INTRODUCTION

TO

LINEAR

ALGEBRA

Fifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/linearalgebra

web.mit.edu/18.06

video lectures: ocw.mit.edu

math.mit.edu/~gs

www.wellesleycambridge.com email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press

Box 812060 Wellesley, Massachusetts 02482

Problem Set 11.1, page 516

1 Without exchange, pivots .001 and 1000; with exchange, 1 and -1. When the pivot is larger than the entries below it, all $|\ell_{ij}| = \frac{|\text{entry}|}{|\text{pivot}|} \le 1$. $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$. 2 The exact inverse of hilb(3) is $A^{-1} = \begin{bmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{bmatrix}$. 3 $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 11/6 \\ 13/12 \\ 47/60 \end{bmatrix} = \begin{bmatrix} 1.833 \\ 1.083 \\ 0.783 \end{bmatrix}$ compares with $A \begin{bmatrix} 0 \\ 6 \\ -3.6 \end{bmatrix} = \begin{bmatrix} 1.80 \\ 1.10 \\ 0.78 \end{bmatrix} \cdot ||\Delta b|| < .04$ but $||\Delta x|| > 6$. The difference (1, 1, 1) - (0, 6, -3.6) is in a direction Δx that has $A\Delta x$ near zero. 4 The largest $||x|| = ||A^{-1}b||$ is $||A^{-1}|| = 1/\lambda_{\min}$ since $A^{T} = A$; largest error $10^{-16}/\lambda_{\min}$. 5 Each row of U has at most w entries. Use w multiplications to substitute components of x (already known from below) and divide by the pivot. Total for $n \operatorname{rows} < wn$. 6 The triangular L^{-1}, U^{-1}, R^{-1} need $\frac{1}{2}n^2$ multiplications. Q needs n^2 to multiply the right side by $Q^{-1} = Q^{T}$. So QRx = b takes 1.5 times longer than LUx = b. 7 $UU^{-1} = I$: Back substitution needs $\frac{1}{2}j^2$ multiplications on column j, using the j by j upper left block. Then $\frac{1}{7}(1^2 + 2^2 + \dots + n^2) \approx \frac{1}{2}(\frac{1}{3}n^3) = \text{total to find } U^{-1}$.

$$\mathbf{8} \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 \\ 0 & -1 \end{bmatrix} = U \text{ with } P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } L = \begin{bmatrix} 1 & 0 \\ .5 & 1 \end{bmatrix};$$

$$A \rightarrow \begin{bmatrix} 2 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = U \text{ with }$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ .5 & -.5 & 1 \end{bmatrix}.$$

$$\mathbf{9} \ A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \text{ has cofactors } C_{13} = C_{31} = C_{24} = C_{42} = 1 \text{ and } C_{14} = C_{41} = -1. \ A^{-1} \text{ is a full matrix!}$$

10 With 16-digit floating point arithmetic the errors $||\boldsymbol{x} - \boldsymbol{x}_{computed}||$ for $\varepsilon = 10^{-3}$, 10^{-6} , 10^{-9} , 10^{-12} , 10^{-15} are of order 10^{-16} , 10^{-11} , 10^{-7} , 10^{-4} , 10^{-3} .

11 (a)
$$\cos \theta = 1/\sqrt{10}$$
, $\sin \theta = -3/\sqrt{10}$, $R = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 3 & 5 \end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix} 10 & 14 \\ 0 & 8 \end{bmatrix}$
(b) *A* has eigenvalues 4 and 2. Put one of the unit eigenvectors in row 1 of *Q*: either
 $Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $QAQ^{-1} = \begin{bmatrix} 2 & -4 \\ 0 & 4 \end{bmatrix}$ or
 $Q = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$ and $QAQ^{-1} = \begin{bmatrix} 4 & -4 \\ 0 & 2 \end{bmatrix}$.

- **12** When A is multiplied by a plane rotation Q_{ij} , this changes the $2n \pmod{n^2}$ entries in rows i and j. Then multiplying on the right by $(Q_{ij})^{-1} = (Q_{ij})^{T}$ changes the 2n entries in columns i and j.
- **13** $Q_{ij}A$ uses 4n multiplications (2 for each entry in rows *i* and *j*). By factoring out $\cos \theta$, the entries 1 and $\pm \tan \theta$ need only 2n multiplications, which leads to $\frac{2}{3}n^3$ for QR.
- 14 The (2,1) entry of Q₂₁A is ¹/₃(-sinθ + 2cosθ). This is zero if sinθ = 2cosθ or tanθ = 2. Then the 2, 1, √5 right triangle has sinθ = 2/√5 and cosθ = 1/√5. Every 3 by 3 rotation with det Q = +1 is the product of 3 plane rotations.

15 This problem shows how elimination is more expensive (the nonzero multipliers in L and LL are counted by $\mathbf{nnz}(L)$ and $\mathbf{nnz}(LL)$) when we spoil the tridiagonal K by a random permutation.

If on the other hand we start with a poorly ordered matrix K, an improved ordering is found by the code **symamd** discussed in this section.

16 The "red-black ordering" puts rows and columns 1 to 10 in the odd-even order 1, 3, 5, 7, 9, 2, 4, 6, 8, 10. When K is the -1, 2, -1 tridiagonal matrix, odd points are connected only to even points (and 2 stays on the diagonal, connecting every point to itself):

17 Jeff Stuart's Shake a Stick activity has long sticks representing the graphs of two linear equations in the x-y plane. The matrix is nearly singular and Section 9.2 shows how to compute its condition number c = ||A|||A⁻¹|| = σ_{max}/σ_{min} ≈ 80,000:

$$A = \begin{bmatrix} 1 & 1.0001 \\ 1 & 1.0000 \end{bmatrix} \|A\| \approx 2 \quad A^{-1} = 10000 \begin{bmatrix} -1 & 1.0001 \\ 1 & -1 \end{bmatrix} \qquad \|A^{-1}\| \approx 20000 \\ c \approx 40000.$$

Problem Set 11.2, page 522

- **1** ||A|| = 2, $||A^{-1}|| = 2$, c = 4; ||A|| = 3, $||A^{-1}|| = 1$, c = 3; $||A|| = 2 + \sqrt{2} = \lambda_{\max}$ for positive definite A, $||A^{-1}|| = 1/\lambda_{\min}$, comd = $(2 + \sqrt{2})/(2 \sqrt{2}) = 5.83$.
- **2** $||A|| = 2, c = 1; ||A|| = \sqrt{2}, c = \infty$ (singular matrix); $A^{T}A = 2I, ||A|| = \sqrt{2}, c = 1.$
- **3** For the first inequality replace \boldsymbol{x} by $B\boldsymbol{x}$ in $||A\boldsymbol{x}|| \le ||A|| ||\boldsymbol{x}||$; the second inequality is just $||B\boldsymbol{x}|| \le ||B|| ||\boldsymbol{x}||$. Then $||AB|| = \max(||AB\boldsymbol{x}|| / ||\boldsymbol{x}||) \le ||A|| ||B||$.
- **4** $1 = ||I|| = ||AA^{-1}|| \le ||A|| ||A^{-1}|| = c(A).$

- **5** If $\Lambda_{\max} = \Lambda_{\min} = 1$ then all $\Lambda_i = 1$ and $A = SIS^{-1} = I$. The only matrices with $||A|| = ||A^{-1}|| = 1$ are *orthogonal matrices*.
- 6 All orthogonal matrices have norm 1, so $||A|| \le ||Q|| ||R|| = ||R||$ and in reverse $||R|| \le ||Q^{-1}|| ||A|| = ||A||$. Then ||A|| = ||R||. Inequality is usual in ||A|| < ||L|| ||U|| when $A^{T}A \ne AA^{T}$. Use **norm** on a random A.
- 7 The triangle inequality gives $||Ax + Bx|| \le ||Ax|| + ||Bx||$. Divide by ||x|| and take the maximum over all nonzero vectors to find $||A + B|| \le ||A|| + ||B||$.
- 8 If $Ax = \lambda x$ then $||Ax|| / ||x|| = |\lambda|$ for that particular vector x. When we maximize the ratio ||Ax|| / ||x|| over all vectors we get $||A|| \ge |\lambda|$.

9
$$A+B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 has $\rho(A) = 0$ and $\rho(B) = 0$ but $\rho(A+B) = 1$.

The triangle inequality $||A + B|| \le ||A|| + ||B||$ fails for $\rho(A)$. $AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ has $\rho(AB) > \rho(A) \rho(B)$; thus $\rho(A) = \max |\lambda(A)| =$ spectral radius is not a norm.

- 10 (a) The condition number of A⁻¹ is ||A⁻¹|| ||(A⁻¹)⁻¹|| which is ||A⁻¹|| ||A|| = c(A).
 (b) Since A^TA and AA^T have the same nonzero eigenvalues, A^T has the same norm as A.
- 11 Use the quadratic formula for $\lambda_{\max}/\lambda_{\min}$, which is $c = \sigma_{\max}/\sigma_{\min}$ since this $A = A^{T}$ is positive definite:

$$c(A) = \left(1.00005 + \sqrt{(1.00005)^2 - .0001}\right) / \left(1.00005 - \sqrt{}\right) \approx 40,000.$$

- 12 det(2A) is not 2 det A; det(A + B) is not always less than det A + det B; taking |det A| does not help. The only reasonable property is det AB = (det A)(det B). The condition number should not change when A is multiplied by 10.
- **13** The residual $\boldsymbol{b} A\boldsymbol{y} = (10^{-7}, 0)$ is much smaller than $\boldsymbol{b} A\boldsymbol{z} = (.0013, .0016)$. But \boldsymbol{z} is much closer to the solution than \boldsymbol{y} .

14 det
$$A = 10^{-6}$$
 so $A^{-1} = 10^3 \begin{bmatrix} 659 & -563 \\ -913 & 780 \end{bmatrix}$: $||A|| > 1$, $||A^{-1}|| > 10^6$, then $c > 10^6$.

- **15** $\boldsymbol{x} = (1, 1, 1, 1, 1)$ has $\|\boldsymbol{x}\| = \sqrt{5}, \|\boldsymbol{x}\|_1 = 5, \|\boldsymbol{x}\|_{\infty} = 1$. $\boldsymbol{x} = (.1, .7, .3, .4, .5)$ has $\|\boldsymbol{x}\| = 1, \|\boldsymbol{x}\|_1 = 2$ (sum), $\|\boldsymbol{x}\|_{\infty} = .7$ (largest).
- **16** $x_1^2 + \dots + x_n^2$ is not smaller than $\max(x_i^2)$ and not larger than $(|x_1| + \dots + |x_n|)^2 = \|x\|_1^2$. $x_1^2 + \dots + x_n^2 \le n \max(x_i^2)$ so $\|x\| \le \sqrt{n} \|x\|_{\infty}$. Choose $y_i = \operatorname{sign} x_i = \pm 1$ to get $\|x\|_1 = x \cdot y \le \|x\| \|y\| = \sqrt{n} \|x\|$. The vector $x = (1, \dots, 1)$ has $\|x\|_1 = \sqrt{n} \|x\|$.
- 17 For the l[∞] norm, the largest component of x plus the largest component of y is not less than ||x + y||_∞ = largest component of x + y.

For the ℓ^1 norm, each component has $|x_i + y_i| \le |x_i| + |y_i|$. Sum on i = 1 to n: $\|\boldsymbol{x} + \boldsymbol{y}\|_1 \le \|\boldsymbol{x}\|_1 + \|\boldsymbol{y}\|_1$.

- 18 |x₁| + 2|x₂| is a norm but min(|x₁|, |x₂|) is not a norm. ||x|| + ||x||_∞ is a norm;
 ||Ax|| is a norm provided A is invertible (otherwise a nonzero vector has norm zero; for rectangular A we require independent columns to avoid ||Ax|| = 0).
- **19** $x^{\mathrm{T}}y = x_1y_1 + x_2y_2 + \cdots \leq (\max |y_i|)(|x_1| + |x_2| + \cdots) = ||x||_1 ||y||_{\infty}.$
- **20** With $\lambda_j = 2 2\cos(j\pi/n+1)$, the largest eigenvalue is $\lambda_n \approx 2 + 2 = 4$. The smallest is $\lambda_1 = 2 2\cos(\pi/n+1) \approx \left(\frac{\pi}{n+1}\right)^2$, using $2\cos\theta \approx 2 \theta^2$. So the condition number is $c = \lambda_{\max}/\lambda_{\min} \approx (4/\pi^2) n^2$, growing with n.

Problem Set 11.3, page 531

- 1 The iteration $\boldsymbol{x}_{k+1} = (I A)\boldsymbol{x}_k + \boldsymbol{b}$ has S = I and T = I A and $S^{-1}T = I A$.
- 2 If Ax = λx then (I−A)x = (1−λ)x. Real eigenvalues of B = I−A have |1−λ| < 1 provided λ is between 0 and 2.
- **3** This matrix A has $I A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ which has $|\lambda| = 2$. The iteration diverges.
- 4 Always ||AB|| ≤ ||A||||B||. Choose A = B to find ||B²|| ≤ ||B||². Then choose A = B² to find ||B³|| ≤ ||B²|||B|| ≤ ||B||³. Continue (or use induction) to find ||B^k|| ≤ ||B||^k. Since ||B|| ≥ max |λ(B)| it is no surprise that ||B|| < 1 gives convergence.

5 Ax = 0 gives (S - T)x = 0. Then Sx = Tx and $S^{-1}Tx = x$. Then $\lambda = 1$ means that the errors do not approach zero. We can't expect convergence when A is singular and Ax = b is unsolvable!

6 Jacobi has
$$S^{-1}T = \frac{1}{3} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 with $|\lambda|_{\max} = \frac{1}{3}$. Small problem, fast convergence.

7 Gauss-Seidel has $S^{-1}T = \begin{bmatrix} 0 & \frac{1}{3} \\ 0 & \frac{1}{9} \end{bmatrix}$ with $|\lambda|_{\max} = \frac{1}{9}$ which is $(|\lambda|_{\max} \text{ for Jacobi})^2$.

8 Jacobi has
$$S^{-1}T = \begin{bmatrix} a \\ d \end{bmatrix}^{-1} \begin{bmatrix} 0 & -b \\ -c & 0 \end{bmatrix} = \begin{bmatrix} 0 & -b/a \\ -c/d & 0 \end{bmatrix}$$
 with $|\lambda| = |bc/ad|^{1/2}$.
Gauss-Seidel has $S^{-1}T = \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} 0 & -b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -b/a \\ 0 & -bc/ad \end{bmatrix}$ with $|\lambda| = |bc/ad|$.

So Gauss-Seidel is twice as fast to converge if $|\lambda| < 1$ (or to explode if |bc| > |ad|).

- **9** Gauss-Seidel will converge for the -1, 2, -1 matrix. $|\lambda|_{\text{max}} = \cos^2\left(\frac{\pi}{n+1}\right)$ is given on page 527, together with the improvement from successive overrelaxation.
- **10** If the iteration gives all $x_i^{\text{new}} = x_i^{\text{old}}$ then the quantity in parentheses is zero, which means Ax = b. For Jacobi change x^{new} on the right side to x^{old} .
- **11** $\boldsymbol{u}_k/\lambda_1^k = c_1\boldsymbol{x}_1 + c_2\boldsymbol{x}_2(\lambda_2/\lambda_1)^k + \dots + c_n\boldsymbol{x}_n(\lambda_n/\lambda_1)^k \to c_1\boldsymbol{x}_1$ if all ratios $|\lambda_i/\lambda_1| < 1$. The largest ratio controls the rate of convergence (when k is large). $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ has $|\lambda_2| = |\lambda_1|$ and no convergence.
- 12 The eigenvectors of A and also A^{-1} are $\boldsymbol{x}_1 = (.75, .25)$ and $\boldsymbol{x}_2 = (1, -1)$. The inverse power method converges to a multiple of \boldsymbol{x}_2 , since $|1/\lambda_2| > |1/\lambda_1|$.
- **13** In the *j*th component of $A\boldsymbol{x}_1$, $\lambda_1 \sin \frac{j\pi}{n+1} = 2 \sin \frac{j\pi}{n+1} \sin \frac{(j-1)\pi}{n+1} \sin \frac{(j+1)\pi}{n+1}$. The last two terms combine into $-2 \sin \frac{j\pi}{n+1} \cos \frac{\pi}{n+1}$. Then $\lambda_1 = 2 - 2 \cos \frac{\pi}{n+1}$.

Solutions to Exercises

14
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 produces $u_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $u_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $u_2 = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$, $u_3 = \begin{bmatrix} 14 \\ -13 \end{bmatrix}$

This is converging to the eigenvector direction $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ with largest eigenvalue $\lambda = 3$. Divide u_k by $||u_k||$ to keep unit vectors.

15
$$A^{-1} = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 gives $u_1 = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}, u_2 = \frac{1}{9} \begin{bmatrix} 5 \\ 4 \end{bmatrix}, u_3 = \frac{1}{27} \begin{bmatrix} 14 \\ 13 \end{bmatrix} \rightarrow u_{\infty} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}.$

16
$$R = Q^{\mathrm{T}}A = \begin{bmatrix} 1 & \cos\theta\sin\theta\\ 0 & -\sin^{2}\theta \end{bmatrix}$$
 and $A_{1} = RQ = \begin{bmatrix} \cos\theta(1+\sin^{2}\theta) & -\sin^{3}\theta\\ -\sin^{3}\theta & -\cos\theta\sin^{2}\theta \end{bmatrix}$

- 17 If A is orthogonal then Q = A and R = I. Therefore A₁ = RQ = A again, and the "QR method" doesn't move from A. But shift A slightly and the method goes quickly to Λ.
- **18** If A cI = QR then $A_1 = RQ + cI = Q^{-1}(QR + cI)Q = Q^{-1}AQ$. No change in eigenvalues from the shift and shift back, because A_1 is similar to A.
- **19** Multiply $Aq_j = b_{j-1}q_{j-1} + a_jq_j + b_jq_{j+1}$ by q_j^T to find $q_j^T Aq_j = a_j$ (because the q's are orthonormal). The matrix form (multiplying by columns) is AQ = QT where T is *tridiagonal*. The entries down the diagonals of T are the a's and b's.
- 20 Theoretically the q's are orthonormal. In reality this important algorithm is not very stable. We must stop every few steps to reorthogonalize—or find another more stable way to orthogonalize the sequence q, Aq, A²q,...
- **21** If A is symmetric then $A_1 = Q^{-1}AQ = Q^{T}AQ$ is also symmetric. $A_1 = RQ = R(QR)R^{-1} = RAR^{-1}$ has R and R^{-1} upper triangular, so A_1 cannot have nonzeros on a lower diagonal than A. If A is tridiagonal and symmetric then (by using symmetry for the upper part of A_1) the matrix $A_1 = RAR^{-1}$ is also tridiagonal.
- **22** From the last line of code, q_2 is in the direction of $v = Aq_1 h_{11}q_1 = Aq_1 (q_1^T Aq_1)q_1$. The dot product with q_1 is zero. This is Gram-Schmidt with Aq_1 as the second input vector; we subtract from Aq_1 its projection onto the first vector q_1 .

Note The three lines after the short "pseudocodes" describe two key properties of conjugate gradients—the residuals $\mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k$ are orthogonal and the search directions are *A*-orthogonal ($\mathbf{d}_i^{\mathrm{T}} A \mathbf{d}_k = 0$). Then each new approximation \mathbf{x}_{k+1} is the **closest** vector to \mathbf{x} among all combinations of $\mathbf{b}, A\mathbf{b}, \ldots, A^k\mathbf{b}$. Ordinary iteration $S\mathbf{x}_{k+1} = T\mathbf{x}_k + \mathbf{b}$ does *not* find this best possible combination \mathbf{x}_{k+1} .

- **23** The solution is straightforward and important. Since $H = Q^{-1}AQ = Q^{T}AQ$ is *symmetric* if $A = A^{T}$, and since H has only one lower diagonal by construction, then H has only *one upper diagonal*: H is tridiagonal and all the recursions in Arnoldi's method have only 3 terms.
- 24 $H = Q^{-1}AQ$ is *similar* to A, so H has the same eigenvalues as A (at the end of Arnoldi). When Arnoldi is stopped sooner because the matrix size is large, the eigenvalues of H_k (called *Ritz values*) are close to eigenvalues of A. This is an important way to compute approximations to λ for large matrices.
- 25 In principle the conjugate gradient method converges in 100 (or 99) steps to the exact solution x. But it is slower than elimination and its all-important property is to give good approximations to x much sooner. (Stopping elimination part way leaves you nothing.) The problem asks how close x_{10} and x_{20} are to x_{100} , which equals x except for roundoff errors.

26
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1.1 \end{bmatrix}$$
 has $A^n = \begin{bmatrix} 1 & q \\ 0 & (1.1)^n \end{bmatrix}$ with $q = 1 + 1.1 + \dots + (1.1)^{n-1} = (1.1^n - 1)/(1.1 - 1) \approx 10 (1.1)^n$. So the growing part of A^n is $(1.1)^n \begin{bmatrix} 0 & 10 \\ 0 & 1 \end{bmatrix}$ with $||A^n|| \approx \sqrt{101}$ times 1.1^n for larger n .