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Solutions to Exercises 129

Problem Set 7.1, page 370

1 A = uvT has rank 1 with uT = vT =
[
1 2 3 4

]
. Those vectors have ||u||2 =

||v||2 = 30 so the SVD has a division by
√
30 to reach u1 and v1. Multiply by σ1 = 30

to recover A.

A = σ1u1v
T
1 = 30

u√
30

vT

√
30

= UΣV T (1 column in U and V ).

B has rank r = 2. The first two columns of B are independent (the pivot columns).

Column 3 is a combination 2 (col 2)− (col 1). Column 4 is 3 (col 2)− 2 (col 1) :

B =




2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8



=




2 3

3 4

4 5

5 6





1 0 −1 −2

0 1 2 3


 (col 1)(row 1)T

+

(col 2)(row 2)T

Those pivot columns come from the first half of the book : not orthogonal ! They don’t

give the u’s and v’s of the SVD. For that we need eigenvalues and eigenvectors of

BTB and BBT.

2 All the singular values of I are σ = 1. We cannot leave out any of the terms ui·vT
i

without making an error of size 1. And the matrix A = I starts with size 1 ! None of

the SVD pieces can be left out.

Notice that the SVD is I = (U)(I)(UT) so that U = V . The natural choice for

the SVD is just UΣV T = III . But we could actually choose any orthogonal matrix

U . (The eigenvectors of I are very far from unique—many choices ! Any orthogonal

matrix U holds orthonormal eigenvectors of I .)

One possible rank 5 flag with a 3 by 3 cross of zeros is A =




1 0 1 0 0

0 0 0 1 1

1 0 1 1 1

1 1
2 1 1 1

1 1
2 1 1

2
1
2




.
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3



1 2 1 1

2 2 2 2

1 2 1 1


 =




1 0

0 1

1 0


 =


1 2 1 1

2 2 2 2





1 2 2

1 3 3


 =


1 2

1 3




1 0 0

0 1 1


 =


 pivot

columns




 rows

of R




4 BBT =


1 2 2

1 3 3






1 1

2 3

2 3


 =


 9 13

13 19




. Trace 28, Determinant 2.

BTB =




1 1

2 3

2 3





1 2 2

1 3 3




=




2 5 5

5 13 13

5 13 13


. Trace 28, Determinant 0.

With a small singular value σ2 ≈ 1√
14
, B is compressible. But we don’t just keep the

first row and column of B. The good row v1 and column u1 are eigenvectors of BTB

and BBT.

5 My hand calculation produced ATA =




7 10 7

10 16 10

7 10 7


 and det(ATA − λI) =

−λ3 + 30λ2 − 24λ.

This gives λ = 0 as one eigenvalue of ATA (correct). The others are :

λ2 − 30λ+ 24 = 0 gives λ = 15±
√

152 − 24 ≈ 15± 14 = 29 and 1.

So σ1 ≈
√
29 and σ2 = 1. The svd (A) command in MATLAB will give accurate σ’s

and U and V .

6 The matrix A has trace 4 and determinant 0. So its eigenvalues are 4 and 0—not used

in the SVD ! The matrix ATA has trace 25 and determinant 0, so λ1 = 25 = σ2
1 gives

σ1 = 5.

The eigenvectors v1,v2 of ATA (a symmetric matrix !) are orthogonal :
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20 10

10 5




2

1


 = 25


2

1


 and


20 10

10 5




 1

−2


 = 0


 1

−2




Similarly AAT has orthogonal eigenvectors u1,u2 :


 5 10

10 20




1

2


 = 25


1

2


 and


 5 10

10 20




 2

−1


 = 0


 2

−1




7 Multiply both sides of A = UΣV T by the matrix V to get AV = UΣ. Column by

column this says that Avi = σiui. Notice that Σ goes on the right side of U when we

want to multiply every column of U by its singular value σi.

8 The text found λ1=σ2
1=

1
2

(
3+

√
5
)

and then σ1=
1
2

(
1+

√
5
)
. Then σ1+1 equals σ2

1 .

Also λ2 = σ2
2 = 1

2

(
3−

√
5
)

and σ2 = 1
2

(√
5− 1

)
and σ1 − σ2 = 1

2 + 1
2 = 1.

(Why don’t we choose σ2 = 1
2

(
1−

√
5
)

?).

9 The 20 by 40 random matrices are A = rand (20, 40) and B = randn (20, 40). With

those random choices the 20 rows are independent with probability 1. Notice for these

continuous probabilities, this does not mean that the rows are always independent ! A

random determinant might be 0 even when the probability of nonzero is 1.

MATLAB again gives the singular values of a random A and B.

By averaging 100 samples you would begin to see the expected distribution of σ’s,

which is highly imortant in “random matrix theory”.

Problem Set 7.2, page 379

1 A =


0 4

0 0


 has eigenvalues 0 and 0; ATA =


0 0

0 16


 has eigenvalues λ = 16 and

0. Then σ1(A) =
√
16 = 4. The eigenvectors of ATA and AAT are the columns of

V =


0 1

1 0


 and U =


1 0

0 1


.
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Then UΣV T =


1 0

0 1




4 0

0 0




0 1

1 0


 =


0 4

0 0


 = A.

A =


0 4

1 0


 gives ATA =


1 0

0 16


 with λ1 = 16 and λ2 = 1. Same U and V .

Then UΣV T =


1 0

0 1




4 0

0 1




0 1

1 0


 =


0 4

1 0


 = A.

2 A =


 2 2

−1 1


 leads to ATA =


5 3

3 5


 with eigenvectors in V =

1√
2


1 −1

1 1


 .

σ2
1 = 8 u1 =

Av1

σ1
=

1√
2


4

0


 1

σ1
has unit vector u1 =


1

0


 and σ1 = 2

√
2

σ2
2 = 2 u2 =

Av2

σ2
=

1√
2


0

2


 1

σ2
has unit vector u2 =


0

1


 and σ2 =

√
2

The full SVD is A = UΣV T =


1 0

0 1




2

√
2

√
2




 1 1

−1 1


 /

√
2.

3 Problem 7.2.2 happens to have AAT = diagonal matrix


8 0

0 2


. So its eigenvectors

(1, 0) and (0, 1) go in U = I . Its eigenvalues are σ2
1 = 8 and σ2

2 = 2. The rows of A

are orthogonal but not orthonormal. So ATA is not diagonal and V is not I .

4 AAT =


2 1

1 2


 has σ2

1 = 3 with u1 =


1/

√
2

1/
√
2


 and σ2

2 = 1 with u2 =


 1/

√
2

−1/
√
2


.

ATA =




1 1 0

1 2 1

0 1 1


 has σ2

1 = 3 with v1 =




1/
√
6

2/
√
6

1/
√
6


, σ2

2 = 1 with v2 =




1/
√
2

0

−1/
√
2




and v3=




1/
√
3

−1/
√
3

1/
√
3


. Then


1 1 0

0 1 1




v1 v2 v3


=


u1 u2





√
3 0 0

0 1 0


=UΣ.
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5 (a) A =


1 1

3 3


 has v1 =

1√
2


1

1


 in its row space and u1 =

1√
10


1

3


 in its

column space. Those are unit vectors.

Since ATA =


10 10

10 10


 has λ1 = 20 and λ2 = 0, A itself has σ1 =

√
20 and has no

σ2. (Remember that the r singular values have to be strictly positive!)

(b) If we want square matrices U and V , choose u2 and v2 orthogonal to u1 and v1 :

U =
1√
10


1 3

3 −1


 and V =

1√
2


1 −1

1 1


 .

6 If A = UΣV T then AT = V ΣTUT and ATA = V ΣTΣV T. This is a diagonaliza-

tion V ΛV T with Λ = ΣTΣ (so each σ2
i = λi). Similarly AAT = UΣΣTUT is a

diagonalization of AAT. We see that the eigenvalues in ΣΣT are the same σ2
i = λi.

7 This small question is a key to everything. It is based on the associative law (AAT)A =

A(ATA). Here we are applying both sides to an eigenvector v of ATA :

(AAT)Av = A(ATA)v = Aλv = λAv.

So Av is an eigenvector of AAT with the same eigenvalue λ.

8 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5

9 This A =


1 2

3 6


 is a 2 by 2 matrix of rank 1. Its row space has basis v1, its nullspace

has basis v2, its column space has basis u1, its left nullspace has basis u2:

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1

3


 , N(AT)

1√
10


 3

−1


 .
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10 If A has rank 1 then so does ATA. The only nonzero eigenvalue of ATA is its trace,

which is the sum of all a2ij . (Each diagonal entry of ATA is the sum of a2ij down one

column, so the trace is the sum down all columns.) Then σ1 = square root of this sum,

and σ2
1 = this sum of all a2ij .

11 ATA = AAT =


2 1

1 1


 has eigenvalues σ2

1 =
3 +

√
5

2
, σ2

2 =
3−

√
5

2
.

But A is

indefinite

σ1 = (1+
√
5)/2 = λ1(A), σ2 = (

√
5− 1)/2 = −λ2(A); u1 = v1 but u2 = −v2.

12 A proof that eigshow finds the SVD. When V 1 = (1, 0),V 2 = (0, 1) the demo finds

AV 1 and AV 2 at some angle θ. A 90◦ turn by the mouse to V 2,−V 1 finds AV 2 and

−AV 1 at the angle π − θ. Somewhere between, the constantly orthogonal v1 and v2

must produce Av1 and Av2 at angle π/2. Those orthogonal directions give u1 and u2.

13 The number σmax(A
−1)σmax(A) is the same as σmax(A)/σmin(A). This is certainly ≥

1. It equals 1 if all σ’s are equal, and A = UΣV T is a multiple of an orthogonal matrix.

The ratio σmax/σmin is the important condition number of A studied in Section 9.2.

14 A = UV T since all σj = 1, which means that Σ = I .

15 A rank–1 matrix with Av = 12u would have u in its column space, so A = uwT

for some vector w. I intended (but didn’t say) that w is a multiple of the unit vector

v = 1
2(1, 1, 1, 1) in the problem. Then A = 12uvT to get Av = 12u when vTv = 1.

16 If A has orthogonal columns w1, . . . ,wn of lengths σ1, . . . , σn, then ATA will be

diagonal with entries σ2
1, . . . , σ

2
n. So the σ’s are definitely the singular values of A

(as expected). The eigenvalues of that diagonal matrix ATA are the columns of I , so

V = I in the SVD. Then the ui are Avi/σi which is the unit vector wi/σi.

The SVD of this A with orthogonal columns is A = UΣV T = (AΣ−1)(Σ)(I).

17 Since AT = A we have σ2
1 = λ2

1 and σ2
2 = λ2

2. But λ2 is negative, so σ1 = 3 and

σ2 = 2. The unit eigenvectors of A are the same u1 = v1 as for ATA = AAT and

u2 = −v2 (notice the sign change because σ2 = −λ2, as in Problem 11).

18 Suppose the SVD of R is R = UΣV T. Then multiply by Q to get A = QR. So the

SVD of this A is (QU)ΣV T. (Orthogonal Q times orthogonal U = orthogonal QU .)
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19 The smallest change in A is to set its smallest singular value σ2 to zero.

20 ATA =


1 100

0 1




 1 0

100 1


 =


10001 100

100 1


 has eigenvaluesλ(ATA) = σ2(A).

λ2 − 10002λ+ 1 = 0 gives λ = 5001±
√
(5001)2 − 1 ≈ 5001±

(
5001− 1

10002

)
.

So λ ≈ 10002 and 1/10002 and σ ≈ 100.01 and 1/100.01. Check σ1σ2 ≈ 1 = detA.

21 The singular values of A + I are not σj + 1. They come from eigenvalues of

(A+ I)T(A+ I). Test the diagonal matrix A =


1 0

0 3


.

22 Since Q1 and U are orthogonal, so is Q1U . (check : (Q1U)T(Q1U) = UTQT
1 Q1U =

UTU = I .) So the SVD of the matrix Q1AQ
T
2 is just Q1UΣV TQT

2 = (Q1U)Σ(Q2V )T

and Σ is the same as for A. The matrices A and Q1AQ
T
2 and Σ are all “isometric” =

sharing the same Σ.

23 The singular values of Q are the eigenvalues of QTQ = I (therefore all 1’s).

24 (a) From xTSx = 3x2
1 + 2x1x2 + 3x2

2 you can see that S =


3 1

1 3


. Its eigenvalues

are 4 and 2. The maximum of xTSx/xTx is 4.

(b) The 1 by 2 matrix A =
[
1 4

]
leads to

||Ax||2
||x||2 =

(x1 + 4x2)
2

x2
1 + x2

2

. The maximum

value is σ2
1(A). For this matrix A =

[
1 4

]
that singular value squared is σ2

1 = 17.

This is because AAT =
[
17
]

and also ATA =


1 4

4 16


 has λ = 17 and 0.

25 The minimum value of
xTSx

xTx
is the smallest eigenvalue of S. The eigenvector is the

minimizing x. That eigenvector gives xTSx = xTλminx.

Since
||Ax||2
||x||2 =

xTATAx

xTx
we see that the minimizing x is an eigenvector of ATA

(and not usually an eigenvector of A).
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26 From AV = UΣ we know that


0

1


 = first column of V goes to 2


cos θ

sin θ


 = first

column of UΣ. Similarly the second column


1

0


 goes to


− sin θ

cos θ


. The two outputs

are orthogonal and they are the axes of an ellipse. With θ = 30◦ those axes are



√
3

1




going out from (0, 0) at 30◦ and
1

2


−1
√
3


 going out at 120◦. Comparing to the picture

in Section 7.4, the first step would be a reflection (not a rotation), then a stretch by

factors 2 and 1, then a 30◦ rotation.

27 Start from A = UΣV T. The columns of U are a basis for the column space of A, and

so are the columns of C, so U = CF for some invertible r by r matrix F .

Similarly the columns of V are a basis for the row space of A and so are the columns

of B, so V = BG for some invertible r by r matrix G.

Then A = UΣV T = C(FΣGT)BT = CMBT and M = FΣGT is r by r and

invertible.

Problem Set 7.3, page 391

1 The row averages of A0 are 3 and 0. Therefore

A =


 2 1 0 −1 −2

−1 1 0 1 −1


 and S =

AAT

4
=

1

4


10 0

0 4




The eigenvalues of S are λ1 =
10

4
and λ2 =

4

4
= 1. The top eigenvector of S is


1

0


.

I think this means that a vertical line is closer to the five points (2,−1), . . . , (−2,−1)

in the columns of A than any other line through the origin (0, 0).



Solutions to Exercises 137

2 Now the row averages of A0 are 1
2

and 2. Therefore

A =




1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

−1 0 1 1 0 −1


 and S =

AAT

5
=

1

5




3
2

0

0 4


 .

Again the rows of A are accidentally orthogonal (because of the special patterns of

those rows). This time the top eigenvector of S is


0

1


. So a horizontal line is closer

to the six points
(
1
2
,−1

)
, . . . ,

(
− 1

2
,−1

)
from the columns of A than any other line

through the center point (0, 0).

3 A0 =


1 2 3

5 2 2


 has row averages 2 and so A =


−1 0 1

2 −1 −1


. Then S =

1

2
AAT =

1

2


 2 −3

−3 6


.

Then trace (S) = 1
2
(8) and det(S) =

(
1
2

)2
(3). The eigenvalues λ(S) are 1

2
times the

roots of λ2 − 8λ + 3 = 0. Those roots are 4 ±
√
16− 3. Then the σ’s are

√
λ1 and

√
λ2.

4 This matrix A with orthogonal rows has S =
AAT

n− 1
=

1

3




2 0 0

0 8 0

0 0 4


.

With λ’s in descending order λ1 > λ2 > λ3, the eigenvectors are (0, 1, 0) and (0, 0, 1)

and (1, 0, 0). The first eigenvector shows the u1 direction. Combined with the second

eigenvector u2, the best plane is the yz plane.

These problems are examples where the sample correlation matrix (rescaling S so all

its diagonal entries are 1) would be the identity matrix. If we think the original scaling

is not meaningful and the rows should have the same length, then there is no reason to

choose u1 = (0, 1, 0) from the 8 in row 2.

5 The correlation matrix DSD which has 1’s on the diagonal is

DSD =




1
2

1
2

1







4 2 0

2 4 1

0 1 1







1
2

1
2

1


 =




1 1
2 0

1
2 1 1

2

0 1
2 1


 .
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6 Working with letters instead of numbers, the correlation matrix C = DSD is




1 c12 c13

c12 1 c23

c13 c23 1


 with c12 =

S12

σ1σ2
and c13 =

S13

σ1σ3
and c23 =

S23

σ2σ3
.

Then D =




1/σ1

1/σ2

1/σ3


 gives DSD = C.

7 From each row of A0, subtract the average of that row (the average grade for that

course) from the 10 grades in that row. This produces the centered matrix A. Then the

sample covariance matrix is S = 1
9
AAT. The leading eigenvector of the 5 by 5 matrix

S tells the weights on the 5 courses to produce the “eigencourse”. This is the course

whose grades have the most information (the greatest variance).

If a course gives everyone an A, the variance is zero and that course is not included in

the eigencourse. We are looking for most information not best grade.

Problem Set 7.4, page 398

1 ATA =


10 20

20 40


 has λ = 50 and 0, v1 =

1√
5


1

2


, v2 =

1√
5


 2

−1


; σ1 =

√
50.

2 Orthonormal bases: v1 for row space, v2 for nullspace, u1 for column space, u2 for

N(AT). All matrices with those four subspaces are multiples cA, since the subspaces

are just lines. Normally many more matrices share the same 4 subspaces. (For example,

all n by n invertible matrices share Rn as their column space.)

3 A = QS =
1√
50


7 −1

1 7


 1√

50


10 20

20 40


. S is semidefinite because A is singular.

4 A+ = V


1/

√
50 0

0 0


UT =

1

50


1 3

2 6


; A+A =


 .2 .4

.4 .8


, AA+ =


 .1 .3

.3 .9


.
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5 ATA =


10 8

8 10


 has λ = 18 and 2, v1 =

1√
2


1

1


, v2 =

1√
2


 1

−1


, σ1 =

√
18

and σ2 =
√
2.

6 AAT =


18 0

0 2


 has u1 =


1
0


, u2 =


0
1


. The same

√
18 and

√
2 go into Σ.

7


σ1u1 σ2u2






vT
1

vT
2


=σ1u1v

T
1 +σ2u2v

T
2 . In general this is σ1u1v

T
1 +· · ·+σrurv

T
r .

8 A = UΣV T splits into QK (polar): Q = UV T =
1√
2


1 1

1 −1


 and K = V ΣV T =



√
18 0

0
√
2


.

9 A+ is A−1 because A is invertible. Pseudoinverse equals inverse when A−1 exists!

10 ATA =




9 12 0

12 16 0

0 0 0


 has λ = 25, 0, 0 and v1 =




.6

.8

0


, v2 =




.8

−.6

0


, v3 =




0

0

1


.

Here A = [ 3 4 0 ] has rank 1 and AAT = [ 25 ] and σ1 = 5 is the only singular value

in Σ = [ 5 0 0 ].

11 A=[ 1 ] [ 5 0 0 ]V T and A+=V




.2

0

0


=




.12

.16

0


; A+A=




.36 .48 0

.48 .64 0

0 0 0


 ;AA+=[ 1 ]

12 The zero matrix has no pivots or singular values. Then Σ = same 2 by 3 zero matrix

and the pseudoinverse is the 3 by 2 zero matrix.

13 If detA = 0 then rank(A) < n; thus rank(A+) < n and detA+ = 0.

14 This problem explains why the matrix A transforms the circle of unit vectors ||x|| = 1

into an ellipse of vectors y = Ax. The reason is that x = A−1y and the vectors with

||A−1y|| = 1 do lie on an ellipse :

||A−1 y||2 = 1 is yT (A−1)T A−1 y = 1 or yT (AAT)−1 y = 1.

That matrix (AAT)−1 is symmetric positive definite (A is assumed invertible).
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A =


 2 1

1 2


 gives AAT =


 5 4

4 5


 and (AAT)−1 =

1

9


 5 −4

−4 5


 .

So the ellipse ||A−1 y||2 = 1 of outputs y = Ax has equation 5y21 − 8y1y2 +5y22 = 9.

The singular values of this positive definite A are its eigenvalues 3 and 1.

The ellipse ||A−1 y|| = 1 has semi-axes of lengths 1/3 and 1/1.

15 (a) ATA is singular (b) Thisx+ in the row space does giveATAx+ = ATb (c) If

(1,−1) in the nullspace of A is added to x+, we get another solution to ATAx̂ = ATb.

But this x̂ is longer than x+ because the added part is orthogonal to x+ in the row space

and ||x̂||2 = ||x+||2 + ||added part from nullspace||2.

16 x+ in the row space of A is perpendicular to x̂ − x+ in the nullspace of ATA =

nullspace of A. The right triangle has c2 = a2 + b2.

17 AA+p = p, AA+e = 0, A+Axr = xr, A+Axn = 0.

18 A+ = V Σ+UT is 1
5
[ .6 .8 ] = [ .12 .16 ] and A+A = [ 1 ] and AA+ =


 .36 .48

.48 .64


 =

projection.

19 L is determined by ℓ21. Each eigenvector in X is determined by one number. The

counts are 1 + 3 for LU , 1 + 2 + 1 for LDU , 1 + 3 for QR (notice 1 rotation angle),

1 + 2 + 1 for UΣV T, 2 + 2 + 0 for XΛX−1.

20 LDLT and QΛQT are determined by 1+ 2+ 0 numbers because A is symmetric.

Note Problem 20 should have referred to Problem 19 not 18.

21 Check the formula for A+A using A+ and A :

A+A=

(
r∑

1

viu
T
i

σi

)(
r∑

1

σjujv
T
j

)
=

r∑

1

viu
T
i uiv

T
i because uT

i uj=0 when i 6= j

Then every uT
i ui = 1 (unit vector) so A+A =

r∑

1

viv
T
i is correct.

Similarly AA+ =

(
r∑

1

σj uj v
T
j

)(
r∑

1

vi u
T
i

σi

)
=

r∑

1

ui u
T
i .
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22 M =


 0 A

AT 0




u

v


 =


 Av

ATu


 = σ


u

v


. Thus


u

v


 is an eigenvector.

The singular values of A are eigenvalues of this block matrix.




