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Solutions to Exercises 169

Problem Set 11.1, page 516

1 Without exchange, pivots .001 and 1000; with exchange, 1 and −1. When the pivot is

larger than the entries below it, all |ℓij | =
|entry|
|pivot| ≤ 1. A =




1 1 1

0 1 −1

−1 1 1


.

2 The exact inverse of hilb(3) is A−1 =




9 −36 30

−36 192 −180

30 −180 180


.

3 A




1

1

1


=




11/6

13/12

47/60


=




1.833

1.083

0.783


 compares withA




0

6

−3.6


=




1.80

1.10

0.78


.‖∆b‖ < .04 but

‖∆x‖ > 6.

The difference (1, 1, 1)− (0, 6,−3.6) is in a direction ∆x that has A∆x near zero.

4 The largest ‖x‖ = ‖A−1b‖ is ‖A−1‖ = 1/λmin sinceAT = A; largest error 10−16/λmin.

5 Each row of U has at most w entries. Use w multiplications to substitute components

of x (already known from below) and divide by the pivot. Total for n rows < wn.

6 The triangular L−1, U−1, R−1 need 1
2
n2 multiplications. Q needs n2 to multiply the

right side by Q−1 = QT. So QRx = b takes 1.5 times longer than LUx = b.

7 UU−1 = I : Back substitution needs 1
2 j

2 multiplications on column j, using the j by

j upper left block. Then 1
2(1

2 + 22 + · · ·+ n2) ≈ 1
2 (

1
3n

3) = total to find U−1.

8


1 0

2 2


 →


2 2

1 0


 →


2 2

0 −1


 = U with P =


0 1

1 0


 and L =


 1 0

.5 1


;

A →




2 2 0

1 0 1

0 2 0


 →




2 2 0

0 −1 1

0 2 0


 →




2 2 0

0 2 0

0 −1 1


 →




2 2 0

0 2 0

0 0 1


 = U with

P =




0 1 0

0 0 1

1 0 0


 and L =




1 0 0

0 1 0

.5 −.5 1


.
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9 A =




1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1




has cofactors C13 = C31 = C24 = C42 = 1 and

C14 = C41 = −1. A−1 is a full matrix!

10 With 16-digit floating point arithmetic the errors ‖x − xcomputed‖ for ε = 10−3, 10−6,

10−9, 10−12, 10−15 are of order 10−16, 10−11, 10−7, 10−4, 10−3.

11 (a) cos θ = 1/
√
10, sin θ = −3/

√
10, R= 1√

10


 1 3

−3 1




1 −1

3 5


= 1√

10


10 14

0 8


.

(b) A has eigenvalues 4 and 2. Put one of the unit eigenvectors in row 1 of Q: either

Q =
1√
2


1 −1

1 1


 and QAQ−1 =


2 −4

0 4


 or

Q =
1√
10


1 −3

3 1


 and QAQ−1 =


4 −4

0 2


.

12 When A is multiplied by a plane rotation Qij , this changes the 2n (not n2) entries in

rows i and j. Then multiplying on the right by (Qij)
−1 = (Qij)

T changes the 2n

entries in columns i and j.

13 QijA uses 4n multiplications (2 for each entry in rows i and j). By factoring out cos θ,

the entries 1 and ± tan θ need only 2n multiplications, which leads to 2
3
n3 for QR.

14 The (2, 1) entry of Q21A is 1
3 (− sin θ + 2 cos θ). This is zero if sin θ = 2 cos θ or

tan θ = 2. Then the 2, 1,
√
5 right triangle has sin θ = 2/

√
5 and cos θ = 1/

√
5.

Every 3 by 3 rotation with detQ = +1 is the product of 3 plane rotations.

15 This problem shows how elimination is more expensive (the nonzero multipliers in L

and LL are counted by nnz(L) and nnz(LL)) when we spoil the tridiagonal K by a

random permutation.

If on the other hand we start with a poorly ordered matrixK, an improved ordering

is found by the code symamd discussed in this section.
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16 The “red-black ordering” puts rows and columns 1 to 10 in the odd-even order 1, 3, 5, 7,

9, 2, 4, 6, 8, 10. When K is the −1, 2,−1 tridiagonal matrix, odd points are connected

only to even points (and 2 stays on the diagonal, connecting every point to itself):

K =




2 −1

−1 2 −1

· · ·
−1 2




and PKPT =


 2I D

DT 2I


 with

D =




−1

−1 −1

0 −1 −1

−1 −1

−1 −1




1 to 2

3 to 2, 4

5 to 4, 6

7 to 6, 8

9 to 8, 10

17 Jeff Stuart’s Shake a Stick activity has long sticks representing the graphs of two linear

equations in the x-y plane. The matrix is nearly singular and Section 9.2 shows how to

compute its condition number c = ‖A‖‖A−1‖ = σmax/σmin ≈ 80, 000:

A =



1 1.0001

1 1.0000


 ‖A‖ ≈ 2 A−1 = 10000



−1 1.0001

1 −1




‖A−1‖ ≈ 20000

c ≈ 40000.

Problem Set 11.2, page 522

1 ‖A‖ = 2, ‖A−1‖ = 2, c = 4; ‖A‖ = 3, ‖A−1‖ = 1, c = 3; ‖A‖ = 2 +
√
2 =

λmax for positive definite A, ‖A−1‖ = 1/λmin, comd = (2 +
√
2)/(2−

√
2) = 5.83.

2 ‖A‖ =2, c = 1; ‖A‖ =
√
2, c = ∞ (singular matrix); ATA = 2I , ‖A‖ =

√
2, c = 1.

3 For the first inequality replace x by Bx in ‖Ax‖ ≤ ‖A‖‖x‖; the second inequality is

just ‖Bx‖ ≤ ‖B‖‖x‖. Then ‖AB‖ = max(‖ABx‖/‖x‖) ≤ ‖A‖‖B‖.

4 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = c(A).
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5 If Λmax = Λmin = 1 then all Λi = 1 and A = SIS−1 = I . The only matrices with

‖A‖ = ‖A−1‖ = 1 are orthogonal matrices.

6 All orthogonal matrices have norm 1, so ‖A‖ ≤ ‖Q‖‖R‖ = ‖R‖ and in reverse ‖R‖ ≤
‖Q−1‖‖A‖ = ‖A‖. Then ‖A‖ = ‖R‖. Inequality is usual in ‖A‖ < ‖L‖‖U‖ when

ATA 6= AAT. Use norm on a random A.

7 The triangle inequality gives ‖Ax + Bx‖ ≤ ‖Ax‖ + ‖Bx‖. Divide by ‖x‖ and take

the maximum over all nonzero vectors to find ‖A+B‖ ≤ ‖A‖+ ‖B‖.

8 If Ax = λx then ‖Ax‖/‖x‖ = |λ| for that particular vector x. When we maximize

the ratio ‖Ax‖/‖x‖ over all vectors we get ‖A‖ ≥ |λ|.

9 A+B =


0 1

0 0


+


0 0

1 0


 =


0 1

1 0


 has ρ(A) = 0 and ρ(B) = 0 but ρ(A+B) = 1.

The triangle inequality ‖A + B‖ ≤ ‖A‖ + ‖B‖ fails for ρ(A). AB =


1 0

0 0


 has

ρ(AB) > ρ(A) ρ(B); thus ρ(A) = max |λ(A)| = spectral radius is not a norm.

10 (a) The condition number of A−1 is ‖A−1‖‖(A−1)−1‖ which is ‖A−1‖‖A‖ = c(A).

(b) Since ATA and AAT have the same nonzero eigenvalues, AT has the same norm

as A.

11 Use the quadratic formula for λmax/λmin, which is c = σmax/σmin since this A = AT

is positive definite:

c(A) =
(
1.00005 +

√
(1.00005)2 − .0001

)
/
(
1.00005−

√ )
≈ 40, 000.

12 det(2A) is not 2 detA; det(A + B) is not always less than detA + detB; taking

| detA| does not help. The only reasonable property is detAB = (detA)(detB). The

condition number should not change when A is multiplied by 10.

13 The residual b− Ay = (10−7, 0) is much smaller than b− Az = (.0013, .0016). But

z is much closer to the solution than y.

14 detA = 10−6 so A−1 = 103


 659 −563

−913 780


:‖A‖ > 1, ‖A−1‖ > 106, then c > 106.



Solutions to Exercises 173

15 x = (1, 1, 1, 1, 1) has ‖x‖ =
√
5, ‖x‖1 = 5, ‖x‖∞ = 1. x = (.1, .7, .3, .4, .5) has

‖x‖ = 1, ‖x‖1 = 2 (sum), ‖x‖∞ = .7 (largest).

16 x2
1+· · ·+x2

n is not smaller thanmax(x2
i ) and not larger than (|x1|+· · ·+|xn|)2= ‖x‖21.

x2
1 + · · · + x2

n ≤ n max(x2
i ) so ‖x‖ ≤ √

n‖x‖∞. Choose yi = signxi = ±1 to get

‖x‖1 = x · y ≤ ‖x‖‖y‖ =
√
n‖x‖. The vector x = (1, . . . , 1) has ‖x‖1 =

√
n ‖x‖.

17 For the ℓ∞ norm, the largest component of x plus the largest component of y is not

less than ‖x+ y‖∞ = largest component of x+ y.

For the ℓ1 norm, each component has |xi + yi| ≤ |xi|+ |yi|. Sum on i = 1 to n:

‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1.

18 |x1| + 2|x2| is a norm but min(|x1|, |x2|) is not a norm. ‖x‖ + ‖x‖∞ is a norm;

‖Ax‖ is a norm provided A is invertible (otherwise a nonzero vector has norm zero;

for rectangular A we require independent columns to avoid ‖Ax‖ = 0).

19 xTy = x1y1 + x2y2 + · · · ≤ (max |yi|)(|x1|+ |x2|+ · · · ) = ||x||1 ||y||∞.

20 With λj = 2− 2 cos(jπ/n+1), the largest eigenvalue is λn ≈ 2+2 = 4. The smallest

is λ1 = 2−2 cos(π/n+1) ≈
(

π
n+1

)2
, using 2 cos θ ≈ 2−θ2. So the condition number

is c = λmax/λmin ≈ (4/π2) n2, growing with n.

Problem Set 11.3, page 531

1 The iteration xk+1 = (I − A)xk + b has S = I and T = I − A and S−1T = I − A.

2 If Ax = λx then (I−A)x = (1−λ)x. Real eigenvalues of B = I−A have |1−λ| < 1

provided λ is between 0 and 2.

3 This matrix A has I −A =


−1 1

1 −1


 which has |λ| = 2. The iteration diverges.

4 Always ‖AB‖ ≤ ‖A‖‖B‖. Choose A = B to find ‖B2‖ ≤ ‖B‖2. Then choose A =

B2 to find ‖B3‖ ≤ ‖B2‖‖B‖ ≤ ‖B‖3. Continue (or use induction) to find ‖Bk‖ ≤
‖B‖k. Since ‖B‖ ≥ max |λ(B)| it is no surprise that ‖B‖ < 1 gives convergence.
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5 Ax = 0 gives (S − T )x = 0. Then Sx = Tx and S−1Tx = x. Then λ = 1 means

that the errors do not approach zero. We can’t expect convergence when A is singular

and Ax = b is unsolvable!

6 Jacobi has S−1T = 1
3


0 1

1 0


 with |λ|max = 1

3 . Small problem, fast convergence.

7 Gauss-Seidel has S−1T =



0 1

3

0 1
9


 with |λ|max = 1

9 which is (|λ|max for Jacobi)2.

8 Jacobi has S−1T =


a

d



−1 
 0 −b

−c 0


 =


 0 −b/a

−c/d 0


with |λ| = |bc/ad|1/2.

Gauss-Seidel has S−1T =


a 0

c d



−1 
0 −b

0 0


 =


0 −b/a

0 −bc/ad


with |λ| = |bc/ad|.

So Gauss-Seidel is twice as fast to converge if |λ| < 1 (or to explode if |bc| > |ad|).

9 Gauss-Seidel will converge for the −1, 2,−1 matrix. |λ|max = cos2
(

π
n+1

)
is given

on page 527, together with the improvement from successive overrelaxation.

10 If the iteration gives all xnew
i = xold

i then the quantity in parentheses is zero, which

means Ax = b. For Jacobi change xnew on the right side to xold.

11 uk/λ
k
1 = c1x1+ c2x2(λ2/λ1)

k+ · · ·+ cnxn(λn/λ1)
k → c1x1 if all ratios |λi/λ1| <

1. The largest ratio controls the rate of convergence (when k is large). A =


0 1

1 0




has |λ2| = |λ1| and no convergence.

12 The eigenvectors of A and also A−1 are x1 = (.75, .25) and x2 = (1,−1). The inverse

power method converges to a multiple of x2, since |1/λ2| > |1/λ1|.

13 In the jth component of Ax1, λ1 sin
jπ
n+1 = 2 sin jπ

n+1 − sin (j−1)π
n+1 − sin (j+1)π

n+1 .

The last two terms combine into −2 sin jπ
n+1 cos

π
n+1 . Then λ1 = 2− 2 cos π

n+1 .
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14 A =


 2 −1

−1 2


 produces u0 =


1

0


, u1 =


 2

−1


, u2 =


 5

−4


, u3 =


 14

−13


.

This is converging to the eigenvector direction


 1

−1


 with largest eigenvalue λ = 3.

Divide uk by ‖uk‖ to keep unit vectors.

15 A−1 =
1

3


2 1

1 2


 givesu1 =

1

3


2

1


, u2 =

1

9


5

4


, u3 =

1

27


14

13


→u∞ =


1/2

1/2


.

16 R = QTA =


1 cos θ sin θ

0 − sin2 θ


 andA1 = RQ =


cos θ(1 + sin2 θ) − sin3 θ

− sin3 θ − cos θ sin2 θ


.

17 If A is orthogonal then Q = A and R = I . Therefore A1 = RQ = A again, and the

“QR method” doesn’t move from A. But shift A slightly and the method goes quickly

to Λ.

18 If A− cI = QR then A1 = RQ+ cI = Q−1(QR + cI)Q = Q−1AQ. No change in

eigenvalues from the shift and shift back, because A1 is similar to A.

19 Multiply Aqj = bj−1qj−1 + ajqj + bjqj+1 by qT
j to find qT

j Aqj = aj (because the

q’s are orthonormal). The matrix form (multiplying by columns) is AQ = QT where

T is tridiagonal. The entries down the diagonals of T are the a’s and b’s.

20 Theoretically the q’s are orthonormal. In reality this important algorithm is not very

stable. We must stop every few steps to reorthogonalize—or find another more stable

way to orthogonalize the sequence q, Aq, A2q, . . .

21 If A is symmetric then A1 = Q−1AQ = QTAQ is also symmetric. A1 = RQ =

R(QR)R−1 = RAR−1 has R and R−1 upper triangular, so A1 cannot have nonzeros

on a lower diagonal than A. If A is tridiagonal and symmetric then (by using symmetry

for the upper part of A1) the matrix A1 = RAR−1 is also tridiagonal.

22 From the last line of code, q2 is in the direction of v = Aq1 − h11q1 = Aq1 −
(qT

1 Aq1)q1. The dot product with q1 is zero. This is Gram-Schmidt with Aq1 as the

second input vector; we subtract from Aq1 its projection onto the first vector q1.
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Note The three lines after the short “pseudocodes” describe two key properties of con-

jugate gradients—the residuals rk = b−Axk are orthogonal and the search directions

are A-orthogonal (dT
i Adk = 0). Then each new approximation xk+1 is the closest

vector to x among all combinations of b, Ab . . . , Akb. Ordinary iteration Sxk+1 =

Txk + b does not find this best possible combination xk+1.

23 The solution is straightforward and important. Since H = Q−1AQ = QTAQ is

symmetric if A = AT, and since H has only one lower diagonal by construction, then

H has only one upper diagonal: H is tridiagonal and all the recursions in Arnoldi’s

method have only 3 terms.

24 H = Q−1AQ is similar to A, so H has the same eigenvalues as A (at the end of

Arnoldi). When Arnoldi is stopped sooner because the matrix size is large, the eigen-

values of Hk (called Ritz values) are close to eigenvalues of A. This is an important

way to compute approximations to λ for large matrices.

25 In principle the conjugate gradient method converges in 100 (or 99) steps to the exact

solution x. But it is slower than elimination and its all-important property is to give

good approximations to x much sooner. (Stopping elimination part way leaves you

nothing.) The problem asks how close x10 and x20 are to x100, which equals x except

for roundoff errors.

26 A =


1 1

0 1.1


 has An =


1 q

0 (1.1)n


 with q = 1 + 1.1 + · · · + (1.1)n−1 =

(1.1n − 1)/(1.1 − 1) ≈ 10 (1.1)n. So the growing part of An is (1.1)n


0 10

0 1




with ||An|| ≈
√
101 times 1.1n for larger n.




