INTRODUCTION

TO

LINEAR

ALGEBRA

Fifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/linearalgebra

web.mit.edu/18.06

video lectures: ocw.mit.edu

math.mit.edu/~gs

www.wellesleycambridge.com email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press

Box 812060 Wellesley, Massachusetts 02482

Problem Set 9.1, page 436

 $(\boldsymbol{x}_1 + i\boldsymbol{x}_2) = \boldsymbol{b}_1 + i\boldsymbol{b}_2$

1 (a)(b)(c) have sums 4, -2 + 2i, $2 \cos \theta$ and products 5, -2i, 1. Note $(e^{i\theta})(e^{-i\theta}) = 1$. 2 In polar form these are $\sqrt{5}e^{i\theta}$, $5e^{2i\theta}$, $\frac{1}{\sqrt{5}}e^{-i\theta}$, $\sqrt{5}$. 3 The absolute values are $r = 10, 100, \frac{1}{10}$, and 100. The angles are $\theta, 2\theta, -\theta$ and -2θ . $|z \times w| = 6$, $|z + w| \le 5$, $|z/w| = \frac{2}{3}$, $|z - w| \le 5$. $a + ib = \frac{\sqrt{3}}{2} + \frac{1}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i, i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i; w^{12} = 1$. 1/z has absolute value 1/r and angle $-\theta; (1/r)e^{-i\theta}$ times $re^{i\theta}$ equals 1. $\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} \begin{bmatrix} ac & -bd \\ bc & +ad \end{bmatrix}$ real part $\begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}$ is the matrix form of (1 + 3i)(1 - 3i) = 10. $\begin{bmatrix} A_1 & -A_2 \\ A_2 & A_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ gives complex matrix = vector multiplication $(A_1 + a)$

9
$$2+i$$
; $(2+i)(1+i) = 1+3i$; $e^{-i\pi/2} = -i$; $e^{-i\pi} = -1$; $\frac{1-i}{1+i} = -i$; $(-i)^{103} = i$.

- **10** $z + \overline{z}$ is real; $z \overline{z}$ is pure imaginary; $z\overline{z}$ is positive; z/\overline{z} has absolute value 1.
- **11** $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ includes aI (which just adds a to the eigenvalues and $b \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. So the eigenvectors are $\mathbf{x}_1 = (1, i)$ and $\mathbf{x}_2 = (1, -i)$. The eigenvalues are $\lambda_1 = a + bi$ and $\lambda_2 = a bi$. We see $\overline{\mathbf{x}}_1 = \mathbf{x}_2$ and $\overline{\lambda}_1 = \lambda_2$ as expected for real matrices with complex eigenvalues.
- 12 (a) When a = b = d = 1 the square root becomes √4c; λ is complex if c < 0
 (b) λ = 0 and λ = a + d when ad = bc
 (c) the λ's can be real and different.
- **13** Complex λ 's when $(a+d)^2 < 4(ad-bc)$; write $(a+d)^2 4(ad-bc)$ as $(a-d)^2 + 4bc$ which is positive when bc > 0.
- 14 The symmetric block matrix has real eigenvalues; so $i\lambda$ is real and λ is pure imaginary.
- **15** (a) $2e^{i\pi/3}$, $4e^{2i\pi/3}$ (b) $e^{2i\theta}$, $e^{4i\theta}$ (c) $7e^{3\pi i/2}$, $49e^{3\pi i}$ (= -49) (d) $\sqrt{50}e^{-\pi i/4}$, $50e^{-\pi i/2}$.

- **16** r = 1, angle $\frac{\pi}{2} \theta$; multiply by $e^{i\theta}$ to get $e^{i\pi/2} = i$.
- **17** $a + ib = 1, i, -1, -i, \pm \frac{1}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}$. The root $\overline{w} = w^{-1} = e^{-2\pi i/8}$ is $1/\sqrt{2} i/\sqrt{2}$.
- **18** 1, $e^{2\pi i/3}$, $e^{4\pi i/3}$ are cube roots of 1. The cube roots of -1 are -1, $e^{\pi i/3}$, $e^{-\pi i/3}$. Altogether six roots of $z^6 = 1$.
- **19** $\cos 3\theta = \operatorname{Re}[(\cos \theta + i\sin \theta)^3] = \cos^3 \theta 3\cos \theta \sin^2 \theta; \ \sin 3\theta = 3\cos^2 \theta \sin \theta \sin^3 \theta.$
- **20** If the conjugate $\overline{z} = 1/z$ then $|z|^2 = 1$ and z is any point $e^{i\theta}$ on the unit circle.
- **21** e^i is at angle $\theta = 1$ on the unit circle; $|i^e| = 1^e$; Infinitely many $i^e = e^{i(\pi/2 + 2\pi n)e}$.
- **22** (a) Unit circle (b) Spiral in to $e^{-2\pi}$ (c) Circle continuing around to angle $\theta = 2\pi^2$.

Problem Set 9.2, page 443

1 $||u|| = \sqrt{9} = 3$, $||v|| = \sqrt{3}$, $u^{H}v = 3i + 2$, $v^{H}u = -3i + 2$ (this is the conjugate of $u^{H}v$).

$$\mathbf{2} \ A^{\mathrm{H}}A = \begin{bmatrix} 2 & 0 & 1+i \\ 0 & 2 & 1+i \\ 1-i & 1-i & 2 \end{bmatrix} \text{ and } AA^{\mathrm{H}} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \text{ are Hermitian matrices. They}$$

share the eigenvalues 4 and 2.

- **3** z = multiple of (1+i, 1+i, -2); Az = 0 gives $z^{H}A^{H} = 0^{H}$ so z (not \overline{z} !) is orthogonal to all columns of A^{H} (using complex inner product z^{H} times columns of A^{H}).
- **4** The four fundamental subspaces are now C(A), N(A), $C(A^{H})$, $N(A^{H})$. A^{H} and not A^{T} .
- **5** (a) $(A^{\mathrm{H}}A)^{\mathrm{H}} = A^{\mathrm{H}}A^{\mathrm{HH}} = A^{\mathrm{H}}A$ again (b) If $A^{\mathrm{H}}Az = 0$ then $(z^{\mathrm{H}}A^{\mathrm{H}})(Az) = 0$. This is $||Az||^2 = 0$ so Az = 0. The nullspaces of A and $A^{\mathrm{H}}A$ are always the *same*.
- 6 (a) False (c) False $A = Q = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ (b) True: -i is not an eigenvalue when $S = S^{H}$.
- 7 cS is still Hermitian for real c; $(iS)^{H} = -iS^{H} = -iS$ is skew-Hermitian.

- 8 This P is invertible and unitary. $P^2 = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, P^3 = \begin{bmatrix} -i \\ -i \\ -i \end{bmatrix} = -iI.$ Then $P^{100} = (-i)^{33}P = -iP$. The eigenvalues of P are the roots of $\lambda^3 = -i$, which are i and $ie^{2\pi i/3}$ and $ie^{4\pi i/3}$.
- 9 One unit eigenvector is certainly x₁ = (1, 1, 1) with λ₁ = i. The other eigenvectors are x₂ = (1, w, w²) and x₃ = (1, w², w⁴) with w = e^{2πi/3}. The eigenvector matrix is the Fourier matrix F₃. The eigenvectors of any unitary matrix like P are orthogonal (using the correct complex form x^Hy of the inner product).
- **10** $(1,1,1), (1,e^{2\pi i/3},e^{4\pi i/3}), (1,e^{4\pi i/3},e^{2\pi i/3})$ are orthogonal (complex inner product!) because P is an orthogonal matrix—and therefore its eigenvector matrix is unitary.
- **11** If $Q^{H}Q = I$ then $Q^{-1}(Q^{H})^{-1} = Q^{-1}(Q^{-1})^{H} = I$ so Q^{-1} is also unitary. Also $(QU)^{H}(QU) = U^{H}Q^{H}QU = U^{H}U = I$ so QU is unitary.
- **12** Determinant = product of the eigenvalues (all real). And $A = A^{H}$ gives det $A = \overline{\det A}$.
- **13** $(z^{H}A^{H})(Az) = ||Az||^{2}$ is positive unless Az = 0. When A has independent columns this means z = 0; so $A^{H}A$ is positive definite.

$$\begin{split} \mathbf{14} \ S &= \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1+i \\ 1+i & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1-i \\ -1-i & 1 \end{bmatrix} . \\ \mathbf{15} \ K &= (iA^{\mathrm{T}} \text{ in Problem 14}) = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1-i \\ 1-i & 1 \end{bmatrix} \begin{bmatrix} 2i & 0 \\ 0 & -i \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ -1+i & 1 \end{bmatrix} ; \\ \lambda \text{'s are imaginary.} \\ \mathbf{16} \ U &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix} \begin{bmatrix} \cos\theta + i\sin\theta & 0 \\ 0 & \cos\theta - i\sin\theta \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} \text{ has } |\lambda| = 1. \\ \mathbf{17} \ U &= \frac{1}{L} \begin{bmatrix} 1+\sqrt{3} & -1+i \\ 1+i & 1+\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{L} \begin{bmatrix} 1+\sqrt{3} & 1-i \\ -1-i & 1+\sqrt{3} \end{bmatrix} \text{ with } L^2 = 6+2\sqrt{3}. \\ \text{Unitary means } |\lambda| = 1. \ U = U^{\mathrm{H}} \text{ gives real } \lambda. \text{ Then trace zero gives } \lambda = 1 \text{ and } -1. \end{split}$$

18 The v's are columns of a unitary matrix U, so U^{H} is U^{-1} . Then $z = UU^{H}z =$ (multiply by columns) = $v_1(v_1^{H}z) + \cdots + v_n(v_n^{H}z)$: a typical orthonormal expansion.

- **19** z = (1, i, -2) completes an orthogonal basis for C^3 . So does any $e^{i\theta}z$.
- **20** $S = A + iB = (A + iB)^{H} = A^{T} iB^{T}$; A is symmetric but B is skew-symmetric.
- **21** \mathbb{C}^n has dimension *n*; the columns of any unitary matrix are a basis. For example use the columns of *iI*: $(i, 0, \dots, 0), \dots, (0, \dots, 0, i)$

22 [1] and [-1]; any
$$[e^{i\theta}]$$
; $\begin{bmatrix} a & b+ic \\ b-ic & d \end{bmatrix}$; $\begin{bmatrix} w & e^{i\phi}\overline{z} \\ -z & e^{i\phi}\overline{w} \end{bmatrix}$ with $|w|^2 + |z|^2 = 1$ and any angle ϕ

- **23** The eigenvalues of A^{H} are *complex conjugates* of the eigenvalues of A: det $(A \lambda I) = 0$ gives det $(A^{\text{H}} - \overline{\lambda}I) = 0$.
- **24** $(I 2uu^{H})^{H} = I 2uu^{H}$ and also $(I 2uu^{H})^{2} = I 4uu^{H} + 4u(u^{H}u)u^{H} = I$. The rank-1 matrix uu^{H} projects onto the line through u.
- **25** Unitary $U^{\mathrm{H}}U = I$ means $(A^{\mathrm{T}} iB^{\mathrm{T}})(A + iB) = (A^{\mathrm{T}}A + B^{\mathrm{T}}B) + i(A^{\mathrm{T}}B B^{\mathrm{T}}A) = I.$
 - $A^{\mathrm{T}}A + B^{\mathrm{T}}B = I$ and $A^{\mathrm{T}}B B^{\mathrm{T}}A = 0$ which makes the block matrix orthogonal.
- **26** We are given $A + iB = (A + iB)^{H} = A^{T} iB^{T}$. Then $A = A^{T}$ and $B = -B^{T}$. So that $\begin{bmatrix} A & -B \\ B & A \end{bmatrix}$ is symmetric.
- **27** $SS^{-1} = I$ gives $(S^{-1})^{H}S^{H} = I$. Therefore $(S^{-1})^{H}$ is $(S^{H})^{-1} = S^{-1}$ and S^{-1} is Hermitian.
- **28** If U has (complex) orthonormal columns, then $U^{H}U = I$ and U is *unitary*. If those columns are eigenvectors of A, then $A = U\Lambda U^{-1} = U\Lambda U^{H}$ is *normal*. The direct test for a normal matrix (which is $AA^{H} = A^{H}A$ because diagonals could be real!) and Λ^{H} surely commute:

$$AA^{\mathrm{H}} = (U\Lambda U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}U^{\mathrm{H}}) = U(\Lambda\Lambda^{\mathrm{H}})U^{\mathrm{H}} = U(\Lambda^{\mathrm{H}}\Lambda)U^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda U^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda U^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}U^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}U^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}U^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}U^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}) = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}AA^{\mathrm{H}})(U\Lambda^{\mathrm{H}}) = A^{\mathrm{H}}AA^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}AA^{\mathrm{H}}) = (U\Lambda^{\mathrm{H}}AA^{\mathrm{H}) = (U\Lambda^{\mathrm{H}}AA^{\mathrm{H}}) = (U\Lambda^{\mathrm{H}}AA^{\mathrm{H}}) = (U\Lambda^{H$$

An easy way to construct a normal matrix is 1 + i times a symmetric matrix. Or take A = S + iT where the real symmetric S and T commute (Then $A^{H} = S - iT$ and $AA^{H} = A^{H}A$).

Problem Set 9.3, page 450

1 Equation (3) (the FFT) is correct using $i^2 = -1$ in the last two rows and three columns.

$$\mathbf{2} \ F^{-1} = \begin{bmatrix} 1 & & \\ & 1 & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & & \\ & 1 & i^2 \\ & & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & & \\ & 1 & 1 \\ & & 1 & i^2 \end{bmatrix} \begin{bmatrix} 1 & 1 & & \\ & 1 & 1 \\ & & -1 & \\ & -i & i \end{bmatrix} = \frac{1}{4} F^{\mathrm{H}}.$$

$$\mathbf{3} \ F = \begin{bmatrix} 1 & & \\ & 1 & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & & \\ & 1 & i^2 \\ & & 1 & i^2 \end{bmatrix} \begin{bmatrix} 1 & & 1 & & \\ & 1 & 1 \\ & & -1 & \\ & -i & i \end{bmatrix}$$
permutation last.
$$\mathbf{4} \ D = \begin{bmatrix} 1 & & \\ & e^{2\pi i/6} & \\ & & e^{4\pi i/6} \end{bmatrix}$$
(note 6 not 3) and $F_3 \begin{bmatrix} 1 & 1 & 1 \\ & 1 & 1 \\ & 1 & e^{2\pi i/3} & e^{4\pi i/3} \\ & 1 & e^{4\pi i/3} & e^{2\pi i/3} \end{bmatrix}.$

5
$$F^{-1}w = v$$
 and $F^{-1}v = w/4$. Delta vector \leftrightarrow all-ones vector.

9 If $w^{64} = 1$ then w^2 is a 32nd root of 1 and \sqrt{w} is a 128th root of 1: Key to FFT.

- 10 For every integer n, the nth roots of 1 add to zero. For even n, they cancel in pairs. For any n, use the geometric series formula 1 + w + ··· + wⁿ⁻¹ = (wⁿ − 1)/(w − 1) = 0. In particular for n = 3, 1 + (−1 + i√3)/2 + (−1 − i√3)/2 = 0.
- 11 The eigenvalues of P are $1, i, i^2 = -1$, and $i^3 = -i$. Problem 11 displays the eigenvectors. And also det $(P \lambda I) = \lambda^4 1$.
- **12** $\Lambda = \operatorname{diag}(1, i, i^2, i^3); P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and P^{T} lead to $\lambda^3 1 = 0$.
- **13** $e_1 = c_0 + c_1 + c_2 + c_3$ and $e_2 = c_0 + c_1i + c_2i^2 + c_3i^3$; *E* contains the four eigenvalues of $C = FEF^{-1}$ because *F* contains the eigenvectors.
- **14** Eigenvalues $e_1 = 2 1 1 = 0$, $e_2 = 2 i i^3 = 2$, $e_3 = 2 (-1) (-1) = 4$, $e_4 = 2 - i^3 - i^9 = 2$. Just transform column 0 of C. Check trace 0 + 2 + 4 + 2 = 8.
- **15** Diagonal *E* needs *n* multiplications, Fourier matrix *F* and F^{-1} need $\frac{1}{2}n \log_2 n$ multiplications each by the **FFT**. The total is much less than the ordinary n^2 for *C* times *x*.
- 16 The row 1, w^k, w^{2k}, ... in F is the same as the row 1, w^{N-k}, w^{N-2k}, ... in F because w^{N-k} = e^{(2πi/N)(N-k)} is e^{2πi}e^{-(2πi/N)k} = 1 times w^k. So F and F have the same rows in reversed order (except for row 0 which is all ones).
- **17 0** 000 reverses to 000 = 0
 - **1** 001 reverses to 100 = 4
 - **2** 010 reverses to 010 = 2 Now evens come before odds !
 - **3** 011 reverses to 110 = 6
 - **4** 100 reverses to 001 = 1
 - **5** 101 reverses to 101 = 5
 - **6** 110 reverses to 011 = 3
 - **7** 111 reverses to 111 = 7