N − 1

∑
(xi−µ)2 =

1

23
24

(
1

2

)2

=
6

23
.

9 This question asks you to set up a random 0-1 generator and run it a million times to

find the average A1000000.

One way is to use MATLAB’s rand command with a uniform distribution between 0

and 1. Add 1
2 to go between 0.5 and 1.5, then find the integer part (0 or 1). Using your

computed average AN (its mean is m = 1
2 since 0 and 1 are equally likely for every

sample) find the normalized variable X :

X =
AN − 1

2

2
√
N

=
AN − 1

2

2000
for N = one million.

10 The average number of heads in N fair coin flips is m = N/2. This is obvious—but

how to derive it from probabilities p0 to pN of 0 to N heads? We have to compute

m = 0p0 + 1p1 + · · ·+NpN with pi =
bi
2N

=
1

2N
N !

i! (N − i)!

A useful fact is pi = pN−i. The probability of i heads equals the probability of i tails.

If we take just those two terms in m, they give

ipi + (N − i)pN−i = ipi + (N − i)pi = Npi

So we can compute m two ways and add :

m = 0p0 + 1p1 + · · ·+ (N − 1)pN−1 +NpN

m = Np0 + (N − 1)p1 + · · ·+ 1pN−1 + 0p0

2m = Np0 +Np1 + · · ·+NpN−1 +NpN

= N(p0 + p1 + · · ·+ pN−1 + pN ) = N .

Then m = N/2. The average number of heads is N/2.
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11 E [x2] = E [(x−m)2 + 2xm−m2]

= E [(x−m)2] + 2mE [x]−m2 E [1]

= σ2 + 2m2 −m2 = σ2 + m2

12 The first step multiplies two independent 1-dimensional integrals (each one from −∞
to ∞) to produce a 2-dimensional integral over the whole plane :

2π

∞∫

−∞

p(x) dx

∞∫

−∞

p(y) dy = 2π

∞∫

−∞

∞∫

−∞

p(x) p(y) dxdy =

∞∫

−∞

∞∫

−∞

e−x2/2e−y2/2 dxdy.

The second step changes to polar coordinates (x = r cos θ, y = r sin θ, dxdy = r dr dθ,

x2 + y2 = r2 with 0 ≤ θ ≤ 2π and 0 ≤ r ≤ ∞). Notice −x2/2− y2/2 = −r2/2 :

∫

plane

∫
e−r2/2 r dr dθ =

2π∫

θ=0

∞∫

r=0

e−r2/2 r dr dθ

The r and θ integrals give the answers 1 and 2π :

∞∫

r=0

e−r2/2 r dr =
[
−e−r2/2

]∞
r=0

= 1

2π∫

θ=0

1 dθ = 2π.

The trick was to get e−r2/2 r dr (which is a perfect derivative of −e−r2/2) by combin-

ing e−x2/2 dx and e−y2/2 dy (which can not be separately integrated from a to b).

Problem Set 12.2, page 554

1 (a) Mean m = E [x] = (0)(1 − p) + (1)(p) = p when the probability of heads is

p. Here x = 0 for tails and x = 1 for heads. Notice that 02 = 0 and 12 = 1 so

E [x2] = E [x] = p.

Variance σ2 = E [x2]−m2 = p − p2

(b) These are independent flips ! So the N by N covariance matrix V is diagonal. The

diagonal entries are the variances σ2 = p−p2 for each flip. Then the rule (16−17−18)

gives the overall variance of the sum from N flips :
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overall variance = [1 1 . . . 1]V




1

1

...

1



= Nσ2 = N(p− p2)

This is just saying : Add the variances for the N independent experiments. Here those

N experiments just repeat one experiment.

2 I am just imitating equation (2) in the text. Now the experiments are numbered 3 and

5. They have means m3 and m5. The covariance σ35 adds up joint probabilities pij

times (distance xi − m3) times (distance yj − m5). Here xi and yj are outputs from

experiments 3 and 5 :

σ35 =
∑

all

∑

i, j

pij (xi −m3) (yj −m5).

3 The 3 by 3 covariance matrix V will be a sum of rank one matrices Vijk = UUT mul-

tiplied by the joint probability pijk of outputs xi, yj , zk. I am copying equation (12) :

V =
∑

all

∑

i, j, k

∑
pijk UUT U =




output xi − mean x

output yj − mean y

output zk − mean z




These matrices UUT = column times row are positive semidefinite with rank 1 (unless

U = 0). The sum V is positive definite unless the 3 experiments are dependent.

Notice that the means x, y, z = m1,m2,m3 have to be computed before the variances.

4 We are told that the 3 experiments are independent. Then the covariances are zero off

the main diagonal of V . This covariance matrix only shows “covariances with itself”

= “variances” σ2
1, σ

2
2, σ

2
3 on the main diagonal.

V =




σ2
1 0 0

0 σ2
2 0

0 0 σ2
3


 .
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5 The point is that some output X = xi must occur. So the possibilities are Y = yj

and X = x1, or Y = yj and X = x2, or Y = yj and X = x3 et cetera. The total

probability of Y = yj is the sum of the conditional probabilities that Y = yj when

X = xi.

Here is another way to say this law of total probability. When B1, B2, . . . are separate

disjoint outcomes that together account for all possible outcomes, then for any A

Prob (A) =
∑

i

Prob (A ∩Bi) =
∑

i

Prob (A|Bi)Prob (Bi).

6 Prob (A|B) = conditional probability of A given B satisfies this axiom :

Prob (A and B) = Prob (A|B)Prob (B).

Reason: If both A and B occur, then B must occur—and knowing that B occurs,

Prob (A|B) gives the probability that A also occurs.

This axiom is saying that pij = Prob (A|B) pi

where B is the event x = xi which has Prob (B) = pi.

7 The joint probabilities pij = Prob (x = xi and y = yj) are in the matrix P :

P =


 0.1 0.3

0.2 0.4


 with entries adding to 1.

Problem 6 says that Prob (Y = y2|X = x1) =
p12

p11 + p12
=

0.3

0.1 + 0.3
=

3

4
.

Problem 5 says that Prob (X = x1) = p11 + p12 = 0.1 + 0.3 = 0.4.

8 This product rule of conditional probability is the axiom in Solution 12.2.6 above :

Prob (A and B) = Prob (A given B) times Prob (B).
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9 This discussion of Bayes’ Theorem is much too compressed ! Let me reproduce three

equations from Wolfram MathWorld. Here A and B are possible “sets” = “outcomes

from an experiment” and the simple-looking identity (∗) connects conditional and

unconditional probabilities.

We know from 8 that Prob (A and B) = Prob (A given B) times Prob (B)

Reversing A and B gives Prob (A and B) = Prob (B given A) times Prob (A)

(∗) Therefore Prob (B given A) =
Prob (A given B)Prob (B)

Prob (A)

MathWorld gives this extension to non-overlapping sets A1, . . . , An whose union is A :

Prob (Ai given A) =
Prob (Ai)Prob (A given Ai)∑

j

Prob (Aj)Prob (A given Aj)

Problem Set 12.3, page 560

1 The two equations from two measurements are

x = b1

x = b2
or


 1

1



[
x
]
=


 b1

b2


 or Ax = b.

The covariance matrix V is diagonal since the measurements are independent :

V =


 σ2

1 0

0 σ2
2


 .

The weighted least squares equation is ATV −1 Ax̂ = AT V −1b.

AT V −1 A =
[
1 1

]

 1/σ2

1 0

0 1/σ2
2




 1

1


 =

1

σ2
1

+
1

σ2
2

AT V −1 b =
[
1 1

]

 1/σ2

1 0

0 1/σ2
2




 b1

b2


 =

b1
σ2
1

+
b2
σ2
2

.

Then x̂ is the ratio of those numbers :

x̂ =
b1/σ

2
1 + b2/σ

2
2

1/σ2
1 + 1/σ2

2
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The variance of that estimate x̂ should be written as in (13) :

E
[
(x̂− x) (x̂− x)T

]
= (AT V −1 A)−1 =

(
1

σ2
1

+
1

σ2
2

)−1

.

2 (a) In the limit σ2 → 0 the ratio x̂ approaches b2 because :

(Multiply x̂ above and below by σ2
1 σ

2
2) x̂ =

b1σ
2
2 + b2σ

2
1

σ2
2 + σ2

1

→ b2σ
2
1

σ2
1

= b2.

The second equation x = b2 is 100% accurate if its variance is σ2 = 0.

(b) If σ2 → ∞ then 1/σ2
2 → 0 and x̂ → b1/σ

2
1

1/σ2
1

= b1. We are getting no information

from the totally unreliable measurement x = b2.

3 The key fact of independence is in the equation p(x, y) = p(x) p(y). Then
∫ ∫

p(x, y) dx dy =

∫ ∫
p(x) p(y) dx dy =

∫
p(x) dx

∫
p(y) dy = (1) (1) = 1.

∫ ∫
(x+ y) p(x, y) dx dy =

∫ ∫
x p(x) p(y) dx dy +

∫ ∫
y p(x) p(y) dx dy

=

∫
x p(x) dx

∫
p(y) dy +

∫
p(x) dx

∫
y p(y) dy

= (mx) (1) + (1) (my) = mx +my.

4 Continue Problem 3 to find variances σ2
x and σ2

y and to see covariance σxy = 0 :
∫ ∫

(x −mx)
2 p(x, y) dx dy =

∫
(x −mx)

2 p(x) dx

∫
p(y) dy = σ2

x

∫ ∫
(x−mx) (y−my) p(x, y) dx dy =

∫
(x−mx) p(x) dx

∫
(y−my) p(y) dy=(0) (0).

5 We are inverting a 2 by 2 matrix using


 a b

c d



−1

=
1

ad− bc


 d −b

−c a


 :

V −1 =


 σ2

1 σ12

σ12 σ2
2



−1

=
1

σ2
1 σ

2
2 − σ2

12


 σ2

2 −σ12

−σ12 σ2
1


 = ρ =

σ12

σ1 σ2

1

σ2
1 σ

2
2(1−ρ2)


 σ2

2 −σ12

−σ12 σ2
1


 =

1

1−ρ2


 1/σ2

1 −ρ/σ1 σ2

−ρ/σ1 σ2 1/σ2
2



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6 The right hand side of x̂k+1 shows the gain factor 1/(k + 1) :

x̂k+
1

k + 1
(bk+1−x̂k)=

b1 + · · ·+ bk
k

+
1

k + 1

(
bk+1 −

b1 + · · ·+ bk
k

)
=

b1 + · · ·+ bk+1

k + 1

Check that each number b1, b2, . . . , bk, bk+1 is correctly divided by k + 1 :

1

k
− 1

k + 1

1

k
=

1

k

(
k + 1 − 1

k + 1

)
=

1

k + 1
.

7 We are considering the case when all the measurements b1, b2, . . . , bk+1 have the same

variance σ2. We know that the correct variance of their average is Wk+1 = σ2/(k+1).

We want to see how this answer comes from equation (18) when we have the correct

Wk = σ2/k from the previous step, and we update to Wk+1 :

(18) says that W−1
k+1 = W−1

k +AT
k+1 V

−1
k+1 Ak+1 =

k

σ2
+[1] [1/σ2] [1] =

k

σ2
+

1

σ2
=

k + 1

σ2
.

So Wk+1 = σ2/(k + 1) is correct at the new step (and forever by induction).

8 The three equations have variances σ2, s2, σ2 and they have zero covariances. (This

makes the step-by-step Kalman filter possible.) We can divide the equations by σ, s, σ

to produce unit variances (which lead to ordinary unweighted least squares). We are

given F = 1 : 


1/σ 0

−1/s 1/s

0 1/σ





 x0

x1


 =




b0/σ

0

b1/σ


 is our Ax = b.

The normal equation (now unweighted) is AT A x̂ = AT b :




1

σ2
+

1

s2
− 1

s2

− 1

s2
1

σ2
+

1

s2







x̂1

x̂2


 =




b0
σ2

b1
σ2


 .

The determinant of this AT A is det =
1

σ4
+

2

σ2 s2
. The solution is

x̂1 =
1

det

(
b0
σ4

+
b0

σ2 s2
+

b1
σ2 s2

)
x̂2 =

1

det

(
b0

σ2 s2
+

b1
σ2 s2

+
b1
σ4

)
.
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9 With A = I and uT = vT = [1 2 3] we can use the direct formula for M−1 :

(I − uvT)−1 = I +
uvT

1− vTu
= I +

1

1− 14




1

2

3



[
1 2 3

]

=




1− 1
13

2
13

3
13

2
13 1− 4

13
6
13

3
13

6
13 1− 9

13


. Multiply b=




2

1

4


 to get y=




2

1

4


−

16

13




1

2

3


=

1

13




10

−19

4


 .

Instead of this formula for (I = uvT)−1, try steps 1 and 2 :

Step 1 with A = I gives x = b and z = u.

Step 2 gives y = b− vT u

13
u =




2

1

4


− 16

13




1

2

3


 as before.

10 We are asked to check that My = b using the update formula. Start with

My = (A− uvT)

(
x+

vT x

c
z

)

= Ax− u (vT x) +
vT xAz

c
− u (vTz) (vT x)

c

Since Ax = b we hope the other 3 terms combine to give zero when Az = u

uvT x

[
−1 +

1

c
− vTz

c

]
=

uvT x

c

[
−c+ 1− vT z

]
= 0 from the formula for c

11 Multiply columns times rows to see that the new v changes ATA to

[
AT v

]

 A

vT


 = ATA+ vvT

So adding the new row to A (and of course the new column to AT) has increased AT A

by the rank one matrix vvT.
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The book is ending with matrix multiplication ! We could allow changes of rank r :

When A changes to M = A− UW−1V , its inverse changes to

M−1 = A−1 + A−1 U(W − V A−1 U)−1 V A−1.

This change has rank r when Wr×r and Vr×n and Un×r all have rank r.




